
Statistical Science
2012, Vol. 27, No. 4, 469–480
DOI: 10.1214/12-STS397
© Institute of Mathematical Statistics, 2012

Quasi-Likelihood and/or Robust Estimation
in High Dimensions
Sara van de Geer and Patric Müller

Abstract. We consider the theory for the high-dimensional generalized lin-
ear model with the Lasso. After a short review on theoretical results in lit-
erature, we present an extension of the oracle results to the case of quasi-
likelihood loss. We prove bounds for the prediction error and �1-error. The
results are derived under fourth moment conditions on the error distribution.
The case of robust loss is also given. We moreover show that under an irrep-
resentable condition, the �1-penalized quasi-likelihood estimator has no false
positives.
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1. A REVIEW OF THE THEORY IN LITERATURE

Consider n independent observations {(xT
i , Yi)}ni=1,

where Yi ∈ Y ⊂ R is a random response variable, and
xi is a fixed p-dimensional vector of co-variables, i =
1, . . . , n. In a high-dimensional model, the number of
co-variables p is much larger than the number of obser-
vations n. There has been much literature on the linear
model for this situation. In that case, one assumes that

Yi = xT
i β0 + εi, i = 1, . . . , n,

where β0 ∈ R
p is an unknown vector of coefficients,

and ε1, . . . , εn are independent noise variables. The
Lasso estimator (Tibshirani, 1996) is

β̂ := arg min
β∈Rp

{
n∑

i=1

|Yi − xT
i β|2 + λ

p∑
j=1

|βj |
}
.

The parameter λ > 0 is a regularization parameter,
and ‖β‖1 := ∑

j=1p |βj | is the �1-norm of β . For the
case of orthogonal design, that is, the case where the
columns of the n × p design matrix

X :=
⎛
⎜⎝

xT
1
...

xT
n

⎞
⎟⎠
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are orthogonal, the Lasso estimator is the soft-
thresholding estimator (Donoho, 1995). We study in
this paper the extension of the theoretical results for
the Lasso estimator, to the case of generalized linear
models.

The theory for the Lasso with least squares loss is
well established. We refer to Bunea, Tsybakov and
Wegkamp (2006), Bunea, Tsybakov and Wegkamp
(2007a), Bunea, Tsybakov and Wegkamp (2007b), van
de Geer (2007), Lounici (2008), Bickel, Ritov and Tsy-
bakov (2009). See also Bühlmann and van de Geer
(2011) and the references therein. The main results
concern oracle inequalities for the prediction error
‖X(β̂ − β0)‖2

2 and variable selection properties of the
Lasso. Oracle results say that the prediction error of
the Lasso estimator is up to log-factors as good as
that of an oracle that uses the least squares “estima-
tor” with only the co-variables in the unknown ac-
tive set S0 := {j :β0

j �= 0}. Variable selection results
roughly state that with large probability, the estimated
active set Ŝ := {j : β̂j �= 0} is with large probabil-
ity equal to the true active set S0. Both results de-
pend on appropriate conditions: for prediction one as-
sumes restricted eigenvalue condition (Koltchinskii,
2009a; Koltchinskii, 2009b; Bickel, Ritov and Tsy-
bakov, 2009) or compatibility conditions (van de Geer,
2007), and for variable selection, one assumes the
neighborhood stability (Meinshausen and Bühlmann,
2006) or equivalent irrepresentable condition (Zhao
and Yu, 2006). Clearly, variable selection is a harder
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problem than prediction, so that one expects conditions
for the former to be stronger than those for the latter.
Indeed, van de Geer and Bühlmann (2009) show that
the irrepresentable condition implies the compatibility
condition.

Concerning work on oracle inequalities for general
loss, an earlier paper which uses �1-regularization in
this context is Loubes and van de Geer (2002). Here,
the case of orthogonal design is considered (thus, it
has p ≤ n). The technique of proof is, however, very
much along the lines of the later proofs for nonorthog-
onal design (with possibly p > n), as developed by
van de Geer (2007) and others. Some remarks on the
proof technique can be found in van de Geer (2001),
highlighting that with an �1-penalty one can derive or-
acle inequalities with rates faster than 1/

√
n, despite

the fact that the penalty-term λ‖β0‖1 itself is gener-
ally of larger order than 1/

√
n. The case of quantile

regression was studied in van de Geer (2003), again
only for the case of orthonormal design. In Tarigan
and van de Geer (2006), hinge loss with �1-penalty is
studied. Here the design is not assumed to be orthog-
onal, and is in fact random. This paper does not use
restricted eigenvalue or compatibility conditions, but
rather a weighted eigenvalue condition. It shows that
the �1-penalty leads to estimators which are both adap-
tive to the “smoothness” or “complexity” of the under-
lying regression function, as well as to the “margin be-
havior” of the problem. The margin behavior expresses
the amount of curvature of the theoretical risk near its
minimum. The paper Bunea, Tsybakov and Wegkamp
(2007c) considers the density estimation problem. In
van de Geer (2007), results are derived for generalized
linear models with �1-penalty and p possibly larger
than n, assuming the compatibility condition. It cov-
ers the case of quadratic loss and of general Lipschitz
loss, and it allows for random design. Similar results
are in van de Geer (2008), although there the compat-
ibility condition is replaced by one somewhat in the
spirit conditions in Juditsky and Nemirovski (2011). In
Bühlmann and van de Geer (2011), one can find fur-
ther details concerning sparsity oracle inequalities for
high-dimensional generalized linear models.

