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Statistical Modeling of Spatial Extremes1

A. C. Davison, S. A. Padoan and M. Ribatet

Abstract. The areal modeling of the extremes of a natural process such as
rainfall or temperature is important in environmental statistics; for example,
understanding extreme areal rainfall is crucial in flood protection. This ar-
ticle reviews recent progress in the statistical modeling of spatial extremes,
starting with sketches of the necessary elements of extreme value statistics
and geostatistics. The main types of statistical models thus far proposed,
based on latent variables, on copulas and on spatial max-stable processes,
are described and then are compared by application to a data set on rain-
fall in Switzerland. Whereas latent variable modeling allows a better fit to
marginal distributions, it fits the joint distributions of extremes poorly, so
appropriately-chosen copula or max-stable models seem essential for suc-
cessful spatial modeling of extremes.

Key words and phrases: Annual maximum analysis, Bayesian hierarchical
model, Brown–Resnick process, composite likelihood, copula, environmen-
tal data analysis, Gaussian process, generalized extreme-value distribution,
geostatistics, latent variable, max-stable process, statistics of extremes.

1. INTRODUCTION

Natural hazards such as heat waves, high rainfall
and snowfall, tides and windstorms, arise due to physi-
cal processes and are spatial in extent. Although it is
difficult to attribute a particular event, such as Hur-
ricane Katrina or the 2010 flooding in Pakistan, to
the effects of climate change, both observational data
and computer climate models suggest that the occur-
rence and sizes of such catastrophes will increase in the
future. The potential consequences include increases
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in severe windstorms, flooding, wildfires, crop fail-
ure, population displacements and increased mortal-
ity. Apart from their direct impacts, such events will
also have indirect effects such as increased costs for
strengthening infrastructure and higher insurance pre-
miums. There is thus a pressing need for a better un-
derstanding of spatial extremes and more detailed as-
sessment of their consequences, and over the last few
years the topic has become an active interface be-
tween climate, social and statistical scientists, in in-
teraction with stakeholders such as insurance compa-
nies and public health officials. A particular issue when
dealing with extremes is that although vast amounts
of data may be available—though of varying quality
and homogeneity—rare events are necessarily unusual
and so the quantity of directly relevant data is lim-
ited. This difficulty is compounded in the spatial set-
ting, because forecasting then entails extrapolation into
a high-dimensional space, with all its attendant uncer-
tainties. It is thus important that the statistical models
used should both be flexible and have strong mathe-
matical foundations, so that such extrapolation has an
adequate basis. These requirements suggest the use of
statistics of extremes, as sketched below.

A variety of statistical tools have been used for the
spatial modeling of extremes, including Bayesian hier-
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FIG. 1. Map of Switzerland showing the stations of the 51 rainfall gauges used for the analysis, with an insert showing the altitude. The 36
stations marked by circles were used to fit the models, and those marked with squares were used to validate the models. Data for the pairs of
stations with blue symbols appear in Figure 2.

archical models, copulas and max-stable random fields.
The purpose of this paper is to review and to com-
pare these approaches in the practical context of mod-
eling rainfall, with the twin goals of elucidating their
properties and of contrasting them in a concrete con-
text. To do this, we use summer maximum daily rain-
fall for the years 1962–2008 at 51 weather stations in
the Plateau region of Switzerland, provided by the na-
tional meteorological service, MeteoSuisse. The sta-
tions lie north of the Alps and east of the Jura moun-
tains, the largest and smallest distances between them
being around 85 km and just over 3 km respectively.
We randomly chose 35 stations to fit our models, and
use the remaining 16 to validate them, as described be-
low. The maximum and minimum distances between
fitting and validation stations are very similar to those
for all 51 stations. Their locations are shown in Fig-
ure 1; the region is relatively flat, the altitudes of the
stations varying from 322 to 910 meters above mean
sea level. Figure 2 shows the annual maxima and the
maxima for the summer months, June–August, and for

the winter months, December–February, for four pairs
of stations marked in blue in Figure 1. As one would
expect, there is a clear correlation among the max-
ima at these relatively short distances, and this must
be reflected in the models if risk is to be accurately as-
sessed.

In Section 2 we provide an overview of the parts of
statistics of extremes that are needed later, and Sec-
tion 3 provides a similar sketch of geostatistics. Sub-
sequent sections describe latent variable, copula and
max-stable approaches to the spatial modeling of ex-
tremes, which are then compared in Section 7. The pa-
per ends with a brief discussion.

2. STATISTICS OF EXTREMES

2.1 General

Statistics of extremes has grown into a vast field
with many domains of application. Systematic math-
ematical accounts are given by Resnick (1987, 2007)
and de Haan and Ferreira (2006), while more sta-
tistical treatments may be found in Beirlant et al.
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FIG. 2. Annual, summer and winter maximum daily rainfall values for 1962–2008 at the four pairs of stations shown in blue in Figure 1.
In each case the black line represents the station to the east and the red dashed line that to the west.

(2004), Coles (2001) and Embrechts, Klüppelberg and
Mikosch (1997), the last focusing particularly on fi-
nance. Further reviews are provided by Kotz and
Nadarajah (2000) and Finkenstädt and Rootzén (2004).
A key issue in applications is that inferences may be
required well beyond the observed tail of the data,
and so an assumption of stability is required: math-
ematical regularities in the unobservable tail of the
distribution are assumed to reach far enough back
into the observable region that extrapolation may be
based on a model fitted to the observed events. This
requires an act of faith that the mathematics of reg-
ular variation, which underpins the extrapolation, is
applicable in the practical circumstances in which
the theory is applied. A statistical consequence of
the lack of data is that tail inferences tend to be
highly uncertain, and that the uncertainty can increase
sharply as one moves further into the tail. In appli-
cations this can lead to alarmingly wide confidence
intervals, but this seems to be intrinsic to the prob-
lem.

2.2 Univariate Models

Statistical modeling of extremes may be based on
limiting families of distributions for maxima that sat-
isfy the property of max-stability. At its simplest we
take independent continuous scalar random variables

X1, . . . ,Xm
iid∼ F , where the distribution F has up-

per terminal xF = sup{x :F(x) < 1}, and ask whether
there exist sequences of constants {am} > 0 and {bm}
such that the rescaled variables

a−1
m {max(X1, . . . ,Xm) − bm}(1)

have a nondegenerate limiting distribution G as m →
∞. It turns out that if such a G exists, then it must be
max-stable, that is, it must satisfy the equation

Gm(b′
m + a′

my) = G(y), y ∈ R,m ∈ N,(2)

for sequences {a′
m} > 0 and {b′

m}. The only nondegen-
erate distribution with this property is the generalized
extreme-value (GEV) distribution

H(y) =
{

exp[−{1 + ξ(y − η)/τ }−1/ξ
+ ], ξ �= 0,

exp[− exp{−(y − η)/τ }], ξ = 0,
(3)
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where u+ denotes max(u,0). The quantities η and τ

in (3) are respectively a real location parameter and a
positive scale parameter; ξ determines the weight of
the upper tail of the density, with ξ < 0 correspond-
ing to the reverse Weibull case in which the support of
the density has a finite upper bound, ξ = 0 correspond-
ing to the light-tailed Gumbel distribution, and ξ > 0
corresponding to the heavy-tailed Fréchet distribution.
The r th moment of H exists only if rξ < 1.

Expression (3) is the broadest class of nondegener-
ate limit laws for a maximum Y of a random sample of
continuous scalar random variables, but in multivari-
ate and spatial settings it is simpler to employ mathe-
matically equivalent expressions that result from con-
sidering the transformed random variable Z = {1 +
ξ(Y − η)/τ }1/ξ , which has a unit Fréchet distribution
exp(−1/z), for z > 0. In this case the max-stability

property may be written as mZ
D= max(Z1, . . . ,Zm),

where Z,Z1, . . . ,Zm represent mutually independent

unit Fréchet random variables and D= denotes equal-
ity in distribution. This transformation has the effect of
separating the marginal GEV distributions of the vari-
ables from their joint dependence structure, and this is
often convenient.

A typical goal in applications is the estimation of a
high quantile of the distribution of Y , that is, a solution
of the equation H(yp) = p; for ξ �= 0 this is

yp = η + τ

ξ
{(− logp)−ξ − 1}, 0 < p < 1,

with the limit ξ → 0 yielding yp = η − τ log(− logp).
If the available observations Yj are annual maxima and
we set p = 1−1/T , then yp is called the T -year return
level, interpreted as the level exceeded once on aver-
age every T years. Engineering requirements may be
expressed in terms of T or yp . For example, the Dutch
Delta Commission, responsible for protection against
sea- and river-water flooding, set a risk level for sea
flooding of North and South Holland that corresponds
to a 10,000-year return level, and a risk level for river
flooding that corresponds to a 1 250-year return level,
though their physical interpretations in a nonstationary
world are unclear. Estimates of yp are highly sensitive
to ξ , and, if possible, it is helpful to pool information
about this parameter.

Under mild conditions on the dependence structure
of stationary time series, the GEV also emerges as the
only possible nondegenerate limiting distribution for
linearly renormalized maxima of blocks of observa-
tions, and this greatly widens its range of application;

see Leadbetter, Lindgren and Rootzén (1983). In typ-
ical applications rare events occur in clusters whose
mean size θ−1 is determined by the so-called extremal
index, θ ∈ (0,1]. Block maxima then have the GEV
distribution H(y)θ , but the intra-cluster distribution
may take essentially any form.

