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Sparse Estimation by Exponential
Weighting
Philippe Rigollet and Alexandre B. Tsybakov

Abstract. Consider a regression model with fixed design and Gaussian
noise where the regression function can potentially be well approximated
by a function that admits a sparse representation in a given dictionary. This
paper resorts to exponential weights to exploit this underlying sparsity by
implementing the principle of sparsity pattern aggregation. This model se-
lection take on sparse estimation allows us to derive sparsity oracle inequali-
ties in several popular frameworks, including ordinary sparsity, fused sparsity
and group sparsity. One striking aspect of these theoretical results is that they
hold under no condition in the dictionary. Moreover, we describe an efficient
implementation of the sparsity pattern aggregation principle that compares
favorably to state-of-the-art procedures on some basic numerical examples.
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sparsity, fused sparsity, group sparsity, sparsity oracle inequalities, sparsity
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1. INTRODUCTION

Since the 1990s, the idea of exponential weighting
has been successfully used in a variety of statistical
problems. In this paper, we review several properties
of estimators based on exponential weighting with a
particular emphasis on how they can be used to con-
struct optimal and computationally efficient procedures
for high-dimensional regression under the sparsity sce-
nario.

Most of the work on exponential weighting deals
with a regression learning problem. Some of the re-
sults can be extended to other statistical models such as
density estimation or classification; cf. Section 6. For
the sake of brevity and to make the presentation more
transparent, we focus here on the following framework
considered in Rigollet and Tsybakov (2011). Let Z =
{(x1, Y1), . . . , (xn, Yn)} be a collection of independent
random pairs such that (xi, Yi) ∈ X × R, where X is

Philippe Rigollet is Assistant Professor, Department of
Operations Research and Financial Engineering, Princeton
University, Princeton, New Jersey 08544, USA (e-mail:
rigollet@princeton.edu). Alexandre B. Tsybakov is
Professor and Head, Laboratoire de Statistique,
CREST-ENSAE, 3, av. Pierre Larousse, F-92240 Malakoff
Cedex, France (e-mail: alexandre.tsybakov@ensae.fr).

an arbitrary set. Assume the regression model

Yi = η(xi) + ξi, i = 1, . . . , n,(1.1)

where η : X → R is the unknown regression function,
and the errors ξi are independent Gaussian N (0, σ 2).
The covariates are deterministic elements x1, . . . , xn

of X . For any function f : X → R, we define a semi-
norm ‖ · ‖ by1

‖f ‖2 = 1

n

n∑
i=1

f 2(xi).

We adopt the following learning setup. Let H =
{f1, . . . , fM}, be a dictionary of M ≥ 1 given func-
tions. For example, fj can be some basis functions or
some preliminary estimators of f constructed from an-
other sample that we consider as frozen; see Section 4
for more details. Our goal is to approximate the re-
gression function η by a linear combination fθ (x) =∑M

j=1 θjfj (x) with weights θ = (θ1, . . . , θM), where

1Without loss of generality, in what follows we will associate
all the functions with vectors in R

n since only the values of func-
tions at points x1, . . . , xn will appear in the risk. So, ‖ · ‖ will be
indeed a norm and, with no ambiguity, we will use other related no-
tation such as ‖Y −f ‖ where Y is a vector in R

n with components
Y1, . . . , Yn.
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possibly M � n. The performance of a given estimator
f̂ of a function η is measured in terms of its averaged
squared error

R(f̂ ) = ‖f̂ − η‖2 := 1

n

n∑
i=1

[f̂ (xi) − η(xi)]2.

Let � be a given subset of R
M . In the aggregation

problem, we would ideally wish to find an aggregated
estimator f̂ whose risk R(f̂ ) is as close as possible in
a probabilistic sense to the minimum risk infθ∈� R(fθ ).
Namely, one can construct estimators f̂ satisfying the
following property:

ER(f̂ ) ≤ C inf
θ∈�

R(fθ ) + δn,M(�),(1.2)

where δn,M(�) is a small remainder term characteriz-
ing the performance of the given aggregate f̂ and the
complexity of the set �, C ≥ 1 is a constant, and E

denotes the expectation. Bounds of the form (1.2) are
called oracle inequalities. In some cases, even more
general results are available. They have the form

ER(f̂ ) ≤ C inf
θ∈�′{R(fθ ) + �n,M(θ)},(1.3)

where �n,M is a remainder term that characterizes
the performance of the given aggregate f̂ and the
complexity of the parameter θ ∈ �′ ⊆ R

M (often
�′ = R

M ). To distinguish from (1.2), we will call
bounds of the form (1.3) the balanced oracle inequal-
ities. If � ⊆ �′, then (1.2) is a direct consequence of
(1.3) with δn,M(�) = C supθ∈� �n,M(θ).

In this paper, we mainly focus on the case where the
complexity of a vector θ is measured as the number
of its nonzero coefficients |θ |0. In this case, inequali-
ties of the form (1.3) are sometimes called sparsity or-
acle inequalities. Other measures of complexity, also
related to sparsity are considered in Section 5.2. As in-
dicated by the notation and illustrated below, the re-
mainder term �n,M(θ) depends explicitly on the size
M of the dictionary and the sample size n. It reflects
the interplay between these two fundamental parame-
ters and also the complexity of θ .

When the linear model is misspecified, that is,
where there is no θ ∈ � such that η = fθ on the set
{x1, . . . , xn}, the minimum risk satisfies
infθ∈� R(fθ ) > 0 leading to a systematic bias term.
Since this term is unavoidable, we wish to make its
contribution as small as possible, and it is therefore
important to obtain a leading constant C = 1. Many
oracle inequalities with leading constant C > 1 can be
found in the literature for related problems. However,

in most of the papers, the set � = �n depends on the
sample size n in such a way that infθ∈�n R(fθ ) tends to
0 as n goes to infinity, under additional regularity as-
sumptions. In this paper, we are interested in the case
where � is fixed. For this reason, we consider here
only oracle inequalities with leading constant C = 1
(called sharp oracle inequalities). Because they hold
for finite M and n, these are truly finite sample results.

One salient feature of the oracle approach as opposed
to standard statistical reasoning, is that it does not rely
on an underlying model. Indeed, the goal is not to esti-
mate the parameters of an underlying “true” model but
rather to construct an estimator that mimics, in terms
of an appropriate oracle inequality, the performance of
the best model in a given class, whether this model is
true or not. From a statistical viewpoint, this difference
is significant since performance cannot be evaluated in
terms of parameters. Indeed, there is no true parameter.
However, we can still compare the risk of the estima-
tor with the optimum value. Oracle inequalities offer a
tool for such a comparison.

A particular choice of � corresponds to the problem
of model selection aggregation. Let � = �MC be the
set of M canonical basis vectors of R

M . Then the set
of linear combinations {fθ , θ ∈ �MC} coincides with
the initial dictionary of functions H = {f1, . . . , fM},
so that the goal of model selection is to mimic the
best function in the dictionary in the sense of the risk
measure R(·). This can be done in different ways,
leading to different rates δn,M(�MC); however one is
mostly interested in the methods that attain the rate
δ∗
n,M(�MC) � (logM)/n which is known to be min-

imax optimal (see Tsybakov, 2003; Bunea, Tsybakov
and Wegkamp, 2007; Rigollet, 2012). The first sharp
oracle inequalities with this rate for a setting different
from the one considered here were obtained by Catoni
(1999) (see also Catoni, 2004), who used the pro-
gressive mixture method based on exponential weight-
ing. Other methods of model selection for aggrega-
tion consist in selecting a function in the dictionary
by minimizing a (penalized) empirical risk (see, e.g.,
Nemirovski, 2000; Wegkamp, 2003; Tsybakov, 2003;
Lecué, 2012). One of the major novelties offered by ex-
ponential weighting is to combine (average) the func-
tions in the dictionary using a convex combination, and
not simply to select one of them. From the theoretical
point of view, selection of one of the functions has a
fundamental drawback since it does not attain the opti-
mal rate (logM)/n; cf. Section 2.

