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Laplace Approximated EM Microarray
Analysis: An Empirical Bayes Approach
for Comparative Microarray Experiments
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Abstract. A two-groups mixed-effects model for the comparison of (nor-
malized) microarray data from two treatment groups is considered. Most
competing parametric methods that have appeared in the literature are ob-
tained as special cases or by minor modification of the proposed model. Ap-
proximate maximum likelihood fitting is accomplished via a fast and scalable
algorithm, which we call LEMMA (Laplace approximated EM Microarray
Analysis). The posterior odds of treatment × gene interactions, derived from
the model, involve shrinkage estimates of both the interactions and of the
gene specific error variances. Genes are classified as being associated with
treatment based on the posterior odds and the local false discovery rate (f.d.r.)
with a fixed cutoff. Our model-based approach also allows one to declare the
non-null status of a gene by controlling the false discovery rate (FDR). It
is shown in a detailed simulation study that the approach outperforms well-
known competitors. We also apply the proposed methodology to two previ-
ously analyzed microarray examples. Extensions of the proposed method to
paired treatments and multiple treatments are also discussed.

Key words and phrases: EM algorithm, empirical Bayes, Laplace approxi-
mation, LEMMA, LIMMA, linear mixed models, local false discovery rate,
microarray analysis, mixture model, two-groups model.

1. INTRODUCTION

Microarray technologies have become a major data
generator in the post-genomics era. Instead of work-
ing on a gene-by-gene basis, microarray technologies
allow scientists to view the expression of thousands
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of genes from an experimental sample simultaneously.
Due to the cost, it is common that thousands of genes
are measured with a small number of replications, as
a consequence, one faces a large G, small n prob-
lem, where G is the total number of genes and n is the
number of replications. After preprocessing of the raw
image data, the expression levels are often assumed to
follow a two-groups model, that is, the expressions are
each either null or non-null with prior probability p0 or
p1 = 1−p0, respectively. The two-groups model plays
an important role in the Bayesian microarray literature
and is broadly applicable (Efron, 2008).

A general review of issues pertaining to microar-
ray data analysis is provided in Allison et al. (2006).
Here, we focus on statistical inference and, in particu-
lar, on what Allison et al. (2006) refer to as “consensus
points 2 and 3”: the advantages of shrinkage methods,
and controlling the false discovery rate. We review sev-
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eral inferential methods, and develop a unifying linear
model approach.

Classical parametric statistics do not provide a
reliable methodology for determining differentially ex-
pressed genes. The large number of genes with rel-
atively few replications in typical microarray experi-
ments yield variance estimates of the expression lev-
els that are often unreliable. The classical t-test and
F -test are generated under a heterogeneous error vari-
ance model assumption and do not enjoy the advan-
tage gained by shrinkage estimation. The assumption
that the variances are equal across all genes is typically
not realistic. Hypothesis tests based on a pooled com-
mon variance estimator for all genes have low power
and can result in misleading differential expression re-
sults (Wright and Simon, 2003; Smyth, 2004; Cui et
al., 2005).

An important observation is that, although there are
only a few replications for each gene, the total number
of measurements is very large. If information is com-
bined across the genes (i.e., genome-wide shrinkage),
it is possible to construct test procedures that have im-
proved performance. The SAM test (Tusher, Tibshirani
and Chu, 2001) and a regularized t-test in Efron et al.
(2001) first used information across the genome-wide
expression values by the addition of a data-based con-
stant to the gene-specific standard errors.

The Bayesian approach seems to be particularly
well suited for combining information in expression
data. Hierarchical Bayesian models have also been
used for variance regularization by estimating mod-
erated variances of individual genes. The estimated
variances are calculated as weighted averages of the
gene-specific sample variances and pooled variances
across all genes. In particular, the regularized t-test
proposed by Baldi and Long (2001) uses a hierarchi-
cal model and substitutes an empirical Bayes vari-
ance estimator based on a prior distribution in place of
the usual variance estimate. Another hierarchical ap-
proach was developed in Newton et al. (2001) for de-
tecting changes of gene expression in a two-channel
cDNA microarray experiment. This was extended to
replicate chips with multiple conditions using a hierar-
chical lognormal–normal model in Kendziorski et al.
(2003). A key difference between these models and
those discussed above is that they effectively induce
shrinkage in the mean effects (i.e., the numerator of
the t-statistic), while assuming homogeneous variabil-
ity across genes.

Instead of directly modeling the variation of the ex-
pression data, two-groups models are characterized by

mixing measurements over latent gene-specific indica-
tors. Lonnstedt and Speed (2002) used this approach to
derive the so-called B-statistic as the logarithm of the
posterior odds of differential expression. Smyth (2004)
extended the B-statistic to the linear models setting
and has written the widely used limma R package
(R Development Core Team, 2007). Smyth (2004) also
shows that the B-statistic is a monotone function of a
t-statistic with a regularized variance which he refers
to as a moderated t-statistic. Wright and Simon (2003)
and Cui et al. (2005) derive similarly moderated statis-
tics, and Cui et al. (2005) showed that their proposed
test, using a James–Stein type variance estimator, had
the best or nearly the best power for detecting differen-
tially expressed genes over a wide range of situations
compared to a number of existing alternative proce-
dures.

Since the performance of the F -type test statistics
arising from models with a random gene-specific er-
ror variance (leading to shrinkage estimates of the error
variances) is better than in the case where the variances
are fixed, why only model the variances as random but
not the means? In effect, the approach of Lonnstedt and
Speed (2002), and its extension in Smyth (2004), al-
ready do this by treating both the gene-specific mean
effects and error variances as random. These mod-
els have been further generalized by Tai and Speed
(2006, 2009) to the multivariate setting to handle, for
example, short time-series of microarrays. These au-
thors coined the term “fully moderated” for such mod-
els. However, as we point out later is Section 4, the spe-
cific distributional assumptions made in these models
imply that the shrinkage factor for the mean effects is
the same for all genes, resulting in performance equiv-
alent to the ordinary moderated-t .

Hwang and Liu (2010) proposed an alternative em-
pirical Bayes approach which shrinks both the means
and variances differentially (see also Liu, 2006). Their
simulation studies indicate that their fully moderated
procedure is more powerful than all the other tests ex-
isting in the literature. The Hwang and Liu (2010) pro-
cedure uses method of moments estimators of some
model parameters rather than maximum likelihood.
The advantage of our EM fitting algorithm is that it is
easily extended to more general models, for example,
including covariates, or the three groups mixture model
discussed in Section 3.4. Still, their approach provided
the key insight that motivated the model formulation
and subsequent computational algorithm described in
this article.



390 BAR, BOOTH, SCHIFANO AND WELLS

The development of the empirical Bayes method-
ologies that improve the power to detect differentially
expressed genes essentially reduces to the choice of
whether gene-specific effects should be modeled as
fixed or random. This question applies to effects on
both the mean and the error variance. Thus, there are
four combinations of fixed and random factors leading
to four models which we denote by FF, RF, FR and
RR, where the first letter identifies whether the mean
effects are fixed or random and the second letter does
the same for the error variances. Two additional mod-
els, denoted FH and RH, are obtained if the error vari-
ances are assumed to be homogeneous across genes.
The FF category corresponds to the naive approach
of applying t- or F -tests to each gene separately. The
FR category includes the models in Wright and Simon
(2003) and Cui et al. (2005). The gamma–gamma and
log-normal–normal models of Newton et al. (2001) and
Kendziorski et al. (2003) are of the RH type. The ap-
proach of Hwang and Liu (2010) falls in the RR cat-
egory. Table 1 summarizes how previously proposed
statistics fall into the six model categories. Note that
the RR category also includes the LIMMA model.
However, inference with the B-statistic of Lonnstedt
and Speed (2002) and Smyth (2004) results in a shrink-
age factor for the mean effects which is the same for all
genes. Consequently, LIMMA is therefore similar to
an FR-type model in terms of frequentist performance
since the posterior odds are monotone in the moderated
t-statistic.

