Statistical Science
2014, Vol. 29, No. 2, 201-213
DOI: 10.1214/14-STS477

© Institute of Mathematical Statistics, 2014

Reactive Programming for Interactive
Graphics

Yihui Xie, Heike Hofmann and Xiaoyue Cheng

Abstract. One of the big challenges of developing interactive statistical ap-
plications is the management of the data pipeline, which controls transforma-
tions from data to plot. The user’s interactions needs to be propagated through
these modules and reflected in the output representation at a fast pace. Each
individual module may be easy to develop and manage, but the dependency
structure can be quite challenging. The MVC (Model/View/Controller) pat-
tern is an attempt to solve the problem by separating the user’s interaction
from the representation of the data. In this paper we discuss the paradigm of
reactive programming in the framework of the MVC architecture and show
its applicability to interactive graphics. Under this paradigm, developers ben-
efit from the separation of user interaction from the graphical representation,
which makes it easier for users and developers to extend interactive appli-
cations. We show the central role of reactive data objects in an interactive
graphics system, implemented as the R package cranvas, which is freely
available on GitHub and the main developers include the authors of this pa-

per.

Key words and phrases:
guage.

1. INTRODUCTION

Interactive graphics progresses us beyond the lim-
itations of static statistical displays, in particular, for
exploring multidimensional data. With a static image,
we can only see one aspect of the data at a time. Inter-
active graphics allows us to inspect data dynamically
from multiple views. For example, we may draw a scat-
terplot of two variables and a stacked bar chart show-
ing the proportions of missing values for the rest of
the variables in a data set (two stacked bars per vari-
able). Then we can highlight the bar that indicates the

Yihui Xie and Xiaoyue Cheng are Ph.D. Students,
Department of Statistics, lowa State University, 102
Snedecor Hall, Ames, Iowa 50011, USA (e-mail:
xie@yihui.name; URL: http.//yihui.name; e-mail:
xycheng @iastate.edu; URL:
http://xycheng.public.iastate.edu). Heike Hofmann is
Professor, Department of Statistics, lowa State University,
2413 Snedecor Hall, Ames, lowa 50011, USA (e-mail:
hofmann@iastate.edu; URL:
http://hofmann.public.iastate.edu).

Reactive programming, interactive graphics, R lan-

missing values of one variable, and the subset of points
corresponding to these missing values in the scatter-
plot are highlighted immediately, so we can examine
the conditional bivariate relationship in the scatterplot.

The term “interactive graphics” can be ambiguous,
as disclosed by Swayne and Klinke (1999) in an edi-
torial of Computational Statistics: it may imply the di-
rect manipulation of the graph itself, manipulation of
the graph controls or even the command-line interac-
tion with graphs. We primarily mean the direct manip-
ulation on graphs, but other meanings still have their
usefulness. For instance, we may change the bin width
of a histogram through a slider or brush all the outliers
in a scatterplot using a command line with a numeric
criterion, achieving a higher degree of control than di-
rect manipulation allows.

The main tasks that an interactive statistical graphics
system should support are as follows:

1. Single display interactions, such as modifying the
plot attributes (brushing, zooming, panning, deletion)
and obtaining additional information (querying graph-
ical elements);

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/14-STS477
http://www.imstat.org
mailto:xie@yihui.name
http://yihui.name
mailto:xycheng@iastate.edu
http://xycheng.public.iastate.edu
mailto:hofmann@iastate.edu
http://hofmann.public.iastate.edu

202 Y. XIE, H. HOFMANN AND X. CHENG

2. Linking between different displays of the same
data set or related data sets. For example, suppose we
have a scatterplot of the variable Y versus X and a his-
togram of Z (all three variables are from the same data
set), when we highlight a subset of points in the scatter-
plot and we need to show the distribution of the subset
of Z in the histogram as well.

The first set of tasks is easier to solve—there are a lot
of web applications that allow various single display
interactions, for instance, Gapminder (Rosling and Jo-
hansson, 2009), ManyEyes (Viegas et al., 2007), JMP
(SAS Institute, 2009) and D3 (Bostock, Ogievetsky
and Heer, 2011).

Linked graphics, which is less common, allows
changes across different displays as well as across dif-
ferent aggregation levels of the data. The key diffi-
culty is how to let the plots be aware of each other’s
changes and respond both automatically and immedi-
ately. There are several types of linking between plots,
one-to-one linking, categorical linking and geograph-
ical linking (Dykes, 1998); see Hurley and Oldford
(1988), Stuetzle (1987) and McDonald, Stuetzle and
Buja (1990) for some early demonstrations and imple-
mentations. We will show how linking is related to, and
achieved by, reactive programming in this paper.

A number of stand-alone systems for interactive
statistical graphics exist. Early systems include PRIM-
9, an interactive computer graphics system to pic-
ture, rotate, isolate and mask data in up to 9 dimen-
sions (Fisherkeller, Friedman and Tukey, 1988). Data
Desk (Velleman and Velleman, 1988) and LISP-STAT
(Tierney, 1990) provided tight integration with inter-
active graphics as well as numerical modeling. In
particular, LISP-STAT is also a programmable envi-
ronment like R (R Core Team, 2013), but, unfortu-
nately, today R is the more popular choice. Tierney
(2005) described a few desirable approaches toward
programmable interactive graphics, which were not
implemented in LISP-STAT due to limitations of the
toolkit. These are all relatively straightforward in the
framework of R and Qt (Qt Project, 2013). XGobi
and GGobi (Swayne et al., 2003; Cook and Swayne,
2007), MANET (Unwin et al., 1996) and Mondrian
(Theus, 2002) support interactive displays of multivari-
ate data, but lack extensibility and a tight integration
with modeling in R. The rggobi package (Wickham et
al., 2008) is an interface between R and GGobi based
on the GTK+ toolkit. The iplots package (Urbanek
and Wichtrey, 2013) provides high interaction statis-
tical graphics; it is written in Java using the Swing

toolkit and communicates with R through the rJava
package.

