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Mitigating Bias in Generalized Linear
Mixed Models: The Case for
Bayesian Nonparametrics
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Abstract. Generalized linear mixed models are a common statistical tool for
the analysis of clustered or longitudinal data where correlation is accounted
for through cluster-specific random effects. In practice, the distribution of
the random effects is typically taken to be a Normal distribution, although
if this does not hold then the model is misspecified and standard estima-
tion/inference may be invalid. An alternative is to perform a so-called non-
parametric Bayesian analyses in which one assigns a Dirichlet process (DP)
prior to the unknown distribution of the random effects. In this paper we ex-
amine operating characteristics for estimation of fixed effects and random ef-
fects based on such an analysis under a range of “true” random effects distri-
butions. As part of this we investigate various approaches for selection of the
precision parameter of the DP prior. In addition, we illustrate the use of the
methods with an analysis of post-operative complications among n = 18,643
female Medicare beneficiaries who underwent a hysterectomy procedure at
N = 503 hospitals in the US. Overall, we conclude that using the DP prior
in modeling the random effect distribution results in large reductions of bias
with little loss of efficiency. While no single choice for the precision param-
eter will be optimal in all settings, certain strategies such as importance sam-
pling or empirical Bayes can be used to obtain reasonable results in a broad
range of data scenarios.

Key words and phrases: Dirichlet process prior, generalized linear mixed
models, model misspecification, random effects.

1. INTRODUCTION

When performing regression analyses of clustered
or longitudinal data, analysts must account for poten-
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tial within-cluster correlation to ensure valid inference
(McCulloch, 2006; Diggle et al., 2013). For the most
part, regression analysis methods for correlated data
fall into one of two classes. Marginal methods, such
as generalized estimating equations (GEE), account for
correlation by using a sandwich estimator for standard
errors (Liang and Zeger, 1986). In contrast, mixed ef-
fects models add cluster-specific latent terms, referred
to as random effects or frailties, to the linear predictor;
while within-cluster outcomes are assumed to be con-
ditionally independent given the random effect, corre-
lation is induced marginally (Laird and Ware, 1982).
To avoid the curse of dimensionality, where the num-
ber of model components increases with the number of
clusters, structure is typically placed on the random ef-
fects across the population of clusters. In practice, the
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most common structure adopted is that the random ef-
fects are Normally distributed. Regardless of the spe-
cific structure adopted, estimation/inference for mixed
models is typically likelihood-based; frequentist anal-
yses maximize the induced marginal likelihood, while
Bayesian analyses incorporate assumptions on the ran-
dom effects into a hierarchical model.

That structure is imposed on the random effects
is an often-cited drawback of mixed effects mod-
els. While methods for model diagnostics have been
developed (Verbeke and Molenberghs, 2009; Lange
and Ryan, 1989), any given assumption cannot be
directly verified and Normality is often criticized as
being potentially unrealistic. Furthermore, if the ran-
dom effects are not Normally distributed and yet are
assumed to be, the overarching model is misspeci-
fied and likelihood-based estimation is not guaran-
teed to be consistent (White, 1982). The latter has
given rise to a contentious debate literature on the
impact, particularly in terms of bias, of misspeci-
fication in mixed effects models (Neuhaus, Hauck
and Kalbfleisch, 1992; Heagerty and Kurland, 2001;
Agresti, Caffo and Ohman-Strickland, 2004; Litière,
Alonso and Molenberghs, 2007; Neuhaus, McCulloch
and Boylan, 2011; McCulloch and Neuhaus, 2011a,
2011b). This potential for bias has also motivated the
development of methods to permit more flexible spec-
ifications. Much of the corresponding frequentist liter-
ature can be placed into one of two broad categories:
methods that estimate/specify the random effects dis-
tribution nonparametrically or smoothly (Laird, 1978;
Davidian and Gallant, 1993; Zhang and Davidian,
2001; Agresti, Caffo and Ohman-Strickland, 2004) and
methods based on flexible families of parametric dis-
tributions (Magder and Zeger, 1996; Piepho and Mc-
Culloch, 2004; Caffo, An and Rohde, 2007).

The last 20 years has also seen substantial progress
in the theoretical development and understanding of
so-called Bayesian nonparametric analysis (Dey,
Müller and Sinha, 1998; Müller and Quintana, 2004).
Furthermore, with recent advances in computing pow-
er, and the development and implementation of effi-
cient Markov Chain Monte Carlo algorithms, Bayesian
nonparametric methods are becoming more and more
practical for everyday analyses (Jara et al., 2011). To
the best of our knowledge, while Bayesian nonpara-
metric priors are specifically motivated by the desire
to avoid overly restrictive assumptions (Walker and
Mallick, 1997), the extent to which misspecification
bias in mixed effects models is mitigated by their use
has not been examined. In particular, we are unaware

of systematic attempts at quantifying operating charac-
teristics (in particular, bias and efficiency) when one
uses a nonparametric Bayesian prior, instead of the
usual Normal distribution, under various true distribu-
tions for the random effects. A crucial question in this
context is the extent to which Bayesian analyses using
nonparametric priors experience a bias-variance trade-
off: if the truth is that the random effects are indeed
Normally distributed, what is the loss of efficiency (if
there is one at all) compared to an analysis that cor-
rectly adopted a Normal distribution?

In this paper we build on the misspecification liter-
ature by considering the use of the Dirichlet process
prior as an alternative default choice for the random ef-
fects distribution in a logistic generalized linear mixed
model (GLMM) for repeated measures binary data. As
we elaborate upon, the DP prior is indexed by two pa-
rameters: a centering distribution, denoted by G0, and
a precision parameter, denoted by α. In practice, while
G0 is often taken to be a Normal distribution, the spec-
ification of α is more challenging. A number of meth-
ods have been developed and, toward providing practi-
cal guidance to researchers, we investigate the impact
of this choice on the operating characteristics. The re-
mainder of this paper is as follows. In Section 2 we
provide notation on GLMMs and briefly introduce the
DP prior as a specification for the unknown random
effects distribution. In Section 3 we review methods
for the treatment of α in practice. Sections 4 and 5
provide the main simulation study and a summary of
the results, while Section 6 provides a detailed analysis
of post-operative complications among n = 18,643 fe-
male Medicare beneficials who underwent a hysterec-
tomy procedure at N = 503 hospitals in the US. The
paper concludes with a discussion in Section 7.