The rest of the paper is organized as follows. In the
next section, we discuss some connections between the
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exponential weighting schemes and penalized empiri-
cal risk minimization. In Section 3, we present the first
oracle inequalities that demonstrate how exponential
weighting can be used to efficiently combine functions
in a dictionary. The results of Section 3 are then ex-
tended to the case where one wishes to combine not
deterministic functions, but estimators. Oracle inequal-
ities for this problem are discussed in Section 4. They
are based on the work of Leung and Barron (2006)
and Dalalyan and Salmon (2011). Section 5 shows how
these results can be adapted to deal with sparsity. We
introduce the principle of sparsity pattern aggregation,
and we derive sparsity oracle inequalities in several
popular frameworks including ordinary sparsity, fused
sparsity and group sparsity. Finally, we describe an ef-
ficient implementation of the sparsity pattern aggrega-
tion principle and compare its performance to state-of-
the-art procedures on some basic numerical examples.

2. EXPONENTIAL WEIGHTING AND PENALIZED
RISK MINIMIZATION

2.1 Suboptimality of Selectors

A natural candidate to solve the problem of model
selection introduced in the previous section is an em-
pirical risk minimizer. Define the empirical risk by

R̂n(f ) = 1

n

n∑
i=1

[Yi − f (xi)]2 = ‖Y − f ‖2

and the empirical risk minimizer by

f̂ ERM = argmin
f ∈H

R̂n(f ),(2.1)

where ties are broken arbitrarily. However, while this
procedure satisfies an exact oracle inequality, it fails
to exhibit the optimal rate of order δ∗

n,M(�MC) �
(logM)/n. The following result shows that this defect
is intrinsic not only to empirical risk minimization but
also to any method that selects only one function in the
dictionary H. This includes methods of model selec-
tion by penalized empirical risk minimization. We call
estimators Ŝn, taking values in H the selectors.

THEOREM 2.1. Assume that ‖fj‖ ≤ 1 for any
fj ∈ H. Any empirical risk minimizer f̂ ERM defined
in (2.1) satisfies the following oracle inequality:

ER(f̂ ERM) ≤ min
1≤j≤M

R(fj ) + 4σ

√
2 logM

n
.(2.2)

Moreover, assume that

(σ ∨ 1)
√

(logM)/n ≤ C0(2.3)

for 0 < C0 < 1 small enough. Then, there exists a
dictionary H = {f1, . . . , fM} with ‖fj‖ ≤ 1, j =
1, . . . ,M, such that the following holds. For any se-
lector Ŝn, and in particular, for any selector based on
penalized empirical risk minimization, there exists a
regression function η such that ‖η‖ ≤ 1 and

ER(Ŝn) ≥ min
1≤j≤M

R(fj ) + C∗σ
√

logM

n
(2.4)

for some positive constant C∗.

PROOF. See the Appendix. �
It follows from the lower bound (2.4) that selecting

one of the functions in a finite dictionary H to solve
the problem of model selection is suboptimal in the
sense that it exhibits a too large remainder term, of the
order

√
(logM)/n. It turns out that we can do better

if we take a mixture, that is, a convex combination of
the functions in H. We will see in Section 3 [cf. (3.4)]
that under a particular choice of weights in this con-
vex combination, namely the exponential weights, one
can achieve oracle inequalities with much better rate
(logM)/n. This rate is known to be optimal in a mini-
max sense in several regression setups, including the
present one (see Tsybakov, 2003; Bunea, Tsybakov
and Wegkamp, 2007; Rigollet, 2012).

2.2 Exponential Weighting as a Penalized
Procedure

Penalized empirical risk minimization for model se-
lection has received a lot of attention in the litera-
ture, and many choices for the penalty can be con-
sidered (see, e.g., Birgé and Massart, 2001; Bartlett,
Boucheron and Lugosi, 2002; Wegkamp, 2003; Lugosi
and Wegkamp, 2004; Bunea, Tsybakov and Wegkamp,
2007) to obtain oracle inequalities with the optimal or
near optimal remainder term. However, all these in-
equalities exhibit a constant C > 1 in front of the lead-
ing term. This is not surprising as we have proved in
the previous section that it is impossible for selectors
to satisfy oracle inequalities like (1.2) that are both
sharp (i.e., with C = 1) and have the optimal remainder
term. To overcome this limitation of selectors, we look
for estimators obtained as convex combinations of the
functions in the dictionary.

The coefficients of convex combinations belong to
the flat simplex

	M :=
{
λ ∈ R

M :λj ≥ 0,

M∑
j=1

λj = 1

}
.
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Let us now examine a few ways to obtain potentially
good convex combinations. One candidate is a solution
of the following penalized empirical risk minimization
problem:

min
λ∈	M

{R̂n(fλ) + pen(λ)},

where pen(·) ≥ 0 is a penalty function. This choice
looks quite natural since it provides a proxy of the
right-hand side of the oracle inequality (1.3) where the
unknown risk R(·) is replaced by its empirical coun-
terpart R̂n(·). The minimum is taken over the simplex
	M because we are looking for a convex combination.
Clearly, the penalty pen(·) should be carefully cho-
sen and ideally should match the best remainder term
�n,M(·). Yet, this problem may be difficult to solve as
it involves a minimization over 	M . Instead, we pro-
pose to solve a simpler problem. Consider the follow-
ing linear upper bound on the empirical risk:

M∑
j=1

λj R̂n(fj ) ≥ R̂n(fλ) ∀λ ∈ 	M

and solve the following optimization problem:

min
λ∈	M

{
M∑

j=1

λj R̂n(fj ) + pen(λ)

}
.(2.5)

Note that if pen(λ) ≡ 0, the solution λ̂ of (2.5) is sim-
ply the empirical risk minimizer over the vertices of
the simplex so that f

λ̂
= f̂ ERM. In general, depending

on the penalty function, this problem may be more or
less difficult to solve. It turns out that the Kullback–
Leibler penalty leads to a particularly simple solution
and allows us to approximate the best remainder term
�n,M(·) thus adding great flexibility to the resulting
estimator.

Observe that vectors in 	M can be associated to
probability measures on {1, . . . ,M}. Let λ = (λ1,

. . . , λM) and π = (π1, . . . , πM) be two probability
measures on {1, . . . ,M}, and define the Kullback–
Leibler divergence between λ and π by

K(λ,π) =
M∑

j=1

λj log
(

λj

πj

)
≥ 0.

Here and in the sequel, we adopt the convention that
0 log 0 = 0, 0 log(a/0) = 0, and log(a/0) = ∞, for any
a > 0.

Exponential weights can be obtained as the solution
of the following minimization problem. Fix β > 0, a

prior π ∈ 	M , and define the vector λ̂π by

λ̂π = argmin
λ∈	M

{
M∑

j=1

λj R̂n(fj ) + β

n
K(λ,π)

}
.(2.6)

This constrained convex optimization problem has a
unique solution that can be expressed explicitly. In-
deed, it follows from the Karush–Kuhn–Tucker (KKT)
conditions that the components λ̂π

j of λ̂π satisfy

nR̂n(fj ) + β log
( λ̂π

j

πj

)
+ μ − δj = 0,(2.7)

j = 1, . . . ,M,

where μ,δ1, . . . , δM ≥ 0 are Lagrange multipliers, and

λ̂π
j ≥ 0, δj λ̂

π
j = 0,

M∑
j=1

λ̂π
j = 1.

Equation (2.7) together with the above constraints lead
to the following closed form solution:

λ̂π
j = exp(−nR̂n(fj )/β)πj∑M

k=1 exp(−nR̂n(fk)/β)πk

,(2.8)

j = 1, . . . ,M,

called the exponential weights. We see that one imme-
diate effect of penalizing by the Kullback–Leibler di-
vergence is that the solution of (2.6) is not a selector.
As a result, it achieves the desired effect of averaging
as opposed to selecting.