One of the big challenges in the development of in-
teractive statistical applications is to resolve a user’s
action on the data level. This is sometimes referred to
as the “plumbing” of interactive graphics. Buja et al.
(1988, page 298) introduced the concept of a view-
ing pipeline for data plots. The pipeline takes the raw
data, through transformation, standardization, random-
ization, projection, viewporting and graphical element
in a plot. Some components of the pipeline can be made
implicit, such as the so-called “window-to-viewport”
transformation (i.e., viewporting), due to technological
advances in computer graphics toolkits. For example,
Qt can take care of such low-level details automati-
cally. Wickham et al. (2009) outlined a more general
pipeline for interactive graphics, but it did not cover
implementation details, which is the focus of this pa-
per.

The R package cranvas (Xie et al., 2013) is an
interactive graphics system built under the classi-
cal Model/View/Controller (MVC) architecture and
adopts the reactive programming paradigm to achieve
interactivity. Figure 1 shows a basic pipeline in the
cranvas package and its most important components,
mutaframes and metadata objects, which are “reactive”
by design. The pipeline starts with a data source (a mu-
taframe) as the central commander of the system. Any
plot can modify the data source as the user interacts
with the plot and, as soon as the mutaframe is modi-
fied, its reactive nature will propagate the changes to
all other plots in the system automatically. In addition,
each plot also has its own attributes that are described
by the metadata beyond the mutaframes. A metadata
object is also reactive, but it is only linked to a spe-
cific plot. For example, the bin width of a histogram is
stored in its metadata, and when the user’s action in-
duces a change in this value, the histogram responds
accordingly.

The paper is organized as follows. We start with a
discussion of the MVC design. Section 3 describes the
reactive programming paradigm relative to the MVC
architecture, using cranvas as an example. Section 4
provides specific examples of how interaction is real-
ized.

2. THE MVC ARCHITECTURE

MVC is a software architecture design described
originally by Trygve Reenskaug in the 1970s and in
detail by Krasner and Pope (1988). It is widely used

REACTIVE PROGRAMMING FOR INTERACTIVE GRAPHICS 203

Mutaframe

(o v [P
@‘&e
0%
e “\
ol

Scatterplot

3

i ’ Meta--

Features:
DATA e.g. brushed
color, size

\

Parallel Coordinates Plot

Histogram
ghist() . ST |
> / Meta-- !
! histogram .
________ U
N
o LA
3, NG
A <
®
2 Density Plot
~ -
- ST TTTT 1
{/ / Meta-- 1
[! density plot |

FiG. 1.

A representation of the pipeline in the cranvas package. It shows how plots are linked to each other as well as to the data source.

Elements are added to the data to facilitate the interaction. Arrows with solid lines indicate R functions that draw the plots. Dashed lines

indicate reactions fed back to the data elements.

in GUI (Graphical User Interface) applications, includ-
ing web applications (Leff and Rayfield, 2001). There
have been a number of R packages utilizing the MVC
architecture. For example, Whalen (2005) built an in-
teractive GUI system using the MVC design to explore
linked data. The GUI was based on the RGtk package,
which later evolved into RGtk2 (Lawrence and Temple
Lang, 2010), and MVC was implemented in the MVC-
Class package.

The main reason for the popularity of MVC is be-
cause it minimizes the dependencies between differ-
ent components of an application. For example, let us
assume that the model component consists of a data
transformation, such as a square-root or log transfor-
mation. The model does not depend on the view, but the
view depends on the model in the sense that if the data
is changed or a different data transformation is chosen,
the view has to be updated to reflect this change. The
model developer therefore never needs to deal with the
representation of the data on the screen.

In a traditional MVC design, the controller sends
commands to both the model and the view to update
their states. Below is a minimal example in R code on
how to brush a scatterplot under the MVC design.

brushed <- rep(FALSE, nrow(cars))
model <- function(i) {
brushed[] <<- FALSE

brushed[i] <<- TRUE
}

view <- function(b = brushed) {

plot(cars, pch = ifelse(b, 19, 21))
rect(min(cars[b, 1]), min(cars[b, 2]), max(cars[b, 1]), max(cars[b,
21), 1ty = 2)
}

controller <- function(i) {

model (i)
view()

}

When the user brushes the scatterplot, we can ob-
tain the indices of the points under the brush rectangle
(denoted by i in the code above). Then we pass the
indices to the model to change the brush status (the
vector brushed) and redraw the plot.

controller(1:4)
controller(10:28)

Decoupling the system into three components en-
ables components to be accessed independently. For
example, we can call the model or the view separately
without modifying their source code.

204 Y. XIE, H. HOFMANN AND X. CHENG

The problem with the traditional MVC design is that
we have to be explicit about updating the model and
the view in the controller. In the context of interactive
graphics, this can be a burden for developers. For in-
stance, when there are multiple views in the system,
the controller must notify all views explicitly of all of
the changes in the system. When a new view is added
to the system, the controller must be updated accord-
ingly. Below is what we normally do when we add a
new view to the system.

viewl <- function(b = brushed) {
plot(cars, pch = ifelse(b, 19, 21))
}
view2 <- function(b = brushed) {
cars$dist <- sqrt(cars$dist)
plot(cars, pch = ifelse(b, 19, 21))
}
controller <- function(i) {
model (i)
viewl()
view2()
}

3. REACTIVE PROGRAMMING

Reactive programming is an object-oriented pro-
gramming paradigm based on an event-listener model
and targeted at the propagation of changes in data
flows. We attach listeners on data objects such that
(different) events will be triggered corresponding to
changes in data. In the above example, the plot will
be updated as soon as the object brushed is modi-
fied without the need to explicitly call view (). This
makes it much easier to express the logic of interactive
graphics. We will discuss how it works and its applica-
tion in cranvas. Shiny (RStudio, Inc., 2013) is another
application of reactive programming in the R commu-
nity which makes it easy to interact between HTML
elements and R, but it does not have a specific empha-
sis on statistical graphics.