In this paper we present a unified modeling frame-
work for empirical Bayes inference in microarray ex-

periments together with a simple and fast EM algo-
rithm for estimation of the model parameters. We fo-
cus on a simple two-condition experimental setup, but
the ANOVA formulation we posit in the next sec-
tion allows for easy generalization to more than two
conditions and comparisons based on a single sample
of two channel arrays such as the more general de-
signs in Kerr, Martin and Churchill (2000) and Smyth
(2004). The methods of this article can, in principle,
also be extended to a multivariate empirical Bayes
model, for example, to analyze short time-course data
as in the extension of the B-statistic by Tai and Speed
(2006, 2009), or to multiple array platforms as is used
in epigenomic data analysis (Figueroa et al., 2008).

We apply an approximate EM algorithm for fitting
the proposed model, with the latent null/non-null sta-
tus of each gene playing the role of missing data. The
integral needed to evaluate the complete data likeli-
hood makes direct application of the EM algorithm
intractable. However, a simple and accurate approx-
imation is obtained via the Laplace approximation
(de Bruijn, 1981, Chapter 4; Butler, 2007, page 42).
This approximation makes the EM algorithm scal-
able, tractable, and extremely fast. Implementation of
Bayesian microarray models typically involves draw-
ing MCMC samples from the posterior distribution of
effects from all genes. MCMC sampling provides a
mechanism to study the full Bayesian posterior distri-
bution. However, there is a heavy computational bur-
den that makes the MCMC implementation less at-
tractive. The Laplace approximation circumvents the
generation of the thousands of gene effect parameters

TABLE 1
Models corresponding to combinations of fixed and random factors

Mean effect Error variance Methods

Fixed Fixed (Heterogenous) t-test/F -test
Fixed Fixed (Homogenous) F3 in Cui and Churchill (2003)
Fixed Random Wright and Simon (2003),

Cui et al. (2005),
Lonnstedt and Speed (2002),
Smyth (2004)

Random Fixed (Heterogenous)
Random Fixed (Homogenous) Newton et al. (2001),

Kendziorski et al. (2003)
Random Random FSS in Hwang and Liu (2010),

Lonnstedt, Rimini and Nilsson (2005),
Tai and Speed (2009),
Lonnstedt and Speed (2002),
Smyth (2004)
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and gives a highly accurate approximation to the inte-
gral in the expression of the complete data likelihood.
The Laplace approximated EM algorithm based analy-
sis is the inspiration of the acronym LEMMA (Laplace
approximated EM MicroarrayAnalysis) for the con-
tributed R package, lemma (Bar and Schifano, 2009),
which implements the methodology described in this
paper.

The paper is organized as follows. In Section 2 we
introduce the necessary notation for our two-groups
model along with the prior distribution specifications.
Section 3 describes the approximate EM algorithm for
fitting the RR model. We also propose a generalization
of the LIMMA model and show how the EM algorithm
is easily modified to estimate its parameters, and we
briefly discuss extensions to multiple treatments and
to a three-groups model. In Section 4 we show that
the posterior probability that a gene is non-null is a
function of a fully-moderated (in the sense of Hwang
and Liu, 2010) posterior t-statistic with shrinkage in
both the numerator and the denominator. We show that
our RR framework generalizes several other statistics,
and describe two inferential procedures, one based on
the posterior probability that a gene is non-null, and
one which is based on the null distribution and the
FDR procedure. Section 5 gives results of a simulation
study in which we compare the performance of various
methods to the “Optimal Rule” procedure based on full
knowledge of the true model and its parameters. Our
proposed methodology is applied to two well-known
microarray examples: the ApoA1 data (Callow et al.,
2000) and the Colon Cancer data (Alon et al., 1999) in
Section 6. We conclude the article in Section 7 with a
discussion.

2. MODEL AND NOTATION

Let yijg denote the response (e.g., log expression ra-
tio) of gene g, for subject (replicate) j , in treatment
group i = 1,2. We begin with the linear model,

yijg = μ + τi + γg + ψig + εijg,(1)

with a typical assumption concerning the errors being

εijg ∼ i.i.d. N(0, σ 2
ε,g)(2)

for j = 1, . . . , nig , independently across genes and
treatment groups. We impose the identifiability con-
straints, τ1 + τ2 = 0 and ψ1g + ψ2g = 0 for all g =
1, . . . ,G. Then τ = τ1 − τ2 is the main effect of treat-
ment, averaged across genes, and ψg = ψ1g − ψ2g ,
g = 1, . . . ,G, are the gene specific treatment effects.

Note that we do not assume that the mean treatment ef-
fect is zero. While assuming τ = 0 is often reasonable
when performing differential gene expression analysis
on large microarray data sets, we find this to be not
only an unnecessary constraint, but also unrealistic in
certain situations. For example, when a data set con-
sists mostly of genes that are known to be differentially
expressed, or when comparing expression levels across
species (where “treatment” is interpreted as “species”),
there is no reason to assume that the overall mean dif-
ference between the two treatment groups is zero.

We further suppose that the genes fall into two
groups, a null group in which ψg ≡ 0 and a non-null
group in which ψg �= 0. The primary goal is to clas-
sify genes as null or non-null based on the observed
responses. A probabilistic approach is to suppose that
each gene has prior probability p1 of being non-null
(and p0 = 1 − p1 of being null) and to use Bayes rule
to determine the posterior probability given the data;
specifically,

p1,g(yg) = p1f1,g(yg)

p0f0,g(yg) + p1f1,g(yg)
,(3)

where f1,g(yg) is the probability density of the re-
sponses for gene g implied by the non-null model, and
f0,g(yg) is the corresponding quantity if the gene is in
the null group.

In practice, of course, the mixture probability and
the parameters that determine the null and non-null
densities have to be estimated. This estimation step
depends upon additional assumptions, if any, that are
made about the distribution of the responses. As noted
in the Introduction, a basic question is whether gene-
specific effects should be modeled as fixed or random,
leading to the model categories we denote by FF, RF,
FR and RR, and two additional models, FH and RH,
obtained when the error variances are assumed to be
homogeneous, that is, σ 2

ε,g ≡ σ 2
ε .

The ANOVA model (1) together with the distrib-
utional assumption (2) allows us to restrict attention
to the sum and difference of gene-specific treatment
means, respectively, sg = ȳ1·g + ȳ2·g and dg = ȳ1·g −
ȳ2·g , and the gene-specific mean squared errors,

mg =
2∑

i=1

nig∑
j=1

(yijg − ȳi·g)2/fg,

where fg = n1g + n2g − 2. Notice that sg|g ∼ N(2μ +
2γg, σ

2
g ), where σ 2

g ≡ σ 2
ε,g(1/n1g + 1/n2g), and |g de-

notes conditioning on any gene-specific random ef-
fects. It follows that sg carries no information about the
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gene-specific treatment effect ψg . For this reason, our
estimation procedures use only the marginal likelihood
based on the data ({dg}, {mg}). The model (1) together
with assumption (2) also implies that dg and mg are
conditionally independent, with dg|g ∼ (1 − bg)N0 +
bgN1 independently of mg|g ∼ σ 2

ε,gχ
2
fg

/fg , where bg ,
g = 1, . . . ,G, denotes independent Bernoulli(p1) la-
tent indicators of non-null status for the G genes,
N0 and N1 denote normal variates with unequal means
τ and τ + ψg �= τ respectively, but equal variances σ 2

g ,

and χ2
fg

denotes a chi-squared variate with fg degrees
of freedom.