3. ORACLE INEQUALITIES

An aggregate is an estimator defined as a weighted
average of the functions in the dictionary H with some
data-dependent weights. We focus on the aggregate
with exponential weights,

f̂ π =
M∑

j=1

λ̂π
j fj ,

where λ̂π
j is given in (2.8). This estimator satisfies the

following oracle inequality.

THEOREM 3.1. The aggregate f̂ π with β ≥ 4σ 2

satisfies the following balanced oracle inequality

ER(f̂ π ) ≤ min
λ∈	M

{
M∑

j=1

λjR(fj ) + β

n
K(λ,π)

}
.(3.1)
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Comparing with (2.6) we see that λ̂π is the mini-
mizer of the unbiased estimator of the right-hand side
of (3.1). The proof of Theorem 3.1 can be found in the
papers of Dalalyan and Tsybakov (2007, 2008) con-
taining more general results. In particular, they apply to
non-Gaussian distributions of errors ξi and to exponen-
tial weights with a general (not necessarily discrete)
probability distribution π on R

M . Dalalyan and Tsy-
bakov (2007, 2008) show that the corresponding expo-
nentially weighted aggregate f̂ π∗ satisfies the following
bound:

ER(f̂ π∗ ) ≤ inf
p

{∫
R(fθ )p(dθ) + β

n
K(p,π)

}
,(3.2)

where the infimum is taken over all probability distri-
butions p on R

M , and K(p,π) denotes the Kullback–
Leibler divergence between the general probability
measures p and π . Bound (3.1) follows immediately
from (3.2) by taking p and π as discrete distributions.

A useful consequence of (3.1) can be obtained by re-
stricting the minimum on the right-hand side to the ver-
tices of the simplex 	M . These vertices are precisely
the vectors e(1), . . . , e(M) that form the canonical basis
of R

M so that
M∑

j=1

e
(k)
j R(fj ) = R(fk),

where e
(k)
j = δjk is the j th coordinate of e(k), with δjk

denoting the Kronecker delta. It yields

ER(f̂ π ) ≤ min
1≤j≤M

{
R(fj ) + β

n
log(π−1

j )

}
.(3.3)

Taking π to be the uniform distribution on {1, . . . ,M}
leads to the following oracle inequality:

ER(f̂ π ) ≤ min
1≤j≤M

R(fj ) + β logM

n
,(3.4)

that exhibits a remainder term of the optimal order
(logM)/n.

The role of the distribution π is to put a prior
weight on the functions in the dictionary. When there
is no preference, the uniform prior is a common
choice. However, we will see in Section 5 that choos-
ing nonuniform weights depending on suitable spar-
sity characteristics can be very useful. Moreover, this
methodology can be extended to many cases where one
wishes to learn with a prior. It is worth mentioning that
while the terminology is reminiscent of a Bayesian
setup, this paper deals only with a frequentist setting
(the risk is not averaged over the prior).

4. AGGREGATION OF ESTIMATORS

4.1 From Aggregation of Functions to Aggregation
of Estimators

Akin to the setting of the previous section, exponen-
tial weights were originally introduced to aggregate de-
terministic functions fj from a dictionary. These func-
tions can be chosen in essentially two ways. Either they
have good approximation properties such as an (over-
complete) basis of functions or they are constructed as
preliminary estimators using a hold-out sample. The
latter case corresponds to the problem of aggrega-
tion of estimators originally described in Nemirovski
(2000). The idea put forward by Nemirovski (2000)
is to obtain two independent samples from the ini-
tial one by randomization; estimators are constructed
from the first sample while the second is used to per-
form aggregation. To carry out the analysis of the ag-
gregation step, it is enough to work conditionally on
the first sample so that the problem reduces to aggre-
gation of deterministic functions. A limitation is that
Nemirovski’s randomization only applies to Gaussian
model with known variance. Nevertheless, this idea of
two-step procedures carries over to models with i.i.d.
observations where one can do direct sample splitting
(see, e.g., Yang, 2004; Rigollet and Tsybakov, 2007;
Lecué, 2007). Thus, in many cases aggregation of esti-
mators can be achieved by reduction to aggregation of
functions.

Along with this approach, one can aggregate esti-
mators using the same observations for both estima-
tion and aggregation. While for general estimators this
would clearly result in overfitting, the idea proved to
be successful for certain types of estimators, first for
projection estimators (Leung and Barron, 2006) and
more recently for a more general class of linear (affine)
estimators (Dalalyan and Salmon, 2011). Our further
analysis will be based on this approach. Clearly, direct
sample splitting does not apply to independent sam-
ples that are not identically distributed as in the present
setup. Indeed, the observations in the first sample no
longer have the same distribution as those in the sec-
ond sample. On the other hand, the approach based on
Nemirovski’s randomization can be still applied, but
it leads to somewhat weaker results involving an ad-
ditional expectation over a randomization distribution
and a bigger remainder term than in our oracle inequal-
ities.
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4.2 Aggregation of Linear Estimators

Suppose that we are given a finite family {f̂1, . . . ,

f̂K} of linear estimators defined by

f̂j (x) = Y�aj (x),(4.1)

where aj (·) are given functions with values in R
n. This

representation is quite general; for example, f̂j can be
ordinary least squares, (kernel) ridge regression esti-
mators or diagonal linear filter estimators; see Kneip
(1994); Dalalyan and Salmon (2011) for a longer list
of relevant examples. The vector of values (f̂j (xi), i =
1, . . . , n) equals to Aj Y where Aj an n×n matrix with
rows aj (xi), i = 1, . . . , n.

Now, we would like to consider mixtures of such es-
timators rather than mixtures of deterministic functions
as in the previous sections. For this purpose, exponen-
tial weights have to be slightly modified. Indeed, note
that in Section 2, the risk of a deterministic function
fj is simply estimated by the empirical risk R̂n(fj ),
which is plugged into the expression for the weights.
Clearly, ER̂n(fj ) = R(fj ) + σ 2 so that R̂n(fj ) is an
unbiased estimator of the risk R(fj ) of fj up to an
additive constant. For a linear estimator f̂j defined
in (4.1), R̂n(f̂j ) − σ 2 is no longer an unbiased esti-
mator of the risk ER(f̂j ). It is well known that the risk
of the linear estimator f̂j has the form

ER(f̂j ) = ‖(Aj − I)η‖2 + σ 2

n
Tr[A�

j Aj ],
where Tr[A] denotes the trace of a matrix A, and I
denotes the n × n identity matrix. Moreover, an un-
biased estimator of ER(f̂j ) is given by a version of
Mallows’s Cp ,

R̃unb
n (f̂j ) = ‖Y − f̂j‖2 + 2σ 2

n
Tr[Aj ] − σ 2.(4.2)

Then, for linear estimators, the exponential weights
and the corresponding aggregate are modified as fol-
lows:

λ̂π
j = exp(−nR̃unb

n (f̂j )/β)πj∑K
k=1 exp(−nR̃unb

n (f̂k)/β)πk

,

(4.3)

f̂ π =
K∑

k=1

λ̂π
k f̂k.

Note that for deterministic fj , we naturally define
R̃unb

n (fj ) = R̂n(fj ) − σ 2, so that definition (4.3) re-
mains consistent with (2.8). With this more gen-
eral definition of exponential weights, Dalalyan and
Salmon (2011) prove the following risk bounds for the
aggregate f̂ π .