The discussion leading to (3) implies that for large
m, F(bm + amy)m ≈ H(y), and, therefore, (2) implies
that for large enough x,

F(x) ≈ H 1/m{(x − bm)/am} ≈ H(x)

for some choice of the parameters η, τ and ξ . Thus, al-
though the generalized extreme-value distribution (3)
arises as the natural probability law for maxima of m

independent variables, it may also be regarded as giv-
ing an approximation for the upper tail of the distribu-
tion of an individual variable, provided a limiting dis-
tribution for maxima exists. For a high value u < xF

and x satisfying u < x + u < xF , we therefore have

pr(X > x + u | X > u)

≈ 1 − H(x + u)

1 − H(u)
(4)

≈ (1 + ξx/σu)
−1/ξ
+ , x > 0,

where σu = τ + ξ(u − η). The last expression in (4) is
the survivor function of the generalized Pareto distri-
bution (GPD), which is commonly used for modeling
exceedances over high thresholds (Davison and Smith,
1990). The standard approach to such modeling pre-
supposes that the times of exceedances over the high
threshold u are the realization of a stationary Poisson
process of rate λ, say, and that their sizes are indepen-
dent with survivor function (4). This model may also
be formulated in terms of a limiting Poisson process of
extremes (Smith, 1989).

2.3 Multivariate Models

We now consider componentwise maxima of an
independent sequence of bivariate random variables
(X1i ,X2i), for i = 1, . . . . If nondegenerate limiting
marginal distributions exist, these must be of the
form (3), and, hence, the rescaled limiting versions
of the componentwise maxima max(X11, . . . ,X1n)

and max(X21, . . . ,X2n) may be transformed to have
marginal unit Fréchet distributions. It turns out that if
it exists and is nondegenerate, then the limiting joint
distribution of the transformed componentwise max-
ima can be written as

pr(Z1 ≤ z1,Z2 ≤ z2)
(5)

= exp{−V (z1, z2)}, z1, z2 > 0,
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where the exponent measure V (z1, z2) (Resnick, 1987,
page 268) satisfies

V (z1,∞) = 1/z1, V (∞, z2) = 1/z2,
(6)

V (tz1, tz2) = t−1V (z1, z2), t > 0.

Here the first two properties ensure that the marginal
distributions are unit Fréchet, and the third shows that
the function V is homogeneous of order −1, thereby
extending the max-stability property to the bivariate
case. This argument extends to multivariate extremes,
for which the corresponding function V (z1, . . . , zD)

satisfies the analogues of (6). Two bounding cases are
where Z1, . . . ,ZD are independent or are entirely de-
pendent, corresponding respectively to

V (z1, . . . , zD) = 1/z1 + · · · + 1/zD,

V (z1, . . . , zD) = 1/min(z1, . . . , zD).

A consequence of the homogeneity of V is that
multivariate extreme-value distributions have various
so-called spectral representations, of which the best-
known, due to Pickands (1981), rewrites the exponent
measure as

V (z1, . . . , zD)

=
∫

SD

max(w1/z1, . . . ,wD/zD)(7)

dM(w1, . . . ,wD),

where M is a measure on the D-dimensional sim-
plex SD . On setting all but one of the zd equal to
+∞, we see that in order for the distribution to have
unit Fréchet margins, M must satisfy the constraint∫

wd dM(w1, . . . ,wD) = 1 for each d . Unlike for uni-
variate extremes, there is no simple parametric form for
the multivariate limiting distribution; V can take any
form subject to (6). From a statistical viewpoint this is a
mixed blessing. Although numerous parametric forms
for V or equivalent functions have been proposed (Kotz
and Nadarajah, 2000, Section 3.5), those in current use
tend to be somewhat inflexible, and, owing to the curse
of dimensionality, nonparametric estimation has essen-
tially been confined to the bivariate case (Fougères,
2004; Boldi and Davison, 2007; Einmahl and Segers,
2009). More positively, we may use the flexibility to
construct functions V adapted to specific applications.

A difficulty for statistical inference arises because
equations such as (5) specify cumulative distribution
functions. The likelihood function for D-dimensional
data involves differentiation of exp{−V (z1, . . . , zD)}
with respect to z1, . . . , zD , resulting in a combinatorial

explosion; the number of terms is the number of parti-
tions of the integer D. Even for only ten dimensions,
D = 10, a single likelihood evaluation would involve a
sum of over 100,000 different terms, which seems in-
feasible in general, though there may be simplifications
in special cases.

2.4 Extremal Coefficient

It is useful to have summary measures of extremal
dependence. One possibility is based on the probability
that all the transformed variables are less than z,

pr(Z1 ≤ z, . . . ,ZD ≤ z)

= exp{−V (1, . . . ,1)/z}(8)

= exp(−θD/z), z > 0,

owing to the homogeneity of V . The quantity θD ,
known as the extremal coefficient of the observations
Zd , d ∈ D = {1, . . . ,D}, varies from θD = 1 when the
observations are fully dependent to θD = D when they
are independent, and thus provides a summary of the
degree of dependence, though it does not determine
the joint distribution. In the bivariate case it is easy to
check that

lim
z→∞ pr(Z2 > z | Z1 > z) = 2 − θD,

thereby providing an interpretation of θD in terms of
the limiting probability of an extreme event in one vari-
able, given a correspondingly rare event in the other.
Thus, if θD = 2, this probability is zero, while smaller
values of θD will yield larger conditional probabilities.

Schlather and Tawn (2003) discuss the consistency
properties that must be satisfied by the extremal co-
efficients of subsets of Z1, . . . ,ZD , and suggest how
these coefficients may be estimated. Below we com-
pare purely empirical estimators for pairs of sites with
the fitted versions found from models, so we need to
estimate θD for D = 2. In our experience madogram
estimators perform well, and we use these below. The
F -madogram is defined as (Cooley, Naveau and Pon-
cet, 2006)

νF = 1
2E{|F(Z1) − F(Z2)|},(9)

where F(z) = exp(−1/z). Unlike the more common
variogram (Schabenberger and Gotway, 2005, Chap-
ter 4), (9) remains finite when the margins of the pro-
cess are heavy tailed, because E{Fk(Z1)} = 1/(1 + k),
for k > 0, and it has a bijective relationship with the ex-
tremal coefficient θ = (1 + 2νF )/(1 − 2νF ). Cooley,
Naveau and Poncet (2006) discuss estimation of the ex-
tremal coefficient based on the madogram, which is ex-
tended by Naveau et al. (2009) to the setting in which
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maxima of a stationary process are observed at many
points in space and it is required to estimate the ex-
tremal coefficient as a function of the distance between
them.

3. GEOSTATISTICS

3.1 Generalities

Geostatistics is a large and rapidly developing do-
main of statistics, with important applications in ar-
eas such as public health, agriculture and resource ex-
ploration, and in environmental and ecological stud-
ies. Standard texts are Cressie (1993), Stein (1999),
Wackernagel (2003), Banerjee, Carlin and Gelfand
(2004), Schabenberger and Gotway (2005) and Diggle
and Ribeiro (2007). There are three common data
types: spatial point processes, used to model data
whose observation sites may be treated as random;
areal data, available at a set of sites for which interpola-
tion may be uninterpretable, such as climate model out-
put; and point-referenced or geostatistical data, which
may be modeled as values from a spatial process de-
fined on the continuum but observed only at fixed sites,
between which interpolation makes sense.

Here we are concerned with point-referenced data,
for which a suitable mathematical model is a random
process {Y(x)} defined at all points x of a spatial do-
main X , typically taken to be a contiguous subset of
R

2. Examples are levels of air pollution or annual max-
imum temperatures observed at a finite subset D =
{x1, . . . , xD} of sites of X . The statistical problem is to
make inference for the process elsewhere in X . Hav-
ing observed daily rainfall depths Y(x1), . . . , Y (xD) at
a set of weather stations, for example, we may wish to
predict Y(x) at an unobserved site x, estimate the high-
est depth supx∈X Y(x) in the region, or provide a distri-
bution for a quantity such as

∫
x∈X Y(x) dx. Below we

sketch elements of geostatistics needed subsequently,
leaving the interested reader to consult the references
above for further details.

3.2 Gaussian Processes

The simplest and best-explored approach to model-
ing point-referenced data is to suppose that {Y(x)} fol-
lows a Gaussian process defined on X . Such a pro-
cess is called intrinsically stationary if, in addition to
its finite-dimensional distributions being Gaussian, its
increments are stationary, that is, the process {Y(x +
h) − Y(x) :x ∈ X } is stationary for all lag vectors h.
Then we take E{Y(x + h) − Y(x)} = 0, and there ex-
ists a function

γ (h) = 1
2 var{Y(x + h) − Y(x)}, x, x + h ∈ X ,

called the semivariogram; this need not be bounded.
A stronger assumption is that of second-order station-
arity, meaning that var{Y(x)} is a finite constant for x ∈
X and that the covariance function cov{Y(x1), Y (x2)}
exists and may be expressed as C(x1 −x2), where C(·)
is a positive definite function. In this case we may
write γ (h) = C(0) − C(h), and we see that γ (h) is
bounded above by C(0) = var{Y(x)} and that ρ(h) =
C(h)/C(0) is a correlation function. For Gaussian pro-
cesses second-order stationarity is equivalent to sta-
tionarity, under which the joint distribution of any finite
subset of points of Y(x) depends only on the vectors
between their sites.

Gneiting, Sasvári and Schlather (2001) discuss the
relationships between semivariograms and covariance
functions: in particular, a real function on R

2 satisfy-
ing γ (0) = 0 is the semivariogram of an intrinsically
stationary process if and only if it is conditionally neg-
ative definite, that is,

n∑
i,j=1

aiajγ (xi − xj ) ≤ 0(10)

for all finite sets of sites x1, . . . , xn in X and for all
sets of real numbers a1, . . . , an summing to zero, or,
equivalently, if exp{−tγ (h)} is a covariance function
for all t > 0. Clearly, a semivariogram or covariance
function valid in R

p is also valid in lower-dimensional
spaces, though the converse is false.

A covariance function or, equivalently, a semivar-
iogram is called isotropic if it depends only on the
length ‖x1 − x2‖ of x1 − x2 and not on its orientation;
this typically unrealistic but very convenient modeling
assumption imposes additional restrictions on γ (h).

Schabenberger and Gotway [(2005), Section 4.3]
and Banerjee, Carlin and Gelfand [(2004), Section 2.1]
describe a variety of valid correlation functions. Iso-
tropic forms for those used in this paper are summa-
rized in Table 1, where λ represents a positive scale
parameter with the dimensions of distance, and κ is
a shape parameter that controls the properties of the
random process and, in particular, can determine the
roughness of its realizations. The Whittle–Matérn fam-
ily is flexible and widely used in practice, though it is
often difficult to estimate its shape parameter. A simple
way to add anisotropy to such functions is to replace
‖h‖ by (hTAh)1/2, where A is a positive definite ma-
trix with unit determinant; this is known as geometric
anisotropy.