The family of parametric models considered in this
paper is completed by specifying distributions for the
gene-specific effects, {ψg} and {σ 2

ε,g}. In what follows
we suppose that, if the (non-null) gene-specific effects
are modeled as random variates, they follow a normal
distribution,

ψg ∼ i.i.d. N(ψ,σ 2
ψ).(4)

On the other hand, if the gene-specific variances are
modeled as random variates, they are drawn from an
inverse gamma distribution,

σ−2
ε,g ∼ i.i.d. Gamma(α,β),(5)

where α and β are shape and scale parameters. We re-
fer to the RR model specified by (1), (2) and (5) with
the non-null gene-specific effects (4) as the LEMMA
model.

It is worth contrasting (4) with the corresponding as-
sumption in the models leading to the B-statistic given
in Lonnstedt and Speed (2002) and Smyth (2004),
where the mean of the random effects distribution is
assumed to be zero. In a classical (one group) nor-
mal mixed-model, the mean of the random effect is
assumed to be zero because it is not separately iden-
tifiable from the overall mean. However, in the two-
groups setting in which ψg in (1) is modeled as a mix-
ture, assuming ψ �= 0 in (4) poses no such identifia-
bility problems. Furthermore, this additional parameter
allows for two useful and important extensions of the
model: (a) to paired (within-group) analyses, and (b) to
three-groups allowing for over- and under-expressed
non-null status. These extensions are described in more
detail in Section 3.4.

3. ESTIMATION

In this section we describe in detail an approximate
EM algorithm for fitting the LEMMA model. Esti-

mation for the other five models can be carried out
by making appropriate modifications to this algorithm.
The LEMMA model has six parameters, two being the
shape and scale of the distribution for the error vari-
ances given in (5). The remaining vector of parameters
is (p1, τ,ψ,σ 2

ψ) which we denote by φ.
Estimates of the hyperparameters, α and β , are ob-

tained by maximizing the marginal likelihood based on
{mg}, given by

L({mg})

=
G∏

g=1

∫ ∞
0

f (mg|σ 2
ε,g)f (σ−2

ε,g ) dσ−2
ε,g

(6)

=
G∏

g=1

m
fg/2−1
g (fg/2)fg/2

�(fg/2)�(α)βα

· �(fg/2 + α)

(mgfg/2 + 1/β)fg/2+α
.

In practice, we find the maximum likelihood estimates
for α and β using the nlminb function in R. In all
the simulations and case studies the function converged
quickly. Since the marginal likelihood is based on the
statistics {mg}, the computation time depends only on
the number of genes, G, but not on the sample sizes.
We have also derived and implemented moment esti-
mators [similar to Smyth (2004), who comments that
{mg} follow a scaled F -distribution], and we found that
both methods provide accurate estimation of α and β .

3.1 EM Algorithm

We apply the EM algorithm to estimate φ, with the
latent indicators, {bg}, playing the role of the miss-
ing data. Since dg and mg are conditionally indepen-
dent given (bg, σ

2
ε,g), the complete data likelihood for

φ based on ({bg}, {dg}, {mg}) is

LC(φ) =
G∏

g=1

∫
L(bg, dg;σ 2

ε,g)

(7)
· L(mg;σ 2

ε,g)f (σ−2
ε,g ) dσ−2

ε,g ,

where f (σ−2
ε,g ) represents the gamma density with

shape α and scale β .
The integral in (7) makes direct application of the

EM algorithm intractable. However, a simple and ac-
curate approximation is obtained via the Laplace ap-
proximation (de Bruijn, 1981, Chapter 4; Butler, 2007,
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page 42)

LC(φ) ≈ L̃C(φ) ≡
G∏

g=1

L(bg, dg; σ̃ 2
ε,g)L(mg; σ̃ 2

ε,g)

(8)
·f (σ̃−2

ε,g )
√

−2π/′′(mg; σ̃ 2
ε,g),

where ′′(mg;σ 2
ε,g) is the second derivative of

logL(mg;σ 2
ε,g) with respect to σ 2

ε,g , and σ̃ 2
ε,g is the

posterior mode of σ 2
ε,g given mg , given by

σ̃ 2
ε,g = fg/2

fg/2 + α + 1
mg

(9)

+ α + 1

fg/2 + α + 1
· 1

(α + 1)β
.

Notice that the last three factors on the right-side of (8)
do not involve the parameter φ and can therefore be
ignored in the implementation of EM. In practice, we
replace α and β by their maximum likelihood estimates
obtained from the marginal likelihood in (6).

Denote the estimate after m iterations of EM by
φ(m). The (m + 1)st E-step consists of taking the con-
ditional expectation of the logarithm of (7) given the
observed data, using the current estimate, φ(m). Using
the Laplace approximation (8), this is given by

Q
(
φ,φ(m))
= Eφ(m)[logLC(φ)|{dg}, {mg}]
≈ Eφ(m)[log L̃C(φ)|{dg}, {mg}]

=
G∑

g=1

Eφ(m){logL(bg, dg; σ̃ 2
ε,g)|dg} + C(10)

=
G∑

g=1

{
p

(m)
0,g log[p0f0,g(dg)]

+ p
(m)
1,g log[p1f1,g(dg)]} + C

≡ Q̃
(
φ,φ(m)) + C,

where C does not depend on φ, f0,g and f1,g denote
N(τ, σ̃ 2

g ) and N(τ + ψ,σ 2
ψ + σ̃ 2

g ) densities with σ̃ 2
g =

σ̃ 2
ε,g(1/n1g + 1/n2g), p1,g = E(bg|dg) and p0,g +

p1,g = 1.
The M-step at the (m + 1) iteration requires maxi-

mization of Q̃(φ,φ(m)) with respect to φ to yield the
updated estimate φ(m+1). That is,

φ(m+1) = arg max
φ

Q̃
(
φ,φ(m)).

This leads to the following maximum likelihood esti-
mate update equations for p1, τ and ψ :

p
(m+1)
1 = 1

G

G∑
g=1

p
(m)
1,g ,(11)

τ (m+1) =
∑G

g=1 p
(m)
0,g dg/σ̃

2
g∑G

g=1 p
(m)
0,g /σ̃ 2

g

(12)

and

ψ(m+1)

(13)

=
∑G

g=1 p
(m)
1,g (dg − τ (m+1))/(σ

2(m)
ψ + σ̃ 2

g )∑G
g=1 p

(m)
1,g /(σ

2(m)
ψ + σ̃ 2

g )
,

while the update for σ 2
ψ is the solution of the equation

G∑
g=1

p
(m)
1,g

1

σ 2
ψ + σ̃ 2

g

(14)

=
G∑

g=1

p
(m)
1,g

(dg − τ (m+1) − ψ(m+1))2

(σ 2
ψ + σ̃ 2

g )2
,

and σ 2
ψ = 0 if p1,g = 0 for all the genes.

Strictly speaking, the update for ψ in (13) is condi-
tional on the current value of σ 2

ψ . However, we have
found this variant of EM to have almost identical con-
vergence properties to the full EM in which Q̃ is maxi-
mized jointly with respect to all four components of φ.

3.2 Modifications for RF, RH, FF, FH, FR

LEMMA is considered an RR model because the
gene-specific effects (ψg,σ

2
ε,g) are modeled as random

variates. By considering one or both of these as fixed
effects, we obtain models that fall into one of the RF,
RH, FR, FF or FH categories. Henceforth, the category
labels RF, RH, FF, FH, FR refer to the models derived
from the LEMMA (RR) model with the corresponding
fixed/random distributional assumption modifications.

