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Bi-Cross-Validation for Factor Analysis
Art B. Owen and Jingshu Wang

Abstract. Factor analysis is over a century old, but it is still problematic to
choose the number of factors for a given data set. We provide a systematic
review of current methods and then introduce a method based on bi-cross-
validation, using randomly held-out submatrices of the data to choose the
optimal number of factors. We find it performs better than many existing
methods especially when both the number of variables and the sample size
are large and some of the factors are relatively weak. Our performance crite-
rion is based on recovery of an underlying signal, equal to the product of the
usual factor and loading matrices. Like previous comparisons, our work is
simulation based. Recent advances in random matrix theory provide princi-
pled choices for the number of factors when the noise is homoscedastic, but
not for the heteroscedastic case. The simulations we chose are designed using
guidance from random matrix theory. In particular, we include factors which
are asymptotically too small to detect, factors large enough to detect but not
large enough to improve the estimate, and two classes of factors (weak and
strong) large enough to be useful. We also find that a form of early stopping
regularization improves the recovery of the signal matrix.

Key words and phrases: Parallel analysis, random matrix theory, scree plot,
unwanted variation.

1. INTRODUCTION

Factor analysis is a core technology for handling
large data matrices, with applications in signal process-
ing [59, 25], bioinformatics [52, 48, 37, 56, 21], finance
and econometrics [20, 6] and other areas [38, 26, 33].
In psychology, the factor model dates back at least to
the paper of Spearman [55] in 1904. A basic factor
analysis model assumes that the data matrix Y ∈ R

N×n

with n observations and N variables is represented as a
matrix X of some low-rank k (the signal) plus indepen-
dent heteroscedastic noise. The signal X in turn can be
factored into an N × k matrix times a k × n matrix and
this (nonunique) factorization may then be interpreted
as a product of latent variables times loading coeffi-
cients.
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It is surprisingly difficult to choose the number k of
factors. In traditional factor analysis problems which
have a small N but a relatively large n, there is no
widely agreed best performing methods (see, e.g., [50])
and recommendations among them are based largely
on simulation studies [13, 58]. Classical methods such
as hypothesis testing based on likelihood ratios [36]
or methods based on information theoretic criteria
[59] assume homoscedastic noise while heteroscedas-
tic noise is more common in applications. In addition,
they are derived in an asymptotic regime with a grow-
ing number of observations and fixed number of vari-
ables and do not perform well on matrices where both
dimensions are large. Special methods for big data ma-
trices where both N and n are large have been pro-
posed recently in the econometrics community [5, 42,
32, 2, 1]. They are derived in an asymptotic framework
where the factor strength grows as N and n both tend
to infinity. However, these methods may not work well
on weaker factors and that is a potential flaw when the
strong factors are already well known and we are trying
to discover the weaker ones. The random matrix theory
(RMT) literature by contrast focuses on weak factors,
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but their methods are not well suited to heteroscedas-
tic noise. As a result, the present state of theory does
not provide usable guidelines. This is a significant gap
because the performance of factor analysis in many ap-
plications depends critically on the number of factors
chosen [21, 29].

In this paper, we develop an approach to choosing
the number of factors using bi-cross-validation (BCV)
[45]. Our BCV involves holding out some rows and
some columns of Y , fitting a factor model to the held-in
data and comparing held-out data to corresponding fit-
ted values. We derive our method using recent insights
from random matrix theory. We test our method em-
pirically using test cases that are also designed using
insights from RMT. Our goal is not to recover the true
number k of factors, but instead to choose the number
k that lets us best recover the signal matrix X. Using
the true number of factors will lead to a noisy estimate
of X when some factors are too weak to detect.

Based on previous theoretical results, we employ a
taxonomy dividing factors into four types based on
their strength in an asymptotic setting where both n

and N go to infinity. To overcome identifiability prob-
lems, we assume that the factors are orthogonal to each
other. Our factors may thus be linear combinations of
some real world factors. The four factor levels are as
follows: undetectable, harmful, helpful, and strong.

Strong factors are those that asymptotically explain a
fixed percentage of variance in the matrix Y . They be-
come easy to detect as the corresponding singular val-
ues go to infinity under the asymptotics, but their pres-
ence causes difficulties for some methods of choos-
ing k when there are also weak factors. The other
factor types are weak and explain a fraction of vari-
ance approaching some limit c/N as n,N → ∞ with
N/n → γ . If c is small compared to a detection thresh-
old, then a singular value decomposition (SVD) based
method can not distinguish that factor from noise, and
the factor is undetectable. If c is somewhat larger, then
that factor can be detected but the corresponding eigen-
vectors cannot be estimated accurately enough for that
factor to improve estimation of X. Such factors are
harmful because detecting them can lead to worse per-
formance. If c is still larger, then we can not only detect
the factor but including it in X̂ also yields an improve-
ment. We call those factors helpful. Strong factors are
also helpful, but “helpful” by itself will refer to helpful
weak factors. This taxonomy is based on homoscedas-
tic Gaussian noise. A similar idea of the taxonomy also
appeared in Onatski [43, 44]. In [43], he proposed the

model with both strong and weak factors, and an “ef-
fective number” of factors which is the number of de-
tectable factors in our taxonomy. In [44], there is a con-
cept of optimal loss efficiency which is attained by es-
timating the number of useful factors.

This paper is organized as follows. In Section 2
we specify the factor model we study, the asymptotic
regime, and our estimation criterion. Section 3 reviews
prior work on rank selection and determining the num-
ber of factors. It defines the boundaries in our four-
level taxonomy of factor sizes. Section 4 describes our
early stopping alternation (ESA) algorithm to estimate
the low-rank signal matrix with a given target k for the
number of factors. Section 5 introduces the BCV tech-
nique to determine the number of factors. Section 6
summarizes extensive simulation results. In those cases
BCV is more reliably close to an oracle’s performance
than all the other methods compared, including parallel
analysis (PA), several leading methods in the econo-
metrics literature, and the information criteria based
method [40] using RMT assuming white noise. Also,
unlike other methods, BCV becomes more likely to
choose the unknown best rank as sample size increases.
Section 7 illustrates the BCV choice of k on some data
sampled from a meteorite. Section 8 concludes the pa-
per. An Appendix includes a detailed account of the
simulations.

2. PROBLEM FORMULATION

Our data matrix is Y ∈ R
N×n with a row for each

variable and a column for each observation. In the
bioinformatics problems we have worked on, it is usual
to have N > n or even N � n, but this is not assumed.
In a factor model, Y can be decomposed into a low-
rank signal matrix plus noise:

Y = X + �1/2E = LR + �1/2E,(1)

where the low-rank signal matrix X ∈ R
N×n is a prod-

uct of factors L ∈ R
N×k0 and R ∈ R

k0×n, both of
rank k0. The noise matrix E ∈ R

N×n has independent
and identically distributed (IID) entries with mean 0
and variance 1. Each variable has its own noise vari-
ance given by � = diag(σ 2

1 , σ 2
2 , . . . , σ 2

N). The signal
matrix X is a signal that we wish to recover despite the
heteroscedastic noise.

The factor model is usually applied when we antici-
pate that k0 � min(n,N). Then identifying those fac-
tors suggests possible data interpretations to guide fur-
ther study. When the factors correspond to real world
quantities, there is no reason why they must be few in
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number and then we should not insist on finding them
all in our data, as some factors may be too small to es-
timate. We should instead seek the relatively important
ones, which are the factors that are strong enough to
contribute most to the signals and be accurately esti-
mated.

In a typical factor analysis, R has n IID columns cor-
responding to factors and L has nonrandom loadings.
We work conditionally on R so that X becomes a fixed
unknown matrix. A typical factor analysis aims to es-
timate the individual factors L and R. To avoid identi-
fication problems, our goal is to recover X, seeking to
minimize

ErrX(X̂) ≡ E
(‖X̂ − X‖2

F

)
.(2)

This criterion was used for factor models in [44] and
for truncated SVDs and nonnegative matrix factoriza-
tions in [45]. The estimate X̂ can be factored into L̂

and R̂ using rotations for greater interpretability.

DEFINITION 1 (Oracle rank and estimate). Let M

be a method that for each integer k ≥ 0 gives a rank
k estimate X̂M(k) of X using Y from model (1). The
oracle rank for M is

k∗
M = argmin

k

(∥∥X̂M(k) − X
∥∥2
F

)
,(3)

and the corresponding oracle estimate of X is

X̂M
opt = X̂M(

k∗
M

)
.(4)

If all the factors are strong enough, then for a good
method M , we anticipate that k∗

M should equal the true
number of factors k0. With weak enough factors we
will have k∗

M < k0.
Our algorithm has two steps. First, we need to devise

a method M to effectively estimate X given the oracle
rank k∗

M . Then with such a method in hand, we need
a means to estimate k∗

M . Section 4 describes our early
stopping alternation (ESA) algorithm for estimating X

at a given k, which has the best performance compared
with other methods given their own oracle ranks. Then
Section 5 describes our BCV for estimating k�

ESA for
the ESA algorithm. First we describe previous methods
and the relevant RMT that motivates our comparisons.

