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Inference and Modeling with
Log-concave Distributions
Guenther Walther

Abstract. Log-concave distributions are an attractive choice for modeling
and inference, for several reasons: The class of log-concave distributions con-
tains most of the commonly used parametric distributions and thus is a rich
and flexible nonparametric class of distributions. Further, the MLE exists and
can be computed with readily available algorithms. Thus, no tuning parame-
ter, such as a bandwidth, is necessary for estimation. Due to these attractive
properties, there has been considerable recent research activity concerning
the theory and applications of log-concave distributions. This article gives a
review of these results.
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straint, log-concave density, Polya frequency function, strongly unimodal,
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1. INTRODUCTION

There has been considerable recent activity in the
area of inference under shape constraints, that is, in-
ference about a (say) function f under the constraint
that f satisfies certain qualitative properties, such as
monotonicity or convexity on certain subsets of its do-
main. This approach is appealing for two main reasons:
First, such shape constraints are sometimes direct con-
sequences of the problem under investigation (see, e.g.,
Hampel, 1987, or Wang et al., 2005), or they are at
least plausible in many problems. It is then desirable
that the result of the inference reflect this fact. There
is also the hope that imposing these constraints will
improve the quality of the resulting estimator in some
sense. The second reason is that alternative nonpara-
metric estimators such as, for example, kernel estima-
tors, typically require the choice of a tuning parameter
such as a bandwidth. A good choice for such a tuning
parameter is usually far from trivial and injects a cer-
tain amount of subjectivity into the estimator. In con-
trast, inference under shape constraints often results in
an explicit solution that does not depend on a tuning
parameter.

In the context of density estimation, Grenander
(1956) derived the nonparametric maximum likelihood
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estimator of a density function that is nonincreasing
on a half-line. This estimator is given explicitly by
the left derivative of the least concave majorant of
the empirical distribution function. However, this re-
sult does not carry over to the problem of estimating
a unimodal density with unknown mode, as then the
nonparametric MLE does not exist; see, for example,
Birgé (1997). Even if the mode is known, the estima-
tor suffers from inconsistency near the mode, the so-
called spiking problem; see, for example, Woodroofe
and Sun (1993). These results are unfortunate since the
constraint of unimodality is cited as a reasonable as-
sumption in many problems.

It was argued in Walther (2002) that log-concave
densities are an attractive and natural alternative choice
to the class of unimodal densities: The class of log-
concave densities is a subset of the class of the uni-
modal densities, but it contains most of the commonly
used parametric distributions and is thus a rich and use-
ful nonparametric model. Moreover, it was shown in
Walther (2002) that the nonparametric MLE of a uni-
variate log-concave density exists and can be computed
with readily available algorithms.

Due to these attractive properties, there has been
considerable recent research activity about the statis-
tical properties of the MLE, computational aspects, ap-
plications in modeling and inference, as well as about
the multivariate case. As an example, Figure 1 shows
a scatterplot of measurements on 569 individuals from
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FIG. 1. Contour plot and misclassified instances from the Gaussian EM algorithm (left) and the log-concave EM algorithm (right). The plots
are from Cule, Samworth and Stewart (2008).

the Wisconsin breast cancer data set; see Section 6 for
a more detailed description. The data were clustered
using a two-component normal mixture model fitted
with the EM-algorithm; see, for example, Fraley and
Raftery (2002). The contour lines of the fitted normal
components are shown in the left plot, while the right
plot shows the contour lines that obtain when the nor-
mal MLE is replaced by the log-concave MLE in the
EM algorithm. The log-concave MLE automatically
adapts to the multivariate skewness of the data and re-
sults in a superior clustering: Each observation is either
a benign or a malignant instance. These labels were
not used for the fitting but can be employed to assess
the quality of the clustering. The EM algorithm with
the log-concave MLE resulted in 121 misclassified in-
stances versus 144 for the Gaussian MLE.

This article gives an overview of recent results about
inference and modeling with the log-concave MLE.
Section 2 gives some basic properties and applications
of log-concave distributions. Section 3 addresses the
MLE and its statistical properties. Computational as-
pects are surveyed in Section 4, while Section 5 de-
scribes recent advances in the multivariate setting. Sec-
tion 6 reviews applications of the log-concave MLE for
various modeling and inference problems. Section 7
lists some open problems for future work.

2. BASIC PROPERTIES AND APPLICATIONS OF
LOG-CONCAVE FUNCTIONS

A function f on Rd is log-concave if it is of the form

f (x) = expφ(x),(1)

for some concave function φ : Rd → [−∞,∞). A pri-
me example is the normal density, where φ(x) is a

quadratic in x. Further, most common univariate para-
metric densities are log-concave, such as the normal
family, all gamma densities with shape parameter ≥ 1,
all Weibull densities with exponent ≥ 1, all beta den-
sities with both parameters ≥ 1, the generalized Pareto
and the logistic density; see, for example, Marshall and
Olkin (1979).