The complete data likelihood for the RF model is

LC(φ) ≈
G∏

g=1

L(bg, dg;σ 2
ε,g)L(mg;σ 2

ε,g).(15)

Since no integration is required to evaluate this likeli-
hood, the Laplace approximation is not needed in this
case. As with the LEMMA (RR) model, we first es-
timate the error variances, {σ 2

ε,g}, separately using the
marginal likelihood for {mg}. This results in the sim-
ple estimate, σ̂ 2

ε,g = mg . The EM algorithm for esti-
mating φ then proceeds in an identical manner except
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that σ̃ 2
g is replaced by σ̂ 2

g = σ̂ 2
ε,g(1/n1g + 1/n2g). The

algorithm for the RH model is also similar with the
marginal likelihood estimator of the homogeneous er-
ror variance given by σ̂ 2

ε = ∑
g mgfg/

∑
g fg .

For all the fixed gene-specific effects models (FR, FF
and FH) it is easily verified that dg − τ (m) − ψ

(m)
g = 0.

This implies that the EM update for the mixing para-
meter satisfies

p
(m+1)
1

= 1

G

G∑
g=1

p
(m)
1

p
(m)
0 exp{−(dg − τ (m))2/2σ̂ 2

e,g} + p
(m)
1

> p
(m)
1 ,

where σ̂ 2
e,g represents the appropriate σ 2

g estimator for
the desired model. As a result, the EM sequence for
p1 always converges to 1, regardless of the starting
value. An explanation for this behavior is that the mix-
ture probability is not identifiable if the gene-specific
effects are fixed.

3.3 A Generalization of LIMMA

The LIMMA model proposed by Smyth (2004) is
similar to the LEMMA model described in Section 2.
A key difference is the assumption concerning the ran-
dom gene-specific effects given in (4). The correspond-
ing assumption in LIMMA is ψg|σ 2

ε,g ∼ N(0, v0σ
2
ε,g).

This assumption, combined with (5), results in a closed
form expression for the complete data likelihood (7),
rendering the use of the Laplace approximation unnec-
essary. Another difference is that the mean effect of
treatment, averaged across genes (τ ), is assumed to be
zero in the LIMMA model. However, this difference
has little bearing on the arguments that follow.

As noted in Section 2, it is unnecessary to assume
that the mean of the non-null gene-specific effects,
ψ , is zero. Hence, we consider a generalized LIMMA
model (denoted by RG in what follows) with

ψg|σ 2
ε,g ∼ N(ψ,v0σ

2
ε,g)(16)

for the non-null gene-specific effects, and, as such, it
falls into the RR category. The EM algorithm discussed
earlier in this section can be implemented to fit this
generalized model with minor modifications. Specif-
ically, after using the Laplace approximation, the Q-
function has the same form as (10) with v0,gσ̃

2
ε,g re-

placing σ 2
ψ + σ̃ 2

g as the variance in the non-null den-
sity f1,g , where v0,g = v0 + 1/n1g + 1/n2g . This leads

to update equations for p1 and τ identical to (11) and
(12), respectively. The update for ψ is

ψ(m+1) =
∑G

g=1 p
(m)
1,g (dg − τ (m+1))/(v0,gσ̃

2
ε,g)∑G

g=1 p
(m)
1,g /(v0,gσ̃ 2

ε,g)
,

and the update of v0 satisfies

G∑
g=1

p
(m)
1,g

1

v0,g

=
G∑

g=1

p
(m)
1,g

(dg − τ (m+1) − ψ(m+1))2

v2
0,gσ̃

2
ε,g

,

and v0 = 0 if p1,g = 0 for all the genes. These updates
simplify further if the sample sizes are the same for all
genes.

3.4 Model Extensions

The LEMMA model is easily extended in a number
of useful ways. First, it enables within-group analysis
which follows the same estimation procedure by sim-
ply dropping the i index and combining the terms μ

and τ . We found this to be useful in practical applica-
tions, when, for example, researchers wish to perform
a paired-sample test.

Similarly, we can extend the model to have multiple
treatment groups and test different (user-defined) con-
trasts, as was done in Smyth (2004) for the LIMMA
model. Mathematically, this generalization is very sim-
ple, and, in practice, when dealing with a small or
moderate number of treatment groups, the estimation
procedure poses no significant computational chal-
lenges. For example, we use the (t − 1-dimensional
vector) summary statistics dg = HȲg, where H is a
contrast matrix (e.g., the Helmert matrix) and Ȳg =
(Ȳ1·g, Ȳ2·g, . . . , Ȳt ·g)′. Note that the 2 × 2 Helmert ma-
trix gives the dg and sg statistics for the one-treatment
case [scaled by a factor of 1/

√
2]. Obtaining the esti-

mates and test statistics in the multiple treatment case
is analogous to the derivations in (3.1). See the Appen-
dix for details.

As noted in Zhang, Zhang and Wells (2010), it is
often the case that the probabilities of under- and over-
expressed genes are not equal. The assumption that
the distribution of the non-null genes has a nonzero
mean (ψ) can be modified to allow for multiple non-
null components in the mixture distribution. For ex-
ample, we might assume that each gene is either in
the null group (ψg = 0) with probability p0, in one
non-null component with probability p1 with ψg ∼
i.i.d. N(ψ,σ 2

ψ), or in a second non-null group with

probability p2 with ψg ∼ i.i.d. N(−ψ,σ 2
ψ), where

p0 + p1 + p2 = 1. The two-component model in the
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previous sections is the special case in which p2 = 0.
The lemma R package uses the three component mix-
ture by default, and we have found that, indeed, when
there are two mixture components, the EM algorithm
converges to p̂2 = 0. Note that the R implementation
assumes that the means of the non-null groups are of
the same magnitude but opposite sign. This assump-
tion can be relaxed, for instance, by assuming only that
ψ1 < 0 < ψ2.

4. INFERENCE

The posterior probability that gene g is non-null is
given by the expression (3). Its estimated value based
on the LEMMA model can be expressed as a function
of the likelihood ratio

L0,g

L1,g

≡ f̂0,g

f̂1,g

= (2πσ̃ 2
g )−1/2 exp{−(dg − τ̂ )2/2σ̃ 2

g }/([2π(σ̂ 2
ψ + σ̃ 2

g )]−1/2

· exp{−(dg − τ̂ − ψ̂)2/2(σ̂ 2
ψ + σ̃ 2

g )})(17)

=
(

σ̃ 2
g

σ̂ 2
ψ + σ̃ 2

g

)−1/2

· exp
{
−1

2

[λ̂g(dg − τ̂ ) + (1 − λ̂g)ψ̂]2

λ̂gσ̃ 2
g

+ ψ̂2

2σ̂ 2
ψ

}

∝
(

σ̃ 2
g

σ̂ 2
ψ + σ̃ 2

g

)−1/2

exp
{
−1

2
T 2

g

}
,

with the constant of proportionality being exp(ψ̂2/

2σ̂ 2
ψ), where

λg = 1

σ 2
g

(
1

σ 2
g

+ 1

σ 2
ψ

)−1

= σ 2
ψ

σ 2
ψ + σ 2

g

.

The statistic Tg is a posterior t-statistic, being the ra-
tio of the estimated posterior expectation of ψg to its
estimated posterior standard deviation. Note that the
LEMMA model induces three forms of shrinkage in
Tg . The first two forms come from λ̂g > 0 in both the
numerator and the denominator. Third, σ̃ 2

g , a function
of the posterior mode σ̃ 2

ε,g , is itself a shrinkage esti-
mator as a weighted compromise between the usual er-
ror variance estimator mg and the mode of the inverse
gamma distribution [(α + 1)β]−1.

The likelihood ratio in (17) has the same form for
the RF and RH models with σ̃ 2

ε,g replaced by σ̂ 2
ε,g and

σ̂ 2
ε , respectively in σ̃ 2

g . [Recall that σ 2
g = σ 2

ε,g(1/n1g +
1/n2g).] Test statistics for the fixed mean effects mod-
els, FR, FF and FH, are obtained as limits of Tg as
λ̂g → 1.