3. LITERATURE REVIEW AND FACTOR
TAXONOMY

Here we review the most commonly used meth-
ods for choosing the number of factors. We begin
with some classical methods in factor analysis which
are typically based on a limit with n → ∞ while N

is fixed. Then we consider some recently developed
methods from the econometrics community for large
matrices with strong factors and methods. The third
source of methods is based on RMT which emphasizes
weak factors with noise of constant variance. We use
the recent work in RMT to develop the four-level tax-
onomy of factor sizes that guides our simulations.

3.1 Classical Methods for Factor Analysis

The most widely used classical methods for deter-
mining the number of factors or principal components
include the scree test [12, 13], sphericity tests based on
likelihood ratio [8, 36], parallel analysis (PA) [27, 10],
the minimum average partial test of [57] and informa-
tion criteria based methods such as minimum descrip-
tion length (MDL) [59, 17]. Those methods are aimed
at estimating the true number k of factors. They are de-
rived for a setting where n → ∞ with N fixed. In that
case, both the maximum-likelihood estimation of the
factors and the sample covariance matrix will be con-
sistent, thus, k∗

M = k0 asymptotically for a reasonable
estimation method M .

Regarding classical methods, we should mention the
conceptual difference between determining the num-
ber of principal components for principal component
analysis (PCA) and determining the number of factors
for factor analysis. Factor analysis has additive het-
eroscedastic noise that is not present in PCA. Though
many of the above methods have been modified to be
applied to both problems, theoretical guarantees were
only derived for PCA assuming white and Gaussian
noise. Many researchers [30, 10, 62, 58] have found out
that those methods usually perform much better for es-
timating the principal components than for factor anal-
ysis. Some of them [62, 58] suggest that even for fac-
tor analysis, one should perform PCA first in the initial
stage to determine the number of factors before esti-
mating the factors. We adopt this suggestion in this pa-
per later when comparing these methods in Section 6.

There is a large amount of evidence [62, 28, 58, 50]
that PA is one of the most accurate of the above classi-
cal methods for determining the number of factors. Par-
allel analysis compares the observed eigenvalues of the
correlation matrix to those obtained in a Monte Carlo
simulation. The first factor is retained if and only if
its associated eigenvalue is larger than the 95th per-
centile of simulated first eigenvalues. For k ≥ 2, the
kth factor is retained when the first k − 1 factors were
retained and the observed kth eigenvalue is larger than
the 95th percentile of simulated kth factors. The per-
mutation version of PA was introduced by [10]. There
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the eigenvalues are simulated by applying independent
uniform random permutations to each of the variables
stored in Y . The earlier method of Horn [27] resamples
from a Gaussian distribution. Parallel analysis has been
used recently in bioinformatics [37, 56]. Though there
exist no theoretical results to guarantee the accuracy of
PA, it performs very well in practice.

3.2 Methods for Large Matrices and Strong Factors

This collection of methods is designed for an asymp-
totic regime where both n,N → ∞ while k is fixed.
For strong factors, it is usually assumed that RRT /n →
�R and LT L/N → �L for some k0 × k0 positive def-
inite matrices �R and �L. In that case, the singular
values of X are O(

√
nN). The methods are designed

to estimate the true number of factors. In the above
framework, the factors can be estimated consistently,
and we should expect k∗

M = k0. This was proved when
M is the SVD by Onatski [44].

Some of the most popular methods to estimate the
number of factors under the above scenario are based
on the information criteria developed by Bai and Ng
[5], with later improvements in [2]. It has been shown
that these information criteria based rules are asymp-
totically consistent. Kapetanios [31, 32] proposed sev-
eral methods assuming strong factors but making use
of the RMT results on the sample eigenvalue distribu-
tion of pure white noise. However, the theoretical guar-
antees for his methods require homescedastic noise.
Ahn and Horenstein [1] recently proposed two estima-
tors for determining the number of factors by simply
maximizing the ratio of two adjacent eigenvalues of
the sample covariance matrix. The idea of maximiz-
ing such a ratio to estimate the number of factors can
be also found in [34, 35]. Onatski [42] developed an
estimator (ED) based on the difference of two adjacent
eigenvalues of the sample covariance matrix, and has
proved its consistency under a weaker assumption of
the factor strength: instead of growing in the order of
O(

√
N), the singular values of X/

√
n are just required

to diverge in probability as N → ∞. For economet-
rics applications, there are more methods to estimate
the number of factors [19, 3, 23] for dynamic factor
models. These models are designed for a time series
structure on the factors. Such dependency models are
beyond the scope of this paper.

3.3 Methods for Large Matrices and Weak Factors

Here we review methods to estimate the number of
weak factors in white noise, based on results in RMT.
In this asymptotic regime, n and N diverge to infinity,

while k is fixed and the singular values of X are O(1).
The model is commonly framed as

Y = √
nUDVT + σE,(5)

where
√

nUDVT is the SVD of X, so that U ∈ R
N×k0

and V ∈ R
N×k0 satisfy UTU = V TV = Ik0×k0 . The

matrix D = diag(d1, d2, . . . , dk0) defines the strength
of each signal. Asymptotically, d2

i → ui for some con-
stants ui . The noise matrix E ∈ R

N×n is usually taken
to have IID entries with mean 0, variance 1 and finite
fourth moment [7].

Estimation of X is typically through the singular
value decomposition (SVD) of Y , retaining the fitted
singular vectors, but shrinking or truncating the corre-
sponding singular values. In the limit n,N → ∞ and
N/n → γ , there is a well-known phase transition for
signal detection. If u2

i < σ 2√γ , then the correspond-
ing factor is asymptotically not detectable using SVD-
based methods, while if u2

i > σ 2√γ , the factor can be
detected. See [49, 9, 51] for statements of this result.
Simulations [40, 22] have also confirmed this result.

A principled way to select the rank is to estimate
the number of factors with ui above the asymptotic
detection threshold σ 2√γ . Nadakuditi and Edelman
[40] used an information criteria based method modi-
fied from the classical MDL estimator [59]. Kritchman
and Nadler [33] developed an algorithm based on a se-
quence of hypothesis tests which are connected with
the Roy’s classical largest root test [54] to check for
sphericity of a covariance matrix. Both methods will
consistently estimate the number of detectable factors
under weak factor asymptotics. Similar to [33, 15] pro-
vides a sequential hypotheses testing method which is
not based on asymptotics.

Neither the true rank nor the number of detectable
factors will necessarily optimize our criterion (3). The
problem is that a factor stronger than the detection
threshold might still not be strong enough to allow ad-
equate estimation of the corresponding singular vec-
tors. Owen and Perry [45] propose a BCV algorithm
to choose k for the truncated SVD, motivated by the
loss (2). Perry’s work [51] on BCV identifies a higher
threshold for ui beyond which including the corre-
sponding singular vectors reduces the loss (2). He also
shows that the rank selected by BCV will track the ora-
cle’s rank for truncated SVD; his formal statement is in
Theorem 5.3 below. This second estimation threshold
was later derived by [22] and by [44].

The above results are only valid in the white noise
model (5), which is much simpler than the heterosce-
dastic model (1). For more general noise covariance
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structures, there are several recent theoretical results,
but none of them solve our problem. For example,
Nadler [41] considered a general spiked covariance
model with the eigenvalues corresponding to the noise
in the population covariance matrix converging to
some limiting distribution. However, our heteroscedas-
tic model (1) is not directly related to a spiked covari-
ance model. Nadakuditi [39] developed a method to
shrink singular values to recover a low-rank signal ma-
trix with noise from a class of distributions more gen-
eral than IID Gaussian. But he assumed that either the
noise matrix or the signal matrix is bi-orthogonally in-
variant, and he did not show how to estimate the rank.
Onatski [43] considered noise whose covariance struc-
ture can be represented by a Kronecker product, which
includes the heteroscedastic noise case. However, his
theory depends on the strong assumption that the fac-
tors and the noise covariance have the same eigenvec-
tors. He suggested using the ED estimator mentioned
in Section 3.2 to estimate the number of weak de-
tectable factors, which works well in his simulations.

3.4 Factor Categories and Test Cases

When we simulate the factor model for our tests, we
will generate it as

Y = �1/2(
�−1/2X + E

)
(6)

= �1/2(√
nUDVT + E

)
.

The matrix �−1/2X = √
nUDVT has the same low

rank that X does. Here UDVT is an SVD and we gen-
erate the matrices U and V from appropriate distri-
butions. The normalization in (6) allows us to make
direct use of RMT in choosing D. The matrix V is
uniformly distributed, but U has a nonuniform distri-
bution to avoid making rows with large mean squared
U -values coincide with rows having large σi . Such a
coincidence could make the problem artificially easy.
See the Appendix for a description of the sampler.

Based on the discussion in Section 3.3 and under the
asymptotics that n,p → ∞, we may place each factor
into a category depending on the size of d2

i . The cate-
gories are as follows:

1. Undetectable: d2
i is below the detection thresh-

old, thus the factor is asymptotically undetectable by
SVD based methods.

2. Harmful: d2
i is above the detection threshold but

below the threshold at which their inclusion in the
model improves accuracy.

3. Useful: d2
i is above the detection threshold but is

O(1). It contributes an N × n matrix to Y with sum
of squares O(n), while the expected sum of squared
errors is nNσ 2.