If {ε(x)} and {ε′(x)} are two independent stationary
Gaussian processes with unit variance and correlation
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TABLE 1
Parametric families of isotropic correlation functions. Here Kκ denotes

the modified Bessel function of order κ and 
(u) denotes the gamma function.
In each case λ > 0

Family Correlation function Range of validity

Whittle–Matérn ρ(h) = {2κ−1
(κ)}−1(‖h‖/λ)κKκ(‖h‖/λ) κ > 0
Cauchy ρ(h) = {1 + (‖h‖/λ)2}−κ κ > 0
Stable ρ(h) = exp{−(‖h‖/λ)κ } 0 < κ ≤ 2
Exponential ρ(h) = exp(−‖h‖/λ) –

functions ρ(h) and ρ′(h), then their sum is also a Gaus-
sian process, with correlation function ρ(x) + ρ ′(x).
A white noise process {ε′(x)} has correlation func-
tion ρ(h) = δ(h), where δ(h) denotes the Kronecker
delta function, and thus the process {σ(1−α)1/2ε(h)+
σα1/2ε′(h)} has variance σ 2 and correlation function
(1 − α)ρ(h) for h �= 0; there is a so-called nugget ef-
fect at the origin, corresponding to the extremely local
variation added by the white noise. In this case a pro-
portion α of the variance arises from this nugget effect.

4. LATENT VARIABLE MODELS

4.1 General

Dependence in many statistical settings is introduced
by integration over latent variables or processes. Here
this idea can be used to introduce spatial variation in
the parameters. For example, we may suppose that the
response variables {Y(x)} are independent condition-
ally on an unobserved latent process {S(x) :x ∈ X }, let
the parameters of the response distributions depend on
{S(x)}, suppose that {S(x)} follows a Gaussian pro-
cess, and then induce dependence in {Y(x)} by inte-
gration over the latent process. This approach is com-
mon in geostatistics with nonnormal response vari-
ables (Diggle, Tawn and Moyeed, 1998; Diggle and
Ribeiro, 2007), and because of the complexity of the
integrations involved is most naturally performed in a
Bayesian setting, using Markov chain Monte Carlo al-
gorithms (Gilks, Richardson and Spiegelhalter, 1996;
Robert and Casella, 2004) to perform inferences. An
excellent account of this approach to spatial modeling
is provided by Banerjee, Carlin and Gelfand (2004).

The first application of latent variables to statistical
extremes was the study of hurricane wind speeds by
Coles and Casson (1998) and Casson and Coles (1999).
They treated position on the Eastern seaboard of the
US as a scalar spatial variable and used a hierarchical
Bayes model with a stable correlation function to fit

the point process likelihood to their data. In their ap-
plication the main gains relative to treating the data at
different sites as independent were the possibility of in-
terpolation of the distribution of extreme wind speeds
between sites at which they had been observed, and an
increase in the precision of estimation due to borrow-
ing of strength. A related approach, but without spatial
structure, was used by Fawcett and Walshaw (2006) to
model wind speeds in central and northern England.

Cooley, Nychka and Naveau (2007) used the gener-
alized Pareto model (4) with a common threshold u at
all sites to map return levels for extreme rainfall in Col-
orado. The rate parameter λ and the scale parameter σu

depended on location x in a climate space comprised of
elevation above sea-level and mean precipitation, in-
stead of longitude and latitude. A stationary isotropic
exponential covariance function was used to induce
spatial dependence in the latent processes {S(x)} for
these parameters. The shape parameter ξ had two val-
ues, depending on the site location. Turkman, Turk-
man and Pereira (2010) construct a similar but more
complex model for space-time properties of wildfires
in Portugal, using a random walk to describe the tem-
poral properties, and smoothing for the spatial depen-
dence; their paper also makes suggestions on spatial
max-stable modeling with exceedances. Gaetan and
Grigoletto (2007) analyze annual rainfall maxima at
sites in northeastern Italy, using nonstationary spa-
tial dependence and random temporal trend in the pa-
rameters of the generalized extreme-value distribution.
Sang and Gelfand (2009) modeled gridded annual rain-
fall maxima in the Cape Floristic Region of South
Africa using the generalized extreme-value distribu-
tion with a spatio-temporal hierarchical structure, and
in Sang and Gelfand (2010) used a Gaussian spatial
copula model, transformed to the generalized extreme-
value scale, to induce dependence between extremes
of point-referenced rainfall data. Other applications of
such models to areal data are Cooley and Sain (2010),
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who assessed possible changes in rainfall extremes by
comparing current and future rainfall computed from a
regional climate model, using an intrinsic autoregres-
sion to model how the three parameters of the point
process formulation for extremes vary on a large grid.
Owing to difficulties in estimating the shape parame-
ter, these authors used a penalty due to Martins and
Stedinger (2000) to ensure that |ξ | < 1/2.

In the next section we describe a rather simpler latent
model for the annual maximum rainfall data used in
this paper.

4.2 A Simple Model

Suppose that the GEV parameters {η(x), τ (x), ξ(x)}
vary smoothly for x ∈ X according to a stochastic pro-
cess {S(x)}. For our application, and by analogy with
Casson and Coles (1999), we assume that the Gaussian
processes for each GEV parameter are mutually inde-
pendent, though this assumption can be relaxed (Sang
and Gelfand, 2009; Cooley and Sain, 2010). For in-
stance, we take

η(x) = fη(x;βη) + Sη(x;αη,λη),(11)

where fη is a deterministic function depending on
regression parameters βη, and Sη is a zero mean,
stationary Gaussian process with covariance function
αη exp(−‖h‖/λη) and unknown sill and range param-
eters αη and λη. We use similar formulations for τ(x)

and ξ(x). Then conditional on the values of the three
Gaussian processes at the sites (x1, . . . , xD), the max-
ima are assumed to be independent with

Yi(xd) | {η(xd), τ (xd), ξ(xd)}
∼ GEV{η(xd), τ (xd), ξ(xd)},(12)

i = 1, . . . , n, d = 1, . . . ,D.

A joint prior density π must be defined for the pa-
rameters αη, ατ , αξ , λη, λτ , λξ , βη, βτ and βξ . In or-
der to reduce the computational burden, we use con-
jugate priors whenever possible, taking independent
inverse Gamma and multivariate normal distributions
for ατ and βτ , respectively. No conjugate prior exists
for λτ , for which we take a relatively uninformative
Gamma distribution. The prior distributions for the two
remaining GEV parameters are defined similarly. The
full conditional distributions needed for Markov chain
Monte Carlo computation of the posterior distributions
are as follows:

π(η | · · ·) ∝ π(η | αη,λη,βη)π(y | η,τ , ξ),

π(αη | · · ·) ∝ π(αη | κ∗
αη

, θ∗
αη

)π(η | αη,λη,βη),

π(λη | · · ·) ∝ π(λη | κ∗
λη

, θ∗
λη

)π(η | αη,λη,βη),

π(βη | · · ·) ∝ π(βη | μ∗
η,�

∗
η)π(η | αη,λη,βη),

where κ∗· , θ∗· , μ∗· and �∗· are the hyperparameters of
the prior distributions. The full conditional distribu-
tions related to τ and ξ have similar expressions. The
corresponding Markov chain Monte Carlo algorithm is
outlined in the Appendix.

5. COPULA MODELS

5.1 Generalities

In view of the flexibility of modeling afforded by
Gaussian-based geostatistical models, and, in particu-
lar, the range of potential covariance functions, it is nat-
ural to investigate how they may be extended to model
spatial extremes. An obvious approach is to use the
probability integral transformation to place the annual
maxima on the Gaussian scale, on which their joint dis-
tribution can be modeled using standard geostatistical
tools. However, the requirement that the model for the
original data should be max-stable imposes tight re-
strictions on the possible covariance structures, even on
the Gaussian scale. Although these restrictions are the-
oretical in nature, we shall see below that they strongly
affect the fit of the models. There is a close relationship
between this approach and the use of copulas, and we
first give a brief outline of the latter.

5.2 Copulas

Sklar’s Theorem (Nelsen, 2006, pages 17–24) estab-
lishes that the D-dimensional joint distribution F of
any random vector Y1, . . . , YD may be written as

F(y1, . . . , yD) = C{F1(y1), . . . ,FD(yD)},(13)

where F1, . . . ,FD are the univariate marginal distri-
butions of X1, . . . ,XD and C is a copula, that is, a
D-dimensional distribution on [0,1]D . The function C

is uniquely determined for distributions F with abso-
lutely continuous margins. If the marginal distributions
Fd are continuous and strictly increasing, then C corre-
sponds to the distribution of F1(Y1), . . . ,FD(YD), that
is,

C(u1, . . . , uD) = F {F−1
1 (u1), . . . ,F

−1
D (uD)}.

Nelsen (2006) and Joe (1997) are clear introductions to
multivariate models and copulas.

One might argue, with Mikosch (2006), that the
transformation to uniform margins is mathematically
trivial, obscures important features of the data that are
visible on their original scale and makes stochastic
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modeling awkward, and hence is rarely interesting for
applications. An alternative view is that the implicit
separation of the marginal distributions of the variables
from their dependence structure provides a unifying
framework to modeling multivariate data. The discus-
sion following Mikosch’s paper may be consulted for
a lively debate of the merits and demerits of copulas;
here we merely wish to show how they may be used to
model spatial extremes.