It is interesting to compare the likelihood ratio (17)
with the corresponding statistic under the LIMMA and
RG model assumptions discussed in the previous sec-
tion. For these models σ 2

ψ is replaced by v0σ̃
2
ε,g , and so

the shrinkage coefficient becomes

λg = v0

v0 + 1/n1g + 1/n2g

.

In particular, if the sample sizes are the same for all
genes, then the amount of shrinkage is the same for all
genes. Furthermore, if ψ is set equal to zero, as it is in
LIMMA, then Tg is proportional to the test-statistic for
the FR model,

Tg = dg − τ̂

σ̃g

.

This has the same form as the moderated t-statistic of
Smyth (2004) and Wright and Simon (2003) except for
the subtraction of the average gene effect, τ , in the nu-
merator and the use of the mode rather than the ex-
pected value of the posterior distribution of σ 2

ε,g given
mg in the denominator.

For inference, we compare the posterior null prob-
ability, 1 − p1,g in (3), with a local f.d.r. threshold to
decide whether a gene is in the non-null group. Alter-
natively, our model-based approach also allows one to
declare the non-null status of a gene by controlling the
false discovery rate (FDR), using the Benjamini and
Hochberg (1995) (BH) procedure for any given level,
q∗. Specifically, using the theoretical null-gene distri-
butions of {dg}, which are assumed to be N(τ̂ , σ̃ 2

g ),
we obtain the p-values for the observed {dg}. We de-
note the p-values by {Pg}, and find the largest index g′
for which P F

g′ ≤ q∗ × g′/G, where {P F
g } is the sorted

list of p-values. We declare all the genes with index
smaller than or equal to g′ (in the sorted list) as non-
null, and the FDR theorem guarantees that the expected
false discovery rate is bounded by q∗.

5. SIMULATION STUDY

In this section we assess the performance of several
estimation/testing procedures mentioned in this paper
under two data generation models, one according to
the LEMMA model and the other according to the
LIMMA model. In practice, the correct model is un-
known, so our goal is to compare the power, accuracy,
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false discovery rate and parameter estimation for dif-
ferent true-model/procedure combinations. In what fol-
lows we use the term “procedure” to define the combi-
nation of the model selected for analysis (which may
or may not be the true model) and the estimation and
inferential techniques derived from this model.

5.1 Data Generation

In both scenarios (LEMMA and LIMMA), we sim-
ulated S = 100 data sets according to a mixture model
with two groups, null and non-null. Each data set con-
sisted of G = 2000 genes, of which p1G were non-
null, and we used p1 = 0.01,0.05,0.1,0.25. For each
of the S data sets we drew G inverse gamma error
variates with shape α and scale β . By varying α and
β , we adjusted the amount of error variance variabil-
ity present in the data. The values of α, β , n1g ≡ n1,
and n2g ≡ n2 were chosen so that mean(σ 2

g ) = 1. With
n1 = n2 = 6, we set α = 5 and β = 1/12 for the
“low” error variance variability; we set α = 2.1 and
β = 10/33 for the “high” error variance variability.
Hence, the standard deviation (and also the coefficient
of variation, CV) of σ 2

g for the former was 1/
√

3, and

for the latter was
√

10.
In the LEMMA-generated data, we varied ψ, so

that ψ ∈ {0,1,2, . . . ,6} ≡ � , and set σ 2
ψ = 1. In

the LIMMA data generation setup, we used v0 ∈
{1

6 , 2
6 , . . . , 8

6} to generate the non-null genes accord-
ing to (16). For both generation schemes we set τ = 0,

as the LIMMA model does not involve τ , and it is only
estimable under the random gene by treatment inter-
action effect models (RR, RF, RH). We generated yijg

according to equations (1) and (2) with the above pa-
rameter specifications, and computed {dg} and {mg}.
While we only present results for a selection of specific
parameter value settings, numerous simulations were
performed with a variety of sample sizes ni , i = 1,2,
non-null probabilities p1, and gene-specific treatment
variances σ 2

ψ . In addition, we also considered using
the log-normal distribution to generate the error vari-
ance σ 2

ε,g rather than the inverse gamma distribution.
We found the results to be qualitatively insensitive to
these different settings, and the results presented below
portray an accurate summary of the performance of the
methods.

5.2 Data Analysis and Results

We consider two metrics for determining null and
non-null status of genes. The first method is based on
computing empirical quantile critical values. Since the
distribution of many of our test statistics is unknown,

we defined a test-specific critical value, Tc, as the 0.95
quantile among the 1900 × 100 null genes. By design,
this resulted in an average size of 0.05 for each test.
The average power for each procedure was determined
by the proportion of non-null genes correctly declared
non-null based on the (test-specific) empirical critical
value Tc. Figure 1 shows the average power (on the
logit scale) of the likelihood ratio tests derived assum-
ing the FF, FH, FR, RF, RH and RR models, with esti-
mation procedures as described in Section 3. Also in-
cluded in our comparison were the RG likelihood ratio
tests, derived from the model defined in Section 3.3,
and the moderated t-tests obtained from the limma R
package. Since in our simulations we know the exact
values of the parameters, we also included the “Opti-
mal Rule” statistics (denoted by OR) which were ob-
tained by plugging in the true parameter values in the
likelihood ratio statistic for the true data generation
model (either LEMMA or LIMMA).

When the data are generated according to the
LEMMA model our simulations show that the tests
derived from the RR model achieved the highest power
for all ψ ∈ � (and almost identical to the Optimal
Rule’s), as can be seen in Figure 1. When the data are
generated according to the LIMMA model, the likeli-
hood ratio tests derived from the RR and RG models
have nearly identical performance in terms of power
as those of the moderated-t statistics and the LIMMA
Optimal Rule for all values of v0 (figure not shown).

As expected, our simulations also showed that the
average power in the homogeneous error variance
models (RH, FH) decreases as the error variance vari-
ability increases. In general, the random gene mod-
els (RR, RF, RH) demonstrate higher average power
than their corresponding fixed gene counterparts. No-
tice also that the performance of moderated-t and the
FR statistics are almost identical.

The second performance assessment method did not
require computing empirical quantiles, and was based
on local f.d.r. criteria. Efron et al. (2001) and Efron
(2005) defined local f.d.r. as

f.d.r.(yg) = Pr(null |Y = yg)(18)

for the posterior probability of a gene g being in the
null group. Note that this is precisely 1 − p1,g(yg),

where p1,g(yg) is given by (3). Since p1 can only be
estimated in the random-mean models, we only con-
sidered the local f.d.r. statistics associated with RR, RF
and RH. For comparison, we also considered the local
f.d.r. statistics for RG and the Optimal Rule, and two
types of B statistics computed by the limma package
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FIG. 1. Average power (on the logit scale) for empirical quantile analysis under the RR data generation model, with n1 = n2 = 6, S = 100
samples, G = 2000 genes, and p1 = 0.05 probability of non-null status. Left: low error variance variability (CV = 0.58). Right: high error
variance variability (CV = 3.16).

to differentiate between those computed with the de-
fault value of p1 = 0.01 [referred to as “Limma(0.01)”]
and those computed with the estimated value of p1
[referred to as “Limma(p̂1)”]. We also included lo-
cal f.d.r. statistics computed from the locfdr (Efron,
Turnbull and Narasimhan, 2008) R package (referred
to as “Efron” for simplicity).