THEOREM 4.1. Let {f̂1, . . . , f̂K} be a family of lin-
ear estimators defined in (4.1) such that the matrices
Aj are symmetric, positive definite and AjAk = AkAj ,
for all 1 ≤ j, k ≤ K . Then the exponentially weighted
aggregate f̂ π defined in (4.3) with β ≥ 8σ 2 satisfies

ER(f̂ π ) ≤ min
λ∈	K

{
K∑

j=1

λjER(f̂j ) + β

n
K(λ,π)

}
,(4.4)

ER(f̂ π ) ≤ min
j=1,...,K

{
ER(f̂j ) + β

n
log(π−1

j )

}
.(4.5)

If all the Aj are projection matrices (A�
j = Aj ,

A2
j = Aj ), then the above inequalities hold with

β ≥ 4σ 2.

Here, bound (4.5) follows immediately from (4.4).
In the rest of the paper, we mainly use the last part
of this theorem concerning projection estimators. The
bound (4.5) for this particular case was originally
proved in Leung and Barron (2006). The result of
Dalalyan and Salmon (2011) is, in fact, more general
than Theorem 4.1 covering nondiscrete priors in the
spirit of (3.2), and it applies not only to linear, but also
to affine estimators f̂j .

5. SPARSE ESTIMATION

The family of projection estimators that we consider
in this section is the family of all 2M least squares es-
timators, each of which is characterized by its sparsity
pattern. We examine properties of these estimators, and
show that their mixtures with exponential weights sat-
isfy sparsity oracle inequalities for suitably chosen pri-
ors π .

5.1 Sparsity Pattern Aggregation

Assume that we are given a dictionary of functions
H = {f1, . . . , fM}. However, we will not aggregate the
elements of the dictionary, but rather the least squares
estimators depending on all the fj . We denote by X,
the n × M design matrix with elements Xi,j = fj (xi),
i = 1, . . . , n, j = 1, . . . ,M .

A sparsity pattern is a binary vector p ∈ P :=
{0,1}M . The terminology comes from the fact that the
coordinates pj of such vectors can be interpreted as in-
dicators of presence (pj = 1) or absence (pj = 0) of a
given feature indexed by j ∈ {1, . . . ,M}. We denote by
|p| the number of ones in the sparsity pattern p, and by
Sp the linear span of canonical basis vectors e(j), such
that pj = 1.
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For p ∈ P , let θ̂p be any least squares estimator on Sp

defined by

θ̂p ∈ argmin
θ∈Sp

‖Y − fθ‖2 with fθ =
M∑

j=1

θjfj .(5.1)

The following simple lemma gives an oracle inequality
for the least squares estimator. It follows easily from
the Pythagorean theorem. Moreover, the random vari-
ables ξ1, . . . , ξn need not be Gaussian for the result to
hold.

LEMMA 5.1. Fix p ∈ P . Then any least squares es-
timator θ̂p defined in (5.1) satisfies

E‖f
θ̂p

− η‖2 = min
θ∈Sp

‖fθ − η‖2 + σ 2 dp

n
(5.2)

≤ min
θ∈Sp

‖fθ − η‖2 + σ 2 |p|
n

,

where dp is the dimension of the linear subspace
{Xθ : θ ∈ Sp} .

Clearly, if |p| is small compared to n, the oracle in-
equality gives a good performance guarantee for the
least squares aggregate f

θ̂p
. Nevertheless, it may be the

case that the approximation error minθ∈Sp ‖fθ − η‖2 is
quite large. Hence, we are looking for a sparsity pattern
such that |p| is small and that yields a least squares ag-
gregate with small approximation error. This is clearly
a model selection problem, as described in Section 1.

Observe that for each sparsity pattern p ∈ P , the
function f

θ̂p
is a projection estimator of the form f

θ̂p
=

ApY where the n × n matrix Ap is the projector
onto {Xθ : θ ∈ Sp} (as above, we identify the func-
tions fj , f

θ̂p
with the vectors of their values at points

x1, . . . , xn since the risk depends only on these val-
ues). Therefore Tr[Ap] = dp. We have seen in the pre-
vious section that, to solve the problem of model se-
lection, projection estimators can be aggregated using
exponential weights. Thus, instead of selecting the best
sparsity pattern, we resort to taking convex combina-
tions leading to what is called sparsity pattern aggre-
gation. For any sparsity pattern p ∈ P , define the ex-
ponential weights λ̂π

p and the sparsity pattern aggre-

gate f̃ π , respectively, by

λ̂π
p =

exp(−nR̃unb
n (f

θ̂p
)/β)πp∑

p′∈P exp(−nR̃unb
n (f

θ̂p′ )/β)πp′
,

f̃ π = ∑
p∈P

λ̂π
p f

θ̂p
,

where π = (πp)p∈P is a probability distribution (prior)
on the set of sparsity patterns P .

To study the performance of this method, we can
now apply the last part of Theorem 4.1 dealing with
projection matrices. Let p(θ) ∈ P be the sparsity pat-
tern of θ ∈ R

M , that is, a vector with components
pj (θ) = 1 if θj �= 0, and pj (θ) = 0 otherwise. Note that
|p(θ)| = |θ |0. Combining (4.5) and Lemma 5.1 and the
fact that {θ : p(θ) = p} ⊂ Sp, we get that for β ≥ 4σ 2

ER(f̃ π ) ≤ min
p∈P

{
ER(f

θ̂p
) + β

n
log(π−1

p )

}

≤ min
p∈P

{
min

θ : p(θ)=p
‖fθ − η‖2 + σ 2 |p|

n

+ β

n
log(π−1

p )

}
(5.3)

= min
θ∈RM

{
‖fθ − η‖2 + σ 2 |θ |0

n

+ β

n
log

(
π−1

p(θ)

)}
,

where we have used that minθ∈RM can be represented
as minp∈P minθ : p(θ)=p.

The remainder term in the balanced oracle inequal-
ity (5.3) depends on the choice of the prior π . Sev-
eral choices can be considered depending on the in-
formation that we have about the oracle, that is, about
a potentially good candidate θ that we would like to
mimic. For example, we can assume that there exists
a good θ that is coordinatewise sparse, group sparse
or even that θ is piecewise constant. While this ap-
proach to structure the prior knowledge seems to fit in
a Bayesian framework, we only pursue a frequentist
setup. Indeed, our risk measure is not averaged over
a prior. Such priors on good candidates for estimation
are often used in a non-Bayesian framework. For exam-
ple, in nonparametric estimation, it is usually assumed
that a good candidate function is smooth. Without such
assumptions, one may face difficulties in performing
meaningful theoretical analysis.

5.2 Sparsity Priors

5.2.1 Coordinatewise sparsity. This is the basic and
most commonly used form of sparsity. The prior π

should favor vectors θ that have a small number of
nonzero coordinates. Several priors have been sug-
gested for this purpose; cf. Leung and Barron (2006);
Giraud (2007); Rigollet and Tsybakov (2011); Alquier
and Lounici (2011). We consider here yet another prior,
close to that of Giraud (2007). The main difference
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is that the prior πC below exponentially downweights
sparsity patterns with large |p|, whereas the prior in
Giraud (2008) downweights such patterns polynomi-
ally. Define

πC
p =

[(
M

|p|
)
e|p|HM

]−1

, HM =
M∑

k=0

e−k ≤ e

e − 1
.

It can be easily seen that
∑

p∈P πC
p = 1 so that πC =

(πC
p ,p ∈ P) is a probability measure on P . Note that

log[(πC
p )−1] = log

(
M

|p|
)

+ |p| + log(HM)

(5.4)

≤ 2|p| log
(

eM

|p|
)

+ 1

2
,

where we have used the inequality
(M
|p|

) ≤ ( eM
|p| )

|p| for
|p| �= 0 and the convention 0 log(∞) = 0 for |p| = 0.
Define the sparsity pattern aggregate

f̃ C = ∑
p∈P

λ̂πC
p f

θ̂p
,(5.5)

where λπC
p is the exponential weight given in (4.3), and

θ̂p is the least squares estimator (5.1).
Plugging (5.4) into (5.3) with π = πC and β = 4σ 2

yields the following sparsity oracle inequality:

ER(f̃ C) ≤ inf
θ∈RM

{
‖fθ − η‖2

(5.6)

+ 9σ 2

n
|θ |0 log

(
eM

|θ |0
)

+ 2σ 2

n

}
.