There is a large body of literature extending the or-
acle results for the linear model to matrix versions. It
is beyond the scope of this paper to review this work,
and we only point to the generalization to robust loss,
as given in Candès et al. (2009).

Within this volume, the paper Negahban et al. (2012)
gives a general account of oracle results for high-
dimensional M-estimators. After our Theorem 5.2, we
briefly discuss its relation with Negahban et al. (2012).

Concerning variable selection, the fact that the irrep-
resentable condition is rather strong has led to consid-
ering modifications of the Lasso, such as two step pro-
cedures, and the SCAD introduced by Fan (1997); see,
for example, Wu and Liu (2009) for the case of quantile
regression.

Our paper focuses only on the theoretical aspects.
There is much literature on applications of the Lasso
in generalized linear models; see Wu et al. (2009), for
example. The computational aspects are well-studied:
see Friedman, Hastie and Tibshirani (2010). The pa-
per Lambert-Lacroix and Zwald (2011) contains, apart
from theory, software descriptions and a real data ex-
ample for the case of Huber loss. In Wang, Li and Jiang
(2007), �1-regularization with least absolute deviations
loss is studied and compared numerically with the least
squares Lasso.

We present new results for prediction and variable
selection for the case of quasi-likelihood estimation.
The findings for prediction are along the lines as those
in van de Geer (2008), but this time completed with the
compatibility condition. The paper details and extends
the findings in Bühlmann and van de Geer (2011). We
also show that a weighted form of the irrepresentable
condition implies consistent variable selection.

2. QUASI-LIKELIHOOD AND ROBUST LOSS

We model the dependence of the distribution of Yi

on xi via a linear function fβ0(xi) := xT
i β0, where

β0 is a vector of unknown coefficients. The prob-
lem is to estimate β0 or the linear predictor vector
fβ0 := Xβ0, where XT := (x1, . . . , xn). We study a
high-dimensional situation, where the number of vari-
ables p can be much larger than the sample size n. (For
technical reasons, we assume that p is at least 2.) The
vector β0 is assumed to be sparse; that is, its number of
nonzero coefficients is assumed to be small. See Sec-
tion 2.2 for more details on sparsity.

We consider two models. The first one is a general-
ized linear model, with a given inverse link function G,
that is,

E(Yi |xi) := μ0(xi) = G(xT
i β0), i = 1, . . . , n,

with β0 ∈ R
p a vector of unknown coefficients. The

quasi-(log)likelihood function is

Q(y,μ) :=
∫ μ

y

y − u

V (u)
du, y,μ ∈ Y,

where V : R → (0,∞) is a given variance function; see
also McCullagh and Nelder (1983). Together, quasi-
likelihood and link function define quasi-likelihood
loss, as follows:
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DEFINITION 2.1. The quasi-likelihood loss func-
tion is

ρ(y, z) := −Q(y,G(z)), y ∈ Y, z ∈ R.

In our second model, the dependence of the distri-
bution of Yi on xi may be described through quan-
tiles or other aspects of the distribution. In particu-
lar, one can define this dependence via a loss function
{ρ(y, z) :y ∈ Y, z ∈ R}, and

f 0
i := arg min

z∈R

E(ρ(Yi, z)|xi).

The generalized linear model assumes that f 0
i = xT

i β0

for some β0 ∈ R
p .

The robust case is the one where, for all y ∈ Y , the
loss function ρ(y, z) is Lipschitz in z, with Lipschitz
constant not depending on y. Without loss of generality
one can then assume the Lipschitz constant to be equal
to one. This leads to the following definition:

DEFINITION 2.2. The loss function ρ is robust if
for all y ∈ Y ,

|ρ(y, z) − ρ(y, z̃)| ≤ |z − z̃| ∀z, z̃.

Quasi-likelihood loss is sometimes robust, but there
are also many examples where it is not. Moreover,
there are many (robust) loss functions which do not
correspond to minus quasi-likelihoods. See Section 3
for some examples.

To handle the large p situation, one needs a regular-
ized estimation method. Let us write a linear function
with coefficients β as

fβ(x) = xT β.

In what follows, we sometimes, with some abuse of
notation, let fβ be the n-dimensional vector Xβ =
(fβ(x1), . . . , fβ(xn))

T ∈ R
n as well.

The �1-norm of a vector β ∈ R
p is

‖β‖1 :=
p∑

j=1

|βj |.

We examine the �1-penalized estimator β̂ of β0, de-
fined as

β̂ := arg min
β∈Rp

{
1

n

n∑
i=1

ρ(Yi, fβ(xi)) + λ‖β‖1

}
.

Here, λ > 0 is a tuning parameter. Large values cor-
respond to more regularization, which means more
shrinkage of the estimator β̂ . The expression

1

n

n∑
i=1

ρ(Yi, fβ(xi))

is called the empirical risk (at β). For least squares loss
(i.e., ρ(y,u) = (y −u)2), the empirical risk is the usual
sum of squares (normalized by 1/n). The above esti-
mator is then called the Lasso estimator (Tibshirani,
1996).

We will study loss functions ρ that are either minus
quasi-likelihoods or robust (or both). The normalized
Euclidean norm on R

n is

‖f ‖n :=
√

f T f/n, f ∈ R
n.

We will establish bounds for the “prediction error”
‖f

β̂
− fβ0‖2

n, the �1-error ‖β̂ − β0‖1, and (for the case
of quasi-likelihood loss) present sufficient conditions
for variable selection using β̂ .