4. Strong: d2
i grows proportionally to N . The factor

sum of squares is then proportional to the noise level.

Undetectable factors essentially add to the noise
level. Asymptotically, no method based on sample
eigenvalues can detect them, and so they play a small
role in determining which method to choose k is best.

Harmful factors can cause severe difficulties for a
factor number estimator to reduce the loss (2). They are
large enough to be detected but including them makes
the loss (2) larger. Changing an algorithm to better de-
tect such factors could lead it to have worse perfor-
mance.

Useful weak factors are large enough that including
them reduces the loss. It is generally not possible to
estimate their corresponding eigenvectors consistently.
The estimated and true eigenvectors only converge in a
limit where d2

i is an arbitrarily large constant. Separat-
ing useful from harmful weak factors is important for
accurate estimation of X.

The strong factors are large enough to be almost un-
missable. When one or more of them is present, they
may very well put a clear knee in the scree plot, though
that knee won’t necessarily be at the optimal k when
there are also some useful weak factors. Given an esti-
mation method, the total number of useful weak factors
and strong factors is the same as the oracle rank.

Real data often include factors that fit the asymptotic
strong factor category. In a matrix of dimensional mea-
surements on animals, there is likely to be a strong fac-
tor for the overall size of those animals. In educational
testing data where n students each answer N questions,
there is very often a strong factor interpreted as stu-
dent ability with a corresponding loading for item dif-
ficulty. In modeling daily returns of stocks, there may
be one factor corresponding to overall market move-
ments that affect all stocks. Although strong factors
should be easy to detect, they can cause severe diffi-
culties for some algorithms as illustrated in Section 6.
Useful weak factors may appear negligible in compar-
ison to the strong ones. In each of these examples one
can envision settings where the strongest factors are
obvious and uninteresting, while the weak factors have
useful insights.

Strong factors resemble the giant components com-
monly found in networks [16]. Network theory has
several well understood mechanisms which lead to gi-
ant components. A mechanism for strong versus weak
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TABLE 1
Six factor strength scenarios considered in our simulations

Scenario

1 2 3 4 5 6

# Undetectable 1 1 1 1 1 1
# Harmful 1 1 1 3 3 6
# Useful 6 4 3 1 3 1
# Strong 0 2 3 3 1 0

factors seems to be missing. Suppose that one keeps
adding measurements, increasing N , and perhaps do-
ing so by adjoining additional features that are less and
less important to one’s primary scientific goals. A fac-
tor that strongly predicts the first few variables but is
only weakly related to subsequent ones might become
a weak factor in such a limit. A factor related to all of
the variables we add would ordinarily be a strong one.

In the following sections we compare methods us-
ing the six testing scenarios described in Table 1. They
have been customized based on our goals and our un-
derstanding of the problem. All of these cases have
eight nonzero factors of which one is undetectable.
We anticipate that the number of harmful factors is an
important variable, and so it generally increases with
scenario number, ranging from 1 to 6. The remain-
ing factors are split between strong and merely useful.
By including several scenarios with equal numbers of
harmful factors, we can vary the ratio of strong to use-
ful factors at high and low numbers of harmful factors.

In the white noise model, the category that a factor
falls into depends on the ratio d2

i /(σ 2√γ ). When we
simulate factors we use the same critical ratios but re-
place σ 2 by (1/N)

∑N
i=1 σ 2

i .
For each of these six cases we consider various lev-

els of noise variance. The σ 2
i are independent inverse

gamma random variables with mean 1 and variances
0 or 1 or 10. We also consider 5 aspect ratios, N/n ∈
{0.02,0.2,1,5,20}. For each aspect ratio we consider
two sizes n. That is, we consider 6 × 3 × 5 × 2 = 180
cases spanning a wide range of problems. The com-
plete details are in the Appendix.

4. ESTIMATING X GIVEN THE RANK k

Here we consider how to estimate X using exactly
k factors. This will be the inner loop for an algorithm
that tries various k. The goal in this section is to find
a method that has good performance when given its

oracle rank. Assuming Gaussian noise, we get the log-
likehihood function:

logL(X,�)

= −Nn

2
log(2π) − n

2
log det�(7)

+ tr
[
−1

2
�−1(Y − X)(Y − X)T

]
.

If � were known, it would be straightforward to es-
timate X using an SVD, but � is unknown. Given an
estimate of X, it is straightforward to optimize the like-
lihood over �. Next we describe our alternating algo-
rithm and we employ an early stopping rule to regular-
ize it.

The truncated SVD of a matrix Y is

Y(k) = U(k)D(k)V (k)T,(8)

where D(k) is the diagonal matrix of the k largest sin-
gular values of Y , and U(k) and V (k) are the matrices
of the corresponding singular vectors. We start with an
initial estimate of � using the sample variance:

�̂ = diag
((

Y − 1

n
Y1n×n

)(
Y − 1

n
Y1n×n

)T)
.(9)

Given an estimate �̂, our rank k estimate X̂ is the trun-
cated SVD of the reweighted matrix Ỹ = �̂−1/2Y :

X̂ = �̂1/2Ỹ (k).(10)

Given an estimate X̂, our new variance estimate �̂ con-
tains the mean squares of the residuals:

�̂ = 1

n
diag

[
(Y − X̂)(Y − X̂)T]

.(11)

Both of the above two steps can increase logL(X,�)

but not decrease it. Simply alternating those two steps
to convergence is not effective. The algorithm often
does not converge. Nor should it, because the likeli-
hood is unbounded as even one of the σi decreases to
zero. Such a degenerate problem is similar to the de-
generate problem when one tries to fit real valued data
to a mixture of two Gaussians. In that case the likeli-
hood is unbounded as one of the mixture components
converges to a point mass (the variance of one compo-
nent goes to 0).

It is not straightforward to prevent σi from approach-
ing 0. Imposing a bound σi ≥ ε > 0 leads to some
σi converging to ε. There are numerous approaches to
regularizing X̂ to prevent σi → 0. One could model the
σi as IID from some prior distribution. However, such
a distribution must also avoid putting too much mass
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near zero. We believe that this transfers the singularity
avoidance problem to the choice of hyperparameters
in the σ distribution and does not really solve it. We
have also found in trying it that even when σi are re-
ally drawn from our prior, the algorithm still converged
toward some zero estimates.

A second, related approach is to employ a penalized
likelihood

Lreg(Y,λ, X̂, �̂)

= −n log det �̂ + tr
[
�−1(Y − X̂)(Y − X̂)T]

(12)

+ λP (�̂),

where P penalizes small components σi . This ap-
proach has two challenges. It is hard to select a penalty
P that is strong enough to ensure boundedness of the
likelihood, without introducing too much bias. Addi-
tionally, it requires a choice of λ. Tuning λ by cross-
validation within our bi-cross-validation algorithm is
unattractive. Also, there is a risk that cross-validation
might choose λ = 0, allowing one or more σi → 0.

We do not claim that these methods cannot in the fu-
ture be made to work. They are, however, not easy to
use, and we found a simpler approach that works sur-
prisingly well. Our approach is to employ early stop-
ping. We start at (9) and iterate the pair (10) and (11)
some number m of times and then stop.

To choose m, we investigated 180 test cases based on
the six factor designs in Table 1, three dispersion levels
for the σ 2

i , five aspect ratios γ and 2 data sizes. The
details are in the Appendix. The finding is that taking
m = 3 works almost as well as if we used whichever m

gave the smallest error for each given data set.
More specifically, define the oracle estimating error

using early stopping at m steps as

ErrX(m) = min
k

∥∥X̂m(k) − X
∥∥2
F ,(13)

where X̂m(k) is the estimate of X using m iterations
and rank k. We judge each number m of steps by the
best k that might be used with it.

For early stopping alternation (ESA), we define the
oracle stopping number of steps on a data set as

mopt = argmin
m

ErrX(m)

(14)
= argmin

m
min

k

∥∥X̂m(k) − X
∥∥2
F .

We have found that m = 3 is very nearly optimal in
almost all cases. We find that ErrX(3)/ErrX(mopt) is
on average less than 1.01, with a standard deviation of

0.01 (see Appendix). Using m = 3 steps with the best
k is nearly as good as using the best possible combina-
tion of m and k. We have tested early stopping on other
data sizes, factor strengths and noise distributions, and
find that m = 3 is a robust choice. Early stopping is also
much faster than iterating until a convergence criterion
has been met.

In the Appendix, we compare ESA to other meth-
ods for estimating X, including SVD, PCA (SVD
after data standardization) and the quasi maximum-
likelihood method (QMLE). The QMLE is derived by
a classical factor analysis approach and it gives consis-
tent estimation for strong factors and large data sets [4].
For the heteroscedastic noise cases and given the or-
acle rank of each method, ESA performs better than
SVD and PCA in most cases. It also performs better
than QMLE on average and when the aspect ratio N/n

is not too small. Comparing ESA with an oracle SVD
method that knows the noise variance, we find that they
have comparable performance.

Given the above findings, we turn our attention to
estimating the oracle k for ESA in Section 5.

REMARK 4.1. Early stopping of iterative algo-
rithms is a well-known regularization strategy for in-
verse problems and training machine learning models
like neural networks and boosting [60, 61, 24, 11].
An equivalence between early stopping and adding a
penalty term has been demonstrated in some settings
[18, 53].