To evaluate the performance of these procedures,
we looked at two complementary metrics. The first is
the measure of accuracy, defined by the ratio (TP +
TN)/(P + N) as in Hong (2009), where P and N are
the total numbers of non-null and null genes, respec-
tively, and TP+TN is the sum of correct classifications
(true positives plus true negatives). The second metric
is the false discovery rate, defined by FP/(FP + TP),
where FP is the total number of false positives. Clearly,
our goal is to maximize the accuracy while maintain-
ing a low false discovery rate. To compare different
methods, we computed the accuracy and FDR for a
range of posterior null probability thresholds (between
0 and 0.5). A gene is declared as non-null if its pos-
terior null probability is below the selected threshold.
Note that when the threshold is 0, all genes are de-
clared as null and we obtain accuracy of 1 − p1. As

we increase the threshold, the total number of detec-
tions increases, and if we let the threshold be 1, all
genes are declared as non-null (and the accuracy is
p1).

Figures 2 and 4 demonstrate that when the data are
generated under the LEMMA model, the RR procedure
achieves the highest level of accuracy for any poste-
rior probability threshold in the range [0, 0.5], and is
practically the same as the Optimal Rule. It has only a
slightly higher FDR, compared with the Optimal Rule.
Note that RF has high accuracy, but very high FDR, in-
dicating it is too liberal and declares too many genes as
non-null.

We also observe that the RR and RG procedures are
quite similar, which is an indication that the choice of
the non-null variance model (either σ 2

ψ as in LEMMA,

or v0σ
2
ε,g as in LIMMA) does not have a significant

impact on the performance. We also notice that when
the limma package is used with the estimated value
of p1, instead of the default, the accuracy is greatly
improved, with a relatively small increase in FDR.
Still, the RR procedure (under the LEMMA data gen-
eration scheme) is clearly superior to all other meth-
ods.
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FIG. 2. Accuracy (left) and false discovery rate (right) for data generated under the LEMMA model with n1 = n2 = 6, S = 100 samples,
G = 2000 genes, and ψ = 3, p1 = 0.05 probability of non-null status, and high error variance variability (CV = 3.16).

FIG. 3. Accuracy (left) and false discovery rate (right) for data generated under the LEMMA model with n1 = n2 = 6, S = 100 samples,
G = 2000 genes, and ψ = 3, p1 = 0.25 probability of non-null status, and high error variance variability (CV = 3.16).
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Interestingly, when the data are generated under
the LIMMA model, we get similar results—the RR
procedure achieves higher accuracy, and only a rela-
tively small increase in false discoveries (see Figures 3
and 5). It is also interesting that the limma procedure
does not achieve the performance of its Optimal Rule,
and we believe this is due to inaccurate estimation
of p1, as demonstrated below. Note that lemma uses
maximum likelihood estimation for all the model para-
meters, while limma uses ad-hoc methods to estimate
p1 and v0. In summary, lemma and its RG variant are
competitive with limmawhen LIMMA is the true data
generating model, but they are clearly superior when
LEMMA is the true data generating model. Further-
more, the additional parameters (τ,ψ) in the LEMMA
model do not add to the computational complexity, as
the maximum likelihood estimators are obtained via a
simple, and fast EM algorithm.

To conclude this subsection, we remark that although
it is possible to compute posterior probabilities using
the limma package (which involves plugging in the
estimates for v0 and p1), in practice, inference via the
limma package is often frequentist in nature (using
the p-values, computed from the t-statistics, returned
by the eBayes function).

5.3 Estimation Performance

We also analyzed the parameter estimation perfor-
mance of the lemma software, and we found it to
be very accurate when the data are generated under
the LEMMA model. However, since this is not unex-
pected, we chose to present a more interesting result.
Recall that both LEMMA and LIMMA require esti-
mation of the non-null prior probability, p1. We com-
pared the estimation of this important parameter un-
der those two data generation models using four esti-
mation methods, including lemma, convest (from
the limma package) and two estimation procedures
available in the locfdr package—denoted by EF-
MLE and EF-CME. Smyth (2004) argues that the mix-
ture proportion parameter is difficult to estimate in the
model leading to the B-statistic, and our simulations
verify that the estimates of p1 produced by the limma
package are significantly biased. (As noted earlier, the
limma package uses value of p1 = 0.01, rather than an
estimate.) Figure 6 shows that when p1 = 0.05 lemma
tends to slightly overestimate the parameter, while the
other methods tend to underestimate it. This is in agree-
ment with the observation that lemma achieves higher
accuracy, and has a slightly higher FDR. We also

FIG. 4. Accuracy (left) and false discovery rate (right) for data generated under the LIMMA model with n1 = n2 = 6, S = 100 samples,
G = 2000 genes, and v0 = 1, p1 = 0.05 probability of non-null status, and high error variance variability (CV = 3.16).
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FIG. 5. Accuracy (left) and false discovery rate (right) for data generated under the LIMMA model with n1 = n2 = 6, S = 100 samples,
G = 2000 genes, and v0 = 1, p1 = 0.25 probability of non-null status, and high error variance variability (CV = 3.16).

point out that both estimation methods available in the
locfdr package not only underestimate p1, but also
give unreasonable (negative) estimates. The lemma es-
timation procedure is significantly better than the other
three for higher values of p1, even when the data are
generated under the LIMMA model.

6. EXAMPLES

Using the lemma software, we fitted the LEMMA
model to several microarray data sets. For illustra-
tion purposes, we provide our analysis of two pub-
licly available, two-channel gene expression microar-
ray data sets that were previously analyzed: the ApoA1
data (Callow et al., 2000) and the Colon Cancer data
(Alon et al., 1999).

6.1 ApoA1 Data

The ApoA1 experiment (Callow et al., 2000) used
gene targeting in embryonic stem cells to produce mice
lacking apolipoprotein A-1, a gene known to play a
critical role in high density lipoprotein (HDL) choles-
terol levels. Originally, 5600 expressed sequence tags
(EST) were selected. In our analysis, we used the data
and normalization method provided with the limma R

package (Smyth, 2005), which consists of 5548 ESTs,
from 8 control (wild type “black six”) mice and 8
“knockout” (lacking ApoA1) mice. Common reference
RNA was obtained by pooling RNA from the control
mice, and was used to perform expression profiling
for all 16 mice. Note that the current version of the
limma user’s guide refers to a larger data set which
contains 6384 ESTs. Qualitatively speaking, using the
larger data set does not yield different results (in terms
of detecting significant genes).

The response of interest, yijg , is the log2 fluores-
cence ratio (with respect to the common reference)
where g is one of 5548 genes, j = 1, . . . ,8 (mouse
number), and i is the population index (control and
knockout). Using the EM algorithm, we obtained es-
timates for the parameters in our LEMMA model. Fig-
ure 7(a) depicts the histogram of the 5548 dg statis-
tics. The smooth black curve shows the fitted mixture
distribution, drawn using the average estimated error
variance. The smooth blue and red curves correspond
to the average fitted distributions of the null and non-
null groups, respectively. Per-gene fitted distributions
are plotted in light colors (note that the non-null proba-
bility is very small, so only gene-specific distributions
of the null group, in light blue, can be observed in
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FIG. 6. Estimates of p1 when the data are generated under the LEMMA model (top) and under LIMMA (bottom), when the true values of
p1 are 0.05 (left) and 0.25 (right).

this case). The mean-effect parameter estimates we ob-
tained are τ̂ = 0.007 and ψ̂ = 0.682, σ̂ 2

ψ = 0.874.
Figure 7(c) depicts the histogram of the mg statistics

and the fitted distribution. The estimates for the shape
and scale parameters of the error variance distribution
are 1.87 and 11.11, respectively. The empirical mean
and variance of {σ̃ 2

ε,g} are 0.078 and 0.004.
Using the lemma package, we obtained the parame-

ter estimates, and computed the gene-specific poste-
rior probabilities and the p-values for the hypotheses
that genes are in the null group. Figure 7(b) depicts the
Benjamini–Hochberg adjusted p-values. The red, solid
points represent the genes that were declared non-null,
using a (liberal) FDR threshold of 0.2. Using the FDR
criteria, we detected 25 non-null genes.