2.1 Convex Loss

We require throughout this paper, both for quasi-
likelihood loss as well as for robust loss, that the map

z �→ ρ(y, z)

is convex for all y ∈ Y . This assumption is important
from a computational point of view. It also plays a cru-
cial role in our theory, as it allows us to prove that the
estimator β̂ is in an �1-neighborhood of β0. This in turn
will be invoked to establish sup-norm bounds for f

β̂
.

2.2 Sparsity

The indices of the set of nonzero coefficients of β0

is called the (true) active set. It is denoted by

S0 := {j :β0
j �= 0}.

Its cardinality s0 := |S0| is called the sparsity index
of β0. It is assumed that s0 is relatively small, at
least smaller than

√
n/ logp in order of magnitude;

see (5.3), (6.1), (7.2), (7.3) and (8.1). The vector β0

is sparse if s0 is small.
More generally, one can call a vector β0 sparse if it

can in some sense be approximated by a vector with
only a few nonzero entries. To avoid too many digres-
sions, we will not elaborate on this issue, but only
present a brief outline after the formulation of the main
oracle result; see Remark 5.5.

2.3 Results in this Paper

As β0 is unknown, its active set S0 and its spar-
sity index s0 are unknown as well. We will show in
Theorems 5.2 and 6.1 that the prediction error of the
�1-penalized estimator β̂ is, up to a logp-term, the
same as that of minimizer of the empirical risk with-
out penalty, but with all coefficients not in S0 restricted
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to be zero. The latter is not an estimator, as it depends
on the unknown S0. It is often referred to as the oracle.
We moreover show that a version of the irrepresentable
condition, appropriate for quasi-likelihood loss, is suf-
ficient for variable selection; see Theorem 7.3. All our
results are stated in a nonasymptotic form, but to facil-
itate the interpretation, we also give asymptotic formu-
lations.

2.4 Organization of the Paper

The next section provides some examples of quasi-
likelihood and robust loss. Section 4 gives the defi-
nition of the so-called compatibility constant, which
will occur in the oracle results. Section 5 gives oracle
inequalities for the prediction and �1-error for quasi-
likelihood loss, and Section 6 does the same for ro-
bust loss. In Section 7 we address the variable selec-
tion problem in the quasi-likelihood context. Similar
arguments can be used in the robust context, but this
is omitted here. Section 8 briefly discusses the case of
random design, and Section 9 concludes. The proofs
are in the supplemental article van de Geer and Müller
(2012). Lemmas A.2 and A.7 there are based on a con-
centration inequality (see Massart, 2000) and a con-
traction inequality; see Ledoux and Talagrand (1991).
These lemmas use only fourth moment assumptions,
and are perhaps of interest in themselves.

3. EXAMPLES OF LOSS FUNCTIONS

3.1 Least Squares Loss

The least squares criterion has Y = R. It corre-
sponds to a quasi-likelihood loss with variance func-
tion V (u) = 1 for all u ∈ R. The link function is then
the identity, which is the canonical link function for
this case. The loss function is convex, but not robust.

3.2 Logistic Loss

When the response Yi is binary, say Yi ∈ {0,1}, i =
1, . . . , n, we have

E(Yi |xi) = P(Yi = 1|xi).

In logistic regression, one takes the quasi-likelihood
with variance function V (u) = u(1−u), u ∈ (0,1), and
the canonical link function

γ (μ) := log
(

μ

1 − μ

)
, μ ∈ (0,1),

that is,

G(z) = γ −1(z) = ez

1 + ez
, z ∈ R.

Hence, in this case,

ρ(y, z) = yz − log(1 + ez), z ∈ R.

Because Y = {0,1}, one sees that this leads to a robust
loss function, that is, z �→ ρ(y, z) is Lipschitz in z for
all y ∈ Y . We acknowledge that logistic regression is
not robust in the sense of having a bounded influence
function (but we will in fact assume in Condition A1
that the covariables are bounded). As in all cases of
quasi-likelihood with canonical link function, the loss
also convex.

3.3 Binary Response with Other Link Functions

Consider binary response Yi ∈ {0,1} as in Sec-
tion 3.2, but now with more general inverse link func-
tion G.

P(Yi = 1|xi) = G(xT
i β0), i = 1, . . . , n.

If G : R → [0,1] is a strictly increasing symmetric dis-
tribution function, then quasi-likelihood loss is convex.
This is because the hazard g(u)/(1 − G(u)) (g being
the derivate of G) is a decreasing function of u. When
the hazard is uniformly bounded, quasi-likelihood loss
is also robust.

3.4 Quantile Regression

If the dependence of the distribution of Yi ∈ R on
xi is via its α-quantile (0 < α < 1), we take as loss
function

ρ(y, z) = ρ(y − z),

where

ρ(z) = α|z|l{z > 0} + (1 − α)|z|l{z ≤ 0}.
This is clearly a robust loss function, but it does not
correspond to a quasi-likelihood.

4. THE COMPATIBILITY CONDITION

Let S ⊂ {1, . . . , p} be an index set with cardinality s.
We define for all β ∈ R

p ,

βS,j := βj l{j ∈ S}, j = 1, . . . , p, βSc := β − βS.

Below, we present for constants L > 0 the com-
patibility constant φ(L,S) introduced in van de Geer
(2007). For normalized design (i.e., ‖Xj‖n = 1 for
all j , where Xj denotes the j th column of X), one can
view 1 − φ2(1, S)/2 as an �1-version of the canoni-
cal correlation between the linear space spanned by the
variables in S on the one hand, and the linear space
of the variables in Sc on the other hand. Instead of all
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linear combinations with normalized �2-norm, we now
consider all linear combinations with normalized �1-
norm of the coefficients. For a geometric interpretation,
we refer to van de Geer and Lederer (2012).