REMARK 4.2. ESA starting from (9) with m = 1 is
equivalent to PCA. Using m > 1 iterations can be inter-
preted as using an estimated signal matrix to improve
the estimation of �, so ESA with m = 3 can be under-
stood as applying truncated SVD on a more properly
reweighted data than one gets with m = 1.

5. BI-CROSS-VALIDATORY CHOICE OF k

Here we describe how BCV works in the het-
eroscedastic noise setting. Then we give our choice
for the shape and size of the held-out submatrix using
theory from [51].

5.1 Bi-Cross-Validation to Estimate k∗
ESA

We want k to minimize the squared estimating error
(3) in X̂. We adapt the BCV technique of Owen and
Perry [45] to this setting of unequal variances. We ran-
domly select n0 columns and N0 rows as the held-out
block and partition the data matrix Y (by permuting the
rows and columns) into four folds,

Y =
(

Y00 Y01
Y10 Y11

)
,
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where Y00 is the selected N0 × n0 held-out block, and
the other three blocks Y01, Y10 and Y11 are held-in. Cor-
respondingly, we partition X and � as

X =
(

X00 X01
X10 X11

)
and � =

(
�0 0
0 �1

)
.

The idea is to use the three held-in blocks to estimate
X00 for each candidate rank k and then select the best
k based on the BCV estimated prediction error.

We rewrite the model (1) in terms of the four blocks:(
Y00 Y01
Y10 Y11

)

=
(

X00 X01
X10 X11

)
+

(
�0 0
0 �1

)1/2 (
E00 E01
E10 E11

)

=
(

L0R0 L0R1
L1R0 L1R1

)
+

(
�

1/2
0 E00 �

1/2
0 E01

�
1/2
1 E10 �

1/2
1 E11

)
,

where L = (L0
L1

)
and R = (R0 R1) are decompositions

of the factors.
The held-in block

Y11 = X11 + �
1/2
1 E11 = L1R1 + �

1/2
1 E11

has the low-rank plus noise form, so we can use ESA to
get estimates X̂11(k) and �̂1 for a given rank k. Next,
for k < rank(Y11) we choose rank k matrices L̂1 and
R̂1 with

X̂11(k) = L̂1R̂1.(15)

Then we can estimate L0 by solving N0 linear re-
gression models Y T

01 = R̂T
1LT

0 + ET
01�

1/2
0 , and estimate

R0 by solving n0 weighted linear regression models
Y10 = L̂1R0 + �̂

1/2
1 E10. These least square solutions

are

R̂0 = (
L̂T

1�̂
−1
1 L̂1

)−1
L̂T

1�̂
−1
1 Y10

and

L̂0 = Y01R̂
T
1
(
R̂1R̂

T
1
)−1

,

which do not depend on the unknown �0. We get a
rank k estimate of X00 as

X̂00(k) = L̂0R̂0.(16)

Though the decomposition (15) is not unique, the es-
timate X̂00(k) is unique. To prove it, we need a reverse
order theorem for Moore–Penrose inverses. For a ma-
trix Z ∈ R

n×d , the Moore–Penrose pseudo-inverse of
Z is denoted Z+.

THEOREM 5.1. Suppose that X = LR, where L ∈
R

m×r and R ∈ R
r×n both have rank r . Then X+ =

R+L+ = RT(RRT)−1(LTL)−1LT.

PROOF. This is MacDuffee’s theorem. There is a
proof in [45]. �

PROPOSITION 5.2. The estimate X̂00(k) from (16)
does not depend on the decomposition of X̂11(k)

in (15) and has the form

X̂00(k) = Y01
(
�̂

−1/2
1 X̂11(k)

)+
�̂

−1/2
1 Y10.(17)

PROOF. Let X̂11(k) = L̂1R̂1 be any decomposition
satisfying (15). Then

X̂00 = L̂0R̂0

= Y01R̂
T
1
(
R̂1R̂

T
1
)−1(

L̂T
1�̂

−1
1 L̂1

)−1
L̂T

1�̂
−1
1 Y10

(18)
= Y01

(
�̂

−1/2
1 L̂1R̂1

)+
�̂

−1/2
1 Y10

= Y01
(
�̂

−1/2
1 X̂11(k)

)+
�̂

−1/2
1 Y10.

The third equality follows from Theorem 5.1. �
Next, we define the cross-validation prediction aver-

age squared error for block Y00 as

P̂Ek(Y00) = 1

n0N0

∥∥Y00 − X̂00(k)
∥∥2
F .

Notice that as the partition is random, we have

E
(
P̂Ek(Y00)

) = E

{
1

n0N0
ErrX00

(
X̂00(k)

)} + 1

N

N∑
i=1

σ 2
i ,

where ErrX(X̂) is the loss defined at (2). The expec-
tation is over the noise and the random partition, for a
fixed signal matrix.

The above random partitioning step is repeated in-
dependently R times, yielding the average BCV mean
squared prediction error for Y ,

P̂E(k) = 1

R

R∑
r=1

P̂Ek

(
Y

(r)
00

)
.

The BCV estimate of k is then

k̂∗ = argmin
k

P̂E(k).(19)

We investigate integer values of k from 0 to some
maximum. We cannot take k as large as min(n1,N1)

where n1 = n − n0 and N1 = N − N0, for then we will
surely get σi = 0 even with early stopping. We impose
an additional constraint on k to keep the diagonal of �̂1
away from zero. If for some k we observe that

1

N1

N1∑
i=1

log10
(∣∣σ̂ (k)

i,1

∣∣) < −6 + log10

(
max

i

∣∣σ̂ (k)
i,1

∣∣),(20)
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where �̂1(k) = diag(σ̂
(k)
1,1 , σ̂

(k)
2,1 , . . . , σ̂

(k)
N1,1

), then we do
not consider any larger values of k. The condition (20)
means that the geometric mean of the variance esti-
mates is below 10−6 times the largest one.

REMARK 5.1. Owen and Perry [45] mentioned
that BCV can miss large but very sparse components
in the SVD in a white noise model, and they suggested
rotating the data matrix as a remedy. However, in our
problem where the noise is heteroscedastic, there will
be an identifiability issue between factors and noise if
the factors are too sparse and the support of the low-
rank matrix is concentrated in a few locations (see, e.g.,
[14]). Thus, we only investigate cases where the signal
matrix X is not sparse, and do not use rotation to re-
move sparseness.

5.2 Choosing the Size of the Holdout Y00

We define the true prediction error for ESA as

PE(k) = 1

nN

∥∥X − X̂(k)
∥∥2
F + 1

N

∑
i

σ 2
i ,

and then the oracle rank is k∗
ESA = argmink PE(k).

Ideally, we would like P̂E(k) to be a good estimate
of PE(k). For good estimation of X it suffices to have
k̂∗ [defined in (19)] be a good estimate of k∗

ESA.
When it is known that � = σ 2I , we can use the trun-

cated SVD to estimate X and for BCV the estimate of
X00 simplifies to

X̂00(k) = Y01
(
Y11(k)

)+
Y10,(21)

where Y11(k) is the truncated SVD in (8). Perry [51]
proved that k̂∗ and k∗

ESA track each other asymptoti-
cally if the relative size of the held-out matrix Y00 sat-
isfies the following theorem.

THEOREM 5.3. For model (5), if k0 is fixed
and N/n → γ ∈ (0,∞) as n → ∞, then k̂∗ and
argmink E(P̂Ek(Y00)) converge to the same value if

√
ρ =

√
2√

γ̄ + √
γ̄ + 3

(22)

holds, where

γ̄ =
(

γ 1/2 + γ −1/2

2

)2

and ρ = n − n0

n
· N − N0

N
.

Here ρ is the fraction of entries from Y in the held-in
block Y11. The larger γ̄ is, the smaller ρ will be, thus
ρ reaches its maximum when Y is square with γ = 1.
For example, when γ = 1, then ρ ≈ 22%. In contrast,
if γ = 50 or 0.02, ρ then drops to only 3.5%.

Theorem 5.3 compares the best k for E(P̂Ek) to the
best k for the true error. Owen and Perry [45] found
that the BCV curve under repeated subsampling was
remarkably stable for large matrices, and then the best
rank per sample will be close to the one that is best on
average.

In our simulations, we use (22) to determine the size
of Y00. Further, to determine n0 and N0 individually,
we make Y11 as square as possible as long as n0 ≥ 1
and N0 ≥ 1. For instance, with γ = 1 as ρ ≈ 22%, we
hold out roughly half the rows and columns of the data.

6. SIMULATION RESULTS

We use simulation scenarios described in Section 3.4
and the Appendix. Those simulations have E(σ 2

i ) = 1
but fall into three different groups: white noise with
Var(σ 2

i ) = 0, mild heteroscedasticity with Var(σ 2
i ) = 1

and strong heteroscedasticity with Var(σ 2
i ) = 10. In

this section we begin by summarizing the mild het-
eroscedastic case. The other cases are similar and we
give some results for them later.

To measure the loss in estimating X due to using an
estimate k̂ instead of the optimal choice k∗

ESA, we use
a relative estimation error (REE) given by

REE(k̂) = ‖X̂(k̂) − X‖2
F

‖X̂(k∗
ESA) − X‖2

F

− 1.

