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Abstract. The problem of small area estimation (SAE) is how to produce
reliable estimates of characteristics of interest such as means, counts, quan-
tiles, etc., for areas or domains for which only small samples or no samples
are available, and how to assess their precision. The purpose of this paper
is to review and discuss some of the new important developments in small
area estimation methods. Rao [Small Area Estimation (2003)] wrote a very
comprehensive book, which covers all the main developments in this topic
until that time. A few review papers have been written after 2003, but they
are limited in scope. Hence, the focus of this review is on new developments
in the last 7-8 years, but to make the review more self-contained, I also men-
tion shortly some of the older developments. The review covers both design-
based and model-dependent methods, with the latter methods further classi-
fied into frequentist and Bayesian methods. The style of the paper is similar
to the style of my previous review on SAE published in 2002, explaining
the new problems investigated and describing the proposed solutions, but
without dwelling on theoretical details, which can be found in the original
articles. I hope that this paper will be useful both to researchers who like to
learn more on the research carried out in SAE and to practitioners who might
be interested in the application of the new methods.
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1. PREFACE

The problem of small area estimation (SAE) is how
to produce reliable estimates of characteristics of inter-
est such as means, counts, quantiles, et cetera, for areas
or domains for which only small samples or no samples
are available. Although the point estimators are usually
of first priority, a related problem is how to assess the
estimation (prediction) error.
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The great importance of SAE stems from the fact
that many new programs, such as fund allocation for
needed areas, new educational or health programs and
environmental planning rely heavily on these esti-
mates. SAE techniques are also used in many countries
to test and adjust the counts obtained from censuses
that use administrative records.

In 2002 I published a review paper with a similar ti-
tle (Pfeffermann, 2002). In that year small area estima-
tion (SAE) was flourishing both in research and appli-
cations, but my own feeling then was that the topic has
been more or less exhausted in terms of research and
that it will just turn into a routine application in sample
survey practice. As the past 9 years show, I was com-
pletely wrong; not only is the research in this area ac-
celerating, but it now involves some of the best known
statisticians, who otherwise are not involved in survey
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sampling theory or applications. The diversity of new
problems investigated is overwhelming, and the solu-
tions proposed are not only elegant and innovative, but
also very practical.

Rao (2003) published a comprehensive book on SAE
that covers all the main developments in this topic up
to that time. The book was written about ten years after
the review paper of Ghosh and Rao (1994), published
in Statistical Science, which stimulated much of the
early research in SAE. Since 2003, a few other review
papers have been published; see, for example, Rao
(2005, 2008), Jiang and Lahiri (2006a, 2006b), Datta
(2009) and Lehtonen and Veiganen (2009). Notwith-
standing, SAE is researched and applied so broadly
that I decided that the time is ripe for a new com-
prehensive review that focuses on the main develop-
ments in the last 7-8 years that I am aware of, and
which are hardly covered in the review papers men-
tioned above. The style of the paper is similar to the
style of my previous review, explaining the problems
investigated and describing the proposed solutions, but
without dwelling on theoretical details, which can be
found in the original articles. For further clarity and to
make the paper more self-contained, I start with a short
background and overview some of the “older” devel-
opments. I hope that this paper will be useful to re-
searchers who wish to learn about the research carried
out in SAFE and to practitioners who might be interested
in applying the new methods.

2. SOME BACKGROUND

The term “SAE” is somewhat confusing, since it is
the size of the sample in the area that causes estimation
problems, and not the size of the area. Also, the “ar-
eas” are not necessarily geographical districts and may
define another grouping, such as socio-demographic
groups or types of industry, in which case they are of-
ten referred to as domains. Closely related concepts in
common use are “poverty mapping” or “disease map-
ping,” which amount to SAE of poverty measures or
disease incidence and then presenting the results on a
map, with different colors defining different levels (cat-
egories) of the estimators. What is common to most
small area estimation problems is that point estimators
and error measures are required for every area sepa-
rately, and not just as an average over all the areas un-
der consideration.

SAE methods can be divided broadly into “design-
based” and “model-based” methods. The latter meth-
ods use either the frequentist approach or the full

Bayesian methodology, and in some cases combine
the two, known in the SAE literature as “empirical
Bayes.” Design-based methods often use a model for
the construction of the estimators (known as “model
assisted”), but the bias, variance and other properties of
the estimators are evaluated under the randomization
(design-based) distribution. The randomization distri-
bution of an estimator is the distribution over all possi-
ble samples that could be selected from the target pop-
ulation of interest under the sampling design used to
select the sample, with the population measurements
considered as fixed values (parameters). Model-based
methods on the other hand usually condition on the se-
lected sample, and the inference is with respect to the
underlying model.

A common feature to design- and model-based SAE
is the use of auxiliary covariate information, as ob-
tained from large surveys and/or administrative records
such as censuses and registers. Some estimators only
require knowledge of the covariates for the sampled
units and the true area means of these covariates. Other
estimators require knowledge of the covariates for ev-
ery unit in the population. The use of auxiliary infor-
mation for SAE is vital because with the small sample
sizes often encountered in practice, even the most elab-
orated model can be of little help if it does not involve
a set of covariates with good predictive power for the
small area quantities of interest.

3. NOTATION

Consider a population U of size N, divided into M
exclusive and exhaustive areas Uy U - -- U Uy with N;
units in area 7, Zf‘i] N; = N. Suppose that samples are
available for m < M of the areas, and let s =51 U---U
s, define the overall sample, where s; of size n; is the
sample observed for sampled area i, ) ;" | n; = n. Note
that »n; is random unless a planned sample of fixed size
is taken in that area. Let y define the characteristic of
interest, and denote by y;; the response value for unit j
belonging to area i, i =1,...,M, j=1,..., N; with
sample means y; = Z:”: | Yij/ni, where we assume
without loss of generality that the sample consists of
the first n; units. We denote by x;; = (x1;;, .. .,xpij)/
the covariate values associated with unit (i, j) and by
X; = Z';’: 1 Xij/n; the column vector of sample means.

The corresponding vector of true area means is X; =
Zf”: 1 Xij/N;. The area target quantity is denoted by 6;;
for example, 6; = Y; = Zj-v;l yij/Ni, the response area
mean. Estimating a proportion is a special case where

yij is binary. In other applications 6; may represent a
count or a quantile.
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4. DESIGN-BASED METHODS
4.1 Design-Based Estimators in Common Use

A recent comprehensive review of design-based
methods in SAE is provided by Lehtonen and Veijanen
(2009). Here I only overview some of the basic ideas.
Suppose that the sample is selected by simple ran-
dom sampling without replacement (SRSWOR) and
that the target quantities of interest are the means Y;.
Estimation of a mean contains as special cases the
estimation of a proportion and the estimation of the
area distribution F;(t) =) jeu; Vij /N;, in which case
vij = I(yij <t), where I(A) is the indicator function.
Estimators of the percentiles of the area distribution are
commonly obtained from the estimated distribution.

If no covariates are available the direct design-
unbiased estimator of the area mean and its conditional
design variance over the randomization distribution for
given n; are given by

ni
yi= ) vij/ni:
j=1

Vplilnil = (S}/n)[1 — (ni /N,

where §7 = Y"1 (yi; — ¥)2/(N; — 1). The term “di-
rect” is used to signify an estimator that only uses the
data available for the target area at the specific time of
interest. The variance Vply;|n;] is O(1/n;), and for
small n; it is usually large, unless Sl-2 is sufficiently
small.

Next suppose that covariates x;; are also observed
with x1;; = 1. An estimator in common use that utilizes
the covariate information is the synthetic estimator,

4.1

2 syn =, A 1 Ni
(42) Yreg,i = XiB = N X;(XUB)
j
where B = [X7L) S0 xix 17 0 S xijvi

is the ordinary least square (OLS) estimator. Notice
that under SRSWOR, B is approximately design-
unbiased and consistent for the vector B of regres-
sion coefficients computed from all the population
values, irrespective of whether a linear relationship
between y and x exists in the population. The design-
unbiasedness and consistency are with respect to the
randomization distribution, letting N and n increase
to infinity in a proper way. An estimator is approxi-
mately design-unbiased if the randomization bias tends
to zero as the sample size increases. The term “syn-
thetic” refers to the fact that an (approximately) design-
unbiased estimator computed from all the areas (B in

the present case) is used for every area separately, as-
suming that the areas are “homogeneous” with respect
to the quantity being estimated. Thus, synthetic esti-
mators borrow information from other “similar areas”
and they are therefore indirect estimators.

The obvious advantage of the synthetic estimator

over the simple sample mean or other direct estimators
~dir
such as the regression estimator Y., ; = yi + Xi —

x;) B,, where B is computed only from the data ob-

served for area i, is that VarD(Yng ;) =0(1/n), and
n =Y ,n; is usually large. The use of the syn-
thetic estimator is motivated (“assisted”) by a linear
regression model of y on x in the population with a
common vector of coefficients. However, for x;; =1,

ED(Y;; ; —Y)) = —X/(B; — B), where B; is the OLS
computed from all the population values in area i.
Thus, if in fact different regression coefficients B; op-
erate in different areas, the synthetic estimator may
have a large bias. When the sample is selected with
unequal probabilities, the OLS estimator Bin (4.2) is
commonly replaced by the probability weighted (PW)

estimator

m nj -1 m n;

b= |33 wany | %
i=1j=1 i=1j=1

where {w;; = 1/Pr[(i, j) € s]} are the base sampling

weights.

In order to deal with the possible large bias of the
synthetic estimator, it is common to estimate the bias
and then subtract it from the synthetic estimator. The
resulting survey regression estimator takes the form

Zwlj(yl]

,
Xij Bpw)

4.3)

=Yin-—r+X; — )_(i,H—T)/épw,

where ()7,-,H_T, X i H—1) are the Horvitz—Thompson
(H-T) estimators of (Y;, X;). The estimator (4.3)
is approximately design-unbiased and performs well
when the covariates have good predictive power, but
the variance is back to order O(1/mn;). The vari-
ance is often reduced by multiplying the bias correc-
tion Z 1w11(y11 X;ijw)/Ni by Nl/Zjl:l wijj =
N;i/ Ni.

A compromise between the possibly large bias of the
synthetic estimator and the possibly large variance of
the survey regression estimator is achieved by taking a
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linear combination of the two. The resulting combined
(composite) estimator is defined as

~COM ~S—R

syn

+ (1= 8)Y g i3

Ideally, the coefficient 6; should be chosen to minimize
~COM
the mean square error (MSE) of Y; , but assessing

sufficiently accurately the bias of the synthetic estima-
tor for a given area is usually impossible. Hence, it is
common to let §; depend on the sample size n; in the
area, such that the larger n;, the larger is §;. See Rao
(2003) for review of other combined estimators, and
methods of specifying §;.

0<é; <1

4.2 Some New Developments in Design-Based
Small Area Estimation

A general class of estimators is obtained by calibrat-
ing the base sampling weights w;;. Suppose that the
population can be partitioned into C calibration groups
U=UqU---UUc) with known totals ty of the
auxiliary variables in the groups, such that each area U;
belongs to one of the groups. Let s = s(1) U --- U s(c)
define the respective partitioning of the sample. In a
special case C =1 and U(y) = U. The calibrated esti-
mator of the mean Y; is computed as

acal Mo .
4.5) Y, =) wiyi/Nio Y wiixij =1l
j=l1 L, JES()

The calibration weights {wfj} are chosen so that
they minimize an appropriate distance from the base
weights {w;;}, subject to satisfying the constraints
2 jese wfjxi j = tx(¢). For example, when using the
distance x2 = Zi?jes(c)(wfj - wij)z/wij and x1;; =1,
the calibrated weights are

Cc .
Wi; = Wij8ijs

4.6) gij= {1 + (txe) — fx(e,Ht)’

-1
/
[ Z wijxijxiji| Xij},

i,J€8(c)

where fx(c),H_T is the H-T estimator of the total ().
When U, = U; (the calibration group is the domain),

~cal
Y ; 1s the familiar generalized regression (GREG) es-
timator in the domain.

Calibration of the sampling weights is in broad use
in sample survey practice, not only for SAE. See Kott
(2009) for a recent comprehensive review and discus-
sion. The rationale of the use of calibrated estimators in

SAE is that if y is approximately a linear combination

of x in U(), then Y, = )_(lfB(C) for domains i € U,, and
acal
since Zi,jesm wl‘cjxij =Ixe), ¥; = _l;izl wicjyij/Ni
is expected to be a good estimator of Y;. Indeed, the
advantage of estimator (4.5) over (4.2) is that it is as-
sisted by a model that only assumes common regres-
sion coefficients within the groups U, and not for all
the domains, as implicitly assumed by estimator (4.2).
Estimator (4.5) is approximately design-unbiased irre-

~cal
spective of any model, but Varp(Y; |n;) = O(1/n;),
which may still be large.

Another way of calibrating the weights is by use
of instrumental variables (Estevao and Sirndal, 2004,
2006). Denote the vector of instrument values for unit
(i, j) by h;;. The calibrated weights are defined as

wit® = w;j (1 4 gLhij);
-1
8o = (txo) — fx(c),H—T)/[ Y wijhijx ]} :

l',jES(c)

%))

Note that the instrument values need only be known
for the sampled.units in s(¢) and that Zl jese wll-I}SXi ;=
f.x, thus satisfying the same constraints as before. The

_ acal .
: : 3 _ nj ns
calibrated estimator of ¥; is now Y, 5,0 =300 w;?® -

yij/Ni. When h = x, w}jls = wfj. The use of instru-
ments replaces the search for an appropriate distance
function by imposing a structure on the calibration
weights, and it allows one, in principle, to find the best
instruments in terms of minimizing an approximation
to the variance of the calibrated estimator. However, as
noted by Estevao and Sarndal (2006), the resulting op-
timal weights depend on unknown population quanti-
ties which, when estimated from the sample, may yield
unstable estimators. See Kott (2009) for further discus-
sion.