2. MIXED MODELS FOR BINARY RESPONSE DATA

The emphasis of this paper is on the analysis of
clustered, correlated or longitudinal data using gener-
alized linear mixed models. While this class of models
is broad, we focus on models for clustered binary re-
sponse data. Toward this, suppose the observed data
consist of N clusters. Let ni denote the size of the ith
cluster and Yij the binary response of interest for the
j th study unit in the ith cluster. Furthermore, let X and
Z denote mutually exclusive vectors of covariates of
lengths p and q , respectively, and consider the model

Yij |Xij ,Zij , bi ∼ Bernoulli(μij ),

g(μij ) = XT
ijβ + ZT

ij bi,(1)

bi
i.i.d.∼ G,
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where μij = E[Yij |Xij ,Zij , bi], g(·) is a link function,
β is a vector of so-called fixed effect regression coeffi-
cients and bi is a vector of so-called random effects.
The distribution G characterizes how the bi vectors
vary across the population of clusters and is referred to
as the random effects or mixing distribution. In prac-
tice, depending on the data application and scientific
question, the random effect can take on quite com-
plex structures. In this paper we focus on two relatively
common structures. Specifically, in the remainder of
this section and in the simulation study of Section 4 we
consider the so-called random intercept model (e.g.,
Diggle et al., 2013). In the simulation study we addi-
tionally consider the so-called random intercept/slope
model, commonly used in the analysis of longitudinal
data.

2.1 A Normal Mixing Distribution

Generally, the distribution G is not known. One can,
however, impose the assumption that G belongs to
some family of distributions and determine the specific
member by jointly estimating the parameters that index
that family along with the remaining unknown parame-
ters in the model. In practice, and in most software im-
plementations, the default choice for this family is the
family of Normal distributions. This gives the logistic-
Normal model:

Yij |Xij , bi ∼ Bernoulli(μij ),

logit(μij ) = XT
ijβ + bi,

bi |τ 2 i.i.d.∼ G ≡ Normal
(
0, τ 2)

.

2.2 A Dirichlet Process Mixing Distribution

That variation in the bi across clusters under a
logistic-Normal model is characterized by some spe-
cific Normal distribution is often viewed as a strong as-
sumption. In particular, since estimation/inference for
GLMMs is usually likelihood based, if the true mix-
ing distribution is not Normal, the adoption of a Nor-
mal distribution corresponds to a misspecification of
the likelihood with resulting estimates no longer guar-
anteed to be consistent. To relax this assumption, one
could consider a broader class of potential distributions
for the unknown G. Within the Bayesian paradigm this
is operationalized by postulating a prior distribution for
G that (i) specifies the space of distributions that G can
take on and (ii) specifies a prior for the distributions in
the selected space. While numerous such priors have

been proposed in the literature, we consider the Dirich-
let process (DP) prior which is indexed by two hyper-
parameters: G0 and α > 0, referred to as the center-
ing distribution and precision parameter, respectively
(Antoniak, 1974; Walker and Mallick, 1997). The cor-
responding GLMM, referred to here as the logistic-
Dirichlet process (logistic-DP) mixing model, can be
written as

Yij |Xij , bi ∼ Bernoulli(μij ),

logit(μij ) = XT
ijβ + bi,

bi |G i.i.d.∼ G,

G ∼ DP(G0, α).

This model is well established in the literature
(Kleinman and Ibrahim, 1998), and we provide details
of its specification here. Intuitively, G0 can be thought
of as an a priori “best guess” for G; a common choice is
to take G0 to be a Normal distribution. The precision
parameter then controls the extent to which distribu-
tions in the space defined by the DP prior differ from
G0. Toward a more intuitive understanding of α, the
DP prior literature has often considered the predictive
distribution for b = (b1, . . . , bN):

π(b|G0, α) =
∫
G

(
N∏

i=1

π(bi |G)

)
π(G|G0, α) dG.

It is relatively straightforward to show that this joint
distribution can be decomposed as

π(b|G0, α) = π(b1|G0, α) × π(b2|G0, α, b1) × · · ·
· π(bN |G0, α, b1, . . . , bN−1),

where b1|G0, α ∼ G0 and the successive conditional
distributions are

bi |G0, α, b1, . . . , bi−1
(2)

∼ 1

i − 1 + α

i−1∑
k=1

δ(bk) + α

i − 1 + α
G0

with δ(bk) denoting a point mass at bk . That is, the
predictive distribution for bi is a mixture of the em-
pirical distribution of (b1, . . . , bi−1) and G0 where the
weight is a function of i − 1, the number of realiza-
tions being conditioned upon, and α. To understand
the impact of α, it is useful to consider this expres-
sion at two extremes. At one extreme, as α −→ ∞
the joint distribution of b tends to the product of N

independent draws from G0; if G0 is taken to be a
Normal(0, τ 2) distribution, then the model reduces to
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the logistic-Normal model. At the other extreme, as
α −→ 0 the joint distribution of b tends to a point
mass with bi = b1, i = 2, . . . , where b1 is a random
draw from G0. This common value of bi can then be
absorbed into the (fixed effect) intercept, so that the
model reduces to a standard logistic regression without
random effects.

The two extremes for α correspond to each cluster
having a unique value of bi from G0 and all clusters
sharing the same value of b1 (also from G0). Between
these extremes the joint distribution of b induced by a
DP generates a random number of unique values of b.
The latter, denoted by K and ranging between 1 and N ,
is sometimes referred to as the number of clusters gen-
erated by the DP (not to be confused with the number
of clusters in the observed data, denoted by N ). Since
K is random, its expectation and variance conditional
on the DP and N can be considered and are given by

E[K|G0, α,N] =
N∑

i=1

α

α + i − 1
,(3)

V[K|G0, α,N] =
N∑

i=1

α(i − 1)

(α + i − 1)2 .(4)

3. SELECTION OF α

In practice, as mentioned, G0 is typically taken to
be a Normal(0, τ 2) distribution. This is, arguably, a
reasonable choice in the sense that fitting a logistic-
Normal model is often the default anyway. Unfortu-
nately, because it does not have an intuitive stand-alone
interpretation, the choice of α is less clear cut. Further-
more, estimation/inference can be quite sensitive to the
specific choice (Escobar, 1994; Dorazio et al., 2008;
Dorazio, 2009), particularly important for this paper
since our interests lie with the extent to which a DP
mixing distribution mitigates bias when the true mix-
ing distribution is not Normal.

A number of strategies for α have been proposed in
the literature. Here we provide a synthesis of this lit-
erature in the form of two general strategies. The first
places a prior on α, while the second estimates α.

3.1 Adopting a Prior for α

When performing Bayesian estimation/inference for
a logistic-DP model, a natural approach to the treat-
ment of α is to adopt some prior distribution. A stan-
dard choice is a Gamma(ψ1,ψ2) distribution, since the
full posterior conditional for α is straightforward to
sample from (Escobar and West, 1995; Neal, 2000).

The choice of specific values for the (ψ1,ψ2) hyper-
parameters can proceed in one of several ways.

After selecting a priori a mean and variance for α

one could choose specific values of (ψ1,ψ2) based on
the moments of a Gamma distribution. That is, make
use of the fact that, under this prior, E[α|ψ1,ψ2] =
ψ1/ψ2 and V[α|ψ1,ψ2] = ψ1/ψ

2
2 ; given a priori val-

ues for the mean and variance of α, these expres-
sions can be solved to give the corresponding values
of (ψ1,ψ2). A second general strategy, proposed by
Dorazio (2009), exploits the following representation
of the probability mass function for the prior of K

that is induced by a Gamma(ψ1,ψ2) prior for α and
a fixed N :

π(K|N,ψ1,ψ2)

= ψ
ψ1
2 S1(n,K)

�(ψ1)

·
∫ ∞

0

αK+ψ1−1 exp(−ψ2α)�(α)

�(α + N)
dα,

where S1(n,K) is the unsigned Stirling number of the
first kind and K = 1, . . . ,N. In particular, suppose
prior information for K can be directly elicited and
is represented by π(K). Then consider the Kullback–
Leibler divergence between the prior π(K) and the in-
duced prior π(K|N,ψ1,ψ2):

DKL(ψ1,ψ2) =
N∑

K=1

π(K) log
{

π(K)

π(K|N,ψ1,ψ2)

}
.