To provide interactive graphics in cranvas, there are
two types of objects:

e data presented in the plots, often of a tabular form
like data frames in R

e metadata to store additional information of the plots
such as the axis limits; it is irregular like a list in R.

There are two approaches for making objects reac-
tive: mutaframes (Lawrence and Wickham, 2012) for
the data object and reference classes (Chambers, 2013)
for the metadata. The fundamental technique under-
lying them is the active binding in R, thanks to the
work of the R Core team (in particular, Luke Tier-

ney). For details, see the documentation of makeAc-
tiveBinding in R. Both mutaframes and reference
classes use active bindings to make elements inside
them (such as data columns or list members) reactive
whenever they are modified.

Active bindings allow events (expressed as func-
tions) to be attached on objects and these events are
executed when objects are assigned new values. Below
is an implementation with active bindings, expanding
on the example code in the previous section.

reactiveModel <- local({
b <- rep(FALSE, nrow(cars))
function(i) {
if (Imissing(i)) {
b[] <<- FALSE
b[i] <<- TRUE
view(b)
}
b
}
B

makeActiveBinding("reactiveBrush", reactiveModel, env = globalenv())

We bind a function reactiveModel () to the ob-
ject reactiveBrush through the base R function
makeActiveBinding (). When we assign new
values to the object reactiveBrush, the function
defined in reactiveModel () will be called: inside
the function, the logical variable b is modified by the
indices i and the view is updated accordingly. The two
lines below achieve the same goal as the MVC example
in Figure 2.

reactiveBrush <- 1:4
reactiveBrush <- 10:28

120 A o 120 o
100 4 100
e e
<] o o o
80 o ° 80 ‘**0*1‘ °
o o o © - ! o o ©
A [} 7. | | o
£ 60 ° oo o 2 60 I %! 00 o
[b4 | 1o 9
o °o° e | c‘oc‘
g oo 4 o
40 o 00 2270, 40 ol o :o o,
e 098000 o o“gooo‘
201, lo %09 ©° 204 o oeg__ I
¢] o [}
0452 : : : 0o ° : : :
5 10 15 20 25 5 10 15 20 25
speed speed

FI1G. 2. Brush a scatterplot using the MVC design: brush the first
Sfour points (left), then brush all points from the 10th to 28th. The
dashed rectangle denotes the “brush,” which is normally created
by dragging the cursor over the points. The cars data is a data set
in base R. It has been ordered first by speed and then dist in the
increasing order, so the bottom-left point is the first observation in
the data.

REACTIVE PROGRAMMING FOR INTERACTIVE GRAPHICS 205

Now our only task is to assign indices of the brushed
points to reactiveBrush, since the plot will be up-
dated automatically. A real interactive graphics system
is more complicated than the above toy example, but it
shows the foundation of the pipeline. The two kinds of
interactive objects in cranvas are explained in the next
two sections, respectively.

3.1 Mutaframes

A mutaframe is an extension to the R data frame.
They are mutable, which means that changes to its ele-
ments can be made anywhere regardless of the current
environment. By comparison, a data frame can only
be modified in the environment in which it was cre-
ated, unless we use the nonlocal assignment operator
<<-. The difference is highlighted in the example be-
low.

library (plumbr)

mf <- mutaframe(x = 1:2 * pi)
df <- data.frame(x = 1:2 * pi)
c(mf$x[2], df$x[2])

[1] 6.283 6.283

f <- function() {
mf$x[2] <- 10
df$x[2] <- 10

}

£0O

c(mf$x[2], df$x[2])

[1] 10.000 6.283

As we can see, mf can be modified inside f (),
but df cannot, therefore, we can share the same mu-
taframe across multiple plots. Another important fea-
ture of mutaframes is that we can attach listeners to
them. A listener is essentially an R function which is
called upon changes in the mutaframe. For interactive
graphics, views are updated with listeners. Below we
create a mutaframe and attach a listener to it to redraw
the scatterplot.

mf <- mutaframe(cars)
add_listener(mf, function(i, j) {

plot(dist ~
b

speed, data = as.data.frame(mf))

Now whenever we update mf, the scatterplot will be
updated accordingly. For example, we make a square-
root transformation of the dist variable (see Fig-
ure 3 for the original plot and the transformed ver-
sion).

mf$dist <- sqrt(mf$dist)

120 4 o o
100 4
80 °
2 60 4 °
° o
o
40 1 oco?© °] ° o o
]

204 °, 008 ©

04 ° T T T T T ° T T T T
5 10 15 20 25 10 15 20 25
speed speed

S

FI1G. 3. The original scatterplot (left) is automatically updated
(right) when the dist variable is square-root transformed (right).
We can also modify the speed variable or change the values of
some rows in the data to update the plot.

A more complex but direct application of mu-
taframes is the example shown in the movie displayed
in Figure 4: here, we see a two-dimensional grand tour
(Asimov, 1985) through the flea data set provided in
the tourr package (Wickham et al., 2011). A two-
dimensional tour consists of a series of projections into
two-dimensional space. By choosing close consecutive
projections, a sense of continuity is preserved for the
observer. This continuity allows us to identify clus-
ters as groups of points that share a common fate (e.g.,
Wolfe, Kluender and Levi, 2012). Internally, the movie
is created by repeated changes to the X and Y values
displayed in a scatterplot, which are propagated to the
view.

o
A -
° i .oo‘.-.
L4 - [1)
o o N

FiG. 4. A grand tour through the flea data. The points
are separated into three clusters. Watch the video online at
http://cranvas.org/examples/qtour.html.

http://cranvas.org/examples/qtour.html

206 Y. XIE, H. HOFMANN AND X. CHENG

library(cranvas)

library(tourr)

gflea <- gdata(flea, color = species)

flea_tour <- qtour(1:6, data = qflea, tour_path = grand_tour(3))
flea_tour$start ()

gscatter(projl, proj2, data = gflea, xlim = c(-0.8, 0.8),
ylim = c¢(-0.8, 0.8))
flea_tour$pause()

Interactivity of a mutaframe can be propagated to its
subsets, which allows multiple applications based on
one mutaframe and its offsprings. For instance, we can
select a subset of points in a scatterplot, obtain their
indices and use the indices to subset the original mu-
taframe to draw a new plot. The new plot is then au-
tomatically connected with the original plot: when we
interact with the new plot, the selection will be passed
to the mutaframe and propagated to the original plot.
This is similar to an example described in early work
by Hurley and Oldford (1988).