The synthetic estimator (4.2), the survey regression
estimator (4.3) and the various calibrated estimators
considered above are all assisted by models that as-
sume a linear relationship between y and x. These
estimators only require knowledge of the covariates
for the sampled units, and the area (or group) to-
tals of these covariates. Lehtonen, Sidrndal and Veija-
nen (2003, 2005) consider the use of generalized lin-
ear models (GLM), or even generalized linear mixed
models (GLMM) as the assisting models, which re-
quire knowledge of the covariates for every element in
the population. Suppose that Ey(y;;) = f(x;;; ¥) for
some nonlinear function f(-) with an unknown vector
parameter Y, where E /() defines the expectation un-
der the model. A simple important example is where
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f(Xij; ¥) is the logistic function. Estimating v/ by the
pseudo-likelihood (PL) approach yields the estimator
1%1 and predicted values {J;; = f(Xij; ﬁpl)}. The PL
approach consists of estimating the likelihood equa-
tions that would be obtained in case of a census by
the corresponding H-T estimators (or weighting each
score function by its sampling weight), and then solv-
ing the resulting estimated equations. The synthetic
and “generalized GREG” estimators are computed as

2 syn

N.
1 ! ~
YGLM,,' = _N~ E f(Xij§ wpl);
l]:1

~ GREG 2syn
(4.8)  Ygimi =Yoim,i

1 & .
+ﬁzwij[yij — f(Xijs YD)
l_]Il

A further extension is to include random area effects
in the assisting model, assuming Ep(y;j|X;j, u;) =
f(Xij, uis ¥*), Em(u;) =0, Vary (u;) = o2. Estima-
tion of the fixed parameters ¥*, o2 and the random
effects u; is now under the model, ignoring the sam-
pling weights. The extended synthetic and generalized
GREG estimators are defined similarly to (4.8), but
with f(x;j; l/;pl) replaced by f(x;j, i;; ¥*). For suf-
ficiently large sample size n;, the extended generalized
GREQG is approximately design-unbiased for the true
area mean, but it is not clear how to estimate the design
(randomization) variance in this case in a way that ac-
counts for the prediction of the random effects. Torabi
and Rao (2008) compare the MSE of model-based pre-
dictors and a GREG assisted by a linear mixed model
(LMM).

Jiang and Lahiri (2006a) propose the use of model-
dependent estimators that are design-consistent under
the randomization distribution as the area sample sizes
increase. The basic idea is to model the direct estima-
tors Y, = Z'}izl wijyij/zzizl wj; instead of the in-
dividual observations y;;, and then employ the empiri-
cal best predictor of the area mean under the model.
The authors consider the general two-level model

Eml[Yiwluil = & = £(u;, Xiw; V), where the u;s are
independent random area effects with zero mean and

variance o2, Xy = Z;izl wijxij/zzfizl w;j, and &(-)
is some known function with unknown parameters .
The empirical best predictor is the best predictor un-
der the model (minimum expected quadratic loss), but

with the parameters i replaced by model consistent es-
EBP

= Ep (&Y iw, Xiw; V). The estimator

timators; Y;

is shown to be model-consistent under correct model
specification and design-consistent for large n;, even
if the model is misspecified, thus robustifying the esti-
mation. The authors develop estimators of the predic-
tion mean squared error (PMSE) for bounded sample
sizes n;, with bias of desired order o(1/m), where m is
the number of sampled areas. The PMSE is computed
with respect to the model holding for the individual ob-
servations and over the randomization distribution. The
use of design consistent estimators in SAE is some-
what questionable because of the small sample sizes
in some or all of the areas, but it is nonetheless a de-
sirable property. This is so because it is often the case
that in some of the areas the samples are large, and it
is essential that an estimator should work well at least
in these areas, even if the model fails. Estimators with
large randomization bias even for large samples do not
appeal to practitioners.

Chandra and Chambers (2009) propose the use of
model-based direct estimators (MBDE). The idea is
to fit a model for the population values, compute the
weights defining the Empirical Best Linear Unbiased
Predictor (EBLUP) of the population total under the
model and then use the weights associated with a given
area to compute an almost direct estimator. The model
fitted for the population values Yy is the general linear
model,

Yy=XuyB+ey: E(esy)=0,
4.9) 5 5
E(syey) =% = [Zss Esr] ’
rs rr

where s signifies the sample of size n, and r signifies
the sample-complement of size (N — n). As seen later,
the models in common use for SAE defined by (5.1)
and (5.3) below are special cases of (4.9). Let y; denote
the column vector of sample outcomes. For known X,
the BLUP of the population total 7, = Z,](V:l v under
the model is

P =1y, + Iy, [X,BoLs

(4.10) + 2,525 s — XsBars)]

_ Z w]l?LUP Y,

kes

where 1;6 is a row vector of ones of length k, X (X,) is
the design matrix corresponding to the sampled (non-
sampled) units and BgLs is the generalized least square
estimator. The EBLUP is nyBLUP =D res wEBLUPyk,
where the EBLUP weights are the same as in (4.10),
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but with estimated parameters. The MBDE of the true
mean in area i is

“4.11) f/i.v[BD — Z wEBLUPyj/ Z w;:BLUP.

JESsi JESsi

The authors derive estimators for the bias and variance

of the MBDE and illustrate its robustness to 1g/IeBr]t)ain

model misspecifications. Note, however, that Y ; is
a ratio estimator and therefore may have a nonnegligi-
ble bias in areas i with small sample size.

All the estimators considered so far assume a given
sampling design with random area sample sizes. When
the target areas are known in advance, considerable
gains in efficiency can be achieved by modifying the
sampling design and in particular, by controlling the
sample sizes within these areas. In a recent article, Fal-
rosi and Righi (2008) propose a general strategy for
multivariate multi-domain estimation that guarantees
that the sampling errors of the domain estimators are
lower than pre-specified thresholds. The strategy com-
bines the use of a balanced sampling technique and
GREG estimation, but extensions to the use of syn-
thetic estimators and model-based estimation are also
considered. A successful application of this strategy
requires good predictions of weighted sums of resid-
uals featuring in the variance expressions, and it may
happen that the resulting overall sample size is far too
large, but this is a promising approach that should be
studied further.

4.3 Pros and Cons of Design-Based Small Area
Estimation

The apparent advantage of design-based methods is
that the estimation is less dependent on an assumed
model, although models are used (assisted) for the con-
struction of the estimators. The estimators are approx-
imately unbiased and consistent under the randomiza-
tion distribution for large sample sizes within the ar-
eas, which as discussed before is a desirable property
that protects against possible model misspecification at
least in large areas.

Against this advantage stand many disadvantages.
Direct estimators generally have large variance due to
small sample sizes. The survey regression estimator is
approximately unbiased but may likewise be too vari-
able. Synthetic estimators have small variance but are
generally biased. Composite estimators have smaller
bias than synthetic estimators but larger variance, and it
is not obvious how to best choose the weights attached
to the synthetic estimator and the unbiased estimator.

Computation of randomization-based confidence inter-
vals generally requires large sample normality assump-
tions, but the sample sizes in at least some of the areas
may be too small to justify asymptotic normality.

Another limitation of design-based inference (not re-
stricted to SAE) is that it does not lend itself to condi-
tional inference, for example, conditioning on the sam-
pled values of the covariates or the sampled clusters
in a two-stage sampling design. This again inflates the
variance of the estimators. Conditional inference is in
the heart of classical statistical inference under both the
frequentist and the Bayesian approaches. Last, but not
least, an important limitation of design-based SAE is
that there is no founded theory for estimation in areas
with no samples. The use of the randomization distri-
bution does not extend to prediction problems, such
as the prediction of small area means for areas with
no samples. It is often the case that samples are avail-
able for only a minority of the areas, but estimators
and MSE estimators are required for each of the areas,
whether sampled or not.

5. MODEL-BASED METHODS
5.1 General Formulation

Model-based methods assume a model for the sam-
ple data and use the optimal or approximately opti-
mal predictor of the area characteristic of interest un-
der the model. The MSE of the prediction error is like-
wise defined and estimated with respect to the model.
Note that I now use the term “prediction” rather than
estimation because the target characteristics are gen-
erally random under the model. The use of models
overcomes the problems underlying the use of design-
based methods, but it is important to emphasize again
that even the most elaborated model cannot produce
sufficiently accurate predictors when the area sample
size is too small, and no covariates with good predic-
tive power are available. The use of models raises the
question of the robustness of the inference to possible
model misspecification, and Sections 6.3—6.6 review
studies that deal with this problem from different per-
spectives. Section 8 considers model selection and di-
agnostic checking.

Denote by 6; the target quantity in area i (mean, pro-
portion, ...). Let y; define the observed responses for
area i and x; define the corresponding values of the
covariates (when available). As becomes evident be-
low, y; is either a scalar, in which case x; is a vector,
or y; is a vector, in which case x; is usually a matrix.
A typical small area model consists of two parts: The
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first part models the distribution (or just the moments)
of yi16;; ¥(1y. The second part models the distribution
(moments) of 6;|x;; ¥ (2), linking the 6;s to known co-
variates and to each other. This is achieved by includ-
ing in the model random effects that account for the
variability of the 6;s not explained by the covariates.
The hyper-parameters ¢ = (V¥ (1), ¥(2)) are typically
unknown and are estimated either under the frequen-
tist approach, or under the Bayesian approach by set-
ting appropriate prior distributions. In some applica-
tions the index i may define time, in which case the
model for 6;|X;; ¥ is a time series model.

5.2 Models in Common Use

In this section, I review briefly three models in
common use, as most of the recent developments in
SAE relate to these models or extensions of them. For
more details see Rao (2003), Jiang and Lahiri (2006a,
2006b), Datta (2009) and the references therein. I as-
sume that the model holding for the sample data is the
same as the model holding in the population, so that
there is no sample selection bias. The case of informa-
tive selection of the areas to be sampled or informa-
tive sampling within the selected areas, whereby the
sample selection or response probabilities are related
to the response variable even after conditioning on the
model covariates is considered in Section 7. Notice that
in this case the sample model differs from the popula-
tion model.

5.2.1 Area level model. This model is in broad use
when the covariate information is only at the area level,
so that x; is a vector of known area characteristics. The
model, studied originally for SAE by Fay and Herriot
(1979) is defined as

(5.1 Ji=0;i+e; 6i=x;B+u,

where y; denotes the direct sample estimator of 6; (e.g.,
the sample mean y; when the sample is selected by
SRS), and e; represents the sampling error, assumed
to have zero mean and known design (randomization)
variance, Varp(e;) = alz)i. The random effects u; are
assumed to be independent with zero mean and vari-
ance o,2. For known o2, the best linear unbiased pre-
dictor (BLUP) of 6; under this model is

6i = vi3i + (1 — y)x.BaLs
(5.2) =X BaLs + vi (5 — X.BaLs)

) A
=X;BcLs + ;.

The BLUP 6; is in the form of a composite estimate
[equation (4.4)], but with a tuning (shrinkage) coeffi-
cient y; = cruz / (cru2 + crlz)i), which is a function of the
ratio 0.2/a3; of the variances of the prediction errors
of X} 8 and J;, respectively. The coefficient y; defines
optimally the weights assigned to the synthetic estima-
tor x;BGLS and y;, unlike the case of design-based es-
timators where the weight is assigned in a more ad hoc
manner. See the discussion below (4.4). Note that the
BLUP property does not require specifying the distri-
bution of the error terms beyond the first two moments,
and 6; is also the linear Bayes predictor in this case.
Under normality of the error terms and a diffuse uni-
form prior for S, 6; is the Bayesian predictor (posterior
mean) of 6;. For a nonsampled area k, the BLUP is now
obtained optimally as x;, BaLs.

In practice, the variance o2

- is seldom known and is
replaced in y; and BcLs by a sample estimate, yielding
what is known as the empirical BLUP (EBLUP) under
the frequentist approach, or the empirical Bayes (EB)
predictor when assuming normality. The latter predic-
tor is the posterior mean of 6;, but with ouz replaced by
a sample estimate obtained from the marginal distri-
bution of the direct estimators given the variance. Al-
ternatively, one may compute the Hierarchical Bayes
(HB) predictor by assuming prior distributions for j
and auz and computing the posterior distribution of 6;
given the available data. The posterior distribution can
be used for computation of the point predictor and a
credibility (confidence) interval.

REMARK 1. The synthetic estimator xg ﬁGLs, and
hence the BLUP 6; are unbiased predictors under the
joint distribution of y; and 6; in the sense that E (éi —
6;) = 0, but are biased when conditioning on u;. The
predictor 6; is biased also under the randomization dis-
tribution. Conditioning on #; amounts to assuming dif-
ferent fixed intercepts in different areas and the unbi-
asedness of §; under the model is achieved by viewing
the intercepts as random.

REMARK 2. It is often the case that the linking
model is defined for a transformation of 6;. For exam-
ple, Fay and Herriot (1979) actually assume log(6;) =
X;B + u; in (5.1) and use the direct estimator y; =
log(y;), and then predict 6; as exp(éi), where 6; is the
BLUP (EBLUP) of log(8;) under the model. However,
exp(éi) is not the BLUP of 6; = exp[log(6;)]. On the
other hand, the EB and HB approaches produce opti-
mal predictors of 6;, even if the linking model uses a
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transformation of 6;, with or without the use of a sim-
ilar transformation for the direct estimator. In this re-
spect, the latter two approaches are more flexible and
with wider applicability, but at the expense of requiring
further parametric assumptions.