As a simple and important example, suppose that
Y1, . . . , YD have a joint Gaussian distribution with
means zero and covariance matrix � whose diagonal
elements all equal unity. The Gaussian copula function
is

C(u1, . . . , uD) = �{�−1(u1), . . . ,�
−1(uD);�},(14)

where �(·;�) is the joint distribution function of
Y1, . . . , YD and � denotes the cumulative distribution
function of a standard normal random variable. Here
we have used the componentwise transformation Ui =
�(Yi). The corresponding density is readily obtained.
Similarly, the copula of the multivariate Student t dis-
tribution with ν degrees of freedom and dispersion ma-
trix � may be written

C(u1, . . . , uD)
(15)

= Tν{T −1
ν (u1), . . . , T

−1
ν (uD);�},

where Tν(·;�) and Tν are the corresponding joint and
marginal distribution functions.

5.3 Extremal Copulas

If the random variables Y1, . . . , YD possess a joint
multivariate extreme value distribution, then their
marginal distributions are of the form (3). As these
margins are continuous, equation (13) implies that the
joint distribution must correspond to a unique copula,
and the max-stability property implies that this copula
must satisfy

C(um
1 , . . . , um

D)

= Cm(u1, . . . , uD), 0 < u1, . . . , uD < 1, m ∈ N.

Such a copula, called an extremal copula or stable
dependent function (Galambos, 1987; Joe, 1997), is
closely related to the exponent measure of Section 2.3,
through the relation C(u1, . . . , uD) = exp{−V (−1/

logu1, . . . ,−1/ loguD)}. The spectral representation

(7) means that we may write

C(u1, . . . , uD)

= exp

{
A

(
logu1∑

logud

, . . . ,
loguD∑

logud

)
(16)

×
D∑

d=1

logud

}
,

where the function A, called the the Pickands depen-
dence function, depends on the measure M on the sim-
plex SD ; A is often written as a function of just D − 1
of its arguments, which sum to unity. Since the trans-
formation from Fréchet to uniform margins is continu-
ous, convergence of rescaled maxima to a nondegen-
erate joint limiting distribution on the uniform scale
follows from the convergence on the Fréchet scale.
A useful example is the extremal t copula (Demarta
and McNeil, 2005), which results from rescaling the
maxima of independent multivariate Student t vari-
ables with dispersion matrix � and ν degrees of free-
dom. For D = 2 this yields

A(w) = wTν+1

[ {w/(1 − w)}1/ν − ρ

{(1 − ρ2)/(ν + 1)}1/2

]

+ (1 − w)Tν+1

[ {(1 − w)/w}1/ν − ρ

{(1 − ρ2)/(ν + 1)}1/2

]
,(17)

0 < w < 1,−1 < ρ < 1,

where ρ is the correlation obtained from �. The limit
of (17) when the correlation may be expressed as ρ =
exp{−a2/(2ν)} ∼ 1−a2/(2ν) for some a > 0 and ν →
∞ is the Hüsler and Reiss (1989) copula given by

A(w) = (1 − w)�

{
a

2
+ a−1 log

(
1 − w

w

)}

+ w�

{
a

2
+ a−1 log

(
w

1 − w

)}
,(18)

0 < w < 1;
see also Nikoloulopoulos, Joe and Li (2009). This im-
plies that the extremal t copula is more flexible than
the Hüsler–Reiss copula, in two distinct ways: first, the
presence of the degrees of freedom introduces a further
parameter; second, two different correlation functions
that yield the same form for a when ν → ∞, such as
the Gaussian function ρ(h) = exp{−(h/λ)2/(2ν)} and
the Cauchy function ρ(h) = {1+ (h/λ)2/(2ν)}−κ , will
both yield the same form for (18) but not for (17). In the
limit as ν → ∞ the parameter κ must be absorbed by
reparametrization, as we shall see in Section 7.3. Ow-
ing to the relationship between correlation functions
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and variograms mentioned after (10), we see that a2

will correspond to a semivariogram.
For any fixed correlation |ρ| < 1, it follows from

(17) that the limit as ν → ∞ is A(w) = 1, which corre-
sponds to C(u1, u2) = u1u2, so componentwise max-
ima of correlated normal variables are independent in
the limit, except in the trivial case |ρ| = 1. A similar
limit with a different rescaling was used by Hüsler and
Reiss (1989) when taking maxima of m independent
bivariate Gaussian variables with correlation ρ; in this
case letting ρ → 1 such that limm→∞ 4(1−ρ) logm =
a2 also yields (18).

The limit of (17) when ν → 0 is the Marshall–Olkin
copula

C(u1, u2)

= exp{α log(u1u2) + (1 − α) log min(u1, u2)},(19)

0 ≤ α ≤ 1,

where α = T1{−ρ/(1 − ρ2)1/2}. The boundary cases
in (19) are α = 0, which corresponds to perfectly de-
pendent extremes and arises for ρ = 1, and α = 1,
which corresponds to independent extremes and arises
for ρ = −1.

5.4 Tail Dependence

Pairwise tail dependence in copulas may be mea-
sured using the limits of the conditional probabilities
pr(U2 > u | U1 > u) and pr(U2 ≤ u | U1 ≤ u), which
may be written as

χup = lim
u→1−

1 − 2u − C(u,u)

1 − u
,

χlow = lim
u→0+

C(u,u)

u
,

provided that these limits exist. If one of these expres-
sions is positive, then there is dependence in the corre-
sponding tail, and otherwise there is independence. If
an extremal copula C∗ corresponding to C exists and
is nondegenerate, that is, if

C(u
1/m
1 , u

1/m
2 )m → C∗(u1, u2),

0 < u1, u2 < 1,m → ∞,

then the values of χup for C and C∗ are equal (Joe,
1997, page 178).

In the max-stable case there is a close relation be-
tween χup and the extremal coefficient, θ , viz., χup =
2 − θ = 2 − 2A(1/2,1/2), where A is the dependence

function in (16). In particular, the Gaussian copula has
χup = χlow = 0, the Student t copula has

χup = χlow = 2Tν+1

[
−

{
(ν + 1)(1 − ρ)

1 + ρ

}1/2]
,

whose symmetry stems from the elliptical form of the
joint densities, and the Hüsler–Reiss copula has χup =
2 − 2�(a/2) and χlow = 0.

5.5 Inference

Given data y1, . . . , yD assumed to be a realization
from a multivariate distribution whose margins take the
parametric forms H1(y; ζ ), . . . ,HD(y; ζ ) and which
has a parametric copula C that depends upon param-
eters γ , the parameter vector ϑ = (ζ, γ ) may be esti-
mated by forming a likelihood from the joint density
corresponding to the joint distribution C{H1(y1; ζ ),

. . . ,HD(yD; ζ );γ }. In the spatial context the Hd will
typically depend on the site xd at which yd is observed,
as in (12), and γ will represent the parameters of a
function that controls how the dependence of yc and
yd is related to the distance between them. For exam-
ple, when fitting the Student t copula, the (c, d) ele-
ment of the dispersion matrix � could be of the form
σ 2ρ(xc − xd), where ρ is one of the correlation func-
tions of Section 3.2.

If the joint density of Y1, . . . , YD is available, then
likelihood inference may be performed in the usual
way, with the observed information matrix used to pro-
vide standard errors for estimates based on large sam-
ples, and information criteria used to compare compet-
ing models. Alternatively, Bayesian inference can be
performed; for example, Sang and Gelfand (2010) use
Markov chain Monte Carlo to fit such a model, with the
Gaussian copula, exponential correlation function and
GEV marginal distributions having the same scale and
shape parameters but a regression structure and spa-
tial random effects in the location parameter. Unfortu-
nately the joint density of Y1, . . . , YD is not available
when using the Hüsler–Reiss and extremal t copulas,
for which only the bivariate distributions correspond-
ing to (17) and (18) are known. In Section 6.2 we dis-
cuss the use of composite likelihood for inference in
such cases.

6. MAX-STABLE MODELS

6.1 Models

It is natural to ask whether there are useful spa-
tial extensions of the extremal models described in
Section 2. The central arguments of Section 2.2 were



MODELING OF SPATIAL EXTREMES 171

extended to the process setting by Laurens de Haan
around three decades ago, and a detailed account is
given by de Haan and Ferreira (2006), Chapter 9. A key
notion is that of a so-called spectral representation of
extremal processes, and for our purposes the most use-
ful such representation is due to Schlather (2002). Let
{S−1

j }∞j=1 be the points of a homogeneous Poisson pro-
cess of unit rate on R+, so that {Sj }∞j=1 are the points of

a Poisson process on R+ with intensity ds/s2, and let
{Wj(x)}∞j=1 be independent replicates of a stationary
process W(x) on R

p satisfying E[max{0,Wj (o)}] = 1,
where o denotes the origin. Then

Z(x) = max
j

Sj max{0,Wj (x)}(20)

is a stationary max-stable process on R
p with unit

Fréchet marginal distributions. To see this, note fol-
lowing Smith (1990) that we can consider the {Sj ,

Wj (x)}∞j=1 to be the points in a Poisson process of in-

tensity ds/s2 ×ν(dw) on R+× W , where ν is the mea-
sure of the Wj(x) and W is a suitable space. Thus, the
probability that Z(x) ≤ z equals the void probability
of the set {(s,w) ∈ R+ × W : s max(0,w) > z}, which
has measure∫ ∫ ∞

z/max{0,w}
ds

s2 ν(dw) =
∫

z−1 max{0,w}ν(dw)

= z−1

because E[max{0,Wj (o)}] = 1; hence, Z(x) has a unit
Fréchet distribution. The max-stability follows from
the infinite divisibility of the Poisson process, which
implies that the distributions of {maxj=1,...,m Zj (x1),

. . . ,maxj=1,...,m Zj (xD)} and m{Z(x1), . . . ,Z(xD)}
are equal for any finite subset of points {x1, . . . , xD} ⊂
X .

Different choices for the process W(x) lead to some
useful max-stable models. Stationarity implies that if
we wish to describe the joint distributions of the max-
stable process {Z(x)} at pairs of points of X , then there
is no loss of generality in considering the sites o and h,
and for the remainder of this subsection we describe
the joint distributions of Z(o) and Z(h) under some
simple models.