Log-concave functions have a number of proper-
ties that are desirable for modeling: Marginal distri-
butions, convolutions and product measures of log-
concave distributions are again log-concave; see, for
example, Dharmadhikari and Joag-Dev (1988). No-
tably, the first two properties are not true for the class
of unimodal densities.1 Log-concave distributions may
be skewed, and this flexibility is relevant in a num-
ber of applications; see, for example, Section 6. On
the other hand, log-concave distributions necessarily
have subexponential tails and nondecreasing hazard
rates; see, for example, Karlin (1968) and Barlow and
Proschan (1975).

There are several alternative characterizations and
designations for the class of univariate log-concave
distributions: Ibragimov (1956) proved that these are
precisely the distributions whose convolution with a
unimodal distribution is always unimodal; thus, log-
concave distributions are sometimes referred to as
strongly unimodal. Log-concave densities are also pre-
cisely the Polya frequency functions of order 2, as well
as precisely those densities f for which the location
family fθ (x) := f (x − θ) has monotone likelihood ra-
tio in x; see Karlin (1968).

Log-concave distribution models have been found
useful in economics (see, e.g., An, 1995, 1998; Bagnoli

1Counterexamples are available from the author upon request.
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and Bergstrom, 2005 and Caplin and Nalebuff, 1991),
in reliability theory (see, e.g., Barlow and Proschan,
1975) and in sampling and nonparametric Bayesian
analysis (see, e.g., Gilks and Wild, 1992; Dellaportas
and Smith, 1993 and Brooks, 1998). Recent advances
in inference have led to fruitful applications of log-
concave distributions in other areas such as clustering,
some of which will be discussed in Section 6.

3. PROPERTIES OF THE NONPARAMETRIC MLE

If X1, . . . ,Xn are i.i.d. observations from a uni-
variate log-concave density (1), then the nonparamet-
ric MLE exists, is unique, and is of the form f̂n =
exp φ̂n, where φ̂n is continuous and piecewise lin-
ear on [X(1),X(n)] with the set of knots contained in
{X1, . . . ,Xn}, and φ̂n = −∞ on R \ [X(1),X(n)]; see

Walther (2002), Rufibach (2006) or Pal, Woodroofe
and Meyer (2007). An example is plotted in Figure 2.

Consistency of f̂n with respect to the Hellinger
metric was established in Pal, Woodroofe and Meyer
(2007), while Dümbgen and Rufibach (2009) provide
results on the uniform consistency on compact subsets
of the interior of the support: If φ belongs to a Hölder
class with exponent β ∈ [1,2], then φ̂n and f̂n are
uniformly consistent with rate Op((logn/n)β/(2β+1)).
Thus, in the typical case β = 2, f̂n converges uniformly
with rate Op((logn/n)2/5). It is known that these rates
are optimal even if β were known. This establishes that
the nonparametric MLE adapts to the unknown local
smoothness of f , at least for β ∈ [1,2]. Further, un-
der some regularity conditions, the c.d.f. F̂n of f̂n is
asymptotically equivalent to the empirical c.d.f. Fn: If
β > 1, then |Fn − F̂n| is of order op(n−1/2) uniformly

FIG. 2. The histogram of n = 270 flow cytometry data (top left), the log-concave MLE f̂n (top right), the estimated c.d.f. (bottom left), and
φ̂n = log f̂n (bottom right).
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over compact subsets of the interior of the support.
Moreover, Fn − n−1 ≤ F̂n ≤ Fn on the set of knots of
φ̂n. The resulting uniform

√
n-consistency of F̂n out-

performs, for example, c.d.f.s of kernel estimators us-
ing a nonnegative kernel with optimally chosen band-
width. While empirical evidence suggests that f̂n per-
forms well over the whole line, establishing the corre-
sponding theoretical results is still an open problem.

Balabdaoui, Rufibach and Wellner (2009) derive the
pointwise limiting distributions of nk/(2k+1)(f̂n(x0) −
f (x0)), n(k−1)/(2k+1)(f̂ ′

n(x0) − f ′(x0)), and likewise
for φ̂n and φ̂′

n, where k is the smallest integer such that
φ(k)(x0) 	= 0. They show that these limiting distribu-
tions depend on the “lower invelope” of an integrated
Brownian motion process minus a drift term that de-
pends on k.