5.2.2 Nested error unit level model. This model
uses individual observations y;; such that y; is now a
vector, and x; is generally a matrix. The use of this
model for SAE requires that the area means X; =
Z?il X;j/Nj are known. The model, first proposed for
SAE by Battese, Harter and Fuller (1988) has the form

(5.3) yij:X;j,B'i‘ui'f‘gij,

where the u;s (random effects) and the ¢;;s (residual
terms) are mutually independent with zero means and
variances o2 and o2, respectively. Under the model,
the true small area means are ¥; = X l/ B+ u; + ¢&;, but
since & = Zj.vél &ij/N;i = 0 for large N;, the target
means are often defined as 6; = )_(fﬂ +u; = E(?i|u,-).
For known variances (auz, 082), the BLUP of 6; is

0; = vil + (Xi — %) Bovs]

(5.4) R
+ (1 — v) X} BoLs,

where ,BAGLS is the GLS of B8 computed from all the
observations, X; = Y., x;;/n; and y; = %2 / (%2 +
082 /n;). For area k with no sample (but known X¢), the
BLUP is 6; = X/ fgLs. See Rao (2003) for the BLUP
of the means Y; in sampled areas.

The BLUP (5.4) is also the Bayesian predictor (pos-
terior mean) under normality of the error terms and a
diffuse uniform prior for 8. Replacing the variances o2
and 082 in y; and ,éGLS by sample estimates yields the
corresponding EBLUP or EB predictors. Hierarchical
Bayes (HB) predictors are obtained by specifying prior
distributions for 8 and the two variances and comput-
ing the posterior distribution of 6; (or Yi) given all the
sample observations in all the areas. Remark 1 applies
to the BLUP (EBLUP) under this model as well.

Jj=l1

5.2.3 Mixed logistic model. The previous two mod-
els assume continuous responses. Suppose now that
yij is binary, taking the values 1 or 0, in which case
the small area quantities of interest are usually propor-
tions or counts (say, the proportion or total of unem-
ployed persons in the area). The following generalized
linear mixed model (GLMM) considered originally by
MacGibbon and Tomberlin (1989) for SAE is in broad

use for this kind of problems:

Pr(yi; = 1ipij) = pij;
(5.5) (ylj |pl]) Pij
logit(pij) = x;; B +ui;  ui ~ N(O, o).
The responses y;; are assumed to be conditionally
independent, given the random effects u;, and like-
wise for the random effects. The purpose is to pre-
dict the true area proportions p; = Zy’: 1 Yij/N;. Let
v = (B, o*uz) denote the model parameters. For this
model, there is no explicit expression for the best pre-
dictor (BP) under a quadratic loss function, that is,
for ﬁlBP = E(pil|yi, xi; ¥), but as shown in Jiang and
Lahiri (2006b), the BP can be computed (approxi-
mated) numerically as the ratio of two one-dimensional
integrals. Jiang and Lahiri review methods of esti-
mating ¥, yielding the empirical BP (EBP) ﬁ;EBP =
E(pilyi, Xi; 1}), which is also the EB predictor under
the same assumptions. Application of the full HB ap-
proach under this model consists of the following basic
steps:

(1) specify prior distributions for GMZ and g;

(2) generate observations from the posterior dis-
tributions of S, o*u2 and uj,...,u, by say, MCMC
simulations, and draw a large number of realizations
B, 0 "N, r=1,...,R, i =1,...,m, and

! p(r) (r)
. . exp(x; +u;
hence realizations y-(,:) ~ pi(,z) — o ”‘/ﬁ i (,))
1+exp(xik/3(’)+ui )

1
k ¢ si;
(3) predict: pi = (3 jey; Vij + Lrgs; Yik)/ Nis Jik =
R IR k¢ si.

Writing p; = % Zf:l(ZjESi Yij + Zkgés,- )’i(lz))/Ni =

% 25: 1 131.('), the posterior variance is approximated as

Vpost(ﬁi) = m Z;{e:l(p,\[(r) - ﬁi)z-

Ghosh et al. (1998) discuss the use of HB SAE
for GLMM, covering binary, count, multi-category and
spatial data. In particular, sufficient conditions are de-
veloped for the joint posterior distribution of the pa-
rameters of interest to be proper.

6. NEW DEVELOPMENTS IN MODEL-BASED SAE
6.1 Estimation of Prediction MSE

As stated in the introduction, an important aspect
of SAE is the assessment of the accuracy of the pre-
dictors. This problem is solved “automatically” under
the Bayesian paradigm, which produces realizations
of the posterior distribution of the target quantities.
However, estimation of the prediction MSE (PMSE)
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and the computation of confidence intervals (C.I.) un-
der the frequentist approach is complicated because of
the added variability induced by the estimation of the
model hyper-parameters. Prasad and Rao (1990) de-
veloped PMSE estimators with bias of order o(1/m),
(m is the number of sampled areas), under the lin-
ear mixed models (5.1) and (5.2) for the case where
the random errors have a normal distribution, and the
model variances are estimated by the ANOVA method
of moments. Datta and Lahiri (2000) extended the es-
timation of Prasad and Rao to the more general mixed
linear model,

6.1) yi=XiB+Ziui+e, i=1,...,m,

where X; and Z; are fixed matrices of order n; x k
and n; x d, respectively, and u; and e; are indepen-
dent normally distributed random effects and resid-
ual terms of orders d x 1 and n; x 1, respectively,
u;j ~ Ng(0, Q;), e; ~ Ny;(0, R;). The variance ma-
trices are known functions of variance components
¢ =(1,...,¢r). The authors develop PMSE estima-
tors with bias of order o(1/m) for the EBLUP obtained
when estimating 8 and ¢ by MLE or REML. Das, Jiang
and Rao (2004) extend the model of Datta and Lahiri
(2000) by relaxing the assumption of independence of
the error terms between the areas and likewise develop
an estimator for the PMSE of the EBLUP when es-
timating the unknown model parameters by MLE or
REML, with bias of order o(1/m). Datta, Rao and
Smith (2005) show that for the area level model (5.1),
if auz is estimated by the method proposed by Fay and
Herriot (1979), it is required to add an extra term to the
PMSE estimator to achieve the desired order of bias of
o(1/m). See Datta (2009) for an extensive review of
methods of estimating the PMSE of the EBLUP and
EB under linear mixed models (LMM).

Estimation of the PMSE under the GLMM is more
involved, and in what follows, I review resampling
procedures that can be used in such cases. For con-
venience, | consider the mixed logistic model (5.5),
but the procedures are applicable to other models be-
longing to this class. The first procedure, proposed
by Jiang, Lahiri and Wan (2002) uses the jackknife
method. Let A; = E (ﬁiEBP — pi)? denote the PMSE,

where p; = Z?’;] yij/Ni is the true proportion and
PEBY = E(pilyi, xis V) is the EBP. The following de-
composition holds:

~(BP)

~(EBP ~(BP)\2
b= 5 = )

Pi)2+E(Pi
=My + My,

(6.2)

where Mj; is the PMSE of the BP (assumes known
parameter values) and M»; is the contribution to the
PMSE from estimating the model parameters, . De-
note by )A»?P (1/}) the “naive” estimator of My;, obtained
by setting ¢ = 1@ Let )A»?P (1/;4) denote the naive esti-
mator when estimating ¥ from all the areas except for
area /, and ﬁlEBP (ﬁ_l) denote the corresponding EBP.
The jackknife estimator of PMSE is

):ln( = Mli + Mzi;

My; = 2BP())
6.3)

-1 . R R R
- AP — AP,
=1

~ m—12 . ~ R ~
Mo === 15" () = > (1.
=1

Under some regularity conditions, E ()ALZJ.K) — A =
o(1/m), as desired.

The jackknife estimator estimates the unconditional
PMSE over the joint distribution of the random ef-
fects and the responses. Lohr and Rao (2009) pro-
posed a modification of the jackknife, which is sim-

pler and estimates the conditional PMSE, E[( ﬁi(EBP) —

pi)?1yil. Denoting g; (¥, yi) = Var(pi|yi: ¥), the mod-
ification consists of replacing My; in (6.3) by My; . =
qi (¥, yi) — 2%ilai (U1, yi) — qi (¥, yi)]. The mod-
ified estimator iflf =M li,c T+ MZi has bias of or-
der 0,(1/m) in es’timating the conditional PMSE and
bias of order o(1/m) in estimating the unconditional
PMSE.

Hall and Maiti (2006) propose estimating the PMSE
by use of double-bootstrap. For model (5.5), the proce-
dure consists of the following steps:

(1) Generate a new population from the model (5.5)
with parameters ¥ and compute the “true” area propor-
tions for this population. Compute the EBPs based on
new sample data and newly estimated parameters. The
new population and sample use the same covariates as
the original population and sample. Repeat the process
independently B times, with B sufficiently large. De-
note by p; p, (tﬁ) and ﬁi(i]?P)(xﬂbl) the “true” propor-
tions and corresponding EBPs for population and sam-
ple by, by =1, ..., B;. Compute the first-step boot-
strap PMSE estimator,

. 1 & . .
64) AP} == 3 [Blhy W) = pin (D]

1b1=1
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(2) For each sample drawn in Step (1), repeat the
computations of Step (1) B, times with B, sufficiently
large, yielding new “true” proportions p; p, (@bl) and
EBPs ﬁfifp)(l/}bz), by =1,..., B. Compute the sec-
ond-step bootstrap PMSE estimator,

1 8

By
~(EBP) , % A 12
S BEER Ghy) — i ()]
by=1
The double-bootstrap PMSE estimator is obtained by
computing one of the classical bias corrected estima-
tors. For example,
“BS | (4BS _ 4BS
Al T T =23,
¢ 2BS < 3BS
ifA7) =475,
AT expLOY — A7) /AS ),

.+ 2BS _ 3BS
if )Ll.’l < )Ll.’z.

(6.6) P8BS =

Notice that whereas the first-step bootstrap estimator
(6.4) has bias of order O(1/m), the double-bootstrap
estimator has bias of order o(1/m) under some regu-
larity conditions.

Pfeffermann and Correa (2012) develop a general
method of bias correction, which models the error of
a target estimator as a function of the corresponding
bootstrap estimator, and the original estimators and
bootstrap estimators of the parameters governing the
model fitted to the sample data. This is achieved by
drawing at random a large number of plausible param-
eters governing the model, generating a pseudo origi-
nal sample for each parameter and bootstrap samples
for each pseudo sample, and then searching by a cross
validation procedure the best functional relationship
among a set of eligible bias correction functions that
includes the classical bootstrap bias corrections. The
use of this method produces estimators with bias of
correct order and under certain conditions it also per-
mits estimating the MSE of the bias corrected estima-
tor. Application of the method for estimating the PMSE
under the model (5.5) in an extensive simulation study
outperforms the double-bootstrap and jackknife proce-
dures, with good performance in estimating the MSE
of the PMSE estimators.

REMARK 3. All the resampling methods consid-
ered above are in fact model dependent since they re-
quire computing repeatedly the empirical best predic-
tors under the model.

Chambers, Chandra and Tzavidis (2011) develop
conditional bias-robust PMSE estimators for the case
where the small area estimators can be expressed as
weighted sums of sample values. The authors assume
that for unit j € Ui, y; = X;Bi + ¢j; E(e;) =0,
Var(e;) = ajz, j=1,...,n;, with §; taken as a fixed
vector of coefﬁcients, and consider linear estimators
of the form 6; = ) ; ., wixyx with fixed weights wijy.
Thus, if 6; defines the true area mean,

Bias; = E(®; — 6;)

(6.7) = (Z > win/j,Bh) - XiBi.

h=1 jes,

Var; = Var(éi —0;)

m
-2 2 2 2
=N; (Z > o+ ) “j)v
h=1 jesy JEri

where r; = U; — s; and ajj = Niw,‘j — I(j € U;), with
I (-) defining the indicator function. Assuming that for
jeU, nj=E®yjlx)) = X/J-,B,- is estimated as fi; =
x/j Bi = res Pkj Yk and sz = o2, the bias and variance
in (6.7) are estimated as

m
Bias; = <Z Z wi]‘ﬁj> —Ni_l Z ,llj,

h=1 jesp JjeU;

(6.8) Var; = N; > [aj; + (N; —ni)n; ']
Jjes
RRGUEI DR

where Aj = (1 = ¢j;)% + ey j) 95> and s(— ) de-
fines the sample without unit j.

The authors apply the procedure for estimating the
PMSE of the EBLUP and the MBDE estimator (4.11)
under model (5.3), and for estimating the PMSE of
the M-quantile estimator defined in Section 6.6. For
the first two applications the authors condition on the
model variance estimators so that the PMSE estima-
tors do not have bias of desired order even under cor-
rect model specification. On the other hand, the esti-
mators are shown empirically to have smaller bias than
the traditional PMSE estimators in the presence of out-
lying observations, although with larger MSEs than the
traditional estimators in the case of small area sample
sizes.

6.2 Computation of Prediction Intervals

As in other statistical applications, very often ana-
lysts are interested in prediction intervals for the un-
known area characteristics. Construction of prediction
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intervals under the Bayesian approach, known as credi-
bility intervals, is straightforward via the posterior dis-
tribution of the predictor. A “natural” prediction inter-
val under the frequentist approach with desired cov-
erage rate (1 — @) is él-(') + za/z[\far(éi(') — 6142,
where él.(') is the EB, EBP or EBLUP predictor, and
VAalr(éi(') — 6;) is an appropriate estimate of the predic-
tion error variance. However, even under asymptotic
normality of the prediction error, the use of this pre-
diction interval has coverage error of order O(1/m),
which is not sufficiently accurate. Recent work in SAE
focuses therefore on reducing the coverage error via
parametric bootstrap.