REE is zero if k̂ is the best possible rank for the spe-
cific data matrix shown, that is, if k̂ is the same rank an
oracle would choose.

Let m = min(n,N) and the singular values of the
data matrix Y be

√
nλ1,

√
nλ2, . . . ,

√
nλm in nonin-

creasing order. We compare BCV with 5 representative
methods reviewed in Section 3. They are as follows:

1. PA: the permutation version of the parallel anal-
ysis [10]. The Gaussian version of [27] has a nearly
identical performance in our test cases.

2. ED: the eigenvalue difference method [42] which
estimates the number of factors as

k̂ = max
{
i ≤ kmax : λ2

i − λ2
i+1 ≥ δ

}
,

where asymptotically kmax should be a slowly increas-
ing function of n, and δ is calculated via a calibration
method described in [42]. If {i ≤ kmax : λ2

i − λ2
i+1 ≤ δ}

is empty, then we take k̂ = 0.
3. ER: the eigenvalue ratio method [1] which is the

maximizer of sequential eigenvalue ratios

k̂ = argmax
0≤i≤kmax

λ2
i

λ2
i+1

,
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where λ2
0 = ∑m

i=1 λ2
i / log(m). Also, kmax is suggested

to be determined as min(|{j ≥ 1 : λ2
j ≥ ∑m

i=1 λ2
i /m}|,

0.1m).
4. IC1: one of the rules based on information criteria

developed in [5]. It is the k value that minimizes the
criterion function

IC1(k) = log
(
V (k)

) + k

(
n + N

nN

)
log

(
nN

n + N

)
,

where V (k) = ‖Y − Ŷ (k)‖2
F /(nN).

5. NE: Nadakuditi and Edelman’s information cri-
teria based estimator [40] which aims to estimate the
number of weak factors in the white noise model. Set

ti = N

[
(N − i)

∑N
j=i+1 λ4

j

(
∑N

j=i+1 λ2
j )

2
−

(
1 + N

n

)]
− N

n
,

and then choose

k̂ = argmin
0≤i<min(N,n)

[
1

2

(
n

N

)2

t2
i + 2(i + 1)

]
.

Of these methods, ER and IC1 are designed for mod-
els with strong factors only. ED does not require strong
factors to work. NE has theoretical guarantees for es-
timating the number of detectable weak factors in the
white noise model. Finally, PA was designed and tested
under the small N and large n scenarios. We want to
compare the finite sized data set performance of these
methods in settings with both strong and weak fac-
tors. In applications one cannot be sure that only the
desired factor strengths are present. In an earlier ver-
sion of the paper [46], we also compared with Kaiser’s
rule [30], which estimates the number of factors as the
number of eigenvalues of the sample correlation matrix
above 1. However, Kaiser’s rule is likely to overesti-
mate the number of factors and does not perform well.
We also include in the comparison the use of the true
number of factors as well as the oracle’s number of fac-
tors k∗

ESA defined in (3). Methods that choose a value
closer to k∗

ESA should attain a small error using ESA.
Figure 1 shows for different methods the propor-

tion of simulations with REE above certain values for
the mild heteroscedastic case Var(σ 2

i ) = 1. Figure 1(a)
shows that BCV is overall best at recovering the signal
matrix X. BCV is based on Perry’s asymptotic Theo-
rem 5.3. Figure 1(b) shows that BCV becomes far bet-
ter than alternatives when we just compare the larger
sample sizes from each aspect ratio. Figure 1(c) shows
that at smaller sample sizes NE is competitive with
BCV. The large data case is more important given the
recent emphasis on large data problems.

Our goal is to find the best k for ESA, but the meth-
ods ED, ER. IC1 and NE are designed assuming that
the SVD will be used to estimate the factors. To study
them in the setting they were designed for, we include
Figure 1(d), which calculates REE using SVD to esti-
mate X̂(k) and compares with the oracle rank of SVD.
For Figure 1(d), the BCV method also uses the SVD
instead of ESA. Though the results in Table A.1 (Ap-
pendix) suggest that SVD is in general not recom-
mended for heteroscedastic noise data, if one does use
SVD, BCV is still the best method for choosing k to
recover X.

The proportion of simulations with REE = 0 (match-
ing the oracle’s rank) for BCV was 51.6%, 75.1%,
28.1% and 47.0% in the four scenarios in Figure 1.
BCV’s percentage was always highest among the six
methods we used. The fraction of REE = 0 sharply in-
creases with sample size and is somewhat better for
ESA than for SVD.

Table 2 briefly summarizes the REE values for all
three noise variance cases. It shows the worst case REE
over all the 10 matrix sizes and 6 factor strength sce-
narios. As the variance of σ 2

i rises, it becomes more
difficult to attain a small REE. BCV has substantially
smaller worst case REE for heterscedastic noise than
all other methods, but is slightly worse than NE for the
white noise case. This is not surprising, as NE is de-
signed for the white noise model.

To better understand the differences among the
methods, we compare them directly in estimating the
number of factors with the oracle. As an example,
Figure 2 plots the distribution of k̂ for all methods
and all 6 cases, on 5000 × 100 data matrices with
Var(σ 2

i ) = 1. The results of other cases are summa-
rized in Tables A.3 and A.4 in the Appendix. In Fig-
ure 2, BCV closely tracks the oracle. For other meth-
ods, ED performs the best in estimating the oracle rank,
though it is more variable and less accurate than BCV.
ER is the most conservative method, trying to estimate
at most the number of strong factors. IC1 also tries
to estimate the number of strong factors, but is less
conservative than ER. NE estimates some number be-
tween the number of strong factors and the number of
useful (including strong) factors. PA has trouble iden-
tifying the useful weak factors when strong factors are
present, and also has trouble rejecting the detectable
but not useful factors in the hard case with no strong
factor. This is due the fact that PA is using the sam-
ple correlation matrix which has a fixed sum of eigen-
values, thus, the magnitude of the each eigenvalue is
influenced by every other one.
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FIG. 1. REE survival plots: the proportion of samples with REE exceeding the number on the horizontal axis. Figures (a)–(c) are for REE
calculating using the method ESA. Figure (a) shows all 6000 samples. Figure (b) shows only the 3000 simulations of larger matrices of each
aspect ratio. Figure (c) shows only the 3000 simulations of smaller matrices. For comparison, figure (d) is the REE plot for all samples
calculating REE using the method SVD.

Tables A.3 and A.4 in the Appendix provide more
details of the simulation results for this mildly het-
eroscedastic case Var(σ 2

i ) = 1. We can see that some
methods behave very differently for different sized data
sets. For example, IC1 is very nonrobust and sharply

TABLE 2
Worst case REE values for each method of choosing k for white

noise and two heteroscedastic noise settings

Var(σ 2
i ) PA ED ER IC1 NE BCV

0 1.99 1.41 49.61 1.13 0.12 0.29
1 2.89 2.42 25.02 3.11 2.45 0.37

10 3.66 2.28 15.62 4.46 2.10 0.62

overestimates the number of factors for small data sets,
and ED will tend to estimate only the number of strong
factors when the aspect ratio γ is small. Overall, BCV
has the most robust and accurate performance in esti-
mating k∗

ESA of the methods we investigated.

7. REAL DATA EXAMPLE

We investigate a real data example to show how our
method works in practice. The observed matrix Y is
15 × 8192, where each row is a chemical element and
each column represents a position on a 64 × 128 map
of a meteorite. We thank Ray Browning for providing
this data. Similar data are discussed in [47]. Each en-
try in Y is the amount of a chemical element at a grid
point. The task is to analyze the distribution patterns of
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FIG. 2. The distribution of k̂ for each factor strength case when the matrix size is 5000 × 100. The y axis is k̂. Each image depicts 100
simulations with counts plotted in grey scale (larger equals darker). For different scenarios, the factor strengths are listed as the number of
“strong/useful/harmful/undetectable” factors in the title of each subplot. The true k is always k0 = 8. The “Oracle” method corresponds
to k∗

ESA.

the chemical elements on that meteorite, helping us to
further understand the composition.

A factor structure seems reasonable for the elements,
as various compounds are distributed over the map.
The amounts of some elements such as Iron and Cal-
cium are on a much larger scale than some other ele-
ments like Sodium and Potassium, and so it is neces-
sary to assume a heteoroscedastic noise model as (1).
We center the data for each element before applying
our method.

BCV chooses k = 4 factors, while PA chooses k = 3.
Figure 3 plots the BCV error for each rank, showing
that, among the selected factors, the first two factors are
much more influential than the last two. The first col-
umn of Figure 4 plots the four factors ESA has found
at their positions. They represent four clearly different
patterns.

As a comparison, we also apply a straight SVD on
the centered data with and without standardization to
analyze the hidden structure. The second and third

FIG. 3. BCV prediction error for the meteorite. The BCV parti-
tions have been repeated 200 times. The solid red line is the average
over all held-out blocks, with the cross marking the minimum BCV
error.
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FIG. 4. Distribution patterns of the estimated factors. The first column has the four factors found by ESA. The second column has the top
five factors found by applying SVD on the unscaled data. The third column has the top five factors found by applying SVD on scaled data in
which each element has been standardized. The values are plotted in grey scale, and a darker color indicates a higher value.

columns of Figure 4 show the first five factors of the lo-
cations that SVD finds for the original and scaled data
respectively. If we do not scale the data, then the fac-
tor (F5) showing the concentration of Sulfur on some
specific locations strangely comes after the factor (F4)
which has no apparent pattern; F5 would have been ne-
glected in a model of three or four factors as BCV or
PA suggest.