3.2 Reference Classes

R reference classes were introduced in R version
2.12. This made it possible to create objects with fields
that can be accessed by reference. A consequence of
this feature is that such objects can be used for stor-
ing metadata in the graphics system, and the data
can be modified outside of plotting functions. For in-
stance, we can store the axis limits in an object meta
as metas$limits. In the terminology of reference
classes, 1imits is called a field of meta. After the
plot has been drawn, we are still able to modify its lim-
its and the new limits will be available to the internal
drawing subroutines of the plotting function. This is
inconvenient, if not impossible, under the usual copy-
on-modify semantics in R. The brushing example in
Figure 2 is rewritten using reference classes.

objBrush <- setRefClass("Brush", fields = list(.brushed = "logical",
brushed = function(i) {
if (missing(i)) return(.brushed)
.brushed[] <<- FALSE
.brushed[i] <<- TRUE
view(.brushed)
.brushed
}), methods = list(initialize = function() {
.brushed <<- logical(nrow(cars))
m
obj <- objBrush$new()
obj$brushed <- 1:4
obj$brushed <- 10:28
obj$brushed

We created a reference class object obj from the
constructor objBrush, and this object has a field
called .brushed which is a logical vector to store

the brush status. The other field brushed is a func-
tion that acts as the controller: we can assign new val-
ues to it, and the view will be updated accordingly. We
can also query the current brush status to, for exam-
ple, explore the brushed subset of the data separately.
The object obj can be modified anywhere in the sys-
tem as desired, which is often not the case for normal R
objects. We will show how reference classes work for
interactions in single display applications later.

What is more important is the extension by the ob-
JectSignals package (Lawrence and Yin, 2011) based
on reference classes. The objects created from this
package are called “signal objects,” which are basically
special reference classes objects with listeners attached
on them. This is similar to mutaframes described be-
fore, but we can create objects of arbitrary structures.
The difference between mutaframes and signal objects
is similar to the difference between data frames and
lists in R.

3.3 Reactive Programming Behind Cranvas

Mutaframes and reference classes objects are ex-
tensively used in cranvas, although this may not be
immediately obvious to the users. Below we show
some quick examples based on the Ames housing data
(Ames, IA, 2008-2012). Before we draw any plots in
cranvas, we have to create a mutaframe using the func-
tion gdata ().

library(cranvas)

qames <- gdata(ameshousing)

ghist(saleprice, data = qames)

gbar(baths, data = qames, horizontal = TRUE)
gscatter(livingarea, saleprice, data = games)

The function ghist () draws a histogram of the
sale price, gbar () draws a bar chart of the number of
bathrooms, and gscatter () draws a scatterplot of
the sale price against the living area. All plotting func-
tions have to take a data argument, which is a mu-
taframe. Inside each function, listeners will be built on
the data so changes in the plot can be propagated back
to the data object and further passed to other plots.

The returned value of a plotting function contains the
signal object, which can be retrieved from the attributes
of the returned value. The user can manipulate the sig-
nal object and the plot can respond to the changes be-
cause a number of listeners have been attached to it
internally when we call the plotting function.

Figures 5 and 11 show the histogram and the bar
chart from the above R code. We will present details
about the reactive objects in the next section.

REACTIVE PROGRAMMING FOR INTERACTIVE GRAPHICS 207

4. AN ANATOMY OF INTERACTIONS

In this section we show how some common in-
teractions, including brushing, zooming and query-
ing, etc, were implemented in cranvas. The data in-
frastructure is based on mutaframes and reference
classes/signal objects, as introduced in the previous
section. The actual drawing is based on the packages
qtbase (Lawrence and Sarkar, 2013a) and qtpaint
(Lawrence and Sarkar, 2013b), which provide an in-
terface from R to Qt (Verzani and Lawrence, 2012).

4.1 Input Actions

Interaction with a system involves user actions as the
input to the system, then the system resolves the input
information and responds to the user. Interaction hap-
pens on multiple levels of user actions. The most com-
mon forms of interaction with a display are listed be-
low in decreasing order of immediacy with which this
interaction between the user and the display happens:

Direct manipulation of graphical objects (Shneider-
man, 1983; Swayne and Klinke, 1999; Wills, 1999) is
at the heart of interactive graphics. Direct manipulation
is what we use only for the highest level of interaction,
such as selection or brushing of elements. With a set
of different modes (querying, scaling mode as, for ex-
ample, implemented in XGobi/GGobi), a set of differ-
ent or additional interactions can be incorporated at the
highest level. Another approach is to make use of vi-
sual cues, which suggest available interactions to the
user, for example, changing the cursor upon entering
the cue area. Visual cues are usually associated with
changes to the resolution of a representation or scales
of a display. Figure 5 shows an example of a plot with
visual cues.

Histogram: saleprice

cue region: re-size

P

le+05 2e+05 3e+05 4e+05 5e+05 6e+05
cues: anchor (left) lepric
and bin width (right) saleprice

FIG. 5. Histogram of sales prices. Sales of $200k and more are
selected and highlighted in yellow. Markers show visual cues. See
http://cranvas.org/examples/qhist.html for a video of the interac-
tions.

Input devices such as a mouse or touch pad allow
interaction beyond click selection. Most toolkits sup-
port wheel events (either through the presence of a
mouse wheel, a mouse move with an additional mod-
ifier key or a touch gesture), and a wheel event often
corresponds to the zooming of a plot.

Keystrokes can be used as shortcuts and for quick
access to functions. Figure 6 shows an example of a
key stroke interaction (arrow keys Left and Right) to
move between a choropleth map of the United States
and a population-based cartogram.