Hall and Maiti (2006) consider the following gen-
eral model: for a suitable smooth function f;(8) of
the covariates X; = (X1, ..., X;»;) in area i and a vec-
tor parameter 8, random variables ©; = f;(8) + u;;
E(u;) = 0 are drawn from a distribution Qf{ f;(8); &}.
The outcome observations y;; are drawn independently
from a distribution R{/(®;); n;}, where [(-) is a known
link function, and »; is either known or is the same for
every area i. For given covariates X;g, sample size ;¢
and known parameters, an «-level prediction interval
for the corresponding realization ®;g is

(6.9) 1o(B,&) =[q01-a)2(B: ). g14a)2(B, §)].

where g, (8, £) defines the «-level quantile of the dis-
tribution Q{ f; (B); £}. A naive prediction interval with
estimated parameters is /I (,3, § ), but this interval has
coverage error of order O(1/m), and it does not use
the area-specific outcome values. To reduce the er-
ror, Iy (,3 , é ) is calibrated on «. This is implemented
by generating parametric bootstrap samples and re-
estimating § and & similarly to the first step of the
double-bootstrap procedure for PMSE estimation de-
scribed in Section 6.1. Denote by I:;" = I, (B* E*) the
bootstrap interval, and let & denote the solution of the
equation Pr(6* e fg) = a, where 0] ~ Q{ﬁ(B), é}.
The bootstrap-calibrated prediction interval with cov-
erage error of order O(m=2)is 1; (,3, é).

Chatterjee, Lahiri and Li (2008) consider the gen-
eral linear mixed model of Das, Jiang and Rao (2004),
mentioned in Section 6.1: Y = X8 + Zu + e, where Y
(of dimension n) signifies all the observations in all the
areas, X, x p and Z,»4 are known matrices and u and e
are independent vector normal errors of random effects
and residual terms with variance matrices D (i) and
R(y), which are functions of a k-vector parameter .
Note that this model and the model of Hall and Maiti

(2006) include as special cases the mixed linear mod-
els defined by (5.1) and (5.3). The present model can-
not handle nonlinear mixed models [e.g., the GLMM
(5.5)], which the Hall and Maiti model can, but it does
not require conditional independence of the observa-
tions given the random effects, as under the Hall and
Maiti model.

The (parametric bootstrap) prediction interval of
Chatterjee, Lahiri and Li (2008) for a univariate linear
combination ¢ = ¢(XB + Zu) is obtained by the fol-
lowing steps. First compute the conditional mean, u;
and variance atz of t|Y; B, ¥. Next generate new obser-
vations y* = Xﬁ+Zu* +e*, where u* ~ N (0, DA(@)),
e* ~ N0, R(¥)). From y*, estimate 8* and ¥* us-
ing the same method as for B and 1/A/, and compute
A} and 6 (same as u, and oy, but with estimated pa-
rameters). Denote by L the bootstrap distribution of
(65" (t* — i), where 1* = ¢/(XB + Zu*), and let
d = (p + k) be the total number of unknown param-
eters. Then as d?/n — 0 and under some regularity
conditions, if g1, g2 satisfy L} (g2) — L} (q1) =1 —«,

Pr(ii; + q16: <t < fi; + q267)
(6.10)
=1—a+0@n3?.

Note that this theory allows d to grow with n and
that the coverage error is defined in terms of n rather
than m, the number of sampled areas, as under the Hall
and Maiti (2006) approach. The total sample size in-
creases also as the sample sizes within the areas in-
crease, and not just by increasing m. By appropriate
choice of 7, the interval (6.10) is area specific.

REMARK 4. The article by Chatterjee, Lahiri and
Li (2008) contains a thorough review of many other
prediction intervals proposed in the literature.

6.3 Benchmarking

Model-based SAE depends on models that can be
hard to validate and if the model is misspecified, the re-
sulting predictors may perform poorly. Benchmarking
robustifies the inference by forcing the model-based
predictors to agree with a design-based estimator for an
aggregate of the areas for which the design-based es-
timator is reliable. Assuming that the aggregation con-
tains all the areas, the benchmarking equation takes the
general form,

m m
Z bi Qi,model = Z bi ei,design-
i=1 i=1

The coefficients {b;} are fixed weights, assumed with-
out loss of generality to sum to 1 (e.g., relative area

6.11)
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sizes). Constraint (6.9) has the further advantage of
guaranteeing consistency of publication between the
model-based small area predictors and the design-
based estimator for the aggregated area, which is
often required by statistical bureaus. For example,
the model-based predictors of total unemployment in
counties should add up to the design-based estimate of
total unemployment in the country, which is deemed
accurate.

A benchmarking method in common use, often re-
ferred to as ratio or pro-rata adjustment, is

m m
Abench __ . 0.
5t = (250 200
j=1

j=1
(6.12)

A

. 91’ ,model -

The use of this procedure, however, applies the same
ratio correction for all the areas, irrespective of the
precision of the model-based predictors before bench-
marking. As a result, the prorated predictor in a given
area is not consistent as the sample size in that area
increases. Additionally, estimation of the PMSE of
the prorated predictors is not straightforward. Conse-
quently, other procedures have been proposed in the
literature.

Wang, Fuller and Qu (2008) derive benchmarked
BLUP (BBLUP) under the area level model (5.1) as the
predictors minimizing )" | ¢; E(6; — éibenCh)z subject
to (6.11), where the ¢;s are chosen positive weights.
The BBLUP is

Abench __ éBLUP
i,BLUP — Yi ,model

m
(6.13) + 9 Z b;j(0;,design — 9;%%&02
j=1

m —1
8 = (Z (pjlbf) o7 ;.
j=1

When the variance ouz is unknown, it is replaced by
its estimator everywhere in (6.13), yielding the empir-
ical BBLUP. You and Rao (2002) achieve “automatic
benchmarking” for the unit level model (5.3) by chang-
ing the estimator of 8. Wang, Fuller and Qu (2008)
consider a similar procedure for the area level model.
Alternatively, the authors propose to augment the co-
variates X; to X; = (X}, b,-alz)i). (The variances alz)l- are
considered known under the area level model.) The use
of the augmented model yields a BLUP that likewise
satisfies the benchmark constraint (6.11) and is more

robust to omission of an important covariate from x;,

provided that the missing covariate is sufficiently cor-
related with the added covariate in X;.

Pfeffermann and Tiller (2006) add monthly bench-
mark constraints of the form (6.11) to the measure-
ment (observation) equation of a time series state-space
model fitted jointly to the direct estimates in several ar-
eas. Adding benchmark constraints to time series mod-
els is particularly important since time series models
are slow to adapt to abrupt changes. The benchmarked
predictor obtained under the augmented time series
model belongs to the family of predictors (6.13) pro-
posed by Wang, Fuller and Qu (2008). By adding the
constraints to the model equations, the use of this ap-
proach permits estimating the variance of the bench-
marked estimators as part of the model fitting. The
variance accounts for the variances of the model error
terms, the variances and autocovariances of the sam-
pling errors of the direct estimators and of the bench-
marks Z;-nzlbié\ti’direct, t =1,2,..., and the cross-
covariances and autocovariances between the sampling
errors of the direct estimators and the benchmarks.

Datta et al. (2011) develop Bayesian benchmarking
by minimizing

m
Y @ EL6; — 07" |Dgesign] st
i=

(6.14)

m m
Abench 2
Zbigl' = Zbiei,design»

i=1 i=1

where Qdesign = (Ql,designa ceey em,design),- The solu-
tion of this minimization problem is the same as
(6.13), but with 9,]{3;%561 replaced everywhere by the

A

posterior mean 0 Bayes- Denote the resulting pre-
dictors by Alb%nacyhe’sl. The use of these predictors has
the drawback of “over shrinkage” in the sense that

m Abench, 1 ~bench, 1 2 m N2

i=1 bi( i,Bayes Qb,Bayes) < 2L LiE[(O; — 6p)”|
A bench, 1 m Abench, 1 )
Odesign], where eb,Bayes = Zi:l biei,Bayés and 0, =
Y7t bi6;. To deal with this problem, Datta et al.

(2011) propose to consider instead the predictors

Abench,?2 . o .
Qi,Bayes , satisfying the constraints
m m
Abench,2 A .
bi i Bayes — Zbiei,design,
i=l i=1
(6.15)

- bench,2 = ?
Abench, A
2 :bi (ei,Bayes _2 :bi@i,dGSign> =H,
i=1

i=1
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where H = Y| b; E[(6; — 6))”|0design]. The bench-
marked predictors have now the form

m
Abench,2 A
Qi,Bayes = Zbigi,design

i=1

(6.16) + AcB (6i,Bayes — OBayes);

m —
A%ZB = H/ Zbi (0, Bayes — GBayes)z-
i=1

Notice that the development of the Bayesian bench-
marked predictors is general and not restricted to any
particular model. The PMSE of the benchmarked pre-

dictor can be estimated as E [(Qitj eB”aCy}:;SZ — 0;)?|0design] =
A A Abench,2 A .
Var(gi,BayeSWdesign) + (Qi,Bayes - Gi,Bayes)z’ noting that
Abench,2

the cross-product E[(6 — éi?Bayes)(é,-,Bayes —
91’) |9design] =0.

Nandram and Sayit (2011) likewise consider Bayes-
ian benchmarking, focusing on estimation of area pro-
portions. Denoting by ¢; the number of sample units in
area i having characteristic C, and by p; the probabil-
ity to have this characteristic, the authors assume the

beta-binomial hierarchical Bayesian model,

i,Bayes

¢i|pi ~ Binomial(n;, p;);
(6.17) pilp, T ~ Beta[ut, (1 — u)z],
pu, ) =1 +1H)7",

i=1,...,m,

O<u<l,t>0.

Let I;i = n; /n. The benchmark constraint is defined as,

m
(6.18) > bipi=0; 6~Beta[uoto, (1 — po)7ol.

i=1

The authors derive the joint posterior distribution of
the true probabilities {p;,i = 1, ..., m} under the un-
restricted model (6.17), and the restricted model with
(6.18), and prove that it is proper. Computational de-
tails are given. Different scenarios are considered re-
garding the prior distribution of 6. Under the first sce-
nario tp — 00, implying that 6 is a point mass at wg,
assumed to be known. Under a second scenario g
and 1¢ are specified by the analyst. In a third scenario
uo = 0.5, 1o = 2, implying 6 ~ Uniform(0, 1) (non-
informative prior). Theoretical arguments and empir-
ical results show that the largest gain from using the
restricted model is under the first scenario where 6 is
completely specified, followed by the second scenario
with 79 > 2. No gain in precision occurs under the
third scenario with a noninformative prior.

To complete this section, I mention a different fre-
quentist benchmarking procedure applied by Ugarte,
Militino and Goicoa (2009). By this procedure, the
small area predictors in sampled and nonsampled ar-
eas under the unit level model (5.3) are benchmarked
to a synthetic estimator for a region composed of the
areas as obtained under a linear regression model with
heterogeneous variances (but no random effects). The
benchmarked predictors minimize a weighted residual
sum of squares (WRSS) under model (5.3) among all
the predictors satisfying the benchmark constraint. No-
tice that the predictors minimizing the WRSS with-
out the constraint are the optimal predictors (5.4). For
known variances the benchmarked predictors are lin-
ear, but in practice the variances are replaced by sample
estimates. The authors estimate the PMSE of the result-
ing empirical benchmarked predictors by a single-step
parametric bootstrap procedure.

6.4 Accounting for Measurement Errors in the
Covariates

Ybarra and Lohr (2008) consider the case where
some or all the covariates Xx; in the area level model
(5.1) are unknown, and one uses an estimator X; ob-
tained from another independent survey, with
MSEp(X;) = C; under the sampling design. (For
known covariates xi;, Cx; = 0.) Denoting the result-
ing predictor by éiE”, it follows that for known (8, auz),

(6.19) PMSE(HF™) = PMSE(®#;) + (1 — y)*B/Ci B,

where PMSE(éi) is the PMSE if one knew x;. Thus,
reporting PMSE(4;) in this case results in under-
reporting the true PMSE. Moreover, if 8/C;8 > ouz +
od, MSE(@IE”) > 03, = Varp(3;). The authors pro-
pose therefore to use instead the predictor

OMe = 7,5, + (1 — 7R, B;

(6.20)
Vi=(024+BCiB)/(0h, +02+B'CiB).

The predictor élMe minimizes the MSE of linear com-
binations of y; and X/A. Additionally, E(éiMe —0) =
(1 — P)IEp(X;) — x;1'B, implying that the bias van-
ishes if X; is unbiased for x;, and E (él.Me — 9,-)2 =
77!"7%1‘ < (712)1‘- The authors develop estimators for %2
and B, which are then substituted in (6.20) to obtain
the corresponding empirical predictor. The PMSE of
the empirical predictor is estimated using the jackknife
procedure of Jiang, Lahiri and Wan (2002), described
in Section 6.1.



NEW IMPORTANT DEVELOPMENTS IN SMALL AREA ESTIMATION 53

Ghosh, Sinha and Kim (2006) and Torabi, Datta
and Rao (2009) study a different situation of measure-
ment errors. The authors assume that the true model
is the unit level model (5.3) with a single covariate
x; for all the units in the same area, but x; is not
observed, and instead, different measurements x;; are
obtained for different sampled units j € s;. The sam-
ple consists therefore of the observations {y;;, x;;;i =
1,...,m,j=1,...,n;}. An example giving rise to
such a scenario is where x; defines the true level of air
pollution in the area and the x;;’s represent pollution
measures at different sites in the area. It is assumed that
Xij = Xi + 0ijs xi ~ Ny, 02), and (u;, &, 7;j) are
independent normally distributed random errors with
zero means and variances o2, o2 and 03, respectively.
Since x; is random, this kind of measurement error
is called structural measurement error. The difference
between the two articles is that Ghosh, Sinha and Kim
(2006) only use the observations {y;;} for predicting
the true area means Y;, whereas Torabi, Datta and Rao
(2009) also use the sample observations {x;;}.