4. COMPUTATIONAL ASPECTS

Maximizing the log-likelihood function under the
constraint

∫
expφ(x) dx = 1 is equivalent to maximiz-

ing
∑n

i=1 φ(Xi) − n
∫

expφ(x) dx over the set of all
concave functions φ; see Silverman (1982). Due to
the piecewise linear form of the solution φ̂, one can
write this as a finite-dimensional optimization problem
as follows: For the ordered data x1 < · · · < xn write
φ1 := φ(x1) and denote the slope between xi−1 and xi

by si := (φ(xi) − φ(xi−1))/(xi − xi−1), i = 2, . . . , n.
Then the optimization problem is to maximize

�n(φ1, s2, . . . , sn)

= nφ1 +
n∑

i=2

(n − i + 1)(xi − xi−1)si

− n exp(φ1)

n∑
i=2

(
exp

(
i∑

k=2

(xk − xk−1)sk

)

− exp

(
i−1∑
k=2

(xk − xk−1)sk

))/
si

under the constraint that the vector (φ1, s2, . . . , sn) be-
longs to the cone Cn := {y ∈ Rn :y2 ≥ · · · ≥ yn}. �n is
a concave function on Rn which needs to be maximized
over the convex cone Cn. This is precisely the type of
problem for which the Iterative Convex Minorant Al-
gorithm (ICMA) was developed; see Groeneboom and
Wellner (1992) and Jongbloed (1998). The key idea
of that algorithm is to approximate the concave func-
tion locally around the current candidate solution by a
quadratic form, which is then maximized by a Newton
procedure over the cone by using the pool-adjacent-
violators algorithm. This procedure is then iterated to

the final solution. Walther (2002), Pal, Woodroofe and
Meyer (2007) and Rufibach (2007) successfully em-
ploy the ICMA for this problem. The last reference
gives a very detailed description of the algorithm and
also compares the ICMA to several other algorithms
that can be used for this problem, such as an inte-
rior point method; see, for example, Terlaky and Vial
(1998). The ICMA shows a clearly superior perfor-
mance in these simulation studies. Recently, Dümb-
gen, Hüsler and Rufibach (2007) have computed the
log-concave MLE with an active set algorithm; see, for
example, Fletcher (1987). Active set algorithms have
the attractive property that they find the solution in fi-
nitely many steps, while the iterations of the ICMA
have to be terminated by a stopping criterion. It ap-
pears that the active set algorithm provides the most
efficient method for computing the MLE to date. Both
the ICMA and the active set algorithm for computing
the log-concave MLE are available with the R package
“logcondens,” which is accessible from “CRAN.”
An alternative way to compute the MLE with convex
programming algorithms is described in Koenker and
Mizera (2008).

Another advantage of the log-concave MLE f̂n is
that sampling from f̂n is quite straightforward: First,
compute the c.d.f. F̂n at the ordered sample x1, . . . , xn

by integrating the piecewise exponential function f̂n.
Next, generate a random index J ∈ {2, . . . , n} with
P(J = j) = F̂n(xj ) − F̂n(xj−1). Then generate U ∼
U [0,1] and set � := φ̂n(xJ ) − φ̂n(xJ−1). If � 	= 0,

set V := log(1 + (exp(�) − 1)U)/�, otherwise set
V := U . Then X := xJ−1 + (xJ − xJ−1)V has den-
sity f̂n.

5. THE MULTIVARIATE CASE

The definition of a log-concave density does not de-
pend on the underlying dimension; see (1). The fact
that the MLE does not require the choice of a tuning
parameter makes its use even more attractive in a mul-
tivariate setting, where, for example, a kernel estima-
tor requires the difficult choice of a bandwidth matrix.
The structure of the multivariate MLE is analogous to
the univariate case; see, for example, Cule, Samworth
and Stewart (2008): The support of the MLE is the con-
vex hull of the data, and there is a triangulation of this
convex hull such that log f̂n is linear on each simplex
of the triangulation. Figure 3 depicts an example for
two-dimensional data. The multivariate MLE has al-
ready shown promise in a number of applications; see
Section 6.
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FIG. 3. The MLE f̂n (left) and φ̂n = log f̂n (right) for n = 1000 observations (plotted as dots) from a standard bivariate normal distribution.
The plots are from Cule, Samworth and Stewart (2008).

The computation of the MLE requires an approach
that is different from the univariate setting, as the mul-
tivariate piecewise linear structure of log f̂n does not
allow to write this optimization problem in terms of
a simple ordering of the slopes. Cule, Samworth and
Stewart (2008) show how the MLE can be computed by
solving a nondifferentiable convex optimization prob-
lem using Shor’s r-algorithm; see Kappel and Kunt-
sevich (2000). Cule, Samworth and Stewart (2008) re-
port a robust and accurate performance of this algo-
rithm, which they implemented in the R package Log-
ConcDEAD; see Cule, Gramacy and Samworth (2009).
However, the computation time increases quickly with
sample size and dimension. Cule, Samworth and Stew-
art (2008) report computation times of about 1 sec for
n = 100 observations in two dimensions, to 37 min for
a sample of size n = 1000 in four dimensions. It is
therefore desirable to develop faster algorithms for this
problem.