Minimization of this quantity with respect to (ψ1,ψ2)

gives a Gamma prior for α that reflects prior knowl-
edge encoded by π(K) but in a computationally con-
venient form. In practice, in the absence of explicit
a priori knowledge regarding K , a uniform prior on
{1, . . . ,N} could be used. In this case, π(K) = 1/N

and the Kullback–Leibler divergence measure reduces
to

DKL(ψ1,ψ2)

= − logN − 1

N

N∑
K=1

logπ(K|N,ψ1,ψ2).

If a priori knowledge regarding α is difficult to quan-
tify but elicitation of prior information regarding the
number of clusters K is possible, one can build on this
approach in conjunction with expressions (3) and (4).
In the absence of a priori knowledge on α or the num-
ber of clusters K , one could specify a diffuse Gamma
distribution that assigns a priori mass to a broad range
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of values. For example, one option is to choose values
of (ψ1,ψ2) such that α is centered between 1 and N

with a large variance. In the simulations of Sections 4
and 5, we considered a Gamma(1.5,0.0125) distribu-
tion as diffuse; this induces a distribution with a mode
of 40 and variance of 9600, and assigns mass across
realistic values of α.

3.2 Selecting a Value for α

While adopting a prior for α seems natural, the ex-
tent to which the data provides meaningful informa-
tion on either α or K has been questioned (Kyung, Gill
and Casella, 2010). An alternative therefore is to per-
form an analysis which fixes α at some value and to ac-
company the results with sensitivity analyses. Toward
choosing a fixed value of α, if one is able to elicit an a
priori best guess of the number of clusters, one could
again exploit expression (3) and set α∗ to be the value
that satisfies K̂ =

∑n
i=1

α∗
α∗+i−1 . In the absence of a pri-

ori knowledge on α or K , one could perform an em-
pirical Bayes analysis of the logistic-DP mixing model
that conditions on the MLE of α (Liu, 1996; Dorazio
et al., 2008). Practically, this analysis can proceed us-
ing the following algorithm:

1. For some starting value of α, draw a sample from
the joint posterior for the logistic-DP mixing model in-
cluding for the unknown number of clusters, K .

2. Calculate the posterior mean of K , denoted K̄ ,
and find the value of α that satisfies K̄ = ∑N

i=1
α

α+i−1 .
3. Repeat steps 1 and 2 and iterate until conver-

gence.

While appealing that the final value of α∗ is data-
driven (as opposed to being an arbitrary choice), an
important drawback is the substantial computational
burden. Until convergence, the entire MCMC scheme
needs to be rerun each time a new value of α is ob-
tained. In the simulations presented in Sections 4 and 5,
for example, this strategy generally required between
20–30 runs of the entire MCMC scheme, although it
sometimes required more than 50.

As an alternative we propose a simplified strategy
that relies on finding the MLE of α via importance
sampling. Specifically, suppose a sample of size R has
been drawn from the posterior that corresponds to a
Gamma(ψ1,ψ2) prior for α. The posterior samples
{α(1), . . . , α(R)} can be used to estimate the marginal
posterior of α; we denote the corresponding estimate of
the marginal posterior density by π̂g(α|data,ψ1,ψ2).
Now define the importance weights

w(α) = πu(α|C)

πg(α|ψ1,ψ2)
,

where πu(α|C) is the density corresponding to a uni-
form prior for α on the interval (0, C) with C > N
to ensure we assign mass to all reasonable values of
α, and πg(α|ψ1,ψ2) is the density corresponding to
a Gamma(ψ1,ψ2) prior. An estimate of the marginal
posterior density under a uniform prior for α can be
obtained via reweighting using the importance weights
to give

π̂u(α|data) ∝ π̂g(α|data,ψ1,ψ2) ∗ w(α).

Since the marginal posterior distribution under a uni-
form prior is approximately the marginal likelihood for
α, one can approximate the MLE for α by taking the
mode of π̂u(α|data). Hence, the MLE of α can be ob-
tained with relatively little computational burden.

4. SIMULATION STUDY

As mentioned above, in practice and in most sta-
tistical software implementations, the mixing distribu-
tion in a GLMM is often taken to be a Normal dis-
tribution. Here we present a comprehensive simula-
tion study with the dual goals of: (i) characterizing the
bias-variance trade-off associated with using a logistic-
DP model, as opposed to a logistic-Normal model;
and, (ii) examining the performance of the logistic-
DP model under the various strategies for α described
in Section 3. Here we describe the framework used
to conduct the simulation; the results are presented in
Section 5.

4.1 Generating Correlated Data

To generate correlated binary response data, we
adapt the setup used by Heagerty and Kurland (2001).
Specifically, we used model (1) to generate corre-
lated binary response data consisting of N = 100
clusters, each with ni = 10 study units/observations.
Throughout we consider two covariates. The first, de-
noted X1ij , is a binary cluster-specific covariate with
P(X1i = 1) = 0.5 across all clusters. The second, de-
noted X2ij , is a within-cluster covariate with the j th
unit in the cluster taking on the j th value in the set
{−4.5,−3.5, . . . ,3.5,4.5}.
4.2 True Mixing Distributions and Fixed Effects

We consider two specifications for the random ef-
fects. The first is the random intercept model in which
Zij = 1 so that, building on the generic specification
given by model (1), the data are generated according to
the model

g(μij ) = XT
ijβ + bi,
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with g(·) taken to be the logit function, Xij = (1,X1ij ,

X2ij ), β = (−2,1,0.5) and bi a cluster-specific scalar.
The second specification is the random intercept/slope
model in which Zij = (1,X2ij ), so that the data are
generated as

g(μij ) = XT
ijβ + ZT

ij bi,

with g(·) again taken to be the logit function, β =
(−2,1,0.5) and bi = (bi,0, bi,2) a cluster-specific vec-
tor that includes a random intercept and random slope.

For the random intercept model, we consider five
scenarios for the “true” mixing distribution, G:

(RI-1) Normal: bi ∼ Normal(0, σ 2), with σ = 2.
(RI-2) Students’ t: bi ∼ tν , where ν = 8

3 .
(RI-3) Standardized Gamma: bi = σ(ai − λ)/

√
λ,

with ai ∼ Gamma(λ,1), σ = 2 and λ = 0.5.
(RI-4) Mixture of Normals: bi is a mixture of

a Normal(0, σ 2
0 ) and Normal(0, σ 2

1 ), depending on
the cluster-level covariate X1ij = 0/1 and (σ0, σ1) =
(
√

7,1).
(RI-5) Two-point: bi takes on values in {−2,2}, with

equal probability.