Assuming that all the model parameters are known,
the posterior distribution of the unobserved y-values in
area i is multivariate normal, which under the approach
of Torabi, Datta and Rao (2009) yields the following
Bayes predictor (also BLUP) for Y;:

A

Y, = EXillyij.xij, j=1,...,n:})
= (1 = fiAD)yi + fiAi(Bo + Biix)
+ fiAiyxiB1(Xi — [x),
where fi =1 — (ni/Ni), yxi = nio}(o; + nioy)™!
and A; = [n,-,Blzcrsz,% + (n,-af + agz)vi]_lagzv,-, with
v = (03 + niaf). For large N; and small (n; /N;), the

(6.21)

~B ~B
PMSEof Y, is E[(Y; — Y))*{yij, xij}] = AilBio? +
o2 —n; ,3126;t v; ']. Estimating the model parameters
v = (Bo, B1, Ux> (rxz, auz, 0,72, 0.92) by a method of mo-
ments (MOM) proposed by Ghosh, Sinha and Kim
(2006) and replacing them by their estimates yields the

EB estimator, which is shown to be asymptotically op-
~EB ~B
timal in the sense that m ! TLEXY;, —-Y; )2 >0

as m — 00. The PMSE of the EB predictor is estimated
by a weighted jackknife procedure of Chen and Lahiri
(2002).

The Bayes predictor of Ghosh, Sinha and Kim
(2006) has a similar structure to (6.21), but without
the correction term f; A; i B1(X; — itx), and with the
shrinkage coefficient A; replaced by Ai = [n; (,Blzcrx2 +
auz) + 082]_1082 in the other two terms. As noted above,

the authors develop a MOM for estimating the un-
known model parameters to obtain the EB predictor
and prove its asymptotic optimality. They also develop
an HB predictor with appropriate priors for all the pa-
rameters. The HB predictor and its PMSE are obtained
by MCMC simulations.

Ghosh and Sinha (2007) consider the same unit level
model as above with sample observations ({y;;}, {xi;}),
but assume that the true covariate x; is a fixed unknown
parameter, which is known as functional measurement
error. The work by Ybarra and Lohr (2008) reviewed
before also assumes a functional measurement error,
but considers the area level model. For known param-
eters and x;, the Bayes predictor takes now the simple
form

~B _
Yi =E(Yl|{ylj9]=1’anl})
= (1 — fiB)yi + fiBi(Bo + Bi1xi);

2 2y—1_2
B;i = (njo, +o0;) of.

(6.22)

A pseudo-Bayes predictor (PB) is obtained by substi-
tuting the sample mean x; for x; in (6.22). A pseudo-
empirical Bayes predictor (PEB) is obtained by esti-
mating all the other unknown model parameters by the
MOM developed in Ghosh, Sinha and Kim (2006). The
authors show the asymptotic optimality of the PEB,
m~! > E(17l.PEB — fipB)z — 0asm — oo.

Datta, Rao and Torabi (2010) propose to replace the
estimator x; of x; by its maximum likelihood estimator
(MLE) under the model. The corresponding PB of Y;
(assuming that the other model parameters are known)
is the same as the PB of Ghosh and Sinha (2007), but
with B; replaced by B; = (n,-cru2 + %2 + ,31203)_1082.
A PEB predictor is obtained by replacing the model pa-
rameters by the MOM estimators developed in Ghosh,
Sinha and Kim (2006), and it is shown to be asymp-
totically optimal under the same optimality criterion as
before. The PMSE of the PEB is estimated by the jack-
knife procedures of Jiang, Lahiri and Wan (2002) de-
scribed in Section 6.1 and the weighted jackknife pro-
cedure of Chen and Lahiri (2002). The authors report
the results of a simulation study showing that their PEB
predictor outperforms the PEB of Ghosh and Sinha
(2007) in terms of PMSE. A modification to the pre-
dictor of Ybarra and Lohr (2008) is also proposed.

6.5 Treatment of Outliers

Bell and Huang (2006) consider the area level
model (5.1) from a Bayesian perspective, but assume
that the random effect or the sampling error (but not
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both) have a nonstandardized Student’s 7 distribu-
tion. The ¢ distribution is often used in statistical mod-
eling to account for possible outliers because of its long
tails. One of the models considered by the authors is

uildi, 07 ~ N(0, 8;02);

(6.23) 571 ~ Gammalk/2, (k —2)/2],

ei ~N(0,03),

which implies E(8;) = 1 and u;|02 ~ t()(0, 0.2 (k —
2)/k). The coefficient §; is distributed around 1, in-
flating or deflating the variance of u; = 6; — x}B.
A large value §; signals the existence of an outlying
area mean 6;. The degrees of freedom parameter, k, is
taken as known. Setting k = 0o is equivalent to assum-
ing the model (5.1). The authors consider several pos-
sible (small) values for k in their application, but the
choice of an appropriate value depends on data explo-
ration. Alternatively, the authors assume model (6.23)
for the sampling error ¢; (with 0[2)1. instead of cruz), in
which case it is assumed that u; ~ N (0, ouz). The effect
of assuming the model for the random effects is to push
the small area predictor (the posterior mean) toward
the direct estimator, whereas the effect of assuming the
model for the sampling errors is to push the predictor
toward the synthetic part. The use of either model is
shown empirically to perform well in identifying out-
lying areas, but at present it is not clear how to choose
between the two models. Huang and Bell (2006) ex-
tend the approach to a bivariate area level model where
two direct estimates are available for every area, with
uncorrelated sampling errors but correlated random ef-
fects. This model handles a situation where estimates
are obtained from two different surveys.

Ghosh, Maiti and Roy (2008) likewise consider
model (5.1) and follow the EB approach. The starting
point in this study is that an outlying direct estimate
may arise either from a large sampling error or from an
outlying random effect. The authors propose therefore
to replace the EB predictor obtained from (5.2) by the
robust EB predictor,

670 = 5i = (1= 7 Vi¥elGi — xiBio) Vi ')
624y et
Vi = Var(§i — x;BaLs),

where BGts is the empirical GLS under the model with

estimated variance 62, and W is the Huber influence
function Wg(¢) = sign(t) min(G, |t|) for some value
G > 0. Thus, for large positive standardized residuals
(i = X;Bgr ) Vi ' the EB 68 = 5 — (1 = p) Vi i —

X; BGLS)\A/i_l under the model is replaced by él-ROb =
Vi— (1 —7) ‘71 G, and similarly for large negative stan-
dardized residuals, whereas in other cases the ordi-
nary EB, éiEB, is unchanged. The value G may change
from one area to the other, and it is chosen adaptively in
such a way that the excess Bayes risk under model (5.1)
from using the predictor (6.24) is bounded by some
percentage point. Alternatively, G may be set to some
constant 1 < G < 2, as is often found in the robust-
ness literature. The authors derive the PMSE of él.ROb
under the model (5.1) for the case where auz is esti-
mated by MLE with bias of order o(1/m), and develop
an estimator for the PMSE that is correct up to the or-
der O,(1/m).

Under the approach of Ghosh, Maiti and Roy (2008),
the EB predictor is replaced by the robust predictor
(6.24), but the estimation of the unknown model pa-
rameters and the development of the PMSE and its
estimator are under the original model (5.1), with-
out accounting for possible outliers. Sinha and Rao
(2009) propose to robustify also the estimation of the
model parameters. The authors consider the mixed lin-
ear model (6.1), which when written compactly for all
the observations y = (y{, ..., y;,)’, has the form

y=XB+Zu+e,
Ew) =0, E@uu)=0;
E(e) =0, E(ee)=R,

(6.25)

where u is the vector of random effects, and e is the
vector of residuals or sampling errors. The matrices
Q and R are block diagonal with elements that are
functions of a vector parameter ¢ = (¢1,...,¢r) of
variance components such that V(y) =V =ZQZ' +
R = V(¢). The target is to predict the linear com-
bination t = '8 + K'u by £ = I'f + h'i. Under
the model, the MLE of 8 and ¢ are obtained by
solving the normal equations X'V~!(y — XB) = 0;
v = XYV GV — XB) — u(V7Ig) =0,
l=1,...,L. To account for possible outliers, the au-
thors propose solving instead

X'VIUu ) =0;
vV
(6.26) %(r)Ul/Zv—lgv—lUl/Zq/G(r)
l

—tr| VT —cl, | =0, [=1,...,L,
ag

where r = U~1/2(y — XB), U = Diag[V], ¥ (r) =

(WG (r1), WG (r2), ...] with Wg(rg) defining the Huber
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influence function, I, is the identity matrix of order n
and ¢ = E[lIJé (re)] [re ~ N (O, 1)]. Notice that since
QO and R are block diagonal, the normal equations and
the robust estimating equations can be written as sums
over the m areas.

Denote by ,éRob, Z'Rob the solutions of (6.26). The
random effects are predicted by solving

Z'R7V2UGIR™V2(y — X Brob — Zu)]
(6.27) R R
— 07129507 V2u) =0,

where R = R(fRob), Q = Q(fRob). Sinha and Rao
(2009) estimate the PMSE of the robust small area pre-
dictors by application of the first step of the double-
bootstrap procedure of Hall and Maiti (2006) (equa-
tion 6.4). The parameter estimates and the predictors
of the random effects needed for the application of the
bootstrap procedure are computed by the robust esti-
mating equations (6.26)—(6.27), but the generation of
the bootstrap samples is under the original model with
no outliers. The estimation of the PMSE can possi-
bly be improved by generating some outlying obser-
vations, thus reflecting more closely the properties of
the original sample.

6.6 Different Models and Estimators for Further
Robustification

In this section I review four different approaches pro-
posed in the literature for further robustification of the
inference by relaxing some of the model assumptions
or using different estimators. All four studies focus on
the commonly used area-level and/or unit-level models
defined by (5.1) and (5.3), respectively.

M-quantile estimation. Classical model-based SAE

methods model the expectations E (y; |[X;, u;) and E(u;).

Chambers and Tzavidis (2006) and Tzavidis, Marchetti
and Chambers (2010) propose modeling instead the
quantiles of the distribution f(y;|x;), where for now
y; is a scalar. Assuming a linear model for the quan-
tiles, this leads to a family of models indexed by the
coefficient g € (0, 1); ¢ = Pr[y; < x;B,]. In quantile

regression the vector B is estimated by minimizing

min Y {|yi — x; Byl
By i=1
(6.28) A=) (yi —x; By <0)

+q1(yi = x;Bq > 01}

M-quantile regression uses influence functions for es-
timating B, by solving the equations

Z \Ijq (riq)xi =0;

i=1
W, (rig) =2W (s 'rig)[(1 — g)I (rig <0)
+ql(rig > 0)],

where s is a robust estimate of scale, and W is an ap-
propriate influence function. The (unique) solution ,éq
of (6.29) is obtained by an iterative reweighted least
square algorithm. Note that each sample value (y;, X;)
lies on one and only one of the quantiles m, (x;) = X; B,
(which follows from the fact that the quantiles are con-
tinuous in q).

How is the M-quantile theory used for SAE? Sup-
pose that the sample consists of unit level observations
ij. xij;i=1,...,m, j=1,...,n;}. Identify for unit
(i, j) the value ¢;; such that X] i B%’j = yjj. A predictor
of the mean 6; in area i is obtained by averaging the
quantiles g;; over the sampled units j € s; and com-
puting

(6.29)

oM =N (Z vij+ ) X;klééi);

j€Si kés;
(6.30) = '

n;
gi=Y_qij/ni.
=1

Alternatively, one can average the vector coefficients
Bqi;and replace ,3571. in (6.30) by the mean ,[3,- =

Z'}’: | :éq,- ;/ni. The vectors ,éqi or Bi account for dif-
ferences between the areas, similarly to the random
effects under the unit level model (5.3).

The use of this approach is not restricted to the esti-
mation of means, although it does assume continuous
y-values. For example, the distribution function in area
i can be estimated as ﬁi(t) = Ni_1 [>jes I (ij <1+

Zk¢s,« 1 (xgkﬁi < t)]. Chambers and Tzavidis (2006)
develop unconditional and area specific estimators for
the variance of the M-quantile estimators (6.30) assum-

ing ,éq,. (or ,é ;) is fixed, and estimators for the bias un-
der the linear model E(y;j|x;;) = x{j Bi.

The M-quantile approach does not assume a para-
metric model, although it assumes that the quantiles
are linear in the covariates in the theory outlined above.
Clearly, if the unit level model (5.3) holds, the use of
the model is more efficient, but the authors illustrate
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that the M-quantile estimators can be more robust to
model misspecification. Notice in this regard that the
approach is not restricted to a specific definition of the
small areas. It accounts also for possible outliers by
choosing an appropriate influence function in the esti-
mating equation (6.29). On the other hand, there seems
to be no obvious way of how to predict the means or
other target quantities for nonsampled areas. A possi-
ble simple solution would be to set ¢ = 0.5 for such
areas or weight the g-values of neighboring sampled
areas, but it raises the question of how to estimate the
corresponding PMSE, unless under a model.

Use of penalized spline regression. Another way of
robustifying the inference is by use of penalized spline
(P-spline) regression. The idea here is to avoid assum-
ing a specific functional form for the expectation of the
response variable. Suppose that there is a single co-
variate x. The P-spline model assumes y = mg(x) + ¢,
E(e) =0, Var(e) = 082. The mean mg(x) is taken as
unknown and approximated as

m(x; B,y)=Po+ Pix+---+ Bpx?

K
+ ) v — K
k=1

(x — K = max(0, (x — Kp)P],

(6.31)

where p is the degree of the spline, and K| < --- <
Kk are fixed knots. For large K and good spread of
the knots over the range of x, spline (6.31) approx-
imates well most smooth functions. It uses the basis
[1,x,....,xP, (x — KDY, ..., (x — Kg)¥] to approxi-
mate the mean, but other bases can be considered, par-
ticularly when there are more covariates.