A first possibility is to take Wj(x) = g(x − Xj),
where g is a probability density function and {Xj } is
a homogeneous Poisson process, both on R

p . In this
case the value of the max-stable process at x may be
interpreted as the maximum over an infinite number of
storms, centered at the random points Xj and of feroc-
ities Sj , whose effects at x are given by Sjg(x − Xj).
The case where g is the normal density was considered

by Smith (1990) in a pioneering unpublished report and
is often called the Smith model. If g is taken to be the
multivariate normal distribution with covariance ma-
trix �, then the exponent measure for Z(o) and Z(h)

is

z−1
1 �

{
a(h)

2
+ a−1(h) log

(
z2

z1

)}
(21)

+ z−1
2 �

{
a(h)

2
+ a−1(h) log

(
z1

z2

)}
,

where a2(h) = hT�−1h is the Mahalanobis distance
between h and the origin, and � is the standard normal
distribution function. The close resemblance to (18) is
no coincidence; this corresponds to taking an expo-
nential correlation function from Table 1 with geomet-
ric anisotropy and letting the scale parameter λ → ∞,
thereby producing the extremal model for an intrin-
sically stationary underlying Gaussian process with
semi-variogram proportional to hT�−1h. The extremal
coefficient is the θ(h) = 2�{a(h)/2}, which attains 2
as h → ∞ and falls to 1 as h → 0, spanning the range
of possible extremal dependencies. The exponent mea-
sures for the Student and Laplace densities were de-
rived by de Haan and Pereira (2006) but are apprecia-
bly more complicated and do not seem to have been
used in applications.

A second possibility is to take the {Wj(x)} to be sta-
tionary standard Gaussian processes with correlation
function ρ(h), scaled so that E[max{0,Wj (o)}] = 1.
Schlather (2002) shows that in this case the exponent
measure for Z(o) and Z(h) is

V (z1, z2) = 1

2

(
1

z1
+ 1

z2

)
(22)

×
(

1 +
[
1 − 2

{ρ(h) + 1}z1z2

(z1 + z2)2

]1/2)
.

This, the so-called Schlather model, is appealing be-
cause it allows the use of the rich variety of cor-
relation functions in the geostatistical literature, as
sketched in Section 3.2, but unfortunately the require-
ment that ρ(h) be a positive definite function imposes
constraints on the extremal coefficient θ(h) = 1+[{1−
ρ(h)}/2]1/2. When h ∈ R

2 and the Wj(x) are station-
ary and isotropic, it turns out that θ(h) < 1.838, so this
model cannot account for extremes that become inde-
pendent when the distance h increases indefinitely.

A third possibility stems from noting that if Wj(x)

is stationary on R
p , satisfies the properties above (20),

and is independent of the compact random set Bj with
indicator function IBj

(x) and volume |B|, and if Xj is a
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point from a Poisson process on R
p with rate E(|B|)−1,

then

W B
j (x) = Wj(x)IBj

(x − Xj)

is also stationary on R
p and may be used as the basis

of a max-stable process. The exponent measure (22)
generalizes to

V (z1, z2)

=
(

1

z1
+ 1

z2

)
(23)

×
{

1 − α(h)

2

×
(

1 −
[
1 − 2

{ρ(h) + 1}z1z2

(z1 + z2)2

]1/2)}
,

where α(h) = E{|B ∩ (h + B)|}/E(|B|) ∈ [0,1] de-
pends on the geometry of the random set; if h is
large enough that the mean overlap of B and h + B
is empty, then the corresponding extremes are inde-
pendent. Davison and Gholamrezaee (2012) fit models
based on (22) and (23) to extreme temperature data.

A fourth possibility is to let W(x) = exp{σε(x) −
σ 2/2}, σ > 0, where ε(x) is a stationary standard
Gaussian process with correlation function ρ(h). In
this case the exponent measure for Z(o) and Z(h)

equals (21), with a2(h) = 2σ 2{1 − ρ(h)}. Hence, the
extremal coefficient may be written θ(h) = 2�[σ {1 −
ρ(h)}1/2/

√
2]. As σ → 0 or ρ → 1, θ → 1, while as

σ → ∞, θ → 2 for any ρ. Thus, this geometric Gaus-
sian process, so-called, can have both independent and
fully dependent max-stable processes as limits, but has
the same exponent measure as the Smith model.

This process can be generalized by taking W(x) =
exp{ε(x) − γ (x)}, where ε(x) denotes an intrinsically
Gaussian process with semivariogram γ (h) and with
ε(o) = 0 almost surely, thus ensuring that σ 2(h) =
var{ε(h)} = 2γ (h) and giving extremal coefficient
θ(h) = 2�[{γ (h)/2}1/2]. As γ (h) → 0, we have
θ(h) → 1, while if γ (h) is unbounded, then θ(h) → 2
as ‖h‖ → ∞. Brown–Resnick processes (Davis and
Resnick, 1984; Kabluchko, Schlather and de Haan,
2009) appear when ε is a fractional Brownian pro-
cess, that is, γ (h) ∝ hα , 0 < α ≤ 2, h > 0. In par-
ticular, when ε is a Brownian process, α = 2, the
process corresponds to the Smith model, which also
arises as a Hüsler–Reiss model under the limiting con-
straint limn→∞ 4{1 − ρ(h)} logn = a(h)2. On equat-
ing the extremal coefficients for the Brown–Resnick
and Hüsler–Reiss models, a(h)/2 = {γ (h)/2}1/2, we

can obtain equivalences between their parameters. For
example, under the assumption of a stable correlation
function, we obtain λHR = 2−1/κHRh(λBR/h)κBR/κHR,
in an obvious notation, and thus if κHR = κBR, then
λHR = 2−1/κHRλBR. On comparing the estimates in Ta-
bles 4 and 5, we see that this relation holds.

6.2 Pairwise Likelihood Fitting

The fitting of max-stable processes to data is key
to applying them. By far the most widely-used ap-
proaches to fitting are based on the likelihood func-
tion, either as an ingredient in Bayesian inference, or
by maximum likelihood. Both require the joint den-
sity of the observed responses, but as we see from Sec-
tions 2.3 and 6.1, this appears to be generally unavail-
able for max-stable process models. Only the pairwise
marginal distributions are known for most models, and
even if an analytical form of the full joint distribution
exp{−V (z1, . . . , zD)} were available, it would be com-
putationally infeasible to obtain the density function
from it unless D was small. In such circumstances it
seems natural to base inference on the marginal pair-
wise densities.

Suppose that the available data may be divided into
independent subsets Y1, . . . , Yn. In the application de-
scribed above, n would often represent the number of
years of data, and for a complete data set Yi would
represent the maxima at the D sites available for each
year. Provided that the parameters ϑ of the model may
be identified from the pairwise marginal densities, they
may be estimated by maximizing a composite log like-
lihood function of the form (Lindsay, 1988; Cox and
Reid, 2004; Varin, 2008)

�p(ϑ) =
n∑

i=1

∑
{j<k:yj ,yk∈Yi}

logf (yj , yk;ϑ).

The variance matrix of the maximum composite likeli-
hood estimator ϑ̂ may be estimated by an information
sandwich of the form V (ϑ̂) = J−1(ϑ̂)K(ϑ̂)J−1(ϑ̂),
where J (ϑ) is the observed information matrix, that
is, the hessian matrix of −�p(ϑ), and K(ϑ) is the esti-
mated variance of the score contributions, correspond-
ing to the composite log likelihood �p . Below we es-
timated the latter using centered sums of score contri-
butions, in order to reduce the bias of the estimated
matrix.

It is not always straightforward to maximize a com-
posite log likelihood, and in the applications below we
used multiple starting points in order to find the global
maximum.
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Model selection is effected by minimization of the
composite likelihood information criterion CLIC =
−2�p(ϑ̂) + 2 tr{J−1(ϑ̂)K(ϑ̂)} (Varin and Vidoni,
2005), which has properties analogous to those of AIC
and TIC (Akaike, 1973; Takeuchi, 1976).

Composite likelihood is increasingly used in prob-
lems where the full likelihood is unobtainable or too
burdensome for ready computation, and there is a bur-
geoning literature on the topic, summarized by Varin
(2008). Padoan, Ribatet and Sisson (2010), Blanchet
and Davison (2011) and Davison and Gholamrezaee
(2012) discuss its application in the context of extremal
inference, and its use to fit spatial extremal models
based on (21) and (22) has been implemented in the R
libraries SpatialExtremes and CompRandFld.
See also Smith and Stephenson (2009) and Ribatet,
Cooley and Davison (2012), who use Bayes’ theorem
and pairwise likelihood to fit extremal models to rain-
fall data.

Alternative estimators of parameters for pairs of
sites have been suggested by de Haan and Pereira
(2006) and de Haan and Zhou (2008), and applied by
Buishand, de Haan and Zhou (2008).

7. RAINFALL DATA ANALYSIS

7.1 Preliminaries

We illustrate the above discussion using the annual
maximum rainfall data described in Section 1. The fo-
cus in this paper is on comparison of different spatial
approaches to modeling the maxima, so we fitted the
generalized extreme value distribution (3) in all cases,
using marginal parameters described by the trend sur-
faces

η(x) = β0,η + β1,η lon(x) + β2,η lat(x),(24)

τ(x) = β0,τ + β1,τ lon(x) + β2,τ lat(x),(25)

ξ(x) = β0,ξ ,(26)

where lon(x) and lat(x) are the longitude and lati-
tude of the stations at which the data are observed.
The marginal structure (24)–(26) was chosen using
the CLIC and likelihood values obtained when fit-
ting a wide range of plausible models. Experiments
with fitting of flexible spatial surfaces, such as thin
plate splines, have shown little benefit of doing so in
this particular case, and raise problems such as the
choice of knot locations and of penalty. We there-
fore decided not to include such terms in the baseline
model. Other approaches to spatial smoothing might
also be adopted, as in Butler et al. (2007), who use

local likelihood estimation for extreme-value models
(Davison and Ramesh, 2000; Hall and Tajvidi, 2000),
but they do not seem necessary here. Smoothing for
extremes is also discussed by Pauli and Coles (2001),
Chavez-Demoulin and Davison (2005), Laurini and
Pauli (2009) and Padoan and Wand (2008), and might
be essential over larger spatial domains.