Paque et al. [47] investigate this sort of data by clus-
tering the pixels based on the values of the first two
factors of a factor analysis. We apply such a cluster-
ing in Figure 5. Column (a) shows the resulting clus-
ters. The factors found by ESA clearly divide the lo-
cations into five clusters, while the factors found by an
SVD on the original data blur the boundary between
clusters 1 and 5. An SVD on normalized data [third
plot in column (a)] blurs together three of the clusters.
Columns (b) and (c) of Figure 5 show the quality of
clustering using k-means based on the first two plots
of column (a). Clusters, especially C1 and C5, have

much clearer boundaries and are less noisy if we are
using ESA factors rather than using SVD factors. A k-
means clustering depends on the starting points. For
the ESA data the clustering was stable. For SVD the
smallest group C3 was sometimes merged into one of
the other clusters; we chose a clustering for SVD that
preserved C3.

In this data the ESA based factor analysis found fac-
tors that, visually at least, seem better. They have bet-
ter spatial coherence, and they provide better clusters
than the SVD approaches do. For data of this type it
would be reasonable to use spatial coherence of the
latent variables to improve the fitted model. Here we
have used spatial coherence as an informal confirma-
tion that BCV is making a reasonable choice, which
we could not do if we had exploited spatial coherence
in estimating our factors.

7.1 AGEMAP Data

The meteorite data is the second of two real world
data sets that we have tried BCV on. The first was
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FIG. 5. Plots of the first two factors and the location clusters. The three plots of column (a) are the scatter plots of pixels for the first two
factors found by the three methods: ESA, SVD on the original data and SVD on normalized data. The coloring shows a k-means clustering
result for 5 clusters. Column (b) has the five clustered regions based on the first two factors of ESA. Column (c) has the five clustered regions
based on the first two factors of SVD on the original data after centering. The same color represents the same cluster.

the AGEMAP data used to study the LEAPP algorithm
[56]. There, instead of a gold standard of a known sig-
nal matrix, the notion of ground truth is supplied by the
idea that a better estimate of the signal in expression
matrices for 16 different tissues should lead to greater
overlap among the genes declared significant in those
tissues. This is an indirect gold standard like the idea of
positive controls in [21]. The LEAPP algorithm used
parallel analysis as implemented in the SVA package
of [37].

Placing BCV in LEAPP for the AGEMAP data
yields a result similar to PA on the correlation matrix
but is somewhat less effective than PA with the covari-
ance matrix. All three are fairly close and all three gave
better overlap than SVA did.

We do not understand why BCV failed to improve
the overlap measure for the AGEMAP data. Here are
some possibilities: We simulated Gaussian data using
guidance from mostly Gaussian RMT, and the real
data might not have been close enough to Gaussian.

The noise covariance in AGEMAP might not have
been nearly diagonal. There may not have been enough
harmful factors in the AGEMAP data for the differ-
ences to be observed. LEAPP may be robust to missing
weak factors. Finally, there is no reason to expect that
one method will be closer to an oracle on every data
set.

8. CONCLUSION

In this paper we have developed a bi-cross-validation
algorithm to choose the number of factors in a het-
eroscedastic factor analysis and an early stopping alter-
nation to estimate the model. Guided by random matrix
theory, we have constructed a battery of test scenar-
ios and found that stopping at three iterations is very
effective. Using that early stopping rule we find that
our bi-cross-validation proposal produces better recov-
ery of the underlying signal matrix than other widely
used methods. It also improves markedly with sample
size.
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APPENDIX

A.1 Simulation Test Cases

Our model is a low-rank signal plus heteroscedastic
noise. The formulation Y = √

nUDVT + E does not
make it easy to take account of random matrix theory.
We write our model as

Y = �1/2(√
nUDVT + E

)
,(A.1)

where � = diag(σ 2
1 , σ 2

2 , . . . , σ 2
N) and

√
nUDVT is the

SVD for �−1/2X. For constant σ 2
i = σ 2 RMT can be

used to choose the entries of D = diag(d1, d2, . . . , dk0)

where d1 > d2 > · · · > dk0 > 0.
A straightforward implementation of (A.1) would

have uniformly distributed U . In that case, however,
the mean square signal per row would be simply pro-
portional to the noise mean square per row. We think
this would make the problem unrealistically easy: the
relative sizes of the noise variances would be well esti-
mated by corresponding sample variances within rows.
Our simulation chooses a nonuniform U in order to
decouple the mean square signal of the rows from the
mean square noise in the rows. Below are the rules for
generating the simulated data.

Generating the noise

Recall that the noise matrix is �1/2E. The steps are
as follows:

1. E = (eij )N×n: here eij
i.i.d.∼ N (0,1).

2. � = diag(σ 2
1 , . . . , σ 2

N): σ 2
i

i.i.d.∼ InvGamma(α,β).
Therefore, E(σ 2

i ) = β/α − 1 and Var(σ 2
i ) = β2/

(α − 1)2(α − 2). Parameters α and β are chosen so
that E(σ 2

i ) = 1. We consider two heteroscedastic noise
cases: Var(σ 2

i ) = 1 and Var(σ 2
i ) = 10. We also include

a homoscedastic case with all σ 2
i = 1.

Generating the signal

The signal matrix is X = √
n�1/2UDVT, where �

is the same matrix used to generate the noise. Entries
in D specify the strength of signals of the reweighted
matrix �−1/2X. As we discussed in Section 3.4, for
high-dimensional white noise models [51], there are
two thresholds of signal strength for truncated SVD: a
detection threshold and an estimation threshold. From
[51] the detection threshold is μF = √

γ and the esti-
mation threshold is

μ∗
F = 1 + γ

2
+

√(
1 + γ

2

)2

+ 3γ ,

in the homoscedastic σ = 1 case. Recall that based on
the asymptotic thresholds, our four categories for a data
set are roughly the following:

(a) Undetectable, d2
i < μF ,

(b) Harmful, μF < d2
i < μ∗

F ,
(c) Useful, μ∗

F < d2
i = o(1), and

(d) Strong, d2
i ∼ O(N).

The signal simulation is as follows:

1. We include the 6 scenarios from Table 1. For the
d2
i values we take, the strong factors take values at

1.5N , 2.5N , 3.5N, . . . . The useful factors take val-
ues at 1.5μ�

F , 2.5μ�
F , 3.5μ�

F , . . . . The harmful factors
take values at equally spaced interior points of the in-
terval [μF ,μ�

F ] and the undetectable factors take val-
ues at equally spaced interior points of the interval
[0,μF ].

2. U and V : First V is sampled uniformly from the
Stiefel manifold Vk(R

n). See Appendix A.1.1 in [51]
for a suitable algorithm. Then an intermediate matrix
U∗ is sampled uniformly from the Stiefel manifold
Vk(R

N). Using the previously generated V and �, we
solve

�−1/2U∗DV T = UD̃Ṽ T

for U . Now U is nonuniformly distributed on the
Stiefel manifold in such a way that rows of U with
large L2 norm are not necessarily those with large σ 2

i .

Data dimensions

We consider 5 different N/n ratios: 0.02, 0.2, 1, 5,
50 and for each ratio consider a small matrix size and
a larger matrix size, thus, there are in total 10 (N,n)

pairs. The specific sample sizes appear at the top of
Table A.2. In total there are 6 × 3 × 5 × 2 = 180 sce-
narios. Each was simulated 100 times, for a total of
18,000 simulated data sets.

A.2 Early Stopping

To study the effects of early stopping, we investi-
gated the cases from Appendix A.1, varying the num-
ber k of factors and varying the number m of steps.
In these simulations we know the true signal X and so
we can measure the errors. We use the six measure-
ments below to study the effectiveness of ESA with
m = 3:

1. ErrX(m = 3)/ErrX(m = mOpt): this compares
m = 3 to the optimal m defined in (14).

2. ErrX(m = 3)/ErrX(m = 1): this measures the ad-
vantage of ESA beyond PCA.
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3. ErrX(m = 3)/ErrX(m = 50): this measures the
advantage of stopping early, using m = 50 as proxy for
iteration to convergence.

4. ErrX(m = 3)/ErrX(SVD): this compares ESA to
the truncated SVD one would do for homoscedastic
data.

5. ErrX(m = 3)/ErrX(QMLE): this compares ESA
to the quasi maximum likelihood method, which is
solved using the EM algorithm with principal compo-
nent estimates as starting values.

6. ErrX(m = 3)/ErrX(oSVD): this compares ESA
to the truncated SVD that an oracle which knew �

could use on �−1/2Y . It measures the relative inaccu-
racy in X̂ arising from the inaccuracy of �̂.