Opsomer et al. (2008) use P-spline regression for
SAE by treating the y-coefficients in (6.31) as addi-
tional random effects. Suppose that the data consist
of unit-level observations, {y;;,x;j;i =1,...,m, j =
1,...,n;}. For unit j in area i, the model considered is

Yij = Bo + Bixij + -+ Bpx];
(6.32)

K
+ Z vk (xij — Kb +ui + &5,

k=1
where the u;s are the usual area random effects and
g;js are the residuals. Let u = (uy,...,un), y =
(v1,...,yk)". Defining d;; =1 (0) if unit j is (is
not) in area i and denoting d; = (dy;, . ..,dmj)’ and
D =[dy,...,d,], the model holding for the vector y

of all the response values can be written compactly as
y=XB+Zy+ Du+¢;

633) ¥~ (0,010,

u~0,02T,), &~(0,0°1,),

where X = [x}”),...,x,(f)]' with xl(p) =,x,...,
xlp)’, and Z =[z1,...,2,] with z; = [(x; — Kl)i, ey
(x;— KK)IJF)]/. The model (6.33) looks similar to (6.25)
but the responses y;; are not independent between
the areas because of the common random effects y.
Nonetheless, the BLUP and EBLUP of (8, u, y) can
be obtained using standard results; see the article for
the appropriate expressions. The small area EBLUP are
obtained as

~AP-spli Ao ars A
ei,Esglj?JiD = ﬂ/Xi(p) +7'Zi +ij;

XP=>3"xP/Ni. Zi=Y u/N.
leU; leU;

(6.34)

The use of this approach requires that the covari-
ates are known for every element in the popula-
tion. Opsomer et al. (2008) derive the PMSE of the
EBLUP (6.34) correct to second order for the case
where the unknown variances are estimated by REML,
and an estimator of the PMSE with bias correct to the
same order. The authors develop also a nonparametric
bootstrap algorithm for estimating the PMSE and for
testing the hypotheses o*u2 =0 and 05 = 0 of no ran-
dom effects. Rao, Sinha and Roknossadati (2009) use
a similar model to (6.33), but rather than computing
the EBLUP under the model, the authors propose pre-
dictors that are robust to outliers, similar (but not the
same) to the methodology developed by Sinha and Rao
(2009) for the mixed linear model described in Sec-
tion 6.5. Jiang, Nguyen and Rao (2010) show how to
select an appropriate spline model by use of the fence
method described in Section 8.

Use of empirical likelihood in Bayesian inference.
Chaudhuri and Ghosh (2011) consider the use of em-
pirical likelihoods (EL) instead of fully parametric
likelihoods as another way of robustifying the infer-
ence. When combined with appropriate proper pri-
ors, it defines a semiparametric Bayesian approach,
which can handle continuous and discrete outcomes
in area- and unit-level models, without specifying the
distribution of the outcomes as under the classical
Bayesian approach. Denote by 6 = (61, ...,6,)" and
y=(y1,...,ym) the area parameters and the corre-
sponding direct estimators, and by 7 = (1q,..., Tn)
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the “jumps” defining the cumulative distribution of y;,
sothat "7, 7; = 1. The EL is Lg =[]/ ; and for
given moments E(y;|6;) = k(6;), Var(y;|6;) = V (6;),
the estimate 7(0) is the solution of the constrained
maximization problem

(6.35)

Zfl l_k(e) =

m

Z T { M -1 } =0.

i V)

Under the area model (5.1) k(6;) = 6; =x; ,B + u; and
V6) = oD The authors assume proper priors for
B, uty...,up, 0 uz) and hence for 6, thus guaranteeing
that the posterior distribution 7 (8|y) is also proper. For
given 6 the constrained maximization problem (6.35)
is solved by standard methods (see the article), and by
combining the EL with the prior distributions, obser-
vations from the posterior distribution 7 (8|y) are ob-
tained by MCMC simulations.

For the unit-level model (5.3), E(y;;|0;;) =k(6;;) =
xj;B + u; and Var(y;;|6;)) = V(6;j) = 7. Denot-
ing by 7;; the “jumps” of the cumulative distribu-
tion in area i, the EL is defined in this case as
Le =TI T/, i = [T, 7). and for given 6, =
(91'1, ey Gi,n,‘)/e ‘E(i)(Q) = [‘Eil(g), ey fin,- (9)]/ is the
solution of the area specific maximization problem

(6.36)
— k()] =0

n;
> il
j=1

nj 2
Z Tij{ [yl] - k(elj)] _ 1} -0
e ©ij)
The authors applied the procedure for estimating state-
wise median income of four-person families in the
USA, using the area-level model. Comparisons with
the census values for the same year reveal much bet-
ter predictions under the proposed approach compared

to the direct survey estimates and the HB predictors
obtained under normality of the direct estimates.

Best predictive SAE. In the three previous approaches
reviewed in this section, the intended robustification
is achieved by relaxing some of the model assump-
tions. Jiang, Nguyen and Rao (2011) propose instead
to change the estimation of the fixed model parameters.
The idea is simple. In classical model-based SAE the
EBLUP or EB predictors are obtained by replacing the
parameters in the expression of the BP by their MLE or
REML estimators. Noting that in SAE the actual target
is the prediction of the area means, and the estima-
tion of model parameters is just an intermediate step,
the authors propose to estimate the fixed parameters
in such a way that the resulting predictors are optimal
under some loss function.

Consider the area-level model (5.1) with normal er-
rors, and suppose first that auz is known. Under the
model, E(y;) = x;B, but suppose that the model is
misspecified and E(y;) = u;, such that 6; = u; + u;,
i=1,...,m. Let éi be a predictor of 6;, and define
the mean square prediction error to be MSPE(d) =

- E#; — 6;)2, where the expectation is under the
correct model. By (5.2), the MSPE of the BP for given
ﬂ is MSPE[O(B)] = E{X/L lyiyi + (I — y)xip —

). The authors propose minimizing the expres-
sion inside the expectation with respect to 8, which
is shown to be equivalent to minimizing Y —
Y2 (xiB)* —2 371 (1 — yi)x} Byil. yielding the “best
predictive estimator” (BPE)

= [Z(l — y,-)zx,-x;]
i=1
2

Notice that unless Varp(e;) = op;, = 012), ,é differs
from the commonly used GLS estimator under the
model (5.1); BoLs = [X7L vixix{ 17 X0 yixii. The
“observed best predictor” (OBP) of 9, is obtained
by replacing BaLs by B in the BP (5.2) under the
model (5.1).

The authors derive also the BPE of ¥ = (8',02)’
for the case where o2 is unknown, in which case the
OBP is obtained by replacing ouz and ,3GLS by the BPE
of ¥ in (5.2). Another extension is for the unit level
model (5.3), with the true area means and MSPE de-
fined as 6; = ¥; and MSPE[6 (y)] = X", Epl6; (%) —
6;1?, respectively, where ¢ = (8, u, los )’ and Ep(")
is the design (randomization) expectation over all pos-
sible sample selections (Section 4.1). The reason for
using the design expectation in this case is that it is

1 m
(= y)*xivi.

i=1

(6.37)
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almost free of model assumptions. Theoretical deriva-
tions and empirical studies using simulated data and
a real data set illustrate that the OBP can outperform
very significantly the EBLUP in terms of PMSE if the
underlying model is misspecified. The two predictors
are shown to have similar PMSE under correct model
specification.

6.7 Prediction of Ordered Area Means

Malinovsky and Rinott (2010) consider the follow-
ing (hard) problem: predict the ordered area means
9(1) <6p) < - - < 0@ under the area-level model

=pn+u+e= 9 + e; [special case of (5.1)], with
11d

; ~ H(O, 02) e By “G(0, 02) H and G are gen-
eral distributions with zero means and variances o
and %2- To illustrate the difference between the pre-
diction of ordered and unordered means, consider the
prediction of 6,,) = max; {6;}. If éi satisfies £ (é,- |6;) =
6;,i =1,...,m, then E[max;{6;}|{6;}] > O(n) so that
the largest estimator overestimates the true largest
mean. On the other hand, the Bayesian predictors
0r = E[6; |{éj }] satisfy E[max;{6}] < E(6(n)), an un-
derestimation in expectation.

Wright, Stern and Cressie (2003) considered the
prediction of ordered means from a Bayesian per-
spective, but their approach requires heavy numeri-
cal calculations and is sensitive to the choice of pri-
ors. Malinovsky and Rinott (2010) compare three
predictors of the ordered means under the frequen-
tist approach, using the loss function L(é(.),e(.)) =
S By — 6ay)?* and the Bayes risk E[L (0., 0))].
Let é,- define the direct estimator of 6; and é(i) the ith
ordered direct estimator (statistic). The predictors com-
pared are

a4 .
Oy =0y
_ _ m
638) 0@ =800+ -5, 6= 6;/m;
i=1
05 = E@0n0), 0=01.....00).

The results below assume that o> and o2 are known
and that u is estimated by 5 .

Denote by Q[k] the predictor of the ordered means
when using the predictors 9(( )), k=1,2,3, and let

y =02(c2 +02)~! be the shrinkage coefficient when
predicting the unordered means [equation (5.2)]. The
authors derive several theoretical comparisons. For ex-

ample, if y < (m — 1)?/(m + 1)?, then
E[L (0[2 ). 60))]
E[L().00))]

Noting that lim,,_, so[(m — 1)%/(m + 1)?] = 1, it fol-
lows that (6.39) holds asymptotically for all y, and the
inequality y < § < 1 implies less shrinkage of the di-
rect estimators toward the mean. In particular, the op-
timal choice of § for 5([,2)] (8) satisfies lim,,;—, oo P! =
y12.

(6.39)
forally <§ <1.

The results above assume general distributions H
and G. When these distributions are normal, then for
m =2, E[LOQ).,0))] < E[L©O5)(6).6(,)] for all 5.
A conjecture supported by 51mulat10ns is that this re-
lationship holds also for m > 2. However, the sim-
ulations suggest that for sufficiently large m (e.g.,
m > 25), é([?)] is efficiently replaced by 67([.2)]()/1/ 2). The
last two conclusions are shown empirically to hold also
in the case where 03 is unknown and replaced by the

MOM variance estimator.

REMARK 5. The problem of predicting the ordered
means is different from ranking them, one of the fa-
mous triple-goal estimation objectives in SAE. The
triple-goal estimation consists of producing “good”
area specific estimates, “good” estimates of the his-
togram (distribution) and “good” estimates of the
ranks. See Rao (2003) for discussion. Judkins and Liu
(2000) considered another related problem of estimat-
ing the range of the area means. The authors show the-
oretically and by simulations that the range of the di-
rect estimators overestimates the true range, whereas
the range of the empirical Bayes estimators underesti-
mates the true range, in line with the discussion at the
beginning of this section. The bias is much reduced by
use of a constrained empirical Bayes estimator. For the
model considered by Malinovsky and Rinott (2010),
the constrained estimator is obtained by replacing the
shrinkage coefficient y = o*uz(cru2 + aez)_1 in (5.2) by
7 = y~1/2, which again shrinkages less the direct esti-
mator.

6.8 New Developments for Specific Applications

In this section I review two relatively new applica-
tions of SAE; assessment of literacy and poverty map-
ping. The latter application, in particular, received con-
siderable attention in recent years.
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Assessment of literacy. The notable feature of as-
sessing literacy from a literacy test is that the possible
outcome is either zero, indicating illiteracy, or a pos-
itive continuous score measuring the level of literacy.
Another example of this kind of data is the consump-
tion of illicit drugs, where the consumption is either
zero or a continuous measure. In both examples the
zero scores are “structural” (true) zeroes. The common
models used for SAE are not applicable for this kind of
responses if the proportion of zeroes is high. Pfeffer-
mann, Terryn and Moura (2008) consider the estima-
tion of the average literacy score and the proportion of
people with positive scores in districts and villages in
Cambodia, a study sponsored by the UNESCO Insti-
tute for Statistics (UIS). Denote by y;jx the test score
of adult k from village j of district i and by r; a set of
covariates and district and village random effects. The
following relationship holds:

E(ijklrijr) = Eijklriji, yijk > 0)
(6.40)
< Pr(yijk > Olrijr).

The two parts in the right-hand side of (6.40) are mod-
eled as E[y,'jk|l’l‘jk, Vijk > 0]= X;jle +u; +vij, where
(i, v;;) are district and nested village random effects,
Pr(yiji > Olrij) = piji; 1ogit(piji) = y'ziji+uf +vfj,
where z;; defines a set of covariates which may differ
from x;jx and (u], v;"j) are district and nested village
random effects, which are correlated respectively with
(u;, vij). The village and district predictors of the av-
erage score and the proportion of positive scores are
obtained by application of the Bayesian approach with
noninformative priors, using MCMC simulations. The
use of the Bayesian approach enables one to account
for the correlations between the respective random ef-
fects in the two models, which is not feasible when fit-
ting the two models separately. The area predictors are
obtained by imputing the responses for nonsampled in-
dividuals by sampling from their posterior distribution,
and adding the imputed responses to the observed re-
sponses (when observations exist).

REMARK 6. Mohadjer et al. (2007) estimate the
proportions 6;; of adults in the lowest level of liter-
acy in counties and states of the USA, by modeling
the direct estimates p;; in county j of state i as p;; =
0ij +¢ij, and modeling logit(6;;) = xi’j,B +u; +v;; with
u; and v;; defining state and county random effects.
The state and county estimates are likewise obtained by
MCMC simulations with noninformative priors. Note
that this is not a two-part model.

Poverty mapping. The estimation of poverty indica-
tors in small regions is of major interest in many coun-
tries across the world, initiated and sponsored in many
cases by the United Nations and the World Bank. In
a celebrated article (awarded by the Canadian Statisti-
cal Society as the best paper published in 2010 in The
Candian Journal of Statistics), Molina and Rao focus
on estimation of area means of nonlinear poverty mea-
sures called FGT defined as

a=0,1,2,

where E;; is a measure of welfare for unit j in area i
such as income or expenditure, z is a poverty thresh-
old under which a person is considered “poor” (e.g.,
60% of the nation median income) and 7 (-) is the indi-
cator function. For « =0, F,; is the proportion under
poverty. For = 1, F,; measures the “poverty gap,’
and for o = 2, F,; measures “poverty severity.”