For the random intercept/slope model, we consider two
scenarios:

(RIS-1) Normal: bi ∼ MVN2(0,�), with � =(1 0
0 1

)
.

(RIS-2) Standardized log-Normal: Let ai ∼
MVN2(0,�) with � as in (RIS-1). Take bi to be
log(ai), standardized to have mean zero and (marginal)
variance of 1.0 for each of the two components.

4.3 Analyses

Under each of the seven scenarios for G, we gen-
erated R = 5000 data sets. For each data set, we per-
formed a series of analyses as follows:

• A standard frequentist analysis based on the logistic-
Normal model.

• A Bayesian analysis based on the logistic-Normal
model.

• A Bayesian analysis based on the logistic-DP model
with fixed α:

(i) Set at each of seven values: {100,50,25,10,

5,1,0.1}.
(ii) Chosen via empirical Bayes, using the algo-

rithm proposed by Dorazio et al. (2008).
(iii) Chosen via the importance sampling approach

of Section 3.2.

• A Bayesian analysis based on the logistic-DP model
with a Gamma(ψ1,ψ2) prior on α with the follow-
ing:

(i) (ψ1,ψ2) = (1.5,0.0125), chosen as a prior that
is diffuse with respect to α (see Section 3.1).

(ii) (ψ1,ψ2) = (0.491,0.004), chosen using the
Kullback–Leibler divergence of Dorazio (2009)
based on a uniform prior for K on {1, . . . ,N}.

Note, in the Results section below, we refer to the
last four of these analyses (i.e., empirical Bayes, im-
portance sampling, a diffuse prior and a prior cho-
sen via the Kullback–Leibler criterion) as “general-
purpose” strategies for α in the sense that they are
strategies that an analyst could adapt to be specific to
their data/analyses.

Throughout, the frequentist analyses were performed
using the glmmML() function in R (Broström and
Holmberg, 2012). For Bayesian analyses of the
logistic-Normal model, a noninformative flat prior was
adopted for the β regression coefficients together with
a Gamma(0.5,0.01) prior for the precision, τ−2. For
Bayesian analyses of the logistic-DP model, we used
the DPglmm() function in the DPpackage pack-
age for R (Jara et al., 2011). The latter uses a slightly
different parameterization of the logistic-DP model,
the details of which along with our choice of priors
(other than α) are provided in the online Supplemen-
tary Materials (Antonelli, Trippa and Haneuse, 2016).
For each Bayesian analysis, three independent chains
were run. Summaries are based on pooling 5000 pos-
terior samples from each chain, obtained after thin-
ning every fourth sample and removing a 20% burn-in.
Convergence of the MCMC schemes was evaluated by
calculating the potential scale reduction (PSR) factor
(Gelman et al., 2013) across all model parameters.

4.4 Operating Characteristics

To investigate the performance of the various anal-
ysis strategies across the “true” mixing distributions,
we evaluated a number of (traditionally) frequentist op-
erating characteristics. For estimation of the fixed ef-
fects we investigated the potential for a bias-variance
trade-off by evaluating percent bias for the MLEs in
the frequentist analyses and the posterior medians in
the Bayesian analyses. We also evaluated the standard
deviation of the MLE and posterior medians across the
R = 5000 simulated data sets to obtain the true vari-
ability of our fixed effect estimates.

The imposition of structure on the cluster-specific
random effects, typically in the form of a Normal dis-
tribution, is well known to result in shrinkage in their
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corresponding point estimates, particularly in the tails
of the distribution. In addition to improving estimation
with respect to fixed effects in the GLMM, a motivation
for relaxing the Normality assumption for the mixing
distribution G is to mitigate this phenomenon and re-
duce the amount of shrinkage. To investigate this phe-
nomenon, we examined the extent to which a posterior
median of a given true random effect value exhibits
shrinkage. Specifically, for any given value of bi we
can plot the posterior median vs. the true value to in-
vestigate the amount of shrinkage in the predicted val-
ues. As a more quantitative measure, we estimated the
mean squared error of prediction (MSEP) as

1

RN

R∑
r=1

N∑
i=1

(
b̂

(r)
i − b

(r)
i

)2
,(5)

where b
(r)
i is the random effect for the ith cluster in

the r th simulated data set and b̂
(r)
i is the corresponding

posterior median.

5. RESULTS

Tables 1–5 and Figure 1 summarize results from the
simulations studies. Across each of the mixing dis-
tribution scenarios, results for the frequentist analy-

sis based on the logistic-Normal model and the cor-
responding Bayesian analysis are qualitatively similar
and we restrict attention to the latter. In addition, across
all “true” random intercept mixing distributions and
analysis procedures, estimation of the within-cluster
effect, β2, exhibited low bias (between −1.6% and
1.8%) and posterior uncertainty did not vary across
models. As such, when the true mixing distribution is
one of the five random intercept specifications, (RI-1)–
(RI-5), we therefore restrict presentation and discus-
sion of results to those for the global intercept β0 and
the between-cluster effect, β1. Complete tables, that in-
clude results for frequentist estimation of the logistic-
Normal model as well as for β2 in the random inter-
cept model simulations, are provided in the online Sup-
plementary Materials document (Antonelli, Trippa and
Haneuse, 2016).

5.1 Fixed Effects, β: Percent Bias

From Table 1 when the true mixing distribution is
either a Normal or Students’ t-distribution, an analysis
that assumes Normality exhibits little bias (e.g., 1.4%
and 0.5% for β1). Analysis based on the logistic-DP
model for these mixing distributions also exhibited lit-
tle bias unless the value of α was set to be a low number

TABLE 1
Estimated percent bias for fixed effects estimation, across various analyses based on the random intercept model under the five “true”

random effect specifications (RI-1)–(RI-5), described in Section 4.2. Percent bias is for the posterior median. Results are based on
R = 5000 simulated data sets, each with N = 100 and ni = 10

Normal Students’ t Gamma Mixture Two point

β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

Logistic-Normal
Bayesian 0.9 1.4 0.1 0.5 15.2 8.2 −11.4 −30.5 6.0 1.3

Logistic-DP: Fixed α

α = 100 −0.9 −0.4 −0.8 −0.3 13.1 5.1 −10.8 −23.1 9.8 4.4
α = 50 −1.1 −0.6 −1.1 −0.4 11.3 4.1 −10.1 −18.9 11.8 5.6
α = 25 −1.5 −1.0 −1.5 −0.6 9.0 3.3 −9.7 −15.0 12.5 5.7
α = 10 −2.2 −1.9 −2.1 −1.0 6.2 2.2 −9.6 −11.1 10.1 4.9
α = 5 −3.0 −3.0 −2.5 −1.5 4.5 1.3 −9.6 −9.1 7.1 4.2
α = 1 −4.8 −6.5 −3.7 −3.2 2.5 −1.4 −10.3 −8.3 2.8 2.6
α = 0.1 −7.0 −10.8 −5.2 −5.7 1.2 −4.1 −12.0 −12.0 0.7 0.9
EB∗ −1.4 −0.7 −1.7 −0.7 5.5 1.8 −9.5 −12.8 3.5 3.1
IS∗ −0.7 −1.6 −1.0 −0.9 5.4 0.9 −10.0 −17.4 3.4 3.2