A referee suggested taking τ(x) ∝ η(x), as is some-
times used in hydrological applications, but though this
yields a slightly more parsimonious marginal model
that fits about equally well as judged using CLIC based
on an independence log likelihood, we decided to stick
with the more general form (24)–(26).

For each correlation function used below, we let λ

denote the scale parameter, and let κ and α denote fur-
ther parameters, depending on the correlation function,
that determine the smoothness of the random field.

To compare the different model fits, we show real-
izations of the corresponding annual maximum rain-
fall surfaces, and compare the empirical distributions
of maxima for subsets of the 16 validation stations with
those simulated from the fitted models. The simula-
tions for the max-stable and extremal copula models
were performed using the expressions (20) for large
finite numbers of points of the Poisson process, and
Cm(u

1/m
1 , . . . , u

1/m
D ) for large m; in both cases we

verified that the marginal distributions were indistin-
guishable from their theoretical limits. The Brown–
Resnick process was simulated using ideas of Oesting,
Kabluchko and Schlather (2012).

For reasons of space we confine the discussion be-
low to summer maximum rainfall, but the same con-
clusions hold for winter maxima, except that the esti-
mated extremal coefficients are slightly higher, indicat-
ing marginally lower spatial dependence, in line with
the difference between the weather patterns leading to
heavy rainfall in summer and winter months; see the
center and lower sets of panels in Figure 2.

7.2 Latent Variable Model

We first describe the results from the latent variable
approach. In order to compare the results on a roughly
equal footing, the model considered has the same trend
surfaces for the marginal parameters as in expressions
(24)–(26), with the addition of three independent zero
mean Gaussian random fields Sη(x), Sτ (x) and Sξ (x),
as in (11), each with an exponential correlation func-
tion. Proper normal priors with very large variances
were assumed for the regression parameters β appear-
ing in (24)–(26). As suggested by Banerjee, Carlin and
Gelfand (2004), informative priors should be used for
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TABLE 2
Hyperparameters on the latent process used for the rainfall

application. The prior distributions for α and λ are respectively
inverse Gamma and Gamma

α λ

Shape Scale Shape Scale

η(x) 1 12 5 3
τ (x) 1 1 5 3
ξ(x) 1 0.04 5 3

the parameters α and λ of the covariance functions, in
order to yield nondegenerate marginal posterior distri-
butions for them. Suitable prior densities were chosen
after exploratory analysis of the fitted marginal distri-
butions and are summarized in Table 2; they provide
proper prior densities with means similar to the aver-
age marginal maximum likelihood estimates but much
larger variances. A summary of the posterior is given
in Table 3. These results were obtained after 300,000
iterations of the Markov chain, thinned by a factor 30,
preceded by a burn-in of 5000 iterations.

The variation of η(x) with latitude and longitude
seems reasonable, with the decrease as latitude in-
creases and longitude decreases corresponding to a
general reduction in altitude away from the Alps. The
pattern of variation for the scale parameter is sim-
ilar. Similar to other data sets on extreme rainfall,
the shape parameter is positive, corresponding to the
heavy-tailed Fréchet case, but not strongly so. In ac-
cordance with other authors (Zhang, 2004; Sang and
Gelfand, 2010), we found that it was not possible to
learn from the data simultaneously about the parame-
ters α and λ, for which there is an identifiability prob-
lem. As a result, the posterior distributions for λ are
close to the chosen prior Gamma(5,3). A sensitivity
analysis on the choice of this prior was performed and,
although the posterior distributions for α and λ were

different, the predictive pointwise return level maps
shown in Figure 3 were similar.

Figure 3 shows maps of the predictive pointwise pos-
terior mean for the 25-year return level, with pointwise
95% credible intervals. These maps were produced by
first generating one conditional simulation of three in-
dependent Gaussian processes for each state of the
Markov chain given its then-current values of η, τ and
ξ , and then using this realization to compute pointwise
25-year return levels at ungauged sites. This shows the
main strength of the latent variable approach: the use
of stochastic processes to model the spatial behavior
of the marginal parameters enables us to capture com-
plex local variation in the return levels that determin-
istic trend surfaces cannot reproduce. The simulation
output can be manipulated to obtain posterior standard
errors and other uncertainty measures for quantities of
interest, such as these or other return levels.

Although the pointwise return level maps look rea-
sonable, the latent variable approach does not provide
plausible spatial process realizations. The upper left
panel of Figure 4 shows one realization of the spa-
tial process from this model. Clearly, the assumption
of conditional independence given the latent process
leads to unrealistic spatial structure, and this has a se-
vere impact when using this model to analyze the mul-
tivariate distribution of extremes for several sites, or for
regional analysis. Compared to the other models, the
conditional independence assumption underlying the
latent variable model leads to much less variation in
quantities such as the statistic used to choose the sim-
ulations shown, that is, T = |B|−1 ∫

x∈B Z(x), where B
denotes a ball of radius 10 km centered on Zurich.

Figure 5 confirms this through QQ-plots for different
groupwise maxima. The multivariate distribution of the
validation sample is very poorly modeled, because the
conditional independence assumption is not appropri-
ate for extreme rainfall events involving dependence
between stations. For instance, when groups of max-
ima are considered, the latent variable model seems to

TABLE 3
Summary statistics for the posterior distributions of the latent process parameters. The posterior means and the associated

95% credible intervals (parentheses) are displayed. h+ = −λ log 0.05 corresponds to the distance
for which the correlation function equals 0.05. The parameter β0,ξ is dimensionless

β0 (mm) β1 (mm/km lon) β2 (mm/km lat) α λ (km) h+ (km)

η(x) 26 (24,29) 0.05 (−0.02,0.13) −0.16 (−0.23,−0.10) 5 (2,12) 22 (9,38) 64 (28,114)

τ (x) 9 (8.2,9.8) 5 (−26,37) × 10−3 −0.04 (−0.06,−0.01) 0.58 (0.18,1.6) 17 (6,34) 51 (17,101)

ξ(x) 0.16 (0.06,0.27) – – 9 (4,20) × 10−3 22 (8,42) 67 (25,125)
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FIG. 3. Maps of the (predictive) pointwise 25-year return level estimates for rainfall (mm) obtained from the latent variable and max-stable
models. The top and bottom rows show the lower and upper bounds of the 95% pointwise credible/confidence intervals. The middle row
shows the predictive pointwise posterior mean and pointwise estimates. The left column corresponds to the latent variable model assum-
ing Gamma(5,3) prior on λ. The middle column assumes the less informative priors λη ∼ Gamma(1,100), λτ ∼ Gamma(1,10) and
λξ ∼ Gamma(1,10). The right column corresponds to the extremal t copula model.

systematically overestimate their joint distribution, by
an amount that depends on the number of sites con-
tributing to the maximum.

7.3 Copula Models

In this section we describe the results obtained from
fitting the copula models. We fit the nonextremal Gaus-
sian and Student t copulas using the full likelihood, and
the extremal copulas using maximum pairwise like-
lihood estimation. In each case we use the marginal
structures (24)–(26) and the correlation functions in
Table 1.

We first fitted the Gaussian and Student t copulas
(14) and (15) with GEV marginal distributions and

various correlation functions, using the corresponding
likelihoods. These copulas are not max-stable, so we
do not expect this approach to yield good models for
the joint extremes; this is essentially a frequentist ap-
proach to fitting models like that of Sang and Gelfand
(2010). The left panel of Figure 6 shows the empir-
ical semivariogram for the fitting and validation sta-
tions, with the fitted semivariograms from the best and
worst-fitting models obtained using this approach. The
Student t fit seems reasonable, though not ideal, but
the center and right panels show that the corresponding
extremal coefficients do not match to the data; the ex-
tremal coefficient for the Gaussian copula equals 2 at
all distances h, and that for the Student t copula pre-



176 A. C. DAVISON, S. A. PADOAN AND M. RIBATET

FIG. 4. One realization from each of the models. From left to right, the top row shows results from the latent variable, Student t cop-
ula, Hüsler–Reiss copula and extremal-t copula models; the bottom row shows results from the Smith, Schlather, geometric Gaussian and
Brown–Resnick models. The extreme top and bottom panels show histograms of 1000 realizations of the summary statistic T , and the vertical
lines correspond to the realizations shown.

dicts very weak extremal dependence inconsistent with
the observed extremes.

Turning to extremal copulas, Table 4 shows that
the extremal t models all fit the data appreciably
better than do the Hüsler–Reiss models, with well-
determined but small estimates of the degrees of free-
dom. As in more standard geostatistical applications, it
is difficult to estimate the scale and shape parameters
of the correlation functions, and this is compounded by
the presence of the degrees of freedom for the extremal
t models; the standard errors for λ and κ can be large
and somewhat variable. At first sight the differences
in the estimates of λ in the upper and lower parts of
the table are surprising, but they are clarified by not-
ing that the limit (18) obtained by letting ν → ∞ in
(17) implies that for large ν, (‖h‖/λ)κ ≈ 2ν(‖h‖/λ′)κ ′

,
where the parameters λ′, κ ′ are those of the extremal t

model and those without the primes are those of the
Hüsler–Reiss model. We therefore expect that κ ′ ≈ κ

and λ′ ≈ λ(2ν)1/κ , and this is indeed the case, apart
from estimation error. Perhaps not surprisingly for
rainfall data, which tend to have high local variation
corresponding to rough spatial processes, the estimates
of the shape parameters κ are less than unity.