It is important to note that (5.6) is valid under no as-
sumption in the dictionary. This is in contrast to the
Lasso and assimilated penalized procedures that are
known to have similar properties only under strong
conditions on X, such as restricted isometry or re-
stricted eigenvalue conditions (see, e.g., Candes and
Tao, 2007; Bickel, Ritov and Tsybakov, 2009;
Koltchinskii, Lounici and Tsybakov, 2011).

Another choice for π in the framework of coordi-
natewise sparsity can be found in Rigollet and Tsy-
bakov (2011) and yields the exponential screening esti-
mator. The exponential screening aggregate satisfies an
improved version of the above sparsity oracle inequal-
ity with |θ |0 replaced by min(|θ |0,R) where R is the
rank of the design matrix X. In particular, if the rank
R is small, the exponential screening aggregate adapts
to it. Moreover, it is shown in Rigollet and Tsybakov
(2011) that the remainder term of the oracle inequality
is optimal in a minimax sense.

5.2.2 Fused sparsity. When there exists a natural
order among the functions f1, . . . , fM in the dictio-
nary, it may be appropriate to assume that there exists
a “piecewise constant” θ ∈ R

M , that is, θ with compo-
nents taking only a small number of values, such that fθ
has good approximation properties. This property often
referred to as fused sparsity has been exploited in the
image denoising literature for two decades, originating
with the classical paper by Rudin, Osher and Fatemi
(1992). The fused Lasso was introduced in Tibshirani
et al. (2005) to deal with the same problem in one
dimension instead of two. Here we suggest another
method that takes advantage of fused sparsity using the
idea of mixing with exponential weights. Its theoretical
advantages are demonstrated by the sparsity oracle in-
equality in Corollary 5.1 below.

At first sight, this problem appears to be different
from the one considered above since a good θ ∈ R

M

need not be sparse. Yet, the fused sparsity assumption
on θ can be reformulated into a coordinatewise sparsity
assumption. Indeed, let D be the M×M matrix defined
by the relations (Dθ)1 = θ1 and (Dθ)j = θj − θj−1
for j = 2, . . . ,M , where (Dθ)j is the j th component
of Dθ . We will call D the “first differences” matrix.
Then θ is fused sparse if |Dθ |0 is small.

We now consider a more general setting with an arbi-
trary invertible matrix D, again declaring θ to be fused
sparse if |Dθ |0 is small. Possible definitions of D can
be based on higher order differences or combinations
of differences of several orders accounting for other
types of sparsity. For each sparsity pattern p ∈ P , we
define the least squares estimator

θ̂D
p ∈ argmin

θ∈RM : Dθ∈Sp
‖Y − fθ‖2.(5.7)

The corresponding estimator f
θ̂D

p
(as previously, with-

out loss of generality we consider f
θ̂D

p
as an n-vector)

takes the form f
θ̂D

p
= AD

p Y where AD
p is the projector

onto the linear space Lp = {Xθ : θ ∈ R
M,Dθ ∈ Sp}. In

particular, Tr[AD
p ] = dim(Lp), where dim(Lp) is the

dimension of Lp. Moreover, it is straightforward to ob-
tain the following result, analogous to Lemma 5.1.

LEMMA 5.2. Fix p ∈ P , and let D be an invertible
matrix. Then any least squares estimator θ̂D

p defined in
(5.7) satisfies

E‖f
θ̂D

p
− η‖2 = min

θ∈RM :
Dθ∈Sp

‖fθ − η‖2 + σ 2 dim(Lp)

n

(5.8)

≤ min
θ∈RM :
Dθ∈Sp

‖fθ − η‖2 + σ 2 |p|
n

.
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We are therefore in a position to apply the results
from Section 4. For example, if p is sparse, and D is the
“first differences” matrix, the least squares estimator
θ̂D

p is piecewise constant with a small number |p| of
jumps.

Now, since the problem has been reduced to coor-
dinatewise sparsity, we can choose the prior πC to fa-
vor vectors θ ∈ R

M that are piecewise constant with a
small number of jumps. Define the fused sparsity pat-
tern aggregate f̃ F by

f̃ F = ∑
p∈P

λ̂πC
p f

θ̂D
p

,(5.9)

where λ̂πC
p is the exponential weight defined in (4.3),

and θ̂D
p is the least squares estimator defined in (5.7).

Note that we can combine (4.5) with Lemma 5.2 in
the same way as in (5.3) with the only difference that
we use now the relation minp∈P minθ : p(Dθ)=p(·) =
minθ : Dθ∈RM (·) = minθ∈RM (·). This and (5.4) imply
the following bound.

COROLLARY 5.1. Let D be an invertible matrix.
The fused sparsity pattern aggregate f̃ F defined in
(5.9) with β = 4σ 2 satisfies

ER(f̃ F)

≤ inf
θ∈RM

{
‖fθ − η‖2(5.10)

+ 9σ 2

n
|Dθ |0 log

(
eM

|Dθ |0
)

+ 2σ 2

n

}
.

To our knowledge, analogous bounds for fused
Lasso are not available. Furthermore, Corollary 5.1
holds under no assumption on the matrix X, which can-
not be the case for the Lasso type methods. Let us also
emphasize that Corollary 5.1 is valid for any invertible
matrix D, and not only for the standard “first differ-
ences” matrix D defined above.

5.2.3 Group sparsity. Since recently, estimation un-
der group sparsity has been intensively discussed in the
literature. Starting from Yuan and Lin (2006), several
estimators have been studied, essentially the Group
Lasso and some related penalized techniques. Theoret-
ical properties of the Group Lasso are treated in some
generality by Huang and Zhang (2010) and Lounici
et al. (2011) where one can find further references.
Here we show that one can deal with group sparsity
using exponentially weighted aggregates. The new es-
timator that we propose presents some theoretical ad-
vantages as compared to the Group Lasso type meth-
ods.

Let B1, . . . ,BK be given subsets of {1, . . . ,M}
called the groups. We impose no restriction on Bj ’s; for
example, they need not form a partition of {1, . . . ,M}
and can overlap. In this section, we consider θ ∈ R

M

such that supp(θ) ⊆ B � ⋃K
k=1 Bk where supp(θ) is

the support of θ . For any such θ , we denote by J (θ)

the subset of {1, . . . ,K} of smallest cardinality among
all J satisfying supp(θ) ⊆ BJ � ⋃

k∈J Bk . We as-
sume without loss of generality that J (θ) is unique. (If
there are several J of same cardinality satisfying this
property, we define J (θ) as the smallest among them
with respect to some partial ordering of the subsets of
{1, . . . ,K}.) Set

g(θ) = |J (θ)|, B(θ) = ⋃
k∈J (θ)

Bk.

The group sparsity setup assumes that there exists θ ∈
R

M such that ‖fθ −η‖2 is small and that θ is supported
by a small number of groups, that is, that g(θ) � K .

Let now J be a subset {1, . . . ,K}. Denote by pJ the
sparsity pattern with coordinates defined by

pJ
j =

{
1, if j ∈ BJ ,
0, otherwise,

for j = 1, . . . ,M . Consider the set of all such sparsity
patterns:

PG = {
pJ , J ⊆ {1, . . . ,K}}.

To each sparsity pattern pJ ∈ PG we assign a least
squares estimator θ̂pJ , cf. (5.1), constrained to having
null coordinates outside of BJ = ⋃

k∈J Bk .
Define the following prior on PG:

πG
pJ =

[(
K

|J |
)

e|J |HK

]−1
, J ⊆ {1, . . . ,K}.