DEFINITION. The compatibility constant is

φ2(L,S) := min{s‖fβ‖2
n :‖βS‖1 = 1,‖βSc‖1 ≤ L}.

The compatibility constant is closely related to (and
never smaller than) the restricted eigenvalue as defined
in Bickel, Ritov and Tsybakov (2009), which is

φ2
RE(L,S) = min

{‖fβ‖2
n

‖βS‖2
2

:‖βSc‖1 ≤ L‖βS‖1

}
.

The calculation of the compatibility constant is a
nonlinear eigenvalue problem [see, e.g., Hein and
Buehler (2010) for computational aspects of nonlin-
ear eigenvalues]. Lower bounds that hold with high
probability follow, for example, if X is an i.i.d. sam-
ple from a p-dimensional vector with nongenerate co-
variance matrix; see Section 8 for some details. See
also Koltchinskii (2009a), and see van de Geer and
Bühlmann (2009) for a discussion of the relation be-
tween restricted eigenvalues and compatibility.

For oracle results, we need φ(L,S0) to be strictly
positive for some L > 1 (depending on the tuning pa-
rameter λ). In this paper, we take L = 3 for definite-
ness, and we require throughout that φ(3, S0) > 0 (ex-
cept when we consider sparse approximations of the
truth; see Remark 5.5). If φ(3, S0) = 0, one sees that
some conditions [e.g., condition (5.3)] become impos-
sible.

As we will see, all bounds in this paper involve not so
much the sparsity index s0 itself, but rather the effective
sparsity


effective(S0) := s0

φ2(3, S0)
.

EXAMPLE 4.1. As a simple numerical example,
let us suppose n = 2, p = 3, S0 = {3} and

X = √
n

(
5/13 0 1

12/13 1 0

)
.

Thus, the sparsity index is s0 = 1. One can easily ver-
ify that there is no β ∈ R

p with Xβ = 0 and ‖βSc
0
‖1 ≤

3‖βS0‖1. Thus, the compatibility constant φ2(3, S0)

is strictly positive. In fact, φ(3, S0) is equal to the
distance of X1 to line that connects 3X1 and −3X2,
that is φ(3, S0) = √

2/13. The effective sparsity is

effective(S0) = 13/2.

Alternatively, when

X = √
n

(
12/13 0 1
5/13 1 0

)
,

then φ(3, S) = 0. This is due to the sharper angle be-
tween X1 and X3.

5. ORACLE INEQUALITIES FOR
QUASI-LIKELIHOOD LOSS

5.1 The Case of Least Squares Loss

To appreciate the results we will present for the
general case, it may be useful to first reconsider the
standard linear model and least squares loss. Let Y =
(Y1, . . . , Yn)

T and suppose

Y = Xβ0 + ε.

Let β̂ be the Lasso estimator

β̂ = arg min
β∈Rp

{‖Y − Xβ‖2
n + λ‖β‖1}.

Let Xj denote the j th column of the design ma-
trix X. If the errors ε;= (ε1, . . . , εn)

T are indepen-
dent with mean zero and the design is normalized (i.e.,
‖Xj‖n = 1 for all j ) one can prove that uniformly in j ,
the “correlations” εT Xj/n are small in absolute value,
generally as small as O(

√
logp/n). The regulariza-

tion parameter λ is to be chosen in such a way that it
“overrules” these correlations. Indeed, this allows one
to prove the following result [see Bühlmann and van de
Geer (2011), Theorem 6.1] by rather elementary means
(recall the notation fβ := Xβ):

THEOREM 5.1. Suppose that

λ ≥ 4 max
1≤j≤p

|εT Xj |/n.

Then

‖f
β̂

− fβ0‖2
n + λ‖β̂ − β0‖1 ≤ 4λ2
effective(S0).

This result says that if the effective sparsity

effective(S0) is of the same order as the sparsity in-
dex s0 := |S0| (i.e., if the compatibility constant stays
away from zero), then for a large class of error dis-
tributions the Lasso estimator with λ 
 √

logp/n is
up to constants and a (logp)-factor as good as as the
oracle least squares “estimator” which knows the ac-
tive set S0. The performance of β̂ is here measured
in terms of its prediction error1 ‖X(β̂ − β0)‖2

n. Theo-
rem 5.1 moreover says that the �1 error converges with

1The prediction error of the predictor f
β̂

of an independent copy

Ynew := fβ0 + εnew of Y is rather ‖f
β̂

− fβ0‖2
n + σ 2, where σ 2 =

E‖εnew‖2
n. We however do not include the additional variance σ 2

in our definition.
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rate λ
effective(S0). Looking ahead at more general loss
functions, ideas are based on quadratic approxima-
tions, which are generally only valid in a neighborhood
of β0. This is why in our work, we will assume that
λ
effective(S0) is small, say λ
effective(S0) ≤ γ , where
γ is a sufficiently small constant. With λ 
 √

logp/n,
and a compatibility constant staying away from zero,
it means we assume the sparsity index s0 to be suffi-
ciently smaller than

√
n/ logp.

5.2 General Quasi-Likelihood Loss

As in the situation of the standard linear model and
least squares loss, we will study the error ‖f

β̂
− fβ0‖2

n

and the �1-error. For prediction, one will be inter-
ested in estimating the mean μ0 = G(fβ0) of the re-
sponse variable Y . Our Conditions A3 and A4 be-
low will ensure that G has a bounded derivative on
an appropriate domain. This means that bounds for
‖f

β̂
− fβ0‖n immediately lead to similar bounds for

‖G(f
β̂
) − G(fβ0)‖n. With some abuse of terminology,

we refer to ‖f
β̂

− fβ0‖2
n as the prediction error.