Logistic-DP: Random α∗∗
Diffuse −1.0 −0.5 −1.0 −0.3 8.7 3.3 −10.4 −20.2 6.0 3.9
KL∗ −1.1 −0.6 −1.2 −0.4 6.6 2.2 −10.2 −17.9 3.9 3.1

∗EB = Empirical Bayes; IS = Importance sampling; KL = Kulback–Leibler.
∗∗Diffuse: Gamma(1.5,0.0125); KL criterion: Gamma(0.491,0.004).
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(i.e., less than 5); under a true Normal mixing distribu-
tion, the actual number of clusters is K = 100 and low
fixed values of α do not reflect this. When the true mix-
ing distribution is a Gamma distribution, we see that
a naïve analysis based on the logistic-Normal model
yields substantial bias for the intercept β0 (15.2%) and
moderate bias for the between-cluster effect (8.2%).
In contrast, each of the logistic-DP analyses outper-
forms the logistic-Normal analysis with percent bias
reduced to approximately 2% when either a fixed α is
chosen based on the empirical Bayes approach or on
importance sampling or when a Gamma prior is cho-
sen using the Kullback–Leibler approach of Dorazio
(2009). The logistic-DP model also dramatically im-
proves upon a logistic-Normal model when the true
mixing distribution is a mixture of Normals, although
the bias is not completely removed. Bias for estima-
tion of both β0 and β1 when the truth is a two-point
distribution is smaller under a logistic-DP model than
a logistic-Normal model assuming α is chosen to be
very small (i.e., consistent with the “true” number of
clusters), though bias can be increased if α is too large.

From Table 2, we see that when the true mixing
distribution is a bivariate Normal for the random in-

tercepts and slopes, an analysis based on the logistic-
Normal model yields small bias. Unless a poor value
of α is chosen (i.e., one that is completely inconsis-
tent with the true number of clusters), we see that
bias is of essentially the same magnitude under the
logistic-DP analysis. Interestingly, when the true mix-
ing distribution is skewed (i.e., RIS-2; the standardized
log-Normal distribution), a naïve analyis based on the
logistic-Normal model exhibits substantial bias in all
three fixed effect parameters (i.e., 12.7% for β0, 7.5%
for β1 and −25.0% for β2). For any given strategy re-
garding α, with the exception of particularly small val-
ues, we find large decreases in the bias across all three
parameters for all logistic-DP analyses.

Finally, we note that, across the board, the four
general-purpose strategies for α perform either opti-
mally or very well relative to the logistic-Normal in
both sets of simulations.

5.2 Fixed Effects, β: Uncertainty

Table 3 provides the empirical standard deviation of
the sampling distribution of the posterior median for β0
and β1 from the random intercept model simulations.

TABLE 2
Estimated percent bias for fixed effects estimation, across analyses based on the
random intercept/slope model under specifications (RIS-1; Normal) and (RIS-2;

Standardized log-Normal) described in Section 4.2. Percent bias is for the
posterior median. Results are based on R = 5000 simulated data sets,

each with N = 100 and ni = 10

Standardized
Normal log-Normal

β0 β1 β2 β0 β1 β2

Logistic-Normal
Bayesian 2.4 2.3 3.0 12.7 7.5 −25.0

Logistic-DP: Fixed α

α = 100 2.7 2.8 3.3 12.5 7.7 −20.2
α = 50 2.5 2.6 3.1 11.6 6.8 −17.7
α = 25 2.1 2.0 2.2 9.9 5.2 −14.7
α = 10 0.7 0.5 −0.4 6.7 2.4 −12.2
α = 5 −0.9 −1.2 −3.4 4.1 0.5 −13.4
α = 1 −5.0 −4.9 −9.0 −0.9 −3.4 −19.6
α = 0.1 −9.6 −9.2 −14.1 −5.0 −7.5 −24.3
EB∗ 2.5 2.5 3.0 4.6 1.0 −14.0
IS∗ 2.7 2.7 3.4 4.4 0.9 −14.4

Logistic-DP: Random α∗∗
Diffuse 2.6 2.7 3.2 7.3 3.3 −15.0
KL∗ 2.5 2.6 3.0 5.3 1.7 −15.1

∗EB = Empirical Bayes; IS = Importance sampling; KL = Kulback–Leibler.
∗∗Diffuse: Gamma(1.5,0.0125); KL criterion: Gamma(0.491,0.004).
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TABLE 3
True standard errors for fixed effects estimation, across analyses based on the random intercept model under the five “true” random effect

specifications (RI-1)–(RI-5), described in Section 4.2. True standard errors are calculated as the standard deviation of the parameter
estimates across R = 5000 simulated data sets, each with N = 100 and ni = 10

Normal Students’ t Gamma Mixture Two point

β0 β1 β0 β1 β0 β1 β0 β1 β0 β1

Logistic-Normal
Bayesian 0.34 0.47 0.27 0.35 0.34 0.45 0.38 0.42 0.42 0.53

Logistic-DP: Fixed α

α = 100 0.33 0.46 0.26 0.34 0.31 0.39 0.38 0.44 0.36 0.35
α = 50 0.33 0.46 0.26 0.34 0.30 0.37 0.39 0.47 0.34 0.30
α = 25 0.33 0.46 0.26 0.34 0.30 0.36 0.39 0.51 0.33 0.27
α = 10 0.33 0.46 0.26 0.34 0.30 0.35 0.40 0.57 0.31 0.25
α = 5 0.33 0.47 0.27 0.34 0.30 0.35 0.41 0.60 0.30 0.24
α = 1 0.33 0.47 0.27 0.35 0.29 0.34 0.41 0.64 0.28 0.23
α = 0.1 0.33 0.47 0.27 0.35 0.29 0.34 0.41 0.66 0.27 0.23
EB∗ 0.33 0.46 0.26 0.34 0.31 0.35 0.40 0.54 0.29 0.24
IS∗ 0.34 0.46 0.26 0.34 0.31 0.35 0.40 0.54 0.29 0.24

Logistic-DP: Random α∗∗
Diffuse 0.33 0.46 0.26 0.34 0.31 0.37 0.39 0.47 0.30 0.24
KL∗ 0.33 0.46 0.26 0.34 0.31 0.36 0.39 0.50 0.29 0.24

∗EB = Empirical Bayes; IS = Importance sampling; KL = Kulback–Leibler.
∗∗Diffuse: Gamma(1.5,0.0125); KL criterion: Gamma(0.491,0.004).

Results from the random intercept/slopes simulations
are substantively similar and are therefore not shown
[see the Supplementary Materials document for addi-
tional detail (Antonelli, Trippa and Haneuse, 2016)].