To aid the comparison of these models, we introduce
an extremal practical range. In conventional geostatis-
tics with stationary isotropic correlation, the practical
range is the distance h for which the correlation func-
tion ρ(h) = 0.05. In the extremal context we instead
use the distances h− and h+ satisfying θ(h−) = 1.3
and θ(h+) = 1.7. Table 4 suggests that these distances
are more stable than the parameters of the correlation
functions themselves, though those for the exponential
and Cauchy functions, which provide the worst fits, in-
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FIG. 5. Model checking for the latent variable model. The top row compares pairwise maxima simulated from the model and the observed
maxima for pairs of stations separated by 7 km (left), 45 km (middle) and 83 km (right). The middle row compares the observed and predicted
minima (left), mean (middle) and maxima (right) for a group of five stations chosen randomly. The bottom row compares the observed and
predicted minima (left), mean (middle) and maxima (right) for all 16 stations kept for model validation. Overall 95% confidence envelopes
are also shown. For clarity the values are transformed to the unit Gumbel scale using the probability integral transform for the fitted GEV
model for each station.

dicate stronger dependence of extremal rainfall. Over-
all inclusion of the degrees of freedom has a large im-
pact on the model fit, while the effect of varying the
correlation function is more limited. The extremal t

model with the Whittle–Matérn correlation function
provides the minimum CLIC, consistent with the best
fit obtained with max-stable models below, from the
geometric Gaussian process.

The center and right panels of Figure 6 compare the
F -madogram estimates of the extremal coefficients be-
tween pairs of stations with the extremal coefficient
functions obtained with the fitted Hüsler–Reiss and
extremal t models that have the largest and smallest
CLIC values. The interpretation of such plots is some-
what awkward because the F -madogram estimates do
not correspond to independent pairs of stations, but
both fits appear to underestimate extremal dependence
at distances under 30 km, and to provide better fits, at
least to the grey points, at longer distances.

The rightmost three top panels in Figure 4, which
show one realization from each of the Student t and
best Hüsler–Reiss and extremal t copula models, show
that these processes provide more realistic spatial de-
pendence than does the latent process, though the Stu-
dent t realization gives a smaller area with really large
precipitation, consistent with Figure 6.

Figure 7 shows the outcome of the model check-
ing procedure for extremal t models with the Whittle–
Matérn correlation function, using the validation sta-
tions. Overall the fit seems much better than for the la-
tent variable model. For comparison, Figure 8 displays
the results of the model checking procedure for the
Student t copula model with the Whittle–Matérn cor-
relation function. Although the fit is appreciably bet-
ter than for the latent variable model, the systematic
appearance of the observed minima above the diago-
nal and of the observed maxima below the diagonal
suggest that the model does not include enough de-
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FIG. 6. Comparison between data and fitted copula models. The left panel shows the empirical semivariogram values for the pairs of
stations used in the fitting (grey) and the validation stations (black), with the fitted semivariograms for the best (red) and worst (green)
models. The center and right panels show F -madogram estimates of the pairwise extremal coefficients for the fitting and validation stations,
and the fitted extremal coefficient functions for the copula models with the lowest CLIC (red line) and the highest CLIC (green line). The
horizontal dashed lines in the center and right panels are at 1.3 and 1.7; these panels also show the extremal coefficient curves (black) for
the models in the left panel. The center and right panels also show the extremal coefficients corresponding to the best-fitting nonextremal
Gaussian and Student t copula models; that for the Gaussian model takes a constant value 2, and that for the t model lies well above the
empirical extremal coefficients.

pendence in the extremes, as one anticipates from the
rapidly decreasing extremal dependence for this model,
shown in the right panel of Figure 6. Overall the fit is
not as good as that of the extremal t copula, shown in
Figure 7.

A map of the pointwise 25-year return levels for this
model is very similar to the corresponding plot for the
max-stable models, shown in Figure 3; both are less

plausible than the corresponding map for the latent
variable model, which shows better adaptation to lo-
cal variation, though at the cost of more uncertainty for
quantile estimates.

7.4 Max-Stable Models

In this section we focus on the max-stable models,
again fitted with the marginal trend surfaces (24)–(26).
Table 5 summarizes the fitted models. The Brown–

TABLE 4
Fits of extremal t and Hüsler–Reiss copula models to Swiss rainfall data. The first column reports the correlation function used, and the
second to fourth columns give parameter estimates (standard errors); DoF is the estimated degrees of freedom, λ is the scale parameter
and κ is the shape parameter. (∗) denotes that the parameter is held fixed. h− and h+ are the estimated distances at which θ(h) equals

1.3 and 1.7. NoP is the number of parameters, �p is the maximized composite log-likelihood, and CLIC is the information criterion

Extremal t

Correlation DoF λ (km) κ h− (km) h+ (km) NoP 	p CLIC

Whittle 5.5 (2.1) 316 (235) 0.39 (0.05) 6.9 87 10 −210,232 423,107
Stable 5.5 (2.1) 279 (206) 0.81 (0.09) 6.9 88 10 −210,233 423,110
Exponential 4.8 (1.5) 160 (62) 1.00 (∗) 9.0 72 9 −210,264 423,131
Cauchy 5.5 (2.1) 6.3 (1.2) 0.06 (0.03) 7.6 217 10 −210,296 423,230

Hüsler–Reiss

Semivariogram λ (km) κ h− (km) h+ (km) NoP 	p CLIC

Stable 11.8 (3.4) 0.74 (0.07) 5.8 84 9 −210,348 423,232
Exponential 14.6 (3.2) 1.00 (∗) 8.7 63 8 −210,438 423,338
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FIG. 7. Model checking for the extremal t model with the Whittle–Matérn correlation function. For details, see the caption to Figure 5.

Resnick and the geometric Gaussian models have the
smallest CLIC values, perhaps owing to the behav-
ior of their extremal coefficients for large distances.
The variance parameter σ 2 in the geometric Gaussian
model controls the upper bound of the extremal coef-
ficient function, for instance, for an isotropic correla-
tion function in R

2 θ(h) ≤ 2�(0.838σ), for all h ≥ 0.
Hence, this model allows extremal coefficients θ(h) ≈
2 if σ 2 is large enough. The Brown–Resnick model
with variogram γ (h) = |h|α , 0 < α ≤ 2, also allows
θ(h) → 2 when h → +∞, because then γ (h) → +∞.
These differ from the Schlather model, which imposes
θ(h) → 1 + 1/21/2 as h → ∞. See Figure 9.

Isotropic and anisotropic Smith models were also
considered. Their CLIC values show that the aniso-
tropic model is better, but both fit much less well than
the other models. This might be explained by the lack
of flexibility of this model, which assumes a determin-
istic shape for the storms and leads to dependence of
the extremal coefficient on the Mahalanobis distance
rather than on a more flexible function of distance; it
corresponds to taking the Brown–Resnick model with
variogram γ (h) ∝ h2.

Apart from the Smith models, all give comparable
estimates for h−, though the choice of the correlation
function may have a large impact on the estimation of
h+. In particular, the Cauchy function differs greatly
from the others. The best-fitting models show values
for h+ similar to those from the best extremal copula
models, though the copula models have lower CLIC
values.

The geometric Gaussian model with Whittle–Matérn
or stable correlation functions and the Brown–Resnick
model appear to provide the best fits to our data, though
we had difficulties in simultaneously estimating σ 2, λ

and κ for the former models. In accordance with our
results for the latent variable model, these parameters
seem not to be jointly identifiable (Zhang, 2004), per-
haps because of the upper limit of around 90 km on the
distances between sites, which means that σ 2 is dif-
ficult to estimate from these data. The safest strategy
when using the geometric Gaussian model appears to
be to fix one of these parameters, preferably the range
λ or shape κ , which do not determine an upper bound
for the extremal coefficient. Some numerical experi-
mentation shows that σ 2 and λ are strongly related:
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FIG. 8. Model checking for the Student t copula model with the Whittle–Matérn correlation function. For details, see the caption to
Figure 5.

completely different values of them can lead to indis-
tinguishable extremal coefficient functions, at least for
the distances seen in our data.

Figure 10 shows the fits of the best max-stable model
to the data from the validation stations. Pairwise depen-
dencies seem to be well estimated whatever the dis-
tance between two sites, and the higher-dimensional
properties also seem to be accurately modeled, even if
different summary statistics are considered.

Figure 4, which plots one realization from the best
Smith, Schlather, geometric Gaussian and Brown–
Resnick max-stable models, illustrates the differences
among them. The elliptical forms in the Smith model
realization seem unrealistic, while the Schlather, ge-
ometric Gaussian and Brown–Resnick model realiza-
tions appear more plausible. The difference between
those from the last three models is less obvious vi-
sually, though the geometric Gaussian and Brown–
Resnick models tend to give less dependence at long
ranges than does the Schlather model, owing to the
restrictions that the latter imposes on the extremal co-
efficient.

The drawback of the max-stable process is that it
may be difficult to find accurate trend surfaces for the
marginal parameters. This may result in unrealistically
smooth pointwise return levels, similar to that shown
in Figure 3.

8. DISCUSSION

If the purpose of spatial analysis of extremes is sim-
ply to map marginal return levels for the underlying
process, a very simple approach is to apply kriging to
quantiles estimated separately for each site. The strong
asymmetry in the uncertainty suggests that this is best
applied to transformed estimates, perhaps their loga-
rithms, followed by back-transformation to the origi-
nal scale. The obvious disadvantages of this approach
are that maps for different quantiles may be contradic-
tory, that their uncertainties may be hard to assess, and
that the resulting maps may be inconsistent with risk
assessment for more complex events.