Using the posterior probabilities derived from the
LEMMA (RR) model and Efron’s 0.2 threshold for lo-
cal f.d.r., we detected 9 non-null genes, including the
ApoA1 gene and others that are closely related to it.
The top eight genes had local f.d.r. values of nearly
zero, while the ninth had a much higher value of 0.08.
Figure 7(d) depicts the RR local f.d.r. statistics, and the
red, solid points represent the genes that were declared
non-null using a local f.d.r. threshold of 0.2. The top
eight genes (using either the FDR or the local f.d.r. cri-
teria) are also identified (among others) when using the
limma and locfdr R packages, and were confirmed
to be differentially expressed in the knockout versus
the control line by an independent assay.

Interestingly, assuming no other genes are in the
non-null group, the true value of p1 is 0.00144, and
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FIG. 7. (a) Histogram of the 5548 dg statistics from the ApoA1 data set and the fitted distributions. (b) The Benjamini–Hochberg adjusted
p-values for all genes. Using an FDR level of 0.2, we detect 25 non-null genes. (c) Histogram of the mg statistics and the fitted distribution.
(d) The RR test statistics of all the genes. Using a 0.2 threshold for the posterior probability, we declare 9 genes to be non-null.

the estimate obtained from lemma is 0.0039, while
Efron’s estimates using the MLE and CME methods
are −0.036 and −0.083, respectively. As we mentioned
earlier, by default the limma R package does not pro-
vide an estimate for p1, and uses a value of 0.01.
However, using the convest function, limma pro-
vides the estimate p1 = 0.30. When one uses the larger
ApoA1 data set currently referred to by the limma
user’s guide (with 6384 ESTs), the estimate for p1 is
0.134.

6.2 Colon Cancer Data

The data analyzed by Alon et al. (1999) consists
of 2000 ESTs in 40 tumor and 22 normal colon
tissue samples. Of the 40 patients involved in the
study, 22 supplied both tumor and normal tissue sam-
ples. In their analysis, Alon et al. (1999) used an
Affymetrix oligonucleotide array complementary to
more than 6500 human genes and expressed sequence
tags (ESTs), and a two-way clustering method to iden-
tify families of genes and tissues based on expression
patterns in the data set. Do, Müller and Tang (2005)

used a Bayesian mixture model to analyze the same
data set and estimated the probability of differential
expression. Using empirical Bayes methods, they ob-
tained a point estimate p̂0 = 0.39 and contrasted it with
the posterior marginal probability distribution of p0
from the nonparametric Bayesian model, which they
fit using MCMC simulations. The empirical Bayes es-
timate for p0 was far out in the right tail of the poste-
rior distribution, which, they argued, might lead to un-
derestimating the posterior probability of being in the
non-null group (differentially expressed genes). They
propose using posterior expected FDR (Genovese and
Wasserman, 2002) thresholds to calibrate between a
desired false discovery rate and the number of signif-
icant genes. For example, with FDR = 0.2, they find
1938 non-null genes.

Using lemma and assuming the two-group LEMMA
model, we obtain p̂1 = 0.36. According to this model,
the (non-null) mean effect of the gene-specific term is
estimated by ψ̂ = −0.04 (and the variance by σ̂ 2

ψ =
0.24), and the fitted two-group mixture distribution
is shown in Figure 8(a). The near-zero mean of the
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FIG. 8. Histograms of the 2000 dg statistics from the Alon et al. (1999) data set and the fitted distributions, assuming (a) a two-group
model, or (b) three-group model. (c) Histogram of the mg statistics and the fitted distribution. (d) Volcano plot, showing the posterior null
probabilities by dg .

non-null mixture component suggests that there may
be two non-null groups (over- and under-expressed
groups of genes). We fitted the three-group variant of
the LEMMA model to the data, and obtained p̂1 =
0.22, p̂2 = 0.12, and ψ̂ = −0.33, σ̂ 2

ψ = 0.15 [see Fig-
ure 8(b)]. In Figure 8(a) and (b) the light blue and

purple curves represent the (per gene) fitted distribu-
tions for the null and non-null groups, respectively. The
smooth black curve shows the fitted mixture distribu-
tion, drawn using the average estimated error variance.

The three-group model allows for asymmetry in the
proportions of over- and under-expressed genes. We
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see no reason to assume that these proportions should
be equal. However, we find in simulations that if they
are indeed equal, our procedure estimates them accu-
rately. We have observed that if the true model has
two non-null groups, then estimating it assuming two
modes results in an estimate of ψ that is biased toward
0 and an inflated σ̂ 2

ψ (as seen in this case), and that this
could lead to fewer true discoveries.

In this data set, the empirical mean and variance of
mg are 1.00 and 0.17, respectively, with estimates α̂ =
10.42 and β̂ = 0.11. Figure 8(c) shows the histogram
of the mg statistics and the fitted distribution.

The “volcano plot” in Figure 8(d) depicts the pos-
terior null probability of genes based on the three-
group LEMMA model versus the dg statistics. Using
the null posterior probability threshold of 0.2, we de-
tect 170 non-null genes, while using the FDR method
(with a threshold of 0.2) we get 155 genes. Detecting
non-null genes in a typical microarray gene expres-
sion analysis involves setting a minimum fold-change
threshold, in addition to setting the level at which the
False Discovery Rate is controlled. For instance, re-
quiring that |dg| ≥ 1 and controlling the False Discov-
ery Rate at 0.1, we detect 61 non-null genes, all of
which were detected by at least one method in Su et
al. (2003).

7. DISCUSSION

In the previous sections we demonstrated that our
modeling framework can lead to six different test sta-
tistics depending on the assumptions imposed on the
gene-specific effects. Interestingly, the test statistics as-
sociated with these models have been considered inde-
pendently in the literature in various forms, but to our
knowledge, this is the first time they have been catego-
rized as special cases of the same model. The LEMMA
(RR) model, in which both the non-null gene-specific
effects and gene-specific variances are modeled as ran-
dom variates, leads to James–Stein-type (shrinkage)
estimation of the parameters. Specifically, the statis-
tics derived from the RR model enjoy shrinkage in
both the numerator and denominator of a posterior
t-statistic, resulting in powerful test statistics while
maintaining few false positives in our simulation stud-
ies. Using a Laplace approximation to make the EM
algorithm tractable, our approach yields stable parame-
ter estimates, even for the notoriously difficult parame-
ter p1.

Since our approach is model-based, it can be easily
generalized to other situations. For example, as stated

earlier, the methods described in this paper can be ex-
tended to deal with multiple treatments, paired tests
(one group) and multiple non-null components. Fur-
thermore, it is straightforward to add fixed-effect co-
variates to the model. We are currently working on the
next release of the lemma package which will include
this feature, in addition to within-group analysis, new
plotting and exporting functions, and confidence in-
tervals for parameter estimates. Extending the model
to handle multivariate responses is also being investi-
gated.

APPENDIX

In this section we provide details on some of our pre-
vious derivations, and elaborate on the case of multiple
treatments.