The theoretical properties of the �1-penalized quasi-
likelihood estimator β̂ depend on the tail-behavior of
the error

εi := Yi − μ0(xi), i = 1, . . . , n.

We will need at least finite second moments of the er-
rors. For definiteness, we assume the errors have finite
fourth moments. With higher order moments, the con-
fidence level in the oracle result of Theorem 5.2 will be
larger, and when the errors have sup-exponential tails,
one can derive exponential probability inequalities for
prediction error and �1-error.

CONDITION Aε . There exist constants σ > 0 and
κ > 0 such that

max
1≤i≤n

Eε2
i ≤ σ 2

and

1

n

n∑
i=1

E(ε2
i − Eε2

i )
2 ≤ κ4.

The next conditions, A1–A4, allow us to use quadra-
tic approximations in a neighborhood of β0. We as-
sume throughout that the inverse link function G is in-
creasing and that its derivative

g(z) := dG(z)

dz
, z ∈ R,

exists. We further define

γ (μ) :=
∫ μ

y0

1

V (u)
du,

(5.1)
B(μ,μ0) :=

∫ μ

μ0

u − μ0

V (u)
du, μ ∈ Y,

where y0 is an arbitrary but fixed constant. We let

H(z) := γ (G(z)), z ∈ R,(5.2)

that is, H := γ ◦ G. Note that γ is (up to an additive
constant) the canonical link function. When G = γ −1,
we get H(z) = z for all z. The term yH(z) in the
quasi-likelihood Q(y,G(z)) containing the response y

is then linear in z. In a sense, H measures the departure
from linearity of this term. We let

h(z) := dH(z)

dz
= g(z)

V (G(z))
, z ∈ R.

The quantity B(μ,μ0) is the “regret” for choosing the
expectation μ instead of the “true” μ0.

CONDITION A1. There exists a constant KX such
that

max
1≤j≤p

max
1≤i≤n

|xi,j | ≤ KX.

We remark that Condition A1 serves as normaliza-
tion of the design, albeit not in terms of the ‖ · ‖n norm
but rather in supremum norm. As our results will be
presented in nonasymptotic form, it is in principle pos-
sible to see the effect when, say, KX grows with p

and/or n.

CONDITION A2. There exists a constant K0 such
that

max
1≤i≤n

|fβ0(xi)| ≤ K0.

CONDITION A3. With KX and K0 given in Con-
ditions A1 and A2 respectively, there exists a positive
constant Ch such that for all |z| ≤ Kx + K0,

1/Ch ≤ h(z) ≤ Ch.

CONDITION A4. With KX and K0 given in Con-
ditions A1 and A2 respectively, there exists a con-
stant CV , such that for all |z| ≤ KX + K0,

2/CV ≤ V ◦ G(z) ≤ CV /2.

REMARK 5.1. There is an interplay between Con-
ditions Aε , A1 and A2. For example, for quadratic
loss, we do not need A1 and A2 when the errors are
(sub)Gaussian. Conditions A1 and A2 are imposed so
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that we need Conditions A3 and A4 only in the neigh-
borhood |z| ≤ KX +K0. As for Condition A3, when G

is the inverse of the canonical link function γ , it holds
with Ch = 1, as H is then the identity. For quadratic
loss, and logistic loss for example (which have canon-
ical link function), Condition A4 holds as well. We ac-
tually will only need the lower bound for V ◦ G in this
section, and the upper bound will come into play in
Section 7.

To organize the constants appearing in our results,
let use the short hand notation

Ch,V := CV C2
h,

Ch,X := 16ChKX,


(S0) := 16Ch,V 
effective(S0).

Thus, up to constants 
(S0) is the effective sparsity. As
in the case of least squares loss, we assume the regu-
larization parameter λ to be of order at least

√
logp/n.

The larger λ, the larger the confidence level of our
bounds will be (in Theorem 5.1 this the probability
of 4 max1≤j≤p |εT Xj |/n ≤ λ) but then these bounds
themselves are also larger. We introduce a variable
t > 0 to describe this effect, and define

λε(t) := Ch,Xσ

√
2(t + logp)

n
.

If we choose the tuning parameter λ at least as large as
4λε(t), the confidence level will be at least 1 − α(t),
where

α(t) := α(t) := 3 exp[−t] + 3κ4/(nσ 4).

The variable t is in principle arbitrary, but it is, how-
ever, not allowed to be arbitrarily large. As we can only
apply the quadratic approximations in a neighborhood
of β0 we will need to show that β̂ is with large proba-
bility in such a neighborhood. For that reason, we can-
not let the tuning parameter λ to be arbitrarily large (as
a large λ will give slow rates); see condition (5.4) in
Theorem 5.2 below. A reasonable choice for t is for
example t 
 logn, in which case α(t) 
 1/n.

THEOREM 5.2. Let β̂ be the �1-penalized quasi-
likelihood estimator. Assume Conditions Aε and A1–
A4. Suppose that

λε(t)
(S0) ≤ 1
4 .(5.3)

Take

4λε(t) ≤ λ ≤ 1


(S0)
.(5.4)

With probability at least 1 − α(t), it holds that

‖β̂ − β0‖1 ≤ λ

2

(S0)

and

‖f
β̂

− fβ0‖2
n ≤ 3

4Ch,V λ2
(S0).