Turning to the approaches discussed in detail above,
a major asset of latent variable models is flexibility:
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TABLE 5
Summary of the max-stable models fitted to the Swiss rainfall data. Standard errors are in parentheses. (∗) denotes that the parameter was

held fixed. h− and h+ are, respectively, the distances for which θ(h) is equal to 1.3 and 1.7. NoP is the number of parameters.
�p is the maximized composite log-likelihood and CLIC is the corresponding information criterion

Smith

Correlation σ11 (km) σ12 (km) σ22 (km) h− (km) h+ (km) NoP 	p CLIC

Isotropic 259 (45) 0 (∗) σ22 = σ11 12.4 33 8 −212,455 427,113
Anisotropic 251 (46) 64 (13) 290 (50) 6.6–11.1 18–30 10 −212,395 427,020

Schlather

Correlation λ (km) κ h− (km) h+ (km) NoP 	p CLIC

Whittle 39.3 (21.4) 0.44 (0.12) 6.0 147 9 −210,813 424,200
Stable 34.8 (11.5) 0.95 (0.16) 6.3 146 9 −210,815 424,206
Exponential 34.1 (9.0) 1.00 (∗) 6.8 134 8 −210,816 424,167
Cauchy 8.0 (2.2) 0.34 (0.16) 7.1 2370 9 −210,874 424,321

Geometric Gaussian

Correlation σ 2 λ (km) κ h− (km) h+ (km) NoP 	p CLIC

Whittle 11.1 (3.8) 700 (∗) 0.37 (0.03) 5.8 86 9 −210,349 423,232
Stable 15.0 (5.4) 1000 (∗) 0.76 (0.06) 5.9 86 9 −210,349 423,233
Exponential 2.42 (0.93) 53.2 (18.4) 1.00 (∗) 7.0 116 9 −210,368 423,271
Cauchy 30.9 (8.1) 5.2 (0.66) 0.01 (∗) 6.7 192 9 −210,412 423,355

Brown–Resnick

Variogram λ (km) α h− (km) h+ (km) NoP 	p CLIC

Fractional 30 (9.23) 0.74 (0.07) 5.8 84 9 −210,348 423,231
Brownian 29 (6.36) 1.00 (∗) 8.7 63 8 −210,438 423,338

it is conceptually straightforward to add further ele-
ments or other layers of variation, if they are thought
to be necessary, though the computations become more

challenging. Moreover, the use of stochastic processes
for the spatial distribution of the GEV parameters en-
ables the treatment of situations for which these pa-

FIG. 9. Comparison between the F -madogram estimates for the fitting (grey points) and the validation (black points) data sets and the
estimated extremal coefficient functions for different max-stable models.
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FIG. 10. Model checking for the Brown–Resnick model. For details, see the caption to Figure 5.

rameters display complex variation. Prediction at un-
observed sites x+ is also straightforward using condi-
tional simulation of Gaussian random fields for each
state of the chain, from which observations can be gen-
erated at each x+, and it is straightforward to obtain
measures of uncertainty for quantities of interest.

Apart from generic issues related to the choice of
prior distribution in Bayesian inference, there are two
main drawbacks to the latent variable approach in the
present context. The first is that after the averaging
over the underlying process {S(x)}, the marginal dis-
tribution of {Y(x)} is not of extreme-value form, and
therefore will not be max-stable. This contradicts the
argument leading to (3), but might be regarded as the
price to be paid for the flexibility of including latent
variables and fully Bayesian inference; see, for exam-
ple, Turkman, Turkman and Pereira (2010). The sec-
ond drawback is more serious, and stems from the con-
struction of the model: conditional on the underlying
process, extremes will arise independently at adjacent
sites. This is clearly unrealistic, and seems to under-
mine the use of this approach to forecasting for specific
events, though it may still be very useful for the compu-
tation of marginal properties of extremal distributions,

such as return levels. The copula-based approach of
Sang and Gelfand (2010) is intended to deal with this,
but results in Section 7.3 suggest that a closely-related
frequentist copula model does not adequately explain
the local extremal dependence of our annual maximum
rainfall data, so the use of Gaussian copulas cannot be
regarded as wholly satisfactory. A more promising ap-
proach has been suggested in the as-yet unpublished
work of Reich and Shaby (2011), who develop a fi-
nite latent process approximation to the Smith process
in a Bayesian framework, and are thus able to approx-
imate this model closely using Markov chain Monte
Carlo methods. They are also able to incorporate non-
stationarity and latent process models for the marginal
parameters.

Our rainfall application suggests that there is an
awkward trade-off to be made in modeling spatial ex-
tremes. Latent variables allow a realistic and flexible
spatial structure in the marginal distributions and thus
enable a good assessment of the variation of return
levels across space, but the spatial structure they at-
tribute to extreme events seems quite unrealistic: com-
pare the simulations in Figures 3 and 4. It would be
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worthwhile to investigate the fitting of such structures
using pairwise likelihood, which is the only approach
currently available for the fitting of the spatially appro-
priate copula and max-stable process models. Ribatet,
Cooley and Davison (2012) report promising results
from an investigation into the use of pairwise likeli-
hood in Bayesian inference, but it would be good to
have a better understanding of that approach.

The connections between copula and max-stable
models also need more investigation: while the former
seem to provide the best fits overall—compare Tables 4
and 5—the formulation of the latter in terms of a full
spatial process is very attractive. Presumably the differ-
ence is simply a technical matter of using a spatially-
defined dependence function and extending the copula
models to the full spatial domain, but the connections
are intriguing and merit further study.

Although we have used pairwise likelihood for in-
ference, it would be worthwhile to investigate whether
the inclusion of third- and higher-order marginal den-
sities in the composite likelihood would increase its ef-
ficiency. Genton, Ma and Sang (2011) show that this
increases the efficiency of estimation for the Smith
model, but so far as we are aware, their work has not
yet been extended to other max-stable models or used
in applications. Another way to improve statistical effi-
ciency while reducing the computational burden of the
composite likelihood could be the downweighting or
exclusion of likelihood contributions from sites very
far apart, as suggested by Bevilacqua et al. (2012) and
Padoan, Ribatet and Sisson (2010); in the context of
time series, including unnecessary pairs can degrade
inference (Davis and Yau, 2011), and simulations sug-
gest that this is also true for certain models for spatial
extremes (Gholamrezaee, 2010; Padoan, Ribatet and
Sisson, 2010). This is related to the issue of the scal-
ability of the max-stable and extremal copula analyses:
the combinatorial explosion associated with the use of
pairwise likelihood might render these infeasible for
data from thousands of sites. In such cases a judicious
sub-sampling of pairs seems necessary, but our expec-
tation is that inference should be feasible in such set-
tings.

We apply our ideas to block maxima, essentially be-
cause this seems to be the only extremal setting for
which spatial methods are currently available, but the
extension to threshold modeling (Davison and Smith,
1990; Coles and Tawn, 1991) would enable more flex-
ible inference. Encouraging results for spatio-temporal
modeling of rain data have been obtained in Huser

and Davison (2012), and further exploration of re-
lated ideas, for example, due to Turkman, Turkman and
Pereira (2010), seems eminently worthwhile.

Throughout the discussion above we have supposed
that the classical theory of extremes provides appro-
priate models for maxima, and, in particular, that the
extremal dependence observed in the data can be ex-
trapolated to higher levels for which observations are
unavailable. In practice, dependence is often seen to
decrease for increasingly rare events, suggesting inad-
equacies in the classical formulation. The development
of models for so-called near-independence (Ledford
and Tawn, 1996, 1997; Heffernan and Tawn, 2004;
Ramos and Ledford, 2009) of spatial extremal data
would be very valuable. Wadsworth and Tawn (2012)
tackle this important topic.

APPENDIX: MCMC ALGORITHM FOR LATENT
VARIABLE MODEL

Inference for our latent variable model may be per-
formed using a Gibbs sampler, whose steps we now
describe. Given a current value of the Markov chain

ψt = (ηt ,τ t , ξ t , αη,t , λη,t , ατ,t , λτ,t , αξ,t , λξ,t ,

βη,t ,βτ,t ,βξ,t ),

the next state ψt+1 of the chain is obtained as follows.
Step 1: Updating the GEV parameters at each site.

Each component of ηt = {ηt (x1), . . . , ηt (xD)} is up-
dated singly according to the following scheme. Gener-
ate a proposal ηp(xd) from a symmetric random walk
and compute the acceptance probability

α{ηt (xd), ηp(xd)}
= min

{
1, π{yd | ηp(xd), τt (xd), ξt (xd)}

× π(ηp | αη,λη,βη)/(
π{yd | ηt (xd), τt (xd), ξt (xd)}

× π(ηt | αη,λη,βη)
)}

,

that is, a ratio of GEV likelihoods times a ratio
of multivariate Normal likelihoods. With probability
α{ηt (xd), ηp(xd)}, the η(xd) component of ψ t+1 is set
to ηp(xd); otherwise it remains at ηt (xd). The scale
and shape parameters are updated similarly.

Step 2: Updating the regression parameters. Due to
the use of conjugate priors, βη is drawn directly from
a multivariate Normal distribution having covariance
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matrix and mean vector

{(�∗
η)−1 + XT

η�−1
η Xη}−1,

{(�∗
η)−1 + XT

η�−1
η Xη}−1{(�∗

η)−1μ∗
η + XT

η�−1
η η},

where μ∗
η and �∗

η are the mean vector and covariance
matrix of the prior distribution for βη and Xη is the
design matrix related to the regression coefficients βη.
Again the regression parameters for the GEV scale and
shape parameters are updated similarly.

Step 3: Updating the sill parameters of the covari-
ance function. Due to the use of conjugate priors, αη

is drawn directly from an inverse Gamma distribution
whose shape and rate parameters are

1
2k + κ∗

α,

θ∗
αη

+ 1
2αη,t (ηt − Xηβη,t )

T�−1
η,t (ηt − Xηβη,t ),

where κ∗
αη

and θ∗
αη

are respectively the shape and scale
parameters of the inverse Gamma prior distribution and
Xη is the design matrix related to the regression coef-
ficients βη. The sill parameters of the covariance func-
tion for the GEV scale and shape parameters are up-
dated similarly.

Step 4: Updating the range parameters of the covari-
ance function. Generate a proposal λη,p ∼ U(λη,t −
ελ, λη,t + ελ) and compute the acceptance probability

α(λη,t , λη,p)

= min
{

1,
π(ηt | αη,t , λη,p,βη,p)

π(ηt | αη,t , λη,t ,βη,t )

×
(

λη,p

λη,t

)k∗
λη

−1

exp
(

λη,t − λη,p

θ∗
λη

)}
,

a ratio of multivariate Normal densities times the ratio
of the prior densities and where κ∗

λη
and θ∗

λη
are respec-

tively the shape and the scale parameters of the Gamma
prior distribution. With probability α(λη,t , λη,p), the
λη component of ψ t+1 is set to λη,p; otherwise it re-
mains at λη,t . The range parameters related to the scale
and shape GEV parameters are updated similarly. If
the covariance family has a shape parameter like the
powered exponential or the Whittle–Matérn covariance
functions, this is updated in the same way.
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