A.1 Empirical Bayes Estimates for α and β

To obtain an estimate of the error variance in the ran-
dom error case, recall that

mg|σ 2
ε,g ∼ σ 2

ε,g

fg

χ2
fg

≡ Gamma
(

fg

2
,

2σ 2
ε,g

fg

)
.(19)

We maximize the marginal density of mg numer-
ically to obtain maximum likelihood estimates of α

and β . Given the conditional distribution in (19), we
find the marginal density of mg by integrating out σ 2

ε,g .
Specifically,

f (mg) =
∫ ∞

0
f (mg|σ 2

ε,g)f (σ−2
ε,g ) dσ−2

ε,g

=
∫ ∞

0

[
m

fg/2−1
g exp(−mgfg/(2σ 2

ε,g))

�(fg/2)(2σ 2
ε,g/fg)

fg/2

]

·
[exp(−σ−2

ε,g β−1)

�(α)βα
(σ−2

ε,g )α−1
]
dσ−2

ε,g

= m
fg/2−1
g (fg/2)fg/2

�(fg/2)�(α)βα

(20)
·
∫ ∞

0
(σ−2

ε,g )fg/2+α−1

· exp
[
−σ−2

ε,g

(
mgfg

2
+ 1

β

)]
dσ−2

ε,g

= m
fg/2−1
g (fg/2)fg/2

�(fg/2)�(α)βα

· �(fg/2 + α)

(mgfg/2 + 1/β)fg/2+α
.
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The final equality in (20) results from noting that
the integral in the third equality is proportional to
a Gamma(fg/2 + α, [β−1 + mgfg/2]−1) density. We
maximize

∑
g log(f (mg)) with respect to α and β to

obtain the empirical Bayes estimates α̂ and β̂ .
The joint distribution of mg and σε,g is given by

f (mg,σ
−2
ε,g ) = m

fg/2−1
g f

fg/2
g (σ−2

ε,g )α−1+fg/2

· exp
{
−σ−2

ε,g

[
mg

2
fg + 1

β

]}
/(

�

(
fg

2

)
2fg/2�(α)βα

)
.

So, conditional on mg ,

σ−2
ε,g ∼ Gamma

(
α + fg/2, (mgfg/2 + 1/β)−1)

.

Hence, the conditional expectation is

E(σ 2
ε,g|mg)

= fg/2

fg/2 + α − 1
mg + α + 1

fg/2 + α − 1
· 1

(α + 1)β

≈ fg/2

fg/2 + α − 1
mg + α + 1

fg/2 + α − 1
m̄,

and the conditional mode is

Mode(σ 2
ε,g|mg)

= fg/2

fg/2 + α + 1
mg + α + 1

fg/2 + α + 1
· 1

(α + 1)β

≈ fg/2

fg/2 + α + 1
mg + α + 1

fg/2 + α + 1
m̄.

Note that using the approximation of the mode, m̄ ≈
[(α + 1)β]−1, in both the posterior mean and posterior
mode yields a shrinkage-estimator form. Equivalently,
we could replace (α + 1) with (α − 1) in the condi-
tional expectation and the conditional mode, and obtain
shrinkage toward the sample mean of {mg}.
A.2 Maximum Likelihood Estimation of φ

Recall that in the RR method we use the Laplace
approximation (8), hence, the (approximate) complete
likelihood is

L̃C(φ)

∝
G∏

g=1

L(bg, dg; σ̃ 2
g )

=
G∏

g=1

∫
L(bg;p1)L(dg|bg;ψg, σ̃

2
g )

· f (ψg|bg) dψg
(21)

=
G∏

g=1

[
p

bg

1 (1 − p1)
1−bg (2πσ̃ 2

g )−1/2

· (2πσ 2
ψ)−bg/2 exp

{
−1 − bg

2σ̃ 2
g

(dg − τ)2
}

·
∫

exp
{
− bg

2σ̃ 2
g

(dg − τ − ψg)
2

− bg

2σ 2
ψ

(ψg − ψ)2
}

dψg

]
,

with log-likelihood

(φ) ∝
G∑

g=1

[(1 − bg) log(1 − p1) + bg log(p1)]

−
G∑

g=1

[
bg

2
log(2πσ 2

ψ) + 1

2
log(2πσ̃ 2

g )

]

− 1

2

G∑
g=1

bg log
(
(2π)−1

(
1

σ̃ 2
g

+ 1

σ 2
ψ

))
(22)

−
G∑

g=1

(1 − bg)
(dg − τ)2

2σ̃ 2
g

−
G∑

g=1

bg

2

[
1

σ 2
ψ + σ̃ 2

g

(dg − τ − ψ)2
]
.

The estimates (11)–(14) are obtained by maximizing
the log-likelihood with respect to the parameters, φ.

Although the Laplace approximation is not neces-
sary in the RF and RH models, note that the complete
likelihoods and log-likelihoods for the these models are
identical to equations (21) and (22), with σ̃ 2

g replaced
by σ̂ 2

g and σ̂ 2
ε (as defined in Section 3.2), respectively.

A.3 Multiple Treatments

In the general case we assume t ≥ 2 treatments i =
1,2, . . . , t assigned to t groups of n1,g, n2,g, . . . , nt,g

subjects indexed by j1 = 1, . . . , n1,g, . . . , jt = 1, . . . ,

nt,g , and we use the model defined by (1) and (2). Here,
we impose a standard (fixed effect) constraint

t∑
i=1

ψig = 0.

The distributions for the gene-specific effects in the
multiple-treatment case are assumed to follow a nor-
mal distribution,

ψg ∼ i.i.d. Nt

(
ψ, σ 2

ψ(It − J̄t )
)
,
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where It − J̄t is the t × t centering matrix, ψ is a t-
dimensional vector, and σ 2

ψ is a scalar. The test statistic
mg is defined as

mg =
t∑

i=1

nig∑
j=1

(yijg − ȳi·g)2/fg,

where fg = n1g + · · · + ntg − t , and we use mg as be-
fore, to estimate α and β .

To estimate the rest of the parameters in the LEMMA
model, we use the (t − 1-dimensional vector) test sta-
tistics

dg = HȲg,

where

H =

⎡
⎢⎢⎢⎣

1/
√

2 −1/
√

2 0
1/

√
6 1/

√
6 −2/

√
6

...
...

...

1/
√

t (t − 1) 1/
√

t (t − 1) 1/
√

t (t − 1)

· · · 0
· · · 0

...

· · · −(t − 1)/
√

t (t − 1)

⎤
⎥⎥⎦ ,

Ȳg = (Ȳ1·g, Ȳ2·g, . . . , Ȳt ·g)′.
Derivations similar to the ones we used to obtain the

estimates in Section 3 lead to the same estimate for
p1 and to the following estimates, analogous to (12)
and (13):(

Hτ (m+1))′
=

[
G∑

g=1

p
(m)
0,g d′

g�
−1
0

][
G∑

g=1

p
(m)
0,g �−1

0

]−1

,

(
Hψ (m+1))′
=

[
G∑

g=1

p
(m)
1,g

(
dg − Hτ (m+1))′(�0 + �A)−1

]

·
[

G∑
g=1

p
(m)
1,g (�0 + �A)−1

]−1

,

where

�A = σ
2(m)
ψ It−1,

�0 = σ̃ 2
ε,gH[diagi (1/nig)]H′.

The update for σ̃ 2
ψ is the solution to the equation,

G∑
g=1

p
(m)
1,g · tr

(
(�0 + �A)−1)

=
G∑

g=1

p
(m)
1,g

(
dg − Hξ (m+1))′(�0 + �A)−2

· (
dg − Hξ (m+1)),

where ξ (m+1) = τ (m+1) + ψ (m+1).
The likelihood ratio test statistic has a similar form

as (17),

L0,g

L1,g

= |I − �g|−1/2 exp
{
−1

2
	′(�−1

0 �−1
g )	

}

· exp
{
−1

2
σ̃−2

ψ (Hψ̂)′(Hψ̂)

}
,

where

	 = [�g(dg − Hτ̂ ) + (I − �g)(Hψ̂)],
�g = (�A + �0)

−1�A,

I − �g = (�A + �0)
−1�0.
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