REMARK 5.2. Our result in Theorem 5.2 is com-
parable to Corollary 3 in Negahban et al. (2012), albeit
that we do not assume bounded responses or canon-
ical link function, and our compatibility condition is
weaker than their assumed restricted eigenvalue condi-
tion. On the other hand, we require (5.3), and only give
bounds for the �1-error and prediction error, not for the
�2-error.

REMARK 5.3. We have presented the result in a
nonasymptotic form, but did not try to optimize the
constants.

REMARK 5.4. Thus, up to the compatibility con-
stant, and taking λ of order

√
logp/n, the prediction

error is of order s0 logp/n.

‖f̂ − f 0‖2
n = O

(
s0 logp

n

)
.

An oracle that knows S0 and does empirical risk min-
imization without penalty but with the restriction that
all coefficients not in S0 are set to zero, has a prediction
error of order s0/n. We see that for not knowing S0, one
pays a price of order logp. We moreover have

‖β̂ − β0‖1 = O
(
s0

√
logp

n

)
.

REMARK 5.5. We have presented the above oracle
inequality involving the sparsity of the true β0. If the
truth is not sparse, or if actually the generalized lin-
ear model is misspecified, one may replace the truth
by a sparse linear approximation of the truth, and the
oracle inequality involves a trade-off between the ap-
proximation error on the one hand, and the sparsity
and compatibility constant on the other. This trade-off
is of the following form. Let for an arbitrary index set
S ⊂ {1, . . . , p},

fS := arg min
f =fβS

B̄n(G ◦ f,μ0),

where B̄(G ◦ f,μ0) is the average regret

B̄(G ◦ f,μ0) := 1

n

n∑
i=1

B
(
G ◦ f (xi),μ0(xi)

)
.
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Thus, fS is the best approximation of f 0 using only the
variables in S. Then under some regularity conditions
the prediction error of B̄(G ◦ f

β̂
,μ0) is with probabil-

ity (1 − α) bounded by

const. min
setsS

{
B̄(G ◦ fS,μ0) + λ2|S|

φ2(L,S)

}
.

The “const.” depends on the constants occurring in the
regularity conditions, the constant L depends moreover
on the choice of λ, and the confidence level α depends
on all these. For more details on this extension, we re-
fer to Bühlmann and van de Geer (2011) and the refer-
ences therein.

REMARK 5.6. Condition (5.3) assumes that the
sparsity index s0 is sufficiently smaller than

√
n/ logp,

a condition we already announced in Section 5.1. This
assumption plays its part in all our results: it will also
be important for variable selection and simplifies the
derivation of results for the case of random design.
In the case of least squares loss, the assumption can
be avoided, even in some cases with random design.
It should, however, be noted that a large s0 means a
slow rate. In particular, when the sparsity is of larger
order than

√
n/ logp, the bound for the prediction er-

ror is of larger order than
√

logp/n, and this cannot be
improved up to the logp-term. Thus, then the bounds
are actually quite large in order of magnitude. Indeed,
recall that the prediction error is ‖f

β̂
− fβ0‖2

n, which
is the squared distance between f

β̂
and fβ0 . Assump-

tion (5.3) allows us to conclude that ‖β̂−β0‖1 ≤ 1, and
hence, that |f

β̂
(xi)| ≤ KX +K0 for all i. The latter was

used because we only want to require Conditions A3
and A4 for bounded values of the argument z. When
dealing with least squares loss, Conditions A3 and A4
hold for all z ∈ R. This means that with least squares
loss, Assumption (5.3) can be dropped in Theorem 5.2;
see Theorem 5.1.

REMARK 5.7. The lower bound in (5.4) for the
tuning parameter λ depends on the noise level σ as
well as other unknown constants. In practice, one may
for instance apply cross-validation. The noise level σ

can also be treated as additional parameter which can
be estimated along with β0. See Städler, Bühlmann and
van de Geer (2010) for a discussion.

6. ORACLE INEQUALITIES FOR ROBUST LOSS

In this section, we assume throughout that ρ is robust
loss; see Definition 2.2.

We define for i = 1, . . . , n,

li(z) = Eρ(Yi, z|xi), z ∈ R

and assume that l̈i (z) := d2li(z)/dz2 exists.

CONDITION B. For KX and K0 given in Condi-
tions A1 and A2 respectively, we have for some con-
stant Cl and for all i,

inf|z|≤KX+K0
l̈i (z) ≥ 2/Cl.

EXAMPLE 6.1. The least absolute deviations loss
is ρ(y, z) := |y − z|. Let Gi be distribution function
of Yi given xi (i = 1, . . . , n). Then f 0

i is the median
of Gi , and Condition B requires that Gi has a strictly
positive density gi on {|z| ≤ KX + K0} for all i.

We now define


(S0) := 16Cl

[
s0

φ2(3, S0)

]
.

Fix some t > 0 and define

λε(t) := 16KX

√
2(t + logp)

n
.

The following theorem is a reformulation of results in
van de Geer (2007), van de Geer (2007) or Bühlmann
and van de Geer (2011).

THEOREM 6.1. Let β̂ be the �1-penalized robust
estimator. Assume Conditions A1, A2 and B. Suppose
that

λε(t)
0(S0) ≤ 1
4 .(6.1)

Take

4λε(t) ≤ λ ≤ 1


(S0)
.

With probability at least 1 − α(t), where α(t) :=
3 exp[−t], it holds that

‖β̂ − β0‖1 ≤ λ

2

(S0)

and

‖f̂
β̂

− fβ0‖2
n ≤ 3

4Clλ
2
(S0).