For QMLE, R and � are estimated via maximizing the
quasi-loglikelihood [4]:

− 1

2N
log det

(
RRT + �

)
(A.2)

− 1

2N
tr

{
YYT

n

[
RRT + �

]−1
}
,

then L̂ is estimated via a generalized linear regres-
sion of Y on R̂ with estimated variance �̂ and X̂ =
R̂L̂.

Table A.1 summarizes the mean and standard devia-
tion of each measurement over 6000 simulations each,
for Var(σ 2

i ) = 0, 1 and 10. Row 1 shows that ESA
stopping at m = 3 steps was almost identical to stop-
ping at the unknown optimal m in terms of the oracle
estimating error, as the mean is nearly 1 and the stan-
dard deviation is negligible. Row 2 indicates that taking
m = 3 steps brought an improvement compared with

TABLE A.1
ESA using six measurements. For each of Var(σ 2

i ) = 0,1 and 10,
the average for every measurement is the average over

10 × 6 × 100 = 6000 simulations, and the standard deviation
is the standard deviation of these 6000 simulations

White noise Heteroscedastic noise

Measurements Var(σ 2
i ) = 0 Var(σ 2

i ) = 1 Var(σ 2
i ) = 10

ErrX(m=3)
ErrX(m=mOpt)

1.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01

ErrX(m=3)
ErrX(m=1)

0.93 ± 0.09 0.90 ± 0.11 0.89 ± 0.12

ErrX(m=3)
ErrX(m=50)

0.87 ± 0.21 0.87 ± 0.21 0.87 ± 0.21

ErrX(m=3)
ErrX(SVD)

1.03 ± 0.06 0.81 ± 0.20 0.75 ± 0.22

ErrX(m=3)
ErrX(QMLE)

1.02 ± 0.05 0.95 ± 0.15 0.91 ± 0.19

ErrX(m=3)
ErrX(oSVD)

1.03 ± 0.06 1.03 ± 0.07 1.03 ± 0.08

PCA (SVD on standardized data). Row 3 shows that
taking m = 3 brought an improvement compared to us-
ing m = 50, our proxy for iterating to convergence to
the local minimum of loss. The latter is highly variable.
Row 4 shows that truncated SVD is better than ESA
when the noise is homoscedastic. But even a noise level
as small as Var(σ 2

i ) = E(σ 2
i ) = 1 reverses the prefer-

ence sharply. Row 5 shows that ESA beats QMLE on
average for the heteroscedastic noise case, though the
latter has a theoretical guarantee for the strong factor
scenario. Row 6 shows that an oracle which knew �

and used it to reduce the data to the homoscedastic case
would gain only 3% over ESA.

Table A.2 gives the average value of each mea-
surement over 100 replications for all of the sim-
ulations with mild heteroscedasticity [Var(σ 2

i ) = 1].
“Type-1” to “Type-6” correspond to the six cases of
factor strengths listed in Table 1. The first panel con-
firms that m = 3 is broadly effective. The second panel
shows that the problem of PCA is more severe at large
sample sizes. The third panel shows in contrast that the
disadvantage to m = 50 iterations is more severe at the
smaller sample sizes. The fourth panel shows similar
to the second panel that SVD causes greatest losses at
large sample sizes. The fifth panel shows that ESA has
great advantage over QMLE when the variable size is
large, even at a low aspect ratio γ .

It remains an interesting puzzle that heteroscedastic-
ity is less of a problem when the aspect ratio is higher
for all the methods. In those settings there are actu-
ally more nuisance σ 2

i to estimate. One explanation is
that no matter what method used, the right factor R

of size r × n can be accurately estimated if γ is large
enough. Then the estimate of the left factor L is done
via an ordinary linear regression of Y on R which is not
affected by the heterscedastic noise. This explanation
can also work for our observation that heteroscedas-
ticity becomes a more severe problem for small γ , as
given L, it is important to take into consideration dif-
ferent noise variance when estimating R.

A.3 Further Simulation Results

Here we present more detailed simulation results for
the comparisons among the methods we compare. All
methods used the m = 3 steps found to be an effective
stopping rule.
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TABLE A.2
Comparison of ESA results for various (N,n) pairs and number of strong factors in the scenarios with Var(σ 2

i ) = 1

Factor
scenario

γ = 0.02 γ = 0.2 γ = 1 γ = 5 γ = 50

(20,1000) (100,5000) (20,100) (200,1000) (50,50) (500,500) (100,20) (1000,200) (1000,20) (5000,100)

ErrX(m = 3)/ErrX(m = mOpt)

Type-1 1.011 1.000 1.011 1.000 1.004 1.000 1.003 1.000 1.000 1.000
Type-2 1.013 1.002 1.012 1.001 1.006 1.000 1.004 1.000 1.000 1.000
Type-3 1.016 1.006 1.014 1.005 1.010 1.000 1.002 1.000 1.000 1.000
Type-4 1.002 1.002 1.009 1.001 1.008 1.000 1.006 1.000 1.000 1.000
Type-5 1.008 1.001 1.011 1.001 1.007 1.000 1.006 1.000 1.000 1.000
Type-6 1.007 1.000 1.011 1.000 1.006 1.000 1.003 1.000 1.001 1.000

ErrX(m = 3)/ErrX(m = 1)

Type-1 0.900 0.936 0.913 0.957 0.924 0.977 0.967 0.987 0.995 0.998
Type-2 0.819 0.626 0.844 0.680 0.833 0.785 0.942 0.909 0.990 0.987
Type-3 0.827 0.613 0.840 0.616 0.801 0.739 0.925 0.887 0.987 0.984
Type-4 0.781 0.723 0.837 0.751 0.864 0.833 0.947 0.926 0.990 0.990
Type-5 0.854 0.789 0.904 0.834 0.911 0.899 0.962 0.956 0.993 0.994
Type-6 0.987 0.993 0.997 0.996 0.997 0.998 0.999 0.999 0.999 1.000

ErrX(m = 3)/ErrX(m = 50)

Type-1 0.441 0.802 0.473 0.985 0.759 1.000 0.590 1.000 1.000 1.000
Type-2 0.472 0.839 0.486 0.984 0.765 1.000 0.605 1.000 1.000 1.000
Type-3 0.501 0.918 0.463 0.994 0.751 1.000 0.626 1.000 1.000 1.000
Type-4 0.560 0.975 0.541 0.989 0.899 1.000 0.854 1.000 1.000 1.000
Type-5 0.604 0.907 0.671 0.992 0.821 1.000 0.842 1.000 1.000 1.000
Type-6 0.947 0.982 0.981 0.999 0.988 1.000 0.997 1.000 1.000 1.000

ErrX(m = 3)/ErrX(SVD)

Type-1 0.638 0.348 0.740 0.366 0.722 0.466 0.882 0.727 0.977 0.966
Type-2 0.785 0.450 0.829 0.451 0.749 0.525 0.898 0.754 0.980 0.972
Type-3 0.870 0.611 0.896 0.548 0.772 0.599 0.903 0.791 0.983 0.976
Type-4 0.872 0.810 0.923 0.809 0.893 0.872 0.960 0.942 0.991 0.990
Type-5 0.704 0.542 0.798 0.552 0.770 0.605 0.888 0.779 0.978 0.972
Type-6 0.935 0.906 0.972 0.925 0.971 0.943 0.985 0.966 0.993 0.991

ErrX(m = 3)/ErrX(QMLE)

Type-1 0.915 0.633 0.966 0.677 0.985 0.858 0.997 0.988 1.000 1.000
Type-2 1.104 0.672 1.058 0.725 1.000 0.863 0.999 0.989 1.000 1.000
Type-3 1.199 0.826 1.129 0.766 1.008 0.878 0.997 0.990 1.000 1.000
Type-4 1.035 0.991 1.033 0.954 1.005 0.973 1.002 0.997 1.000 1.000
Type-5 0.966 0.661 0.996 0.744 0.989 0.885 0.998 0.991 1.000 1.000
Type-6 0.971 0.912 0.993 0.942 0.999 0.974 0.999 0.999 1.000 1.000

ErrX(m = 3)/ErrX(oSVD)

Type-1 1.029 0.994 1.064 0.998 1.036 1.001 1.026 1.001 1.003 1.000
Type-2 1.220 1.014 1.156 0.999 1.040 1.001 1.027 1.001 1.002 1.000
Type-3 1.298 1.150 1.223 1.020 1.053 1.001 1.026 1.001 1.002 1.000
Type-4 1.087 1.067 1.095 1.013 1.036 1.002 1.021 1.001 1.002 1.000
Type-5 1.075 0.998 1.087 1.000 1.029 1.002 1.027 1.001 1.003 1.000
Type-6 1.011 1.000 1.023 1.002 1.016 1.002 1.006 1.001 1.002 1.000
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TABLE A.3
Comparison of REE and k̂ for rank selection methods with various (N,n) pairs, and scenarios. For each different scenario, the factors’

strengths are listed as the number of “strong/useful/harmful/undetectable” factors. For each (N,n) pair, the first column is
the REE and the second column is k̂. Both values are averages over 100 simulations. Var(σ 2

i ) = 1

Factor
type

γ = 0.02 γ = 0.2 γ = 1

Method (20,1000) (100,5000) (20,100) (200,1000) (50,50) (500,500)