Functional access through the command-line: Ac-
cessor functions allow us to get information about the
state of objects (e.g., get the indices of selected ele-
ments). Mutator functions enable the user to set a par-
ticular state for objects in a display (e.g., set highlight-
ing color to red, set points to size 5). We call this level
of interaction “indirect manipulation” of graphics.

On the developer’s side, the main idea behind resolv-
ing an interaction between the user and the display is to
actually resolve the interaction at the level of the data,
but make it appear as if the user had directly interacted
with the graphical object. This is essentially what hap-
pens in cranvas when we interact with plots.

All levels of interaction above are supported in cran-
vas, and both direct and indirect manipulation are
available. At its core, all kinds of manipulation end up
as changes to the underlying data objects, which is de-
scribed in the next section.

4.2 Reactive Data Objects

Figure 7 illustrates the first step in cranvas, to cre-
ate a mutaframe. The function gdata () in cranvas
returns a mutaframe with additional columns. Below is
a simple example.

head(cars, 4)

speed dist
1 4 2
2 4 10
3 7 4
4 7 22
library(cranvas)
qcars <- qdata(cars)
head(qcars, 4)

speed dist .brushed .visible .color .border .size

1 4 2 FALSE TRUE grayl5 grayl5 4
2 4 10 FALSE TRUE grayl5 graylb 4
3 7 4 FALSE TRUE grayl5 graylb 4
4 7 22 FALSE TRUE grayl5 graylb 4

The data frame cars was augmented by columns
such as .brushed and .color. The .brushed
column indicates the brush status of graphical elements

http://cranvas.org/examples/qhist.html

208 Y. XIE, H. HOFMANN AND X. CHENG

Map: gstate2

Map: gstate2

Map: gstate2

Map: gstate2

Map: gstate2

Map: gstate2

Map: gstate2

Map: gstate2

Map: gstate2

FI1G. 6. Morph from a choropleth chart of the US (top left) to a population-based cartogram (bottom right). The color represents electoral
votes of states toward the Democratic (blue) or Republican party (red) in the 2012 Presidential election. The arrow indicates the direction of

the morph.

Data frame Mutaframe

qdata() Features:
DATA — DATA e.g. brushed
color, size

1
- ~

F1G. 7. The conversion from a data frame to a mutaframe, which
can be imagined as an augmented and mutable data frame. Ad-
ditional columns for the brush status and aesthetics of graphical
elements are appended to the original data frame.

(TRUE means an element is brushed), and .color
stores the colors of elements. It is up to a specific plot
how to interpret these additional columns. For exam-
ple, in scatterplots, because each row in the data corre-
sponds to a point in the plot, points can be colored by
.color and highlighted by the logical in . brushed.
For a bar chart, displaying frequencies of a categori-
cal variable, .brushed may result in a partially or
fully highlighted bar when only a subset in a category
is brushed.

Each single display application in cranvas creates
a plot and attaches listeners on the mutaframe at the
same time. Figure 8 shows how a scatterplot is created
from a mutaframe: before the gscatter () function
displays the plot, it binds the augmented columns in

Mutaframe Scatterplot
Features: gscatter() - b ,TTT TS |
DATA e.g. brushed gl £ L / Meta-- !
color, size T I -1 scatterplot :

1

)

FI1G. 8. Create a scatterplot and attach a metaobject to it.

REACTIVE PROGRAMMING FOR INTERACTIVE GRAPHICS 209

the mutaframe with the plot layers using listener func-
tions, so that when these columns are updated, the plot
can be updated. The Qt graphics framework allows
us to build a plot using layers, which makes it pos-
sible to update one component of a plot without hav-
ing to update all others. This gives us a lot of perfor-
mance gain, especially when we interact with plots of
large numbers of elements. In cranvas, the .color
column should update the main layer of points and
the .brushed column controls the brush layer. See
http://cranvas.org/2013/10/qt-performance/ for an ex-
ample of brushing a scatterplot of three million points,
which takes less than 0.01 second to render, and is
highly responsive to the brush. The main plot layer
of three million points is not redrawn when the brush
moves over the plot, only the brush layer.

The other type of reactive data objects in cranvas are
the metadata. Such objects often contain plot-specific
information, such as the names of variables in the
plot and the axis limits, etc. When a plot is created,
a copy of metadata is generated and associated with it.
Zooming (http://cranvas.org/examples/qscatter.html) is
an example. Behind the scenes the axis limits are
modified in the metadata based on the mouse wheel
event.

Since the data structure of metaobjects is flexible,
its application can be broad. The cranvas package al-
lows adding or customizing meta information to any
displays. For example, the user can specify a function
in the metaobject to generate text labels when querying
a plot. In the following text, we use meta to denote a
metadata object.

4.3 Interactions

This section describes the interactions supported in
cranvas and how they are related to the reactive data
objects.

4.3.1 Brushing and selection. Brushing and selec-
tion are interactions that highlight a subset of graphical
elements in a plot. It is usually achieved by dragging
a rectangle (or other closed shape) over a plot and the
elements inside the rectangle are selected. The rectan-
gle, when in the brushing mode, is persistent on the
screen. For the selection mode, the rectangle is tran-
sient, meaning that it disappears when the mouse is re-
leased.

We use the gscatter () function to illustrate the
basic idea. We show a sketch using the pseudo code
below.

gscatter <- function(x, y, data) {
layer_main <- draw_plot(x, y, data)
layer_brush <- draw_brush(x, y, data)
view <- pack(layer_main, layer_brush)
add_listener(data, function(i, j) {
if (j ==x 1|l j==y Il j==".brushed")
update (layer_brush)
B
view

}

There are two layers layer_main and layer_
brush in the plot. The brush layer is used to redraw
the brushed points only, so that the main layer can
stay untouched when points are highlighted. The key
for brushing/selection is the listener added to the mu-
taframe data by add_listener (): when the col-
umn x, y or .brushed is modified, the brush layer is
updated (changes in other columns will not affect the
plot). Adding the listener is denoted by the dashed ar-
row in Figure 8.