This prior enforces group sparsity by favoring the small
number of groups |J |. As in (5.4), we obtain

log[(πG
pJ )−1] ≤ 2|J | log

(
eK

|J |
)

+ 1

2
.(5.11)

We introduce now the sparsity pattern aggregate

f̃ G = ∑
p∈PG

λ̂πG

p f
θ̂p

,(5.12)

where λπG

p is the exponential weight defined in (4.3)

and θ̂p is the least squares estimator defined in (5.1).
For any p = pJ ∈ PG, we have VJ � {θ : supp(θ) ⊆

B,J (θ) = J } ⊆ Sp. Arguing as in (5.3) with PG in-
stead of P , setting π = πG and using (5.11) we obtain
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that, for β ≥ 4σ 2,

ER(f̃ G)

≤ min
p∈PG

{
min
θ∈Sp

‖fθ − η‖2 + σ 2 |p|
n

+ β

n
log((πG

p )−1)

}

≤ min
J⊆{1,...,K}

{
min
θ∈VJ

‖fθ − η‖2 + σ 2 |BJ |
n

+ β

n
log((πG

pJ )−1)

}

≤ min
J⊆{1,...,K} min

θ∈VJ

{
‖fθ − η‖2 + σ 2 |B(θ)|

n

+ 2β

n
g(θ) log

(
eK

g(θ)

)
+ β

2n

}
.

This leads to the following oracle inequality.

COROLLARY 5.2. The group sparsity pattern ag-
gregate f̃ G defined in (5.12) with β = 4σ 2 satisfies

ER(f̃ G) ≤ inf
θ∈RM :

supp(θ)⊆B

{
‖fθ − η‖2 + σ 2 |B(θ)| + 2

n

(5.13)

+ 8σ 2

n
g(θ) log

(
eK

g(θ)

)}
.

We see from Corollary 5.2 that if there exists an ideal
“oracle” θ in R

M , such that the approximation error
‖fθ − η‖2 is small, and θ is sparse in the sense that
it is supported by a small number of groups, then the
sparsity pattern aggregate f̃ G mimics the risk of this
oracle.

A remarkable fact is that Corollary 5.2 holds for ar-
bitrary choice of groups Bj . They can overlap and not
necessarily cover the whole set {1, . . . ,M}.

To illustrate the power of the oracle inequality (5.13),
we consider the multi-task learning setup as in Lounici
et al. (2011). Namely, assume that all the groups
Bj are of the same size T and form a partition of
{1, . . . ,M}, so that M = KT . We restrict our analy-
sis to the class Fs of regression functions η such that
η = fθ for some θ satisfying g(θ) ≤ s where s ≤ K is
a given integer. Then |B(θ)| ≤ sT . Combining these
remarks with (5.13) and with the fact that the function
x �→ x log( eK

x
) is increasing, we find that, uniformly

over η ∈ Fs ,

ER(f̃ G) ≤ σ 2s

n

(
T + 8 log

(
eK

s

)
+ 2

s

)
.(5.14)

On the other hand, a minimax lower bound on the same
class Fs is available in Lounici et al. (2011). It has
exactly the form of the right-hand side of (5.14); cf.
equation (6.2) in Lounici et al. (2011). This immedi-
ately implies that (i) the lower bound of Lounici et al.
(2011) is tight so that s

n
(T + log(K

s
)) is the optimal rate

of convergence on Fs , and (ii) the estimator f̃ G is rate
optimal. To our knowledge, this gives the first exam-
ple of rate optimal estimator under group sparsity. The
upper bounds for the Group Lasso estimators in Huang
and Zhang (2010) and Lounici et al. (2011) as well as
in the earlier papers cited therein depart from this op-
timal rate at least by a logarithmic factor. Furthermore,
they are obtained under strong assumptions on the dic-
tionary such as restricted isometry or restricted eigen-
value type conditions, while (5.14) is valid under no
assumption on the dictionary.

6. RELATED PROBLEMS

In this paper, we have considered only the Gaussian
regression model with fixed design and known variance
of the noise. This is a basic setup where the sharpest re-
sults, expressed in terms of sparsity oracle inequalities,
are now available for exponentially weighted (EW)
procedures both in aggregation and sparsity scenarios.
Similar but somewhat weaker properties are obtained
for exponential weighting in several other models.

Models with i.i.d. observations. Some EW aggre-
gates achieve sparsity oracle inequalities in regression
model with random design (Dalalyan and Tsybakov,
2012; Alquier and Lounici, 2011; Gerchinovitz, 2011)
as well as in density estimation and classification prob-
lems (Dalalyan and Tsybakov, 2012). However, the re-
sults differ in several aspects from those of the present
paper. First, they do not use aggregation of estima-
tors, but rather EW procedures driven by continuous
priors (Dalalyan and Tsybakov, 2012; Gerchinovitz,
2011), or by priors with both discrete and continuous
components (Alquier and Lounici, 2011). The devel-
opments in Dalalyan and Tsybakov (2012); Alquier
and Lounici (2011); Gerchinovitz (2011) start from the
general oracle inequalities similar to (3.2), which are
sometimes called PAC-bounds; cf. recent overview in
Catoni (2007). Sparsity oracle inequalities are then de-
rived from PAC-bounds. However, as opposed to (5.6),
they involve not only |θ |0 but also the 
1-norm of θ .
The estimators in Dalalyan and Tsybakov (2012);
Gerchinovitz (2011) are defined as an average of ex-
ponentially weighted aggregates over the sample sizes
from 1 to n. This is related to earlier work on mirror
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averaging; cf. Juditsky et al. (2005); Juditsky, Rigol-
let and Tsybakov (2008), which in turn, is inspired
by the concept of mirror descent in optimization due
to Nemirovski. Finally, the computational algorithms
are also quite different from those that we describe in
the next section. For example, under continuous spar-
sity priors, one of the suggestions is to use Langevin
Monte-Carlo; cf. Dalalyan and Tsybakov (2012, 2012).

Unknown variance of the noise, non-Gaussian noise.
Modifications of EW procedures and of the cor-
responding oracle inequalities for the case of un-
known variance σ 2 are discussed in Giraud (2007);
Gerchinovitz (2011). Moreover, the results can be ex-
tended to regression with non-Gaussian noise under
deterministic or random design (Dalalyan and Tsy-
bakov, 2007; Dalalyan and Tsybakov, 2008; Dalalyan
and Tsybakov, 2012; Gerchinovitz, 2011). In particu-
lar, Gerchinovitz, 2011 uses a version of the EW esti-
mator with data-driven truncation to cover a rather gen-
eral noise structure. The estimator satisfies a balanced
oracle inequality but not a sparsity oracle inequality as
defined here, since along with |θ |0, it involves other
characteristics of θ and of the target function η.

7. NUMERICAL IMPLEMENTATION

All the sparsity pattern aggregates defined in the pre-
vious section are of the form fθexp , where

θexp = ∑
p∈G

λ̂π
p θ̄p(7.1)

for some G ⊂ P , λπ
p is the exponential weight defined

in (4.3), and θ̄p is either θ̂p defined in (5.1) or θ̂D
p de-

fined in (5.7).
From (7.1), it is clear that one needs to add up with

some weights 2M (or 2K in the case of group sparsity
with K groups) least squares estimators to compute
θexp exactly. In many applications this number is pro-
hibitively large. However, most of the terms in the sum
receive an exponentially low weight with the choices
of π that we have described. We resort to a numerical
approximation that exploits this fact.

Note that θ exp is obtained as the expectation of the
random variable θ̂P or θ̂D

p where P is a random variable
taking values in P with probability distribution ν given
by

νp = exp(−nR̃unb
n (fθ̄p

)/β)πp∑
p′∈G exp(−nR̃unb

n (fθ̄p′ )/β)πp′
, p ∈ G ⊂ P .

This Gibbs-type distribution can be expressed as the
stationary distribution of the Markov chain generated

Fix p0 = 0 ∈ R
M . For any t ≥ 0, given pt ∈ G :

(1) Generate a random variable Qt with distribution
q(·|pt ).