Type-1 PA 0.04 5.5 0.07 7.0 0.12 4.9 0.10 6.9 0.05 5.4 0.13 7.0
0/6/1/1 ED 1.93 1.7 2.29 1.3 2.27 1.3 2.40 1.0 2.42 1.2 2.40 0.6

ER 2.19 0.9 2.80 0.1 1.68 1.8 2.92 0.1 1.35 2.5 2.72 0.0
IC1 2.30 16.0 0.69 3.3 1.44 16.0 0.61 3.5 0.10 5.6 0.69 3.1
NE 0.23 6.3 1.82 1.3 0.16 5.0 2.45 0.6 0.08 5.4 2.36 0.5

BCV 0.16 5.9 0.03 5.8 0.33 4.5 0.01 5.9 0.12 5.0 0.00 6.0
Oracle – 6.0 – 6.0 – 5.9 – 6.0 – 6.0 – 6.0

Type-2 PA 0.27 3.7 0.15 4.6 0.55 3.4 0.34 4.0 0.69 3.2 0.31 3.9
2/4/1/1 ED 0.61 3.5 1.03 2.9 0.95 3.0 1.18 2.5 1.00 3.0 1.03 2.6

ER 1.52 1.8 1.21 2.0 1.64 1.9 1.33 2.0 1.34 2.0 1.23 2.0
IC1 1.87 16.0 0.58 3.6 1.34 16.0 0.57 3.7 0.09 5.8 0.66 3.2
NE 0.42 6.6 0.87 2.7 0.12 5.3 1.13 2.4 0.10 5.6 1.11 2.2

BCV 0.26 5.4 0.12 5.7 0.24 4.5 0.00 5.9 0.19 4.7 0.00 6.0
Oracle – 5.1 – 5.8 – 5.5 – 6.0 – 5.9 – 6.0

Type-3 PA 0.35 3.2 0.46 3.1 0.62 3.1 0.72 3.0 0.76 3.0 0.69 3.0
3/3/1/1 ED 0.30 4.0 0.55 4.0 0.46 3.8 0.54 3.5 0.56 3.7 0.56 3.5

ER 4.15 1.8 16.18 2.2 3.40 1.9 13.62 2.6 0.78 3.0 0.69 3.0
IC1 1.70 16.0 0.41 4.2 1.23 16.0 0.41 4.1 0.11 5.9 0.52 3.5
NE 0.41 6.8 0.41 3.7 0.14 5.5 0.56 3.4 0.10 5.6 0.60 3.2

BCV 0.17 5.1 0.26 5.3 0.26 4.5 0.08 5.8 0.21 4.6 0.01 5.9
Oracle – 5.0 – 4.8 – 5.5 – 5.8 – 5.9 – 6.0

Type-4 PA 0.01 3.0 0.02 3.0 0.03 3.0 0.07 3.0 0.05 3.0 0.06 3.0
3/1/3/1 ED 0.11 3.3 0.81 4.4 0.08 3.3 0.29 3.9 0.07 3.3 0.08 3.8

ER 5.10 1.8 19.24 2.2 3.50 1.9 16.79 2.5 3.33 2.3 0.50 3.0
IC1 2.62 16.0 0.66 4.1 1.60 16.0 0.33 4.1 0.10 3.7 0.06 3.5
NE 0.63 5.7 0.54 3.8 0.13 3.7 0.14 3.6 0.09 3.9 0.05 3.3

BCV 0.02 3.1 0.19 3.5 0.03 3.3 0.05 3.7 0.05 3.1 0.01 3.9
Oracle – 3.2 – 3.2 – 3.5 – 3.9 – 3.8 – 4.0

Type-5 PA 0.02 3.4 0.01 4.3 0.08 3.0 0.01 3.8 0.10 2.9 0.02 3.7
1/3/3/1 ED 0.40 2.0 0.58 1.9 0.54 1.6 0.56 1.6 0.57 1.6 0.45 2.0

ER 0.69 1.0 0.78 1.0 0.70 1.0 0.79 1.0 0.71 1.0 0.72 1.0
IC1 2.63 16.0 0.41 2.1 1.53 16.0 0.45 2.0 0.10 3.3 0.55 1.5
NE 0.40 5.3 0.48 1.9 0.13 3.2 0.59 1.5 0.08 3.5 0.62 1.2

BCV 0.12 3.1 0.04 3.9 0.27 2.4 0.01 3.9 0.16 2.8 0.00 4.0
Oracle – 3.7 – 4.0 – 4.0 – 4.0 – 4.0 – 4.0

Type-6 PA 0.45 5.6 0.68 7.3 0.22 4.0 2.00 10.4 0.34 4.5 2.89 12.8
0/1/6/1 ED 0.07 0.8 0.11 1.8 0.06 0.7 0.12 1.4 0.06 0.4 0.09 1.1

ER 0.07 0.1 0.09 0.1 0.03 0.2 0.08 0.1 0.05 0.1 0.06 0.1
IC1 3.11 13.6 0.06 1.1 1.74 16.0 0.07 1.0 0.05 0.5 0.06 0.5
NE 0.21 3.2 0.06 1.0 0.05 0.8 0.06 0.7 0.06 0.9 0.05 0.3

BCV 0.06 0.2 0.04 1.0 0.03 0.1 0.02 0.8 0.03 0.0 0.00 1.0
Oracle – 1.0 – 1.0 – 0.8 – 1.0 – 0.8 – 1.0
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TABLE A.4
Like Table A.3, but for larger γ

Factor
type

γ = 5 γ = 50

Method (100,20) (1000,200) (1000,20) (5000,100)

Type-1 PA 0.05 5.0 0.11 6.9 0.01 5.7 0.10 7.0
0/6/1/1 ED 1.89 1.2 1.57 1.6 0.43 4.7 0.10 6.1

ER 2.23 0.3 2.18 0.0 1.69 0.0 1.68 0.0
IC1 1.23 16.0 0.86 2.2 0.04 5.0 1.10 1.1
NE 0.14 4.9 1.17 1.7 0.20 4.2 0.14 3.9

BCV 0.37 4.1 0.00 6.0 0.10 4.9 0.01 5.8
Oracle – 5.9 – 6.0 – 5.8 – 5.9

Type-2 PA 0.68 2.8 0.23 3.9 0.32 3.1 0.12 4.0
2/4/1/1 ED 0.83 2.9 0.65 3.2 0.17 5.2 0.06 6.0

ER 1.05 2.0 0.94 2.0 0.95 1.9 0.68 2.0
IC1 1.24 16.0 0.86 2.2 0.05 5.0 0.68 2.0
NE 0.07 5.2 0.77 2.4 0.08 4.5 0.13 4.0

BCV 0.31 4.2 0.00 6.0 0.09 4.9 0.01 5.8
Oracle – 5.9 – 6.0 – 5.7 – 5.9

Type-3 PA 0.59 3.0 0.51 3.0 0.35 3.0 0.35 3.0
3/3/1/1 ED 0.48 3.6 0.36 3.9 0.11 5.5 0.06 6.2

ER 3.51 1.9 22.02 2.1 3.33 2.0 15.40 2.0
IC1 1.27 16.0 0.48 3.1 0.04 5.0 0.35 3.0
NE 0.09 5.2 0.47 3.1 0.05 4.7 0.14 3.9

BCV 0.25 4.5 0.01 5.8 0.09 4.6 0.01 5.8
Oracle – 5.9 – 6.0 – 5.8 – 5.9

Type-4 PA 0.03 3.0 0.03 3.0 0.01 3.0 0.01 3.0
3/1/3/1 ED 0.05 3.2 0.05 3.6 0.01 3.3 0.03 4.0

ER 3.36 1.8 25.02 2.1 3.67 2.0 18.55 2.0
IC1 1.53 16.0 0.03 3.1 0.01 3.0 0.01 3.0
NE 0.04 3.4 0.03 3.2 0.01 3.0 0.01 3.0

BCV 0.03 3.2 0.01 3.8 0.01 3.2 0.01 3.7
Oracle – 3.8 – 4.0 – 3.6 – 3.8

Type-5 PA 0.11 2.7 0.01 3.6 0.01 3.1 0.00 4.0
1/3/3/1 ED 0.42 1.8 0.32 2.1 0.31 1.9 0.12 3.7

ER 0.57 1.0 0.57 1.0 0.43 1.0 0.42 1.0
IC1 1.45 16.0 0.54 1.1 0.34 1.3 0.42 1.0
NE 0.12 2.8 0.53 1.1 0.08 2.5 0.15 2.0

BCV 0.22 2.4 0.01 3.9 0.12 2.6 0.02 3.8
Oracle – 3.9 – 4.0 – 3.7 – 3.8

Type-6 PA 0.29 3.4 2.27 10.5 0.77 5.4 1.24 7.1
0/1/6/1 ED 0.03 0.2 0.04 0.6 0.02 0.5 0.03 0.9

ER 0.02 0.0 0.04 0.0 0.01 0.0 0.01 0.0
IC1 1.00 7.4 0.03 0.1 0.01 0.0 0.01 0.0
NE 0.03 0.2 0.03 0.2 0.01 0.0 0.01 0.0

BCV 0.02 0.1 0.01 0.8 0.01 0.1 0.02 0.7
Oracle – 0.5 – 0.9 – 0.6 – 0.8
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