When the plot is brushed, the points under the
brush are identified by the mouse events in Qt and
the .brushed variable in the mutaframe is modified.
Because of the listener associated with .brushed,
the brush layer will be redrawn. Therefore, the selec-
tion is actually handled with one step of backtracking:
once the user draws a selection rectangle, we update
.brushed immediately, which triggers the update of
the brush layer. Because this occurs in a fast pace, the
user may have an illusion that the cursor directly se-
lected the points. See Figure 9 for an example of brush-
ing scatterplots of the Ames housing data (R code is
provided in the next section). The selection mode was
used in these plots, so we do not see the brush rect-
angle. Brushing mode was used in Figure 5 and the
yellow rectangle illustrates brush position.

In the case of a histogram, bins are the graphical ob-
jects intersecting with a selection rectangle. The back-
tracking corresponds to identifying all records in the
mutaframe falling within the limits of the selected bin.
The binary variable .brushed is changed when the
brush moves over the bins, and the change is propa-
gated to all dependencies, which results in an update
to all dependent views. One of the dependent views is
the histogram itself, which shows highlighting in the
form of superimposing a histogram of the highlighted
records on top of the original histogram. What the user
perceives as “selecting” bins is actually a reaction to a
change in the internal brushing variable.

4.3.2 Linking. Linking forms the core of communi-
cation between multiple views. By default, all views
that involve variables from the same mutaframe are

http://cranvas.org/2013/10/qt-performance/
http://cranvas.org/examples/qscatter.html

210

6e+05
5e+05
4e+05

3e+05

saleprice

2e+05

1le+05

2000

1000 3000

livingarea

FI1G. 9.
plot. Apparently it is not of the highest price.

linked. Linking within the same data set is implicitly
one-to-one linking.

Using the mutaframe games from Section 3.3, two
scatterplots are created (Figure 9) and illustrate one-to-
one linking.

gscatter(livingarea, saleprice, data = qames)
gscatter(livingarea, garagearea, data = games)

The selected property has extraordinarily large ga-
rage area, for the living area, and has a below average
sale price.

Recall from the previous section that when a scat-
terplot is created, a listener to update the brush layer
is attached to the mutaframe. It does not matter where
the mutaframe is modified, all the brush layers will be
updated if the .brushed variable in the mutaframe
is modified. When we interact with either of the plots,
the other plot will respond to the changes because both
plots depend on the .brushed variable in the same
mutaframe.

It is feasible to extend this concept to link different
sources or aggregation levels of the data. Take the fol-
lowing two types of linking, for example:

Categorical linking means when we brush one or
more observations in one category, all observations in
this category are brushed; this is achieved in the listener
by setting all elements of . brushed in this category
to TRUE;

kNN linking (k nearest neighbor) means when we
brush an observation, its k& nearest neighbors under
a certain distance metric are brushed as well; again,
this is nothing but setting the relevant elements in
.brushed to TRUE.

garagearea

Y. XIE, H. HOFMANN AND X. CHENG

1500

1000

500-

DR I

1000 2000

3000

livingarea

One-to-one linking: we highlight the house with the largest garage in the right plot and this house is also highlighted in the left

They can be applied to a single data source (called
“self-linking”) or multiple data sources. In the latter
case, the listener in one data object needs to update
other data objects. In Figure 10, the map and the scat-
terplot use two different sources, and they are linked
via categorical linking through the state names. Each
state in the map is described by multiple points defin-
ing the state boundary, but each state has only one ob-
servation in the scatterplot. If we brush California in
the scatterplot, the whole polygon of California (con-
taining multiple locations) is highlighted. On the other
hand, if we brush a part of a state in the map, that means
the whole state should be highlighted, which is an ex-
ample of self-linking.

Linking can also be done on the same data with
different aggregation levels, such as the raw data and
binned data. The histogram in Figure 5 shows sales
prices of all houses sold in the Ames housing data. The
yellow rectangle corresponds to an area-based selec-
tion of all houses with sales of $200k or more, which
triggers a highlighting of corresponding houses in all
displays of the Ames housing data. This includes the
histogram itself, where all bins intersecting with the se-
lection rectangle are filled with highlighting color, and
all bar charts of the number of bedrooms as shown in
Figure 11.

4.3.3 Zooming and panning. Zooming and pan-
ning change or shift the scale of the view, so we can
see the data at different resolutions. This can be re-
solved directly without the need of interaction with
the original data. In cranvas, the core of zooming and
panning consists of simple changes to the metadata
metas$limits. This is illustrated with the following
pseudo code.

REACTIVE PROGRAMMING FOR INTERACTIVE GRAPHICS 211

000 Map: gstate Scatterplot: motor.vehicle.theft burglary
250000~
]
LY

200000~
[

150000

=
X/ = 100000 ‘® ®
\ B
| |
0 50000 100000 150000

motor.vehicle.theft

FI1G. 10. Linked map (left) and scatterplot (right). Color shading shows (log) state population with darker shades indicating higher values.
The scatterplot on the right displays the number of burglaries in 2009 versus the number of motor vehicle thefts by state. There is a strong
correlation between the variables, which is mainly induced by a strong underlying correlation with population. Compared to other states,

California displays a high number of motor vehicle thefts compared to the number of burglaries.

gscatter <- function(x, y, data) {

meta <- Scatter$new(limits = cbind(range(x), range(y)))

layer_main <- draw_plot(x, y, data)

view <- pack(layer_main)

meta$limitsChanged <- function() {
layer_main$setLimits(meta$limits)

¥

attr(view, "meta") <- meta

view

Scatter is a constructor created from refer-
ence classes, containing a field named limits
in meta. The key here is to set up the event
meta$limitsChanged: this event is triggered

Mosaic plot: ~ bedrooms

when metas$limits is modified and the axis limits
of the main plot layer are replaced by the new value
of meta$limits. The setLimits () method is
from Qt, which is used to set new limits on a layer,
and Qt will update the view when the limits are
changed.