Given the adopted sample sizes (i.e., N = 100 and
ni = 10), the standard error of the posterior median for
β1 based on a logistic-Normal model when the mixing
distribution is truly Normal is approximately 0.47. In-
terestingly, the corresponding standard error estimates
under each of the logistic-DP model analysis are ap-
proximately the same; that none of these are larger than
0.47 indicates that there is no loss of efficiency associ-
ated with using the logistic-DP model even when the
true mixing distribution is a Normal. This result also
holds when the true mixing distribution is a Students’
t-distribution. When the true mixing distribution is a
Gamma distribution, the standard error of the posterior
median of β1 under a (misspecified) logistic-Normal
model is approximately 0.45. The corresponding stan-
dard errors for the posterior medians under each of the
logistic-DP analyses were smaller (between 0.34 and
0.39), indicating a relative improvement in efficiency
under the nonparametric model. This result also holds,
and is more dramatic, when the true mixing distribu-
tion is a two-point distribution with the standard error
under a logistic-Normal model approximately 0.53 and

under the various logistic-DP model analyses between
0.24 and 0.35. Finally, when the true mixing distribu-
tion is a mixture of Normals, the standard errors under
a logistic-Normal model are approximately 0.42. Un-
der each of the logistic-DP model analyses the standard
error is greater (between 0.44 and 0.66). The increase
in variability is difficult to interpret, however, because
of the substantial bias that the posterior medians ex-
hibit (between −8.3% and −23.1%; see Table 1).

5.3 Random Effects, bi : Shrinkage

Figure 1 provides a visual representation of shrink-
age in the estimation of the cluster-specific random ef-
fects, for select model fits, when the true mixing dis-
tribution is a standardized Gamma distribution (i.e.,
RI-3 in Section 4.2). From the figure, a naïve logistic-
Normal model exhibits substantial shrinkage in the es-
timated random effects (i.e., bias toward zero), partic-
ularly in the tails of the distribution. Under each of
the displayed logistic-DP models the shrinkage in the
tails is mitigated, indicating a superior fit overall. This
improvement is likely due to the additional flexibil-
ity the DP prior provides in modeling a skewed mix-
ing distribution, a scenario that is ruled out when G is
taken to be a Normal distribution. When the true mix-
ing distribution is a two-point distribution (i.e., RI-5



BAYESIAN NONPARAMETERIC GLMMS 89

TABLE 4
Shrinkage of estimated random effects under select analyses based
on a random intercept model when the “true” mixing distribution
is a Two-point distribution (RI-5; see Section 4.2). Estimates are

the mean of the posterior medians, taken across R = 5000
simulated data sets, each with N = 100 and ni = 10

True value

bi = −2 bi = 2

Logistic-Normal
Bayesian −1.79 1.88

Logistic-DP: Fixed α

α = 100 −1.79 1.99
α = 50 −1.82 2.06
α = 25 −1.86 2.11
α = 10 −1.92 2.10
α = 5 −1.96 2.06
α = 1 −1.97 1.97
α = 0.1 −1.95 1.93
EB∗ −1.97 1.99
IS∗ −1.97 1.98

Logistic-DP: Random α∗∗
Diffuse −1.95 2.03
KL∗ −1.96 1.99

∗EB = Empirical Bayes; IS = Importance sampling; KL =
Kulback–Leibler.∗∗Diffuse: Gamma(1.5,0.0125) KL criterion: Gamma(0.491,

0.004).

in Section 4.2), Table 4 shows that the shrinkage ex-
hibited by the logistic-Normal model is almost com-
pletely mitigated by the fit of a logistic-DP model, es-
pecially for small values of α (i.e., those that are con-
sistent with the “true” number of clusters). Beyond the
Gamma and two-point distributions, shrinkage under a
logistic-DP model was only minimally improved under
the Normal, Students’ t and mixture distributions; the
corresponding figures are provided in the online Sup-
plementary Materials document (Antonelli, Trippa and
Haneuse, 2016). Finally, as with estimation of the fixed
effects, each of the four general-purpose strategies for
α perform very well in Figure 1 and Table 4.

5.4 Random Effects, bi : Mean Squared Error of
Prediction

Finally, Table 5 provides estimates of MSEP (as de-
fined in Section 4.4) for both the random intercept and
random intercept/slope model simulations. For the ran-
dom intercept model simulations (first five columns)
we see that the logistic-DP analysis generally outper-
forms the logistic-Normal analysis. For example, the
MSEP is substantially reduced under both the stan-

dardized Gamma and the two-point distributions re-
gardless of the strategy adopted for α. Furthermore, as
long as a poor value of α is avoided, MSEP under either
the Normal distribution or the Students t-distribution is
no worse for the logistic-DP analysis than the logistic-
Normal analysis. Settings where the logistic-DP does
exhibit worse performance are when the true G is a
mixture distribution or when the truth is a Normal or a
Students’ t-distribution and a poor value of α is chosen.

The last four columns of Table 5 provide MSEP
specific to bi,0 and bi,2 in the random intercept/slope
model simulations. For the most part, the same general
conclusions are drawn. When the true mixing distribu-
tion is a multivariate Normal, the logistic-DP analyses
exhibit the same performance as the logistic-Normal
analyses as long as a particularly poor value of α is not
chosen. When the true mixing distribution is a stan-
dardized log-Normal (i.e., skewed), the MSEP based
on a logistic-Normal model is estimated to be 0.59 and
0.58 for bi,0 and bi,2, respectively. The corresponding
MSEPs are uniformly lower under each of the logistic-
DP analyses, with each of the general-purposes strate-
gies performing well.

6. APPLICATION

To further illustrate the concepts and methods de-
scribed in Sections 2 and 3, we present an analysis
of n = 18,643 female Medicare beneficiaries who un-
derwent a surgical procedure for the removal of their
uterus, a hysterectomy, at one of N = 503 hospitals in
the U.S between 2009–2012. The patients were iden-
tified in the Medicare Inpatient File with the only in-
clusion/exclusion criteria being that the patient was
at least 65 years of age at the time of the procedure
and had not transferred to the hospital at which the
hysterectomy was performed from some other facility.
Furthermore, due to considerations of patient confiden-
tiality, the data available for analyses only includes pa-
tients treated in hospitals at which at least 20 hysterec-
tomy procedures had been performed between 2009–
2012.