(2) Generate a random variable

Pt+1 =
{

Qt , with probability r(pt ,Qt ),
pt , with probability 1 − r(pt ,Qt ),

where

r(p,q) = min
(

νq

νp
,1

)
.

(3) Compute the least squares estimator θ̄Pt+1 .

FIG. 1. The Metropolis–Hastings algorithm on the M-hypercube.

by the Metropolis–Hastings (MH) algorithm (see, e.g.,
Robert and Casella, 2004, Section 7.3). We now de-
scribe the MH algorithm employed here. Note that in
the examples considered in the previous section, G is
either the hypercube P or the hypercube PG. For any
p ∈ G , define the instrumental distribution q(·|p) as the
uniform distribution on the neighbors of p in G , and
notice that since each vertex has the same number of
neighbors, we have q(p|q) = q(q|p) for any p,q ∈ P .
The MH algorithm is defined in Figure 1. We use here
the uniform instrumental distribution for the sake of
simplicity. Our simulations show that it yields satisfac-
tory results both in terms of performance and of speed.
Another choice of q(·|·) can potentially further accel-
erate the convergence of the MH algorithm.

From the results of Robert and Casella (2004) (see
also Rigollet and Tsybakov, 2011, Theorem 7.1) the
Markov chain (Pt )t≥0 defined in Figure 1 is ergodic. In
other words, it holds

lim
T →∞

1

T

T0+T∑
t=T0+1

θ̄Pt = ∑
p∈G

θ̄pνp, almost surely,

where T0 ≥ 0 is an arbitrary integer.
In view of this result, we approximate θ exp =∑
p∈G θ̄pνp by

θ̃
exp
T = 1

T

T0+T∑
t=T0+1

θ̄Pt ,

which is close to θexp for sufficiently large T . One re-
markable feature of the MH algorithm is that it involves
only the ratios νq/νp where p and q are two neighbors
in G . Such ratios are easy to compute, at least in the
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examples given in the previous section. As a result, the
MH algorithm in this case takes the form of a stochas-
tic greedy algorithm with averaging, which measures
a trade-off between sparsity and prediction to decide
whether to add or remove a variable. In all subsequent
examples, we use a pure R implementation of the spar-
sity pattern aggregates. While the benchmark estima-
tors considered below employ a C based code opti-
mized for speed, we observed that a safe implementa-
tion of the MH algorithm (three times more iterations
than needed) exhibits an increase of computation time
of at most a factor two.

7.1 Numerical Experiments

The aim of this subsection is to illustrate the perfor-
mance of the sparsity pattern aggregates f̃ C and f̃ F

defined in (5.5) and (5.9) respectively, on a simulated
dataset and to compare it with state-of-the-art proce-
dures in sparse estimation. In our implementation, we
replace the prior πC by the exponential screening prior
employed in Rigollet and Tsybakov (2011). As a result,
the following results are about the exponential screen-
ing (ES) aggregate defined in Rigollet and Tsybakov
(2011). Nevertheless, it presents the same qualitative
behavior as the aggregates constructed above.

While our results for the ES estimator hold under no
assumption on the dictionary, we compare the behav-
ior of our algorithm in a well-known example where
sparse estimation by 
1-penalized techniques is theo-
retically achievable.

Consider the model Y = Xθ∗ + σξ , where X is an
n × M matrix with independent standard Gaussian en-
tries, and ξ ∈ R

n is a vector of independent standard
Gaussian random variables and is independent of X.
Depending on our sparsity assumption, we choose two
different θ∗.

The variance is chosen as σ 2 = ‖fθ∗‖2/9 = |Xθ∗|22/
(9n) following the numerical experiments of Candes
and Tao [(2007), Section 4]. Here | · |2 denotes the 
2

norm. For different values of (n,M,S), we run the ES

algorithm on 500 replications of the problem and com-
pare our results with several other popular estimators
in the literature on sparse estimation that are readily
implemented in R. The considered estimators are:

(1) the Lasso estimator with regularization parame-
ter obtained by ten-fold cross-validation;

(2) the MC+ estimator of Zhang (2010) with regu-
larization parameter obtained by ten-fold cross-valida-
tion;

(3) the SCAD estimator of Fan and Li (2001) with
regularization parameter obtained by ten-fold cross-
validation.

The Lasso estimator is calculated using the glmnet
package in R (Friedman, Hastie and Tibshirani, 2010).
The cross-validated MC+ and SCAD estimators are im-
plemented in the ncvreg package in R (Breheny and
Huang, 2011).

The performance of each of the four estimators,
generically denoted by θ̂ is measured by its prediction
error |X(θ̂ − θ∗)|22/n = ‖f

θ̂
− fθ∗‖2. Moreover, even

though the estimation error |θ̂ − θ∗|22 is not studied
above, we also report its values for a better compari-
son with other simulation studies.

7.1.1 Coordinatewise sparsity. The vector θ∗ is
given by θ∗

j = 1(j ≤ S) for some fixed S so that
|θ∗|0 = S. Here, 1(·) denotes the indicator function.

We considered the cases (n,M,S) ∈ {(100,200,10),

(200,500,20)}. The Metropolis approximation θ̃
exp
T

was computed with T0 = 3000, T = 7000, which
should be in the asymptotic regime of the Markov
chain since Figure 2 shows that, on a typical exam-
ple, the right sparsity pattern is recovered after about
2000 iterations.

Figure 3 displays comparative boxplots, and Table 1
reports averages and standard deviations over the 500
repetitions. In particular, it shows that ES outperforms
the Lasso estimator and has performance similar to
MC+ and SCAD.

Figure 2 illustrates a typical behavior of the ES es-
timator for one particular realization of X and ξ . For
better visibility, both displays represent only the 50
first coordinates of θ̃

exp
T , with T0 = 3000, T = 7000.

The left-hand side display shows that the sparsity pat-
tern is well recovered and the estimated values are
close to one. The right-hand side display illustrates
the evolution of the intermediate parameter θ̂Pt for
t = 1, . . . ,5000. It is clear that the Markov chain that
runs on the M-hypercube graph gets “trapped” in the
vertex that corresponds to the sparsity pattern of θ∗ af-
ter only 2000 iterations. As a result, while the ES esti-
mator is not sparse itself, the MH approximation to the
ES estimator may output a sparse solution.

FUSED SPARSITY. The vector θ∗ is chosen piece-
wise constant as follows. Fix an integer S ≥ 1 such that
10S ≤ M and consider the blocks I1, . . . , IS defined by

Ij = {10(j − 1) + 1, . . . ,10j}, j = 1, . . . , S.

The vector θ∗ is defined to take value (−1)j on Ij , j =
1, . . . , S and 1/2 elsewhere. We considered the cases
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FIG. 2. Typical realization for (M,n,S) = (500,200,20). Left: Value of the θ̃
exp
T , T0 = 3000, T = 7000. Right: Value of θ̂Pt

for
t = 1, . . . ,5000. Only the first 50 coordinates are shown for each vector.

(M,n,S) ∈ {(200,100,10), (500,200,20)} that are il-
lustrated in Figure 4. Note that in both cases, the vector
θ∗ is not sparse.

The fused versions of Lasso, MC+ and SCAD are not
readily available in R, and we implement them as fol-
lows. Recall that D is the M × M matrix defined in

Section 5.2 by (Dθ)1 = θ1 and (Dθ)j = θj − θj−1 for
j = 2, . . . ,M . The inverse D−1 is the M × M lower
triangular matrix with ones on the diagonal and in the
lower triangle. To obtain the fused versions of Lasso,
MC+ and SCAD, we simply run these algorithms on
the design matrix XD−1 to obtain a solution θ̂ . We then

FIG. 3. Boxplots of performance measure over 500 realizations for the ES, Lasso, MC+ and SCAD estimators. Top: estimation performance
|θ̂ − θ∗|22. Bottom: Prediction performance: |X(θ̂ − θ∗)|22/n. Left: (M,n,S) = (200,100,10). Right: (M,n,S) = (500,200,20).