In cranvas, metas$limits is modified by the
mouse wheel event for zooming and by the mouse drag
event for panning. Figure 12 shows two screenshots of
the original scatterplot and the zoomed version, respec-
tively.

Mosaic plot: ~ bedrooms

~ bedrooms

bedrooms = '4'
counts: /204
proportion:

12.6%

bedrooms = '3'
e /865

bedrooms
“

/53.6%

L counts:
! l

o

0 025 05 075 1

FI1G. 11.

~ bedrooms

bedrooms

o~

=)
=]
&
o
tn
o
Bl
-

Bar chart (left) and spine plot (right) of the number of bedrooms in housing sales. Highlighted are sales of $200k and higher.

Querying gives details on each bin (houses with a particular number of bedrooms) and the selected houses with this bin.

212

NUB
o

RIDGE

NUB

Y. XIE, H. HOFMANN AND X. CHENG

2 . . = =
S .o Gof

RIDGE

FI1G. 12. Zooming into the pollen data. The original scatterplot (left) does not show anything interesting, but as we zoom into the plot,

we see a hidden word “EUREKA.”

library(cranvas)

data(pollen, package = "animation")
gpollen <- gdata(pollen, size = 2)
gscatter (RIDGE, NUB, data = gpollen)

A benefit of controlling the limits in this manner is
that it is a local property of the plot, enabling the user to
examine different resolutions in two different displays.

4.3.4 Querying/identifying. Querying/identifying is
another interaction that can usually be resolved with-
out information from the original data. Querying of
graphical objects involves, in a first step, the display of
the corresponding values of the metadata. For the bar
charts in Figure 11, querying of the bins displays infor-
mation, about the bin’s level and the number of records
it encompasses, as well as the proportion of the whole
data that this bin contains.

4.3.5 Visual cues. Visual cues aid the user to learn
about available interactions. Figure 5 shows several ex-
amples of visual cues in a histogram. Both the anchor
point and bin width are graphical representations of
plotting parameters for the histogram. The anchor of
a histogram is the lower limit of the leftmost bin. The
bin width defines the interval at which breaks are made.
Interacting with either anchor or bin width cues pro-
duces horizontal shifts, which reset the actual values
parametrizing the histogram. Changes to the anchor al-
low for testing of instabilities in the display due to dis-
creteness in the data. Bin-width changes show the data
at different levels of smoothness and therefore allow
for a visualization of “big” picture marginal distribu-
tions at large bin widths and the investigation of small
pattern features, such as multiple modes and gaps in the
data, at small bin widths. Examples for both of these in-
teractions are available as movies in the supplementary
material of this paper.

The visual cues in this case also correspond to meta
elements. Specifically, the bin limits are stored in
metaS$breaks and the histogram layer is connected
to the metaSbreaksChanged event. The anchor
modifies metasbreaks when we drag it.

5. CONCLUSIONS

The concept of MVC is made implicit in reactive
programming. Reactive data objects are used to man-
age the multiple views and interactions in the cranvas
package.

The cranvas package is built on graphics layers in
Qt (frontend) and reactive data objects in R (backend).
The plotting pipeline is expressed and attached to mu-
taframes as well as metadata objects. Using the reac-
tive programming model, the user does not need to pay
attention to the whole pipeline, which makes it easy
to extend this system. For example, implementing the
tour is simply redrawing a scatterplot of the projected
variables that keep changing because the mutaframe
will update the view automatically upon changes.

The future work of cranvas involves including more
plot types such as hexbin plots and scatterplot matri-
ces, allowing users to define how the system reacts to
changes and adding a GUI. The qtbase package has
made it easy to build Qt GUTI’s in R. The GUI wid-
gets can be connected to the plots via reactive data ob-
jects. They do not need to know the internal structure
of plots. This kind of modularity will make the system
easier to maintain and extend than past graphics soft-
ware.

SUPPLEMENTARY MATERIALS

The cranvas package is available on GitHub at
https://github.com/ggobi/cranvas. We have movies

https://github.com/ggobi/cranvas

REACTIVE PROGRAMMING FOR INTERACTIVE GRAPHICS 213

showing some interactions that are available on the
website http://cranvas.org.

REFERENCES

AsiMoV, D. (1985). The grand tour: A tool for viewing mul-
tidimensional data. SIAM J. Sci. Statist. Comput. 6 128-143.
MRO0773286

BOSTOCK, M., OGIEVETSKY, V. and HEER, J. (2011). D3 data-
driven documents. IEEE Transactions on Visualization and
Computer Graphics 17 2301-23009.

BuJA, A., AsIMov, D., HURLEY, C. and MCDONALD, J. A.
(1988). Elements of a viewing pipeline for data analysis.
In Dynamic Graphics for Statistics 277-308. Wadsworth &
Brooks/Cole, Belmont, CA.

CHAMBERS, J. (2013). Objects with fields treated by reference
(OOP-style). See help (ReferenceClasses) inR.

Coo0K, D. and SWAYNE, D. F. (2007). Interactive and Dynamic
Graphics for Data Analysis with R and GGobi. Springer, Berlin.

DYKES, J. (1998). Cartographic visualization: Exploratory spatial
data analysis with local indicators of spatial association using
Tcl/Tk and cdv. Journal of the Royal Statistical Society: Series
D (The Statistician) 47 485-497.

FISHERKELLER, M. A., FRIEDMAN, J. H. and TUKEY, J. W.
(1988). PRIM-9: An interactive multidimensional data display
and analysis system. In Dynamic Graphics for Statistics 91—
109. Wadsworth & Brooks/Cole, Belmont, CA.

HURLEY, C. and OLDFORD, R. W. (1988). Higher hierarchical
views of statistical objects. Available from the video library of
the ASA sections on Statistical Graphics: http://stat-graphics.
org/movies/.