REMARK 6.1. Similar remarks can be made as for
the �1-penalized quasi-likelihood estimator. The new
element in the result is that with robustness the tuning
parameter λ does not depend on some noise level σ .
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7. VARIABLE SELECTION WITH
QUASI-LIKELIHOOD LOSS

Note that the bounds for the �1-error ‖β̂ − β0‖1,
given in Theorems 5.2 and 6.1, can be invoked to
show that, with large probability, the �1-regularized es-
timator will detect most of the nonzero coefficients β0

which are large enough: for all η > 0,

#{β̂j �= 0, |β0
j | ≥ λ/η}

≥ #{|β0
j | ≥ λ/η} − η‖β̂ − β0‖1/λ.

In other words, if a large proportion of the nonzero
coefficients is sufficiently far above the noise level in
absolute value, then there will also be many true posi-
tives. By this argument, if all nonzero coefficients of β0

are of larger order than λ
(S0), we will have Ŝ ⊃ S0,
where

Ŝ := {j : β̂j �= 0}.
This section will study the false positives. We show

that for the case of quasi-likelihood loss, an irrepre-
sentable condition similar to Meinshausen and
Bühlmann (2006) and Zhao and Yu (2006) implies that
there are no false positives, that is, that Ŝ ⊂ S0. Such
result can also be obtained for robust loss, but is omit-
ted here.

7.1 The Case of Least Squares Loss

Again, as preparation, let us first consider the stan-
dard linear model and the least squares Lasso estima-
tor,

β̂ = arg min
β∈Rp

{‖Y − Xβ‖2
n + λ‖β‖1}.

Let X(S) := (Xj )j∈S be the design matrix consisting
of the variables in S, and let

�̂1,1(S) := XT (S)X(S)/n,

�̂1,2(S) := XT (Sc)X(S)/n.

In Bühlmann and van de Geer (2011) (Exercise 7.5) or
van de Geer, Bühlmann and Zhou (2011), one can find
the following result.

THEOREM 7.1. Suppose that λ > λ0 where λ0 ≥
2 max1≤j≤p |εT Xj |/n. Assume moreover the irrepre-
sentable condition

sup
‖τS0‖∞≤1

‖�̂2,1(S0)�̂
−1
1,1(S0)τS0‖∞ <

λ − λ0

λ + λ0
.

Then Ŝ ⊂ S0.

We remark that an irrepresentable condition (see
also below in Definition 7.1) is always rather strong.
However, for exact variable selection, an irrepre-
sentable condition is essentially necessary, as shown
in Meinshausen and Bühlmann (2006), Zhao and Yu
(2006), Bühlmann and van de Geer (2011). By thresh-
olding the estimated coefficients and refitting, or by
applying the adaptive Lasso, one can often improve on
variable selection and yet maintain a good prediction
and estimation error. The conditions for the latter are
much less restrictive than the irrepresentable condition.
We refer to van de Geer, Bühlmann and Zhou (2011)
for details.

7.2 General Quasi-Likelihood Loss

The results are based on he Karush–Kuhn–Tucker
(or KKT-) conditions; see Bertsimas and Tsitsiklis
(1997). In our context, they read as follows:

KKT CONDITIONS. We have

∂

∂β

1

n

n∑
i=1

Q(Yi, x
T
i β)

∣∣∣∣∣
β=β̂

= −λτ̂ .

Here ‖τ̂‖∞ ≤ 1, and moreover

τ̂j l{β̂j �= 0} = sign(β̂j ), j = 1, . . . , p.

Let

�̂j,k := 1

n

n∑
i=1

xi,j xi,kw
2
i ,

where

w2
i := h2(xT

i β0)V ◦ G(xT
i β0), i = 1, . . . , n.

Thus, �̂ is the weighted Gram matrix

�̂ = XT W 2X/n, W 2 := diag(w2
1, . . . ,w

2
n).

We write XW := WX, so that �̂ = XT
W XW/n.

Let XW(S) be the weighted design matrix consisting
of the variables in S, and

�̂1,1(S) := XT
W (S)XW(S)/n,

�̂2,1(S) := XT
W (Sc)XW(S)/n.

DEFINITION 7.1. Let 0 < θ ≤ 1 be given. We say
that the θ -irrepresentable condition is met for the set S

if

max‖τS‖∞≤1
‖�̂2,1(S)�̂−1

1,1(S)τS‖∞ ≤ θ.

Here is how the θ -irrepresentable condition can be
linked with variable selection.
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THEOREM 7.2. Let 0 ≤ λ0 < λ. Suppose that

�̂(β̂ − β0) = −v,(7.1)

where |vj | ≤ λ + λ0, and vj β̂j ≥ (λ − λ0)|β̂j |, j =
1, . . . , p. Suppose moreover the θ -irrepresentable con-
dition is met for S0, with θ < (λ − λ0)/(λ + λ0). Then
Ŝ ⊂ S0.

In the proof of Theorem 7.3 below, we show that
equation (7.1) in Theorem 7.2 holds for some v sat-
isfying the conditions of this theorem. This allows us
then to conclude that Ŝ ⊂ S0.

As one sees in the KKT conditions, the derivative at
β̂ of the loss function occurs. We will need to com-
pare this by the derivative at β0. To bring this to an end
we need, in addition to Conditions A3 and A4, certain
Lipschitz conditions on h and g.

CONDITION A5. For KX and K0, given in Condi-
tions A1 and A2 respectively, we have for all |z0| ≤
|z| ≤ KX + K0, and some constant Lh,

|h(z) − h(z0)| ≤ Lh|z − z0|.
CONDITION A6. For KX and K0 given in Condi-

tions A1 and A2 respectively, we have for all |z0| ≤
|z| ≤ KX + K0, and some constant Lg ,

|g(z) − g(z0)| ≤ Lg|z − z0|/2.