Of primary scientific interest for this application is
the characterization of variation in quality of post-
operative care in the U.S. among Medicare beneficia-
ries undergoing a hysterectomy. Toward this, we con-
sider a binary outcome of whether or not the patient ex-
perienced a surgery-specific complication, defined as
either an in-hospital death or readmission within 30
days of discharge. These were chosen because they
represent key markers of quality of care in the lit-
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TABLE 5
Mean squared error of prediction for random effects, across various analyses based on (i) the random intercept model under the five “true”

random intercept specifications (RI-1)-(RI-5), and (ii) the random intercept/slope model under the two “true” random intercept
specifications (RIS-1) and (RIS-2). Estimates are based on R = 5000 simulated data sets, each with N = 100 and ni = 10

Random intercept/slope

Random intercept

Normal Students’ t Gamma Mixture Two-point

Standardized
Normal log-Normal

bi bi bi bi bi bi,0 bi,2 bi,0 bi,2

Logistic-Normal
Bayesian 0.94 2.00 1.25 1.17 0.78 0.59 0.22 0.59 0.58

Logistic-DP: Fixed α

α = 100 0.95 1.99 1.07 1.19 0.62 0.59 0.22 0.54 0.55
α = 50 0.95 1.99 1.03 1.21 0.56 0.59 0.22 0.52 0.54
α = 25 0.96 1.99 0.99 1.23 0.47 0.59 0.23 0.50 0.51
α = 10 0.98 2.01 0.96 1.28 0.34 0.59 0.22 0.46 0.49
α = 5 1.01 2.03 0.94 1.32 0.27 0.57 0.22 0.44 0.46
α = 1 1.10 2.12 0.98 1.44 0.22 0.60 0.23 0.39 0.41
α = 0.1 1.23 2.26 1.07 1.59 0.22 0.76 0.30 0.50 0.54
EB∗ 0.96 2.00 0.96 1.25 0.23 0.59 0.22 0.43 0.44
IS∗ 0.96 2.09 0.97 1.25 0.22 0.59 0.22 0.43 0.44

Logistic-DP: Random α∗∗
Diffuse 0.95 1.99 1.00 1.21 0.26 0.59 0.22 0.46 0.48
KL∗ 0.95 1.99 0.97 1.23 0.23 0.59 0.22 0.43 0.46

∗EB = Empirical Bayes; IS = Importance sampling; KL = Kulback–Leibler.
∗∗Diffuse: Gamma(1.5,0.0125); KL criterion: Gamma(0.491,0.004).

FIG. 1. Shrinkage of estimated random effects under select anal-
yses when the “true” mixing distribution is a standardized Gamma
distribution (RI-3; see Section 4.2). Estimates are the mean of the
posterior medians, taken across R = 5000 simulated data sets,
each with N = 100 and ni = 10. The solid grey line indicates the
45◦ line.

erature, and also because they do not rely on point-
of-access coding (which can be subject to inaccurate
and/or idiosyncratic coding practices). When identify-
ing readmissions, attention was restricted to those that
were likely to be related to the surgery. Toward this, in
collaboration with a group of two-dozen expert review-
ers (doctors and surgeons), a list of admission codes
was developed that only included those corresponding
to likely unplanned admissions and therefore indicative
of a negative surgical outcome.

Figure 2 provides a histogram of the N = 503 raw
hospital-specific complication rates. While the raw
rates vary from 0% to a maximum of 12%, there is
a large point mass at 0% corresponding to 323 hospi-
tals (64.2%) with the distribution of the remaining rates
skewed to the right. As such, while not conclusive, the
marginal distribution of the raw rates suggest that a sin-
gle Normal distribution may be insufficient to capture
between-hospital variation in these data. Toward per-
forming an adjusted analysis, wherein differences in
the characteristics of the patients across the hospitals
are accounted for, we fit a series of GLMMs based on
the methods described in Sections 2 and 3. Due to the
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TABLE 6
Posterior summaries for the fixed effects (log odds and log odds ratio) parameters from a series of analyses of complications following a

hysterectomy, based on n = 18,643 Medicare beneficiaries treated at N = 503 hospitals. Shown are posterior medians (standard deviations)

Race∗ Age, years∗ Year of surgery∗

Intercept Black Other 70–74 75–79 80–84 ≥85 2010 2011 2012

Logistic-Normal
Bayesian −4.55 (0.15) 0.20 (0.30) −0.38 (0.31) 0.19 (0.17) 0.64 (0.17) 0.43 (0.23) 1.01 (0.27) −0.22 (0.18) −0.12 (0.17) 0.16 (0.18)

Logistic-DP: Fixed α

α = 500 −4.58 (0.15) 0.19 (0.31) −0.38 (0.32) 0.18 (0.17) 0.65 (0.17) 0.42 (0.23) 0.99 (0.28) −0.23 (0.17) −0.12 (0.18) 0.16 (0.17)
α = 300 −4.58 (0.16) 0.19 (0.32) −0.39 (0.33) 0.18 (0.17) 0.65 (0.17) 0.41 (0.23) 0.99 (0.28) −0.22 (0.18) −0.11 (0.18) 0.17 (0.18)
α = 100 −4.60 (0.16) 0.20 (0.32) −0.38 (0.32) 0.19 (0.17) 0.65 (0.17) 0.43 (0.23) 1.01 (0.27) −0.22 (0.17) −0.11 (0.17) 0.16 (0.18)
α = 50 −4.57 (0.16) 0.20 (0.32) −0.39 (0.32) 0.18 (0.17) 0.64 (0.17) 0.41 (0.23) 0.99 (0.28) −0.23 (0.17) −0.11 (0.17) 0.16 (0.17)
α = 25 −4.58 (0.16) 0.19 (0.31) −0.39 (0.31) 0.18 (0.18) 0.64 (0.17) 0.42 (0.23) 1.00 (0.28) −0.22 (0.18) −0.12 (0.18) 0.16 (0.17)
α = 10 −4.58 (0.16) 0.19 (0.32) −0.39 (0.32) 0.18 (0.17) 0.64 (0.17) 0.42 (0.23) 1.00 (0.27) −0.22 (0.17) −0.11 (0.17) 0.16 (0.17)
α = 1 −4.58 (0.53) 0.21 (0.32) −0.39 (0.32) 0.18 (0.17) 0.65 (0.17) 0.41 (0.23) 0.99 (0.28) −0.23 (0.18) −0.12 (0.18) 0.16 (0.18)
IS∗∗ −4.56 (0.16) 0.21 (0.33) −0.39 (0.32) 0.18 (0.17) 0.64 (0.17) 0.41 (0.23) 0.98 (0.28) −0.23 (0.18) −0.13 (0.18) 0.15 (0.18)

Logistic-DP: Random α∗∗∗
Diffuse −4.59 (0.18) 0.21 (0.32) −0.38 (0.32) 0.19 (0.17) 0.65 (0.17) 0.42 (0.23) 0.99 (0.28) −0.21 (0.18) −0.12 (0.17) 0.17 (0.17)

∗Reference race group is “White;” referent age group is “65–69 years;” reference year of surgery is “2009.”
∗∗IS = Importance sampling.
∗∗∗Diffuse: Gamma(2,0.008).
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FIG. 3. Comparison of posterior medians for the hospital-spe-
cific random effects from a logistic-Normal random intercept model
and a logistic-DP random intercept model applied to n = 18,643
Medicare beneficiaries who underwent a hysterectomy at N = 503
hospitals.

tively. From Table 6 one can see that the conclusions
one draws for the fixed effects regression parameters
are robust across all specifications for the mixing dis-
tribution. In particular, both the posterior medians and
standard deviations are insensitive to whether or not
a Normal mixing distribution is adopted or if a DP
prior is adopted. Interestingly, that the posterior stan-
dard deviations are insensitive suggests that there was
no penalty paid for adopting the more flexible DP prior
specification.