For ¢ = 1,2 it is practically impossible to assign
a distribution for the measures Fy;;, and in order
to estimate the means Fy; in sampled and nonsam-
pled areas, Molina and Rao (2010) assume the ex-
istence of a one-to-one transformation y;; = T (E;;)
such that the transformed outcomes y;; satisfy the unit
level model (5.3) with normal distribution of the ran-
dom effects and the residuals. Notice that Fy;; =[1 —
T (ipl* x 1T~ (3ij) < 2] = he(yij). For sam-
pled units j € s; Fy;j is known, and for the nonsam-
pled units k € r;, the missing measures are imputed
by the EBP FERP = Elhy (yik)ys] = Xfo ) ha(3ii))/ L
with large L, where y; defines all the observed out-
comes. The predictions yi(,lc) are obtained by Monte
Carlo simulation from the conditional normal distribu-
tion of the unobserved outcomes given the observed
outcomes under the model (5.3), using estimated pa-
rameters y = (,BA/,@{Z, 62)'. The PMSE of the EBP
ﬁO%BP = [Xjes; Faij + 2ker, F(E.I?CP]/Ni is estimated
similarly to the first step of the double-bootstrap pro-
cedure described in Section 6.1. Model- and design-
based simulations and application to a real data set
from Spain using the transformation y;; = log(E;;)
demonstrate good performance of the area predictors
and the PMSE estimators.
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REMARK 7. The World Bank (WB) is currently
using a different method, under which all the popula-
tion values y;; are simulated from model (5.3) with es-
timated parameters (including for sampled units), but
with random effects for design clusters, which may be
different from the small areas. As discussed and il-
lustrated by Molina and Rao (2010), the use of this
procedure means that all the areas are practically con-
sidered as nonsampled, and the resulting predictors of
the means Fy; in (6.41) are in fact synthetic predic-
tors since the random effects and the area means of the
residuals cancel out over the L simulated populations.
Simulation results in Molina and Rao (2010) show that
the WB method produces predictors with much larger
PMSE than the PMSE of the EBP predictors proposed
by them.

7. SAE UNDER INFORMATIVE SAMPLING AND
NONRESPONSE

All the studies reviewed in this paper assume, at least
implicitly, that the selection of areas that are sampled
and the sampling designs within the selected areas are
noninformative, implying that the model assumed for
the population values applies also to the sample data
with no sampling bias. This, however, may not be the
case, and as illustrated in the literature, ignoring the ef-
fects of informative sampling may bias the inference
quite severely. A similar problem is not missing at ran-
dom (NMAR) nonresponse under which the response
probabilities depend on the missing data, which again
can bias the predictions if not accounted for properly.
These problems received attention under both the fre-
quentist and the Bayesian approaches.

Pfeffermann and Sverchkov (2007) consider the
problem of informative sampling of areas and within
the areas. The basic idea in this article is to fit a sam-
ple model to the observed data and then exploit the
relationship between the sample model, the population
model and the sample-complement model (the model
holding for nonsampled units) in order to obtain unbi-
ased predictors for the means in sampled and nonsam-
pled areas.

Consider a two-stage sampling design by which m
out of M areas are selected in the first stage with prob-
abilities 7; = Pr(i € s), and n; out of N; units are
sampled from the ith selected area with probabilities
mjii =Pr(j € s;|i €s). Denote by I; and I;; the sam-
ple indicator variables for the two stages of sampling
and by w; = 1/m; and w;; = 1/m); the first and sec-
ond stage sampling weights. Suppose that the first level

area random effects {u1, ..., up} are generated inde-
pendently from a distribution with p.d.f. f,(u;), and
that for given u; the second level values {y;1, ..., yin;}
are generated independently from a distribution with
p.d.f. f,(yijlxij, u;). The conditional first-level sam-
ple p.d.f. of u;, that is, the p.d.f. of u; for area i € s
is

def

fs) = filli =1

(7.1) = Pr(l; = u;) fp(ui)/ Pr(l; = 1)

= Eg(w;) fpui)/Es(w;ilu;).

The conditional first-level sample-complement p.d.f.
of u;, that is, the p.d.f. for areai ¢ s is

def

) Jei) = f(ui|l; =0)
= Pr(1; =Olu;) fp(u;)/ Pr(1; = 0).

(7.2

Note that the population, sample and sample-comple-
ment p.d.f.s are the same if Pr(/; = 1|u;) =Pr(l; = 1),
in which case the area selection is noninformative.
Similar relationships hold between the sample p.d.f.,
population p.d.f. and sample-complement p.d.f. of the
outcomes y;; within the selected areas, for given values
of the random effects.

Pfeffermann and Sverchkov (2007) illustrate their
approach by assuming that the sample model is the
unit-level model (5.3) with normal random effects and
residuals, and that the sampling weights within the se-
lected areas have sample model expectations,

Egi(wjjilxij, yij, ui, I = 1)
(7.3) = Esi(wj)ilxij, yij, Ii = 1)
= k; exp(a'x;j + byij),

and a and b are fixed constants. No model is assumed
for the relationship between the area selection proba-
bilities and the area means. The authors show that un-
der this model and for given parameters {’, b, auz, 082},
the true mean Y; in sampled area i can be predicted as

where k; = Ni(ni)‘lZyileXp(—a’xij — byij)/Ni,

Yi = Ep(YilDSa i =1)

1 ~ _
(7.4) = ﬁ{(Ni —n)bi +ni[Ji + (X; — %)’ B]

i
+ (N; —ni)bo},
where Dj represents all the known data and éi =1u; +

XiB is the optimal predictor of the sample model mean
6 =X l/ B + u;. The last term in (7.4) corrects for the
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sample selection effect, that is, the difference between
the sample-complement expectation and the sample
expectation in sampled areas.

The mean Y} of area k not in the sample can be pre-
dicted as

E, (Y| Dy, It = 0)

(7.5) = X|.B + ba}?
+ [Z(w,- = Dty [ 3 (w; — 1)].

The last term of (7.5) corrects for the fact that the mean
of the random effects in areas outside the sample is
different from zero under informative selection of the
areas. The authors develop test procedures for testing
the informativeness of the sample selection and a boot-
strap procedure for estimating the PMSE of the empir-
ical predictors obtained by substituting the unknown
model parameters by sample estimates. The method
is applied for predicting the mean body mass index
(BMI) in counties of the USA using data from the
third national health and nutrition examination survey
(NHANES I1D).

Malec, Davis and Cao (1999, hereafter MDC) and
Nandram and Choi (2010, hereafter NC) likewise con-
sider the estimation of county level BMI statistics from
NHANES III, with both articles accounting for within-
area informative sampling in a similar manner, and the
latter article accounting, in addition, for informative
nonresponse. Another difference between the two arti-
cles is that MDC consider binary population outcomes
(overweight/normal status), with logistic probabilities
that contain fixed and multivariate random area ef-
fects, whereas NC assume a log-normal distribution for
the continuous BMI measurement, with linear spline
regressions containing fixed and random area effects
defining the means. In order to account for sampling ef-
fects, both articles assume that each sampled unit rep-
resents K — 1 other units (not sampled) within a spec-
ified group (cluster) of units, with unit j selected with
probability 71(*].) that can take one of the G observed
values n;, g=1,...,G in that group. The groups
are defined by county and demographic characteristics.
Specifically, let §; = 1 (0) if unit j is sampled (not
sampled). The MDC model for a given group assumes

51K, rr(*j) nd Bernoulli(né‘j)), j=1,...,K;

Pr(m(y =105y, ¥j = ¥) = Oy,
(7.6) y=0,1;¢g=1,...,G,

Pr(y; =ylp)=p* (1 —p)'77,
O0<p=<LpK)=1.
It follows that
P(S;=1.yj=y. 705 =7} (8 =010, p)
p’—pt=
Zg:] T[g Zyzoegypy(l _P) Y

MDC show that the MLE of ,y is 0gy = (tgy/7%)/

chl(fg*y /7;,) where Ty is the sample frequency
of 7, in the group for units with overweight status y.
They plug the estimate into (7.7) and then into the full
likelihood that includes also the distribution of random
effects contained in a logit model for p.

NC generalize model (7.6) by allowing the outcome
to be continuous, assuming Pr(n(*j) = n2,‘|9g(y), y) =
0g(y), —00 <y < 00 where 0y(y) = 0y for a;—1 <
y < aj, and replacing the Bernoulli distribution for y
by a continuous p.d.f. To account for informative non-
response, the authors assume that the response proba-
bilities p;; are logistic with logit(p;;) = voi + v1;Vij,
where {(vg;, v1;)} is another set of random effects hav-
ing a bivariate normal distribution.

(1.7)

REMARK 8. As the notation suggests, both MDC
and NC use the full Bayesian approach with appropri-
ate prior distributions to obtain the small area predic-
tors under the respective models. See the articles for
details. The authors do not consider informative sam-
pling of the areas.

I conclude this section by describing an article by
Zhang (2009), which uses a very different model from
the other models considered in the present paper. The
article considers the estimation of small area compo-
sitions in the presence of NMAR nonresponse. Com-
positions are the counts or proportions in categories
of a categorical variable such as types of households,
and estimates of the compositions are required for ev-
ery area. Zhang deals with this problem by assuming
that the generalized SPREE model (GSPREE) devel-
oped in Zhang and Chambers (2004) holds for the com-
plete data (with no missingness). In order to account
for the nonresponse, Zhang assumes that the proba-
bility to respond is logistic, with a fixed composition
effect £, and a random area effect b, as the explana-
tory variables. (Same probability for all the units in a
given cell defined by area x category.) The model de-
pends therefore on two sets of random effects, one set
for the underlying complete data, with a vector of cor-
related multivariate normal composition effects in each
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area defining the GSPREE model, and the other set for
the response probabilities. Zhang (2009) estimates the
small area compositions under the extended GSPREE
using the EM algorithm, and estimates the PMSE un-
der the model, accounting for the fixed and random ef-
fects estimation. The approach is applied to a real data
set from Norway.

8. MODEL SELECTION AND CHECKING

Model selection and checking is one of the major
problems in SAE because the models usually contain
unobservable random effects, with limited or no in-
formation on their distribution. Notice that classical
model selection criteria such as the AIC do not ap-
ply straightforwardly to mixed models because they
use the likelihood, which requires specification of the
distribution of the random effects, and because of dif-
ficulties in determining the effective number of param-
eters. In what follows I review several recent studies
devoted to model selection and validation from both a
frequentist and Bayesian perspective. These should be
considered as supplements to “ordinary” checking pro-
cedures based on graphical displays, significance test-
ing, sensitivity of the computed predictors and their
PMSEs to the choice of the likelihood and the prior
distributions, and comparison of the model-dependent
predictors with the corresponding model free direct es-
timators in sampled areas. Such model evaluation pro-
cedures can be found in almost every article on SAE;
see, for example, Mohadjer et al. (2007) and Nandram
and Choi (2010) for recent diverse applications.

Vaida and Blanchard (2005) study the use of the AIC
assuming model (6.1) with Var(u;) = Q, Var(e;) =
o2I,,. The authors distinguish between inference on
the marginal model with focus on the fixed effects,
and inference on the model operating in the small ar-
eas with the associated vector random effects u;. For
the first case, the model can be written as a regression
model with correlated residuals: y; = X; 8 + v;; v; =
Ziuj +e¢;~N(0,Z,0Z + o21,,). For this case, the
classical (marginal) AIC, mAIC = —2log g(y| ‘&MLE) +
2P applies, where y is the vector of all the obser-
vations, g(y|1}MLE) is the marginal likelihood evalu-
ated at the MLE of v/, the vector containing 8, o> and
the unknown elements of Q and P =dim(y). Gurka
(2006) validates by simulations that one can use also
in this case the mAIC with &REML, despite the use of
different fixed effects design matrices under different
models.

For the case where the focus is the model operating
at the small areas, Vaida and Blanchard (2005) propose
using a conditional AIC, which, for a given likelihood
gy, u), is defined as

CAIC = —2log g(y¥mrE, ) +2P*;

(8.1)
P nn—k—1p+1)+nk+1)
B n—ky(n—k—2) ’

where k is the number of covariates, it = E (u| 1/A/MLE, y)
is the EBP of u and p = tr(H) with H defining the
matrix mapping the observed vector y into the fitted
vector § = XB + Zii, such that § = Hy. Notice that
under this definition of the cAIC, the u;s are additional
parameters. A conditional AIC for the case where
is estimated by REML is also developed. The article
contains theoretical results on properties of the cAIC
and empirical results illustrating its good performance.
The use of (8.1) is not restricted to mixed linear models
with normal distributions of the error terms, and it can
be used to select the design matrices X; and Z;.

Pan and Lin (2005) propose alternative goodness-
of-fit test statistics for the GLMM, based on esti-
mated cumulative sums of residuals. Utilizing the no-
tation for model (6.1), the GLMM assumes the ex-
istence of a one-to-one link function g(-), satisfying
glE(yijlu))] = xgj,B + zgju,-, where x;; and z;; are
the rows of the matrices X; and Z; corresponding to
unit (i, j) € s;. The unconditional predictor of y;; is
mij(¥) = E(yij) = Eu,lg~" (x};B + 7;u;)], which is
estimated by m;; (1/}). The estimated model residuals
are therefore e;; = y;; — m;; (1&), and they are com-
puted by numerical integration. The authors consider
two statistics based on the distributions of aggregates
of the residuals,

m n;
W) =n""23"3" I(xij < x)eij.

i=1j=1

m n;
W, (r) =n_1/2221(ﬁ11j <reij,

i=1j=1

(8.2)

where I(x;; < x) = Hf:l I(x;j; < x;). In particu-
lar, for testing the functional form of the /th covari-
ate, one may consider the process Wj(x) = n~1/2 .

o Z'}":] I(x;j1 < x)e;j, which is a special case
of W (x). The authors develop a simple approximation
for the null distribution of W;(x) and use it for visual
inspection by plotting the observed values against real-
izations from the null distributions for different values
of x, and for a formal test defined by the supremum
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S; = sup, |W;(x)|. The statistic S; is used for testing
the functional form of the deterministic part of the
model. To test the appropriateness of the link func-
tion, the authors follow similar steps, using the statis-
tics W, (r) for visual inspection and S, = sup, |[W, (r)|
for formal testing. As discussed in the article, although
different tests are proposed for different parts of the
model, each test actually checks the entire model, in-
cluding the assumptions regarding the random compo-
nents.