KRASNER, G. E. and POPE, S. T. (1988). A cookbook for using
the model-view controller user interface paradigm in Smalltalk-
80. Journal of Object-Oriented Programming 1 26-49.

LAWRENCE, M. and SARKAR, D. (2013a). gtbase: Interface be-
tween R and Qt. R package version 1.0.6.

LAWRENCE, M. and SARKAR, D. (2013b). gtpaint: Qt-based
painting infrastructure. R package version 0.9.0.

LAWRENCE, M. and TEMPLE LANG, D. (2010). RGtk2: A graph-
ical user interface toolkit for R. Journal of Statistical Software
37 1-52.

LAWRENCE, M. and WICKHAM, H. (2012). plumbr: Mutable and
dynamic data models. R package version 0.6.6.

LAWRENCE, M. and YIN, T. (2011). Mutable signal objects. R
package version 0.10.2.

LEFF, A. and RAYFIELD, J. T. (2001). Web-application develop-
ment using the model/view/controller design pattern. In /EEE
Enterprise Distributed Object Computing Conference 118—127.
IEEE.

MCDONALD, J. A., STUETZLE, W. and BUJA, A. (1990). Paint-
ing multiple views of complex objects. In ACM SIGPLAN No-
tices 25 245-257. ACM, New York.

QT PROJECT (2013). A cross-platform application and UI frame-
work. Available at http://qt-project.org/.

R CORE TEAM (2013). R: A Language and Environment for Sta-
tistical Computing. R Core Team, Vienna, Austria.

ROSLING, H. and JOHANSSON, C. (2009). Gapminder: Liberating
the X-axis from the burden of time. Statistical Computing and
Statistical Graphics Newsletter 20 4-7.

RSTUDIO, INC. (2013). Easy web applications in R. Available at
http://www.rstudio.com/shiny/.

SAS INSTITUTE (2009). JMP 8 Statistics and Graphics Guide.
SAS Publishing, Cary, NC.

SHNEIDERMAN, B. (1983). Direct manipulation: A step beyond
programming languages. Computer 16 57-69.

STUETZLE, W. (1987). Plot Windows. J. Amer. Statist. Assoc. 82
466-475.

SWAYNE, D. F. and KLINKE, S. (1999). Introduction to the Special
issue on interactive graphical data analysis: What is interaction?
Comput. Statist. 14 1-6.

SWAYNE, D. F., TEMPLE LANG, D., BuJA, A. and COOK, D.
(2003). GGobi: Evolving from XGobi into an extensible frame-
work for interactive data visualization. Comput. Statist. Data
Anal. 43 423-444. MR2005447

THEUS, M. (2002). Interactive data visualization using Mondrian.
Journal of Statistical Software T 1-9.

TIERNEY, L. (1990). LISP-STAT: An Object-Oriented Environment
for Statistical Computing and Dynamic Graphics. Wiley, New
York.

TIERNEY, L. (2005). Some notes on the past and future of LISP-
STAT. Journal of Statistical Software 13 1-15.

UNWIN, A. R., HAWKINS, G., HOFMANN, H. and SIEGL, B.
(1996). Interactive graphics for data sets with missing values—
MANET. J. Comput. Graph. Statist. 5 113-122.

URBANEK, S. and WICHTREY, T. (2013). iplots: iPlots—
Interactive graphics for R. R package version 1.1-5.

VELLEMAN, P. F. and VELLEMAN, A. Y. (1988). Data Desk
Handbook. Odesta Corporation, Northbrook, IL.

VERZANI, J. and LAWRENCE, M. F. (2012). Programming Graph-
ical User Interfaces in R. Chapman & Hall/CRC, London.

VIEGAS, F. B., WATTENBERG, M., VAN HaM, F., KRIss, J. and
MCKEON, M. (2007). Manyeyes: A site for visualization at in-
ternet scale. IEEE Transactions on Visualization and Computer
Graphics 13 1121-1128.

WHALEN, E. (2005). Creating linked, interactive views to explore
multivariate data. Ph.D. thesis, Harvard Univ.

WICKHAM, H., LAWRENCE, M., TEMPLE LANG, D. and
SWAYNE, D. F. (2008). An introduction to rggobi. R News 8
3-7.

WICKHAM, H., LAWRENCE, M., CoOK, D., BuJA, A., HOF-
MANN, H. and SWAYNE, D. F. (2009). The plumbing of in-
teractive graphics. Comput. Statist. 24 207-215. MR2506079

WICKHAM, H., CoOK, D., HOEMANN, H. and BUJA, A. (2011).
tourr: An R package for exploring multivariate data with pro-
jections. Journal of Statistical Software 40 1-18.

WILLS, G. J. (1999). Interactive statistical graphics. In Handbook
of Data Mining and Knowledge Discovery. Oxford Univ. Press,
London.

WOLFE, J. M., KLUENDER, K. R. and LEVI, D. M. (2012). Sen-
sation and Perception, 3rd ed. Sinauer, Sunderland.

XIE, Y., HOFMANN, H., Cook, D., CHENG, X., SCHLO-
ERKE, B., VENDETTUOLI, M., YIN, T., WICKHAM, H.
and LAWRENCE, M. (2013). cranvas: Interactive statistical
graphics based on Qt. R package version 0.8.3. Available at
http://cranvas.org.

http://cranvas.org
http://www.ams.org/mathscinet-getitem?mr=0773286
http://stat-graphics.org/movies/
http://qt-project.org/
http://www.rstudio.com/shiny/
http://www.ams.org/mathscinet-getitem?mr=2005447
http://www.ams.org/mathscinet-getitem?mr=2506079
http://cranvas.org
http://stat-graphics.org/movies/

	Introduction
	The MVC Architecture
	Reactive Programming
	Mutaframes
	Reference Classes
	Reactive Programming Behind Cranvas

	An Anatomy of Interactions
	Input Actions
	Reactive Data Objects
	Interactions
	Brushing and selection
	Linking
	Zooming and panning
	Querying/identifying
	Visual cues

	Conclusions
	Supplementary Materials
	References