SPARSITY BY EXPONENTIAL WEIGHTING 571

TABLE 1
Means and standard deviations of performance measures over 500

realizations for the ES, Lasso, MC+ and SCAD estimators. Top:
estimation performance |θ̂ − θ∗|22. Bottom: Prediction

performance: |X(θ̂ − θ∗)|22/n

(M,n,S) ES Lasso MC+ SCAD

(200,100,10) 0.14 0.82 0.18 0.17
(0.11) (0.28) (0.17) (0.15)

(500,200,20) 0.29 1.78 0.31 0.29
(0.16) (0.43) (0.14) (0.12)

(200,100,10) 0.12 0.50 0.15 0.14
(0.08) (0.15) (0.10) (0.10)

(500,200,20) 0.25 1.02 0.27 0.26
(0.11) (0.22) (0.11) (0.10)

return the vector D−1θ̂ as a solution to the fused prob-
lem.

We report the boxplots of the two performance mea-
sures |X(θ̂ − θ∗)|22/n and |θ̂ − θ∗|22 in Figure 5. It
is clear that, in this example, Exponential Screen-
ing outperforms the three other estimators. Moreover,
MC+ and SCAD perform particularly poorly in the case
(M,n,S) = (500,200,20). Their output on a typical
example is illustrated in Figure 4. We can see that
they yield an estimator that takes only two values, thus
missing most of the structure of the problem. It seems
that this behavior can be explained by the fact that
the estimators are trapped in a local minimum close
to zero.

APPENDIX

The proof of (2.2) is standard, and similar results
have been formulated in the literature for various other
setups. We give it here for the sake of complete-
ness. From the definition of the empirical risk mini-
mizer f̂ ERM, we have

R̂n(f̂
ERM) ≤ R̂n(f

∗),
where f ∗ is any minimizer of the true risk R(·) over H.
Simple algebra yields

R(f̂ ERM) ≤ R(f ∗) + 2E〈f̂ ERM − f ∗,Y − η〉,
where for two functions f,g from X to R we set
〈f,g〉 = 1

n

∑n
i=1 f (xi)g(xi). Next, observe that

E〈f̂ ERM − f ∗,Y − η〉 ≤ E max
f ∈H

〈f − f ∗,Y − η〉

≤ 2σ

√
2 logM

n
,

where we used the fact that ‖f ∗ − f ‖ ≤ 2 for any
f ∈ H, and the inequality E[max1≤i≤M a�

i ξ ] ≤ σ ·√
2 logM valid for any a1, . . . , an ∈ R

n, |ai |2 ≤ 1,
where ξ = (ξ1, . . . , ξn)

�.
We now turn to the proof of (2.4). Consider the ran-

dom matrix X of size n × M such that its elements
Xi,j , i = 1, . . . , n, j = 1, . . . ,M are i.i.d. Rademacher
random variables, that is, random variables taking val-
ues 1 and −1 with probability 1/2. Moreover, assume
that

2

n
log

(
1 + eM

2

)
< C1,(8.1)

for some positive constant C1 < 1/2. Note that (8.1)
follows from (2.3) if C0 is chosen small enough. The-
orem 5.2 in Baraniuk et al. (2008) (see also Sec-
tion 5.2.1 in Rigollet and Tsybakov, 2011) entails that
if (8.1) holds for C1 small enough, then there exists
a nonempty set M of matrices obtained as realizations
of the matrix X that enjoy the following weak restricted
isometry (WRI) property. For any X ∈ M, there exists
constants κ ≥ κ̄ > 0, such that for any λ ∈ R

M with at
most 2 nonzero coordinates,

κ2|λ|22 ≤ |Xλ|22
n

≤ κ̄2|λ|22,(8.2)

when (8.1) is satisfied. For X ∈ M, let φ1, . . . , φM be
any functions on X satisfying

φj (xi) = Xi,j , i = 1, . . . , n, j = 1, . . . ,M,

where Xi,j are the entries of X. Note that ‖φj‖ = 1
since Xi,j ∈ {−1,1}.

Fix τ > 0 to be chosen later, and set

fj = τ(1 + α)φj , j = 1, . . . ,M,

where we set for brevity α = (σ/3)
√

logM

κ̄2n
. Moreover,

consider the functions

ηj = ταφj , j = 1, . . . ,M.

Using (2.3) we choose τ small enough to ensure that
‖ηj‖ ≤ 1 and ‖fj‖ ≤ 1 for any j = 1, . . . ,M .

We write Rj(·) to denote the risk function R(·) when
η = ηj in (1.1). It is easy to check that

min
f ∈H

Rj(f ) = Rj(fj ) = ‖fj − ηj‖2.(8.3)

As it is customary in the proof of minimax lower
bounds, we reduce our estimation problem to a test-
ing problem as follows. Let ψ ∈ {1, . . . ,M} be the ran-
dom variable, or test, defined by ψ = j if and only if
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FIG. 4. Typical realizations of the fused estimators in the cases (M,n,S) = (200,100,10) (top) and (M,n,S) = (500,200,20) (bottom).
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FIG. 5. Boxplots of performance measure over 500 realizations for the Fused-ES, Fused-Lasso, Fused-MC+ and Fused-SCAD estima-
tors. Top: estimation performance |θ̂ − θ∗|22. Bottom: Prediction performance: |X(θ̂ − θ∗)|22/n. Left: (M,n,S) = (200,100,10). Right:
(M,n,S) = (500,200,20).

Ŝn = fj . Then, ψ �= j implies that there exists k �= j

such that Ŝn = fk , so that

‖Ŝn − ηj‖2 − ‖fj − ηj‖2

= ‖fk − fj‖2 + 2〈fk − fj , fj − ηj 〉
= τ 2(1 + α)2‖φj − φk‖2

+ 2τ 2(1 + α)(〈φj ,φk〉 − 1)

≥ τ 2α‖φj − φk‖2.

From (8.2), we find that ‖φj − φk‖2 ≥ 2κ2 so that

‖Ŝn − ηj‖2 − ‖fj − ηj‖2 ≥ 2τ 2κ2σ

3κ̄

√
logM

n
� νn,M.

Therefore, we conclude that ψ �= j implies that

Rj(Ŝn) − min
f ∈H

Rj(f ) ≥ νn,M.

Hence,

max
1≤j≤M

Pj

{
Rj(Ŝn) − min

f ∈H
Rj(f ) ≥ νn,M

}
(8.4)

≥ inf
ψ

max
1≤j≤M

Pj(ψ �= j),

where the infimum is taken over all tests taking values
in {1, . . . ,M}, and Pj denotes the joint distribution of
Y1, . . . , Yn that are independent Gaussian random vari-
ables with mean ηj (xi), respectively. It follows from
Tsybakov [(2009), Proposition 2.3 and Theorem 2.5]
that if for any 1 ≤ j, k ≤ M , the Kullback–Leibler di-
vergence between Pj and Pk satisfies

K(Pj ,Pk) <
logM

8
,(8.5)

then there exists a constant C > 0 such that

inf
ψ

max
1≤j≤M

Pj(ψ �= j) ≥ C.(8.6)
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To check (8.5), observe that, choosing τ ≤ 1 and ap-
plying (8.2), we get

K(Pj ,Pk) = n

2σ 2 ‖ηj − ηk‖2 = τ 2 logM

18κ̄2 ‖φj − φk‖2

<
logM

8
.

Therefore, in view of (8.4) and (8.6), we find, using the
Markov inequality, that for any selector Ŝn,

max
1≤j≤M

Ej

[
Rj(Ŝn) − min

f ∈H
Rj(f )

]
≥ Cνn,M

= C∗σ
√

logM

n
,

where Ej denotes the expectation with respect to Pj .
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