REMARK 7.1. Under the additional Conditions A5
and A6, one can improve the constants in Theorem 5.2.
It is also clear that Conditions A5 and A6 hold for least
squares and logistic loss.

With these new constants, we define

Lh,V := (Lg + LhCV )Ch, Lh,X + 16LhK
2
X.

We moreover let


ε := 
(S0) := 16Ch,V 
effective(S0),

and


0 := 
0(S0) := 6Lh,V C2
h,V 
effective(S0).

Fix some t > 0, and define

λε(t) := Ch,Xσ

√
2(t + logp)

n

and

λ0(t) := Lh,Xσ

√
2(t + 2 logp)

n
.

Define

α(t) := 9 exp[−t] + 9κ4/(nσ 4).

Thus, up to constants, 
ε and 
0 are the effective spar-
sity. Moreover, for t 
 logn (say), λε(t) 
 λ0(t) 
√

log(p ∨ n)/n and α(t) 
 1/n.
We arrive at the main result of this section.

THEOREM 7.3. Let β̂ be the �1-penalized quasi-
likelihood estimator. Assume Conditions Aε and A1–
A6. Assume that (5.3) holds, that is,

λε(t)
ε ≤ γ1 ≤ 1
4 ,

where γ1 is given by

γ1 := λε(t)

λ
.

Assume now that

λε(t)
0 ≤ γ1γε for some γε < 1 − γ1,(7.2)

as well as

λ0(t)
ε ≤ γ0 for some γ0 < 1 − γε − γ1.(7.3)

Assume furthermore the θ -irrepresentable condition
with

θ <
1 − γ

1 + γ
, γ := γε + γ0 + γ1.

With probability at least 1 − α(t), it holds that
Ŝ ⊂ S0.

REMARK 7.2. Let us take λε(t) 
 λ0(t) 
 λ 
√
logp/n. The constants γ0, γ1 and γε are small, de-

pending on the constants appearing in Conditions Aε

and A1–A6. Fixing these, they can be kept away from
zero, and hence also the θ -irrepresentable condition is
assumed for a value of θ that stays away from zero.
Conditions (7.2), and (7.3) again require that the effec-
tive sparsity is sufficiently smaller that

√
logp/n. For-

mulated differently, the results of Theorems 7.3 and 5.2
imply that if the θ -irrepresentable condition holds,
and if 
effective(S0) ≤ γ

√
logp/n for sufficiently small

values of θ and γ (depending only on the constants
appearing in Conditions Aε and A1–A6), then with
an appropriate choice of λ 
 √

logp/n the Lasso
estimator has with large probability prediction error

effective(S0) logp/n, �1-error 
effective(S0)

√
logp/n

and no false positives.

8. RANDOM DESIGN

Consider quasi-likelihood loss. It is easy to see that
under the conditions of Theorem 5.2, one has with
large probability

(β̂ − β0)T �̂(β̂ − β0) ≤ 6C3
h,V λ2
effective(S0).
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This follows from w2
i ≤ Ch,V /2, where as in Section 7,

w2
i = h2(xT

i β0)V ◦ G(xT
i β0), i = 1, . . . , n. Let � be

some other p × p positive semi-definite matrix. Then

‖(�̂ − �)(β̂ − β0)‖∞ ≤ λX‖β̂ − β0‖1,

where

λX := max
j,k

|�̂j,k − �j,k|.

Thus, under the conditions of Theorem 5.2, one has
that with large probability

‖(�̂ − �)(β̂ − β0)‖∞ ≤ λλX
(S0)/2.

One can verify that if λX
(S0) is small enough, say for
some γX sufficiently small

λX
(S0) ≤ γX,(8.1)

then one may reformulate the compatibility condition
replacing ‖fβ‖2

n by βT �β , and the theory for pre-
diction and �1-error goes through essentially without
new arguments. One can then also establish bounds for
(β̂ − β0)T �(β̂ − β0). Similarly, one may reformulate
the θ -irrepresentable condition with �̂ replaced by �,
and obtain variable selection without needing new ar-
guments. In the case where � is the population version
of �̂, the latter built from an i.i.d. sample of covari-
ables, one can show that with large probability λX is of
order

√
logp/n. In other words (and modulo the com-

patibility constant), then condition (8.1) is another in-
stance where it is required that the sparsity s0 is not of
larger order than

√
n/ logp. We refer to Bühlmann and

van de Geer (2011) for more precise statements.

9. CONCLUSION

The results of this paper show that the oracle and
variable selection properties of the Lasso for the lin-
ear model also hold for the generalized linear model.
We prove this under the assumption that the is sparsity
sufficiently smaller than

√
n/ logp. We note that the

results rely heavily on the convexity of the loss func-
tion. This allows one to work with an unbounded pa-
rameter space. If the estimators are a priori restricted
to lie in a given bounded set, one can extend the results
to nonconvex loss [see Städler, Bühlmann and van de
Geer (2010) for the mixture model, and Schelldorfer,
Bühlmann and van de Geer (2011) for the mixed ef-
fects model] and one can moreover prove oracle results
for the almost linear in s0 regime of sparsity.

SUPPLEMENTARY MATERIAL

Supplementary material for “Quasi-likelihood
and/or robust estimation in high dimensions” (DOI:
10.1214/12-STS397SUPP; .pdf). Due to space con-
straints, the proofs and technical details have been
given in the supplementary document van de Geer and
Müller (2012).
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