Figure 3 provides posterior medians for the N = 503
hospital specific random effects (i.e., the bi random
intercepts) for the logistic-Normal model and for the
logistic-DP model with α fixed and chosen via im-
portance sampling (see Section 3.2); analogous figures
for other logistic-DP analyses were similar and are,
therefore, not presented. From the figure, in contrast
to the results for the fixed effects, we find that the con-
clusions one draws regarding the random effects are
highly sensitive to specification of the mixing distribu-
tion. In particular, one key feature of the comparison
is that the posterior medians of the hospital-specific
random effects exhibit substantially greater variation
under the logistic-DP model than under the logistic-
Normal model. This is likely because the structure im-

posed by the common Normal distribution across the
random effects is being informed primarily by the large
number of hospitals with an observed raw complica-
tion rate of 0%. Such structure is not imposed under
the logistic-DP model and the random effects for the
hospitals for which the raw rates were greater than 0%
(i.e., the grey dots in the figure) are given much greater
flexibility to deviate away from the point mass. A sec-
ond key feature of the comparison is that the marginal
distribution of the posterior medians under the logistic-
DP model is much more aligned with the distribution
of the raw rates in Figure 2. Specifically, those hospi-
tals with a 0% complication rate remain “clustered,”
while the hospitals with a raw complication rate that is
greater than 0% form a distinct mass in the distribution.
In contrast, the corresponding marginal distribution un-
der the logisitic-Normal is unimodal again likely due
to the structure imposed by adopting a single common
Normal distribution for the random effects.

7. DISCUSSION

As researchers consider GLMMs for the analysis of
clustered or longitudinal data, Bayesian nonparamet-
ric formulations offer an appealing and flexible frame-
work if the mixing distribution is potentially not Nor-
mal. While the literature on Bayesian nonparametrics
is well established and user-friendly software is read-
ily available, to our knowledge, the extent to which
bias due to misspecification of the mixing distribu-
tion is mitigated has not been quantified. Overall, our
simulation-based results suggest that, in a broad range
of settings, the use of a Bayesian nonparametric prior
does mitigate bias that arises when the mixing distri-
bution is incorrectly assumed to be a Normal distribu-
tion. Our results also indicate that little penalty is paid
(in terms of variance) if the mixing distribution is truly
a Normal distribution and yet a more flexible specifica-
tion is adopted. Furthermore, in some settings, specifi-
cally the Gamma and two-point distributions, we found
that fitting a logistic-DP model yielded results that not
only exhibited lower bias but also had improved effi-
ciency. This latter observation is consistent with the
theoretical results of Kyung, Gill and Casella (2009)
who showed that estimation of fixed effects in a linear
mixed effects model often enjoys reduced variance un-
der a Dirichlet random effects model compared to that
under a Normal model.

The results from our simulation study also indicate
that adopting a Bayesian nonparameteric prior may
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not completely resolve bias induced by misspecifica-
tion of the mixing distribution. In this respect, the re-
sults based on the true mixing distribution being a mix-
ture of Normals are important. We found that none of
the logistic-DP analyses we considered completely re-
moved bias, with the best case being a bias of approx-
imately −9.6% when α was between 5–25. Further-
more, while it is difficult to interpret measures of vari-
ability when the estimates are themselves biased, the
results of Table 3 show that in some settings uncer-
tainty is increased when one adopts a flexible prior on
the unknown mixing distribution.

During the review process, the reviewers made a
number of interesting suggestions for discussion and
future work. One such direction is a Bayesian treat-
ment of marginalized models and the possible impact
of this choice under model misspecification. Marginal-
ized models utilize a marginal likelihood in which the
random effects have been integrated out, and these
models have been shown to handle misspecification
of random effects distributions quite well (Heagerty
and Zeger, 2000). Similarly, research has been done
on marginalized copula methods and their ability to
estimate generalized linear models in the presence of
correlated data. O’Brien and Dunson (2004) provide a
flexible approach to logistic regression using copulas
permitting a wide variety of correlation structures in
the data. These marginalized models also have an ad-
vantage, as they allow for population-based interpreta-
tions of parameters as opposed to interpretations con-
ditional on random effect values in conditional models.
Another general direction for future work is the inves-
tigation of the relative merits of alternative Bayesian
nonparametric prior formulations. Polya trees (Lavine,
1992) and species sampling priors (Lee et al., 2013),
for example, can both be viewed as generalizations
of the Dirichlet process prior. The latter, in particular,
has been used in the context of GLMs and GLMMs
(Hanson and Johnson, 2002, Branscum and Hanson,
2008; Trippa, Müller and Johnson, 2011) and is im-
plemented in the DPpackage package for R (Jara
et al., 2011). Whether or not the desirable theoretical
aspects of these alternatives result in meaningful prac-
tical benefits (i.e., in terms of bias and efficiency) is un-
clear and an avenue we are currently exploring. Third,
while the random intercept model and the random in-
tercept/slopes model are commonly used for binary re-
sponse data, analysts may encounter any of a broad
range of data scenarios including count and ordinal
data (Kottas, Müller and Quintana, 2005; Leon-Novelo
et al., 2010), varying cluster sizes (e.g., Dunson, Chen

and Harry, 2003), and more complex correlation struc-
tures seen in spatial (Banerjee, Carlin and Gelfand,
2014) and spatio-temporal models (Waller et al., 1997).
Finally, it may be possible to formulate the choice of
how α is treated as a question of model choice. Within
this framing, it may be possible to exploit formal tech-
niques of model choice such as the deviance informa-
tion criterion (DIC) or log pseudo marginal likelihood
(LPML) to empirically decide which approach is best
(Celeux et al., 2006; Geisser and Eddy, 1979; Basu and
Chib, 2003).

To conclude, we make the general point that, in the
absence of knowledge about the true mixing distribu-
tion, no single analysis strategy will work well (or be
best in any sense) across all possible true data scenar-
ios. While describing and quantifying operating char-
acteristics can serve to provide guidance, in practice,
substantive knowledge about the underlying data gen-
erating mechanisms is far more valuable. Neverthe-
less, we found that adopting a Bayesian nonparametric
prior may outperform or do no worse than adopting the
current convention of Normal distribution in a broad
range of settings. These benefits are not for free, how-
ever, and are accompanied by additional complexity
and the nontrivial task of specifying α. Toward provid-
ing practical guidance on this, however, our experience
in conducting a broad range of simulations suggest to
us that, combined with appropriate sensitivity analy-
ses, the four “general-purpose” strategies consisting of
choosing a specific value via empirical Bayes or im-
portance sampling, or choosing a diffuse prior or one
prior chosen via the Kullback–Leibler criterion, will be
reasonable in a broad range of practical settings.
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We include in the supplementary files a detailed de-
scription of both the model and prior specification for
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the Logistic-DP model. We also include extended sim-
ulation results that include all parameters from the
model and an additional simulation that looks at a
larger sample size. Finally, we include convergence di-
agnostics for all Bayesian models in the Medicare ap-
plication.
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