The goodness-of-fit tests considered so far assume
a given structure of the random effects, but are ran-
dom effects actually needed in a SAE model ap-
plied to a given data set? Datta, Hall and Mandal
(2011) show that if in fact the random effects are
not needed and are removed from the model, it im-
proves the precision of point and interval estimators.
The authors assume the availability of k covariates

= (x1iy...,Xki), i =1,...,m (viewed random for
the theoretical developments) and weighted area-level
means 3; = Y7L wijyij; ;L wij = 1 of the out-
come with known weights and known sums W;. =
Z'}’ lwU, =2,...,q9, q < k. The weights w;; are
used for generating new area level means from boot-
strap samples, and the sums W;, are used for estimating
model parameters by constructing appropriate estimat-
ing equations.

In order to test for the presence of random effects,
the authors propose the test statistic

8.3) T= Z[lekz(xl,lﬁ)] [5i — M (xi )T,

i=1

where A (X;, 1&), [ =1, 2 define the conditional mean
and residual variance of y|x under the reduced model
of no random effects, with estimated (remaining) pa-
rameters 1& Critical values of the distribution of 7' un-
der the null hypothesis of no random effects are ob-
tained by generating bootstrap samples with new out-
comes from the conditional distribution of y|x; ¥ for
given (original) covariates and weights, and computing
the test statistic for each sample. Empirical results indi-
cate good powers of the proposed procedure and reduc-
tion in PMSE when the null hypothesis is not rejected.
The procedure is applicable to very general models.
Jiang et al. (2008) propose a class of strategies for
mixed model selection called fence methods, which ap-
ply to LMM and GLMM. The strategies involve a pro-
cedure to isolate a subgroup of correct models, and
then select the optimal model from this subgroup ac-
cording to some criterion. Let Oy = Oy (y, ¥p) de-
fine a measure of “lack of fit” of a candidate model M

with parameters 1,7, such that E(Qjs) is minimized
when M is the true model. Examples of Qs are mi-
nus the loglikelihood or the residual sum of squares.
Define Oy = Qu(y, ¥m) = infy,, cw,, Om(y, Ym),
and let M € M be such that 0y = minyem QM where
M represents the set of candidate models. It is shown
that under certain conditions, M is a correct model
with probability tending to one. In practice, there can
be more than one correct model and a second step of
the proposed procedure is to select an optimal model
among models that are within a fence around Q ;. Ex-
amples of optimality criteria are minimal dimension
or minimum PMSE. The fence is defined as Q M =<
Q Tt C"6M, 7> Where 6M7 17 18 an estimate of the stan-

dard deviation of Q M— Q 47> and ¢, 1s a tuning coeffi-
cient that increases with the total sample size. Jiang et
al. (2008) discuss alternative ways of computing & M.t
and propose an adaptive procedure for choosing the
tuning coefficient. The procedure consists of paramet-
ric bootstrapping new samples from the “full” model,
computing for every candidate model M € M the em-
pirical proportion p*(M, ¢,) that it is selected by the
fence method with a given c¢,, computing p*(c,;) =
maxyem p*(M, ¢;) and choosing ¢, that maximizes
pr(cn).

Jiang et al. (2008) apply the method for selecting the
covariates in the area-level model (5.1) and the unit
level model (5.3). Jiang, Nguyen and Rao (2010) apply
the method for selecting nonparametric P-spline mod-
els of the form (6.31). Selecting a model in this case
requires selecting the degree of the spline p, the num-
ber of knots K and a smoothing parameter A used for
estimation of the model parameters.

So far I have considered model selection and diag-
nostic procedures under the frequentist approach, but
sound model checking is obviously required also un-
der the Bayesian approach. Although this article is con-
cerned with new developments, it is worth starting with
a simulation procedure proposed by Dey et al. (1998)
since it highlights a possible advantage of the Bayesian
approach in model checking. Let d define a discrep-
ancy measure between the assumed model and the data,
such as minus the first-stage likelihood of a hierarchi-
cal model. Denote by yqps the observed data and as-
sume an informative prior. The procedure consists of
generating a large number R of new data sets yobs, r=
1,..., R under the presumed model via Monte Carlo
simulations and comparing the posterior distribution of
d|yobs With the distributions of d| y(r) Specifically, for
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(r)

each posterior distribution f (d|y

tor of quantiles q(’) = qérl), e, qéfQ) (say a1 = 0.025,
..., g = 0.975), compute g = Zle g /R and the
Euclidean distances between ¢ and g, and check
whether the distance of the quantiles of the distribu-
tion of d|yobs from ¢ is smaller or larger than, say, the
95th percentile of the R distances.

) compute the vec-

REMARK 9. The procedure is computationally in-
tensive, and it requires informative priors to allow gen-
erating new data sets, but it is very flexible in terms of
the models tested and the discrepancy measure(s) used.
A frequentist analog via parametric bootstrap would re-
quire that the distribution of d does not depend on the
model parameters, or that the sample sizes are suffi-
ciently large to permit ignoring parameter estimation.

Bayarri and Castellanos (2007) investigate Bayesian
methods for objective model checking, which requires
noninformative priors for the parameters . The au-
thors assume a given diagnostic statistic 7' (not a func-
tion of ¥) and consider two “surprise measures” of
conflict between the observed data and the presumed
model; the p-value Prh(')[T(y) >t (Yobs)], and the rel-
ative predictive surprise RPS = h[# (yobs)]/ sup,[A(2)],
where h(t) is some specified distribution. Denote
by 6 the small area parameters. Writing f(y) =
[ f(y|0)g(6)d0, it is clear that defining A () requires
integrating 6 out of f(y|@) with respect to some distri-
bution for 6. The prior g(0) cannot be used since it is
also improper and the authors consider three alternative
solutions: 1. Set the model hyper-parameters 1 at their
estimated value and integrate with respect to g(0|1ﬁ).
This is basically an application of empirical Bayes and
REB(1) = [ £(¢16)g(6|) db. 2. Integrate 6 out by use
of the posterior distribution g(6|yobs). 3. Noticing that
under the above two solutions, the data are used both
for obtaining a proper distribution for 6 and for com-
puting the statistic 7 (yobs), the third solution removes
the information in # (yobs) from yeps by using the con-
ditional likelihood f (yobs|fobs, @). The resulting poste-
rior distribution for 0 is then used to obtain the distri-
bution A (t), similarly to the previous cases. The spec-
ified distribution %(¢) under all three cases may not
have a closed form, in which case it is approximated
by MCMC simulations. See the article for details and
for illustrations of the approach showing, in general,
the best performance under the third solution.

Yan and Sedransk (2007) consider a specific model
inadequacy, namely, fitting models that do not ac-
count for all the hierarchical structure present, and, like

the last article, restrict to noninformative priors. The
authors consider two testing procedures, both based
on the predictive posterior distribution f(¥|yobs) =
S SO p(¥lyobs) i, where § and yobs are assumed
to be independent given 1. The first procedure uses the
posterior predictive p-values, p;;j = Pr(y;j < yij|yobs)-
The second procedure uses the p-values of a diagnostic
statistic 7 (-) or a discrepancy measure d(-) (see above),
for example, the p-values Pr[#(y) > ¢ (Vobs)|Vobs]- The
authors analyze the simple case of a balanced sam-

ple where the fitted model is y;j|u, ¢ 1k N(u, @),
i=1,...,m, j=1,...,n9. It is shown that if the
model is correct, then as N = ngm — oo the distribu-
tions of yops and y|yobs are the same, and the p-values
pij are distributed uniformly, as revealed in a Q-Q

plot. On the other hand, if the true model is the two-
level model yi;6:.do ™ N(6;. o). 6ilno. Ao =

N (o, Ag), then as N — oo the mean and variance
of the two models still agree, but not the covariances,
so that it is the ensemble of the p;js or their Q-Q
plot against the uniform distribution, but not individ-
ual p-values, that permits distinguishing the two mod-
els. This, however, is only effective if the intra-cluster
correlation is sufficiently high, and the number of ar-
eas sufficiently small. Similar conclusions hold when
comparing a two-stage hierarchical model with a three-
stage model, and when applying the second testing
procedure with the classical ANOVA F test statis-
tic as the diagnostic statistic, that is, when computing
Pr[F(y) = F (Yobs)|Yobs]-

Yan and Sedransk (2010) consider a third procedure
for detecting a missing hierarchical structure, which

uses Q—Q plots of the predictive standardized residuals
P Yij —E(3ij| Yobs)

YT [Var(ijyons) 112
bution. The conditions under which the procedure per-

forms well in detecting a misspecified hierarchy are the
same as above.

Finally, I like to mention two articles that in a certain
way bridge between the frequentist and Bayesian ap-
proaches for model selection. The idea here is to set up
a noninformative prior under the Bayesian approach so
that the resulting posterior small area predictors have
acceptable properties under the frequentist approach.
This provides frequentist validation to the Bayesian
methodology, and the analyst may then take advantage
of the flexibility of Bayesian inference by drawing ob-
servations from the posterior distribution of the area
parameters. Both articles consider the area-level model
(5.1), but the idea applies to other models.

against the standard normal distri-
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Datta, Rao and Smith (2005) assume a flat prior
for B and seek a prior p(auz) satisfying E(Viup) =
PMSE[0; (62gp)] + o(m™!), where Viup =
Var(0;|yobs) 1S the posterior variance of 6;, and
PMSE[éi (&iRE)] is the frequentist PMSE of the
EBLUP (or EB) when estimating %2 by REML. The
expectation and PMSE are computed under the joint
distribution of 8 and y under the model. The unique
prior satisfying this requirement is shown to be

m
B4)  pilo) o (op; +0)* D [1/(0p; + o).
j=l1
The prior is area specific in the sense that different pri-
ors are required for different areas.

Ganesh and Lahiri (2008) extend the condition of
Datta, Rao and Smith (2005) to a weighted combina-
tion of the posterior expectations and the PMSEs, thus
obtaining a single prior for all the areas. The authors
seek a prior which for a given set of weights {w;} sat-
isfies

Y wi{E(V;up) — PMSE[{; (6,7 gp)]}
i=1

=o(1/m).

(8.5)
The prior p(cruz) satisfying (8.5) is shown to be

plo) Y [1/(0h; + )]
i=1

/Zwi[aéi/(aéi+ag42)]2-
i=1

By appropriate choice of the weights {w;}, prior
(8.6) contains as special cases the flat prior p(ouz) =
U (0, 00), the prior developed by Datta, Rao and Smith
(2005) for a given area and the average moment match-
ing prior (obtained by setting w; = 1).

(8.6)

9. CONCLUDING REMARKS

In this article I reviewed many new important devel-
opments in design- and model-based SAE. These de-
velopments give analysts much richer and more versa-
tile tools for their applications. Which approach should
one follow in practice? Model-based predictors are
generally more accurate and, as discussed in Sec-
tion 4.3, the models permit predictions for nonsampled
areas for which no design-based theory exists. With ev-
erything else that can be done under a model, much of
which reviewed in Sections 6—8, it seems to me that the

choice between the two approaches is clear-cut, unless
the sample sizes in all the areas are sufficiently large,
although even in this case models have much more to
offer like, for example, in the case of measurement er-
rors or NMAR nonresponse. This is not to say that
design-based estimators have no role in model-based
prediction. To begin with, the design-based estimators
are often the input data for the model, as under the area-
level model. Design-based estimators can be used for
assessing the model-based predictors or for calibrat-
ing them via benchmarking, and the sampling weights
play an important role when accounting for informative
sampling.

Next is the question of whether to follow the Bayes-
ian approach (BA) or the frequentist approach (FA).
I have to admit that before starting this extensive re-
view I was very much in favor of FA, but the BA has
some clear advantages. This is because one can gen-
erate as many observations as desired from the poste-
rior distributions of the area parameters, and hence it
is much more flexible in the kind of models and infer-
ence possibilities that it can handle, for example, when
the linking model does not match the conditional sam-
pling model (Remark 2). Note also that the computa-
tion of PMSE (Bayes risk) or credibility intervals under
BA does not rely on asymptotic properties. A common
criticism of BA is that it requires specification of prior
distributions but as emphasized in Section 8, Bayesian
models with proper, or improper priors can be tested in
a variety of ways. Another criticism is that the appli-
cation of BA is often very computation intensive and
requires expert knowledge and computing skills even
with modern available software. While this criticism
may be correct (notably in my experience), the use of
FA methods when fitting the GLMM is also very com-
putation intensive and requires similar skills. Saying
all this, it is quite obvious to me that the use of FA
will continue to be dominant for many years to come
because, except for few exceptions, official statistical
bureaus are very reluctant to use Bayesian methods.

Where do we go from here? Research on SAE con-
tinues all over the world, both in terms of new theo-
ries and in applications to new intriguing problems, and
I hope that this review will contribute to this research.
The new developments that I have reviewed are gener-
ally either under BA or FA, and one possible direction
that I hope to see is to incorporate the new develop-
ments under one approach into the other. For example,
use the EL approach under FA, use spline regressions
under BA, account for NMAR nonresponse in FA or
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produce poverty mapping with BA. Some of these ex-
tensions will be simple; other may require more exten-
sive research, and some may not be feasible, but this
will make it easier for analysts to choose between the
two approaches.
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