Cule, Samworth and Stewart (2008) investigate the
finite sample performance of the multivariate MLE via
a simulation study. They compare the mean integrated
squared error of the MLE with that of a kernel estima-
tor with Gaussian kernel and a bandwidth that is ei-
ther chosen to minimize the mean integrated squared
error (using knowledge about the density that would
not be available in practice) or determined by an em-
pirical bandwidth selector based on least squares cross
validation. The MLE outperforms both of these esti-
mators except for small sample sizes, and the improve-
ment can be quite dramatic. On the other hand, in view
of the work of Birgé and Massart (1993), it seems un-
likely that the MLE will achieve optimal rates of con-
vergence in dimensions d > 4, due to the richness of

the class of concave functions. It would thus be help-
ful to have theoretical results about the performance of
the multivariate MLE. Deriving such results is an open
problem.

6. APPLICATIONS IN MODELING AND INFERENCE

One of the most fruitful applications of log-concave
distributions has been in the area of clustering. A prin-
cipled and successful approach to assign the obser-
vations to clusters is via the mixture model f (x) =∑k

m=1 πmfm(x), where the mixture proportions πm are
nonnegative and sum to unity, and the component dis-
tributions fm model the conditional density of the data
in the mth cluster; see, for example, McLachlan and
Peel (2000). Typically one assumes a parametric for-
mulation fm(x) = f (θm, x) for the component distri-
butions, such as the normal model; see, for example,
Fraley and Raftery (2002). Then the EM algorithm pro-
vides an elegant solution to fit the above mixture model
and to assign the data to one of the k components:
The EM algorithm iteratively assigns the data based
on the current maximum likelihood estimates of the
component distributions, and then updates those esti-
mates π̂m, θ̂m based on these assignments. An impor-
tant advantage of using a mixture model for cluster-
ing is that it provides not only an assignment of the
data to the k components, but also a measure of uncer-
tainty for this assignment via the posterior probabilities
that the ith observation belongs to the mth component:
π̂mf̂m(Xi)/

∑k
j=1 π̂j f̂j (Xi).

A disadvantage of this approach is that it depends on
the parametric formulation in several important ways:
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If the parametric model is misspecified, then the accu-
racy of the clustering may deteriorate and the measure
of uncertainty may be considerably off. For some data,
such as those in Figure 2, no appropriate parametric
model may be available. Another disadvantage is that
each parametric model requires a different implemen-
tation of the EM algorithm based on certain theoretical
derivations; see, for example, McLachlan and Krishnan
(1997).

Therefore, it is desirable to have an EM-type clus-
tering algorithm with nonparametric component dis-
tributions. This would allow for a universal software
implementation with flexible component distributions.
As was expounded in Sections 1 and 2, the class of
log-concave distributions provides a flexible model,
and, moreover, the MLE exists. Thus, one may at-
tempt to mimic the EM-type clustering algorithm that
works so well in the parametric context. This idea was
successfully carried out in Chang and Walther (2007)
and in Cule, Samworth and Stewart (2008). In related
work, Eilers and Borgdorff (2007) use a nonparamet-
ric smoother in place of the log-concave MLE in the
M-step, with a penalty term that moves the estimate
toward a log-concave function. Chang and Walther
(2007) report a clear improvement compared to the
parametric EM algorithm when the parametric model
is not correct, and a performance that is almost sim-
ilar to the Gaussian EM algorithm in the case where
the Gaussian model is correct. Thus, the use of log-
concave component distributions provides a flexible
methodology for clustering, and this flexibility does

not entail any noticeable penalty in the special case
where a parametric model is appropriate.

Chang and Walther (2007) also consider a multivari-
ate extension by modeling each component distribu-
tion with log-concave marginals and a normal copula
for the dependence structure. This simple multivari-
ate extension avoids the more challenging task of es-
timating a multivariate log-concave density, but it is
flexible enough for many situations. Figure 4 com-
pares the fitted components with those for the Gaussian
model for simulated bivariate data. The log-concave
model automatically picks up the skewness in the y-
direction and results in a noticeably improved error rate
for the clustering; see Chang and Walther (2007) for
details.

Cule, Samworth and Stewart (2008) extend this ap-
proach by using the multivariate log-concave MLE for
each component. They apply the log-concave EM al-
gorithm to the Wisconsin breast cancer data of Street
et al. (1993) and obtain only 121 misclassified in-
stances compared to 144 with the Gaussian EM algo-
rithm. Figure 5 shows a scatterplot of the data and the
fitted log-concave mixture. The contour plots of the fit-
ted components from the Gaussian EM algorithm and
the log-concave EM algorithm are given in Figure 1.

Developing principled methodology for selecting an
appropriate number of components is an open problem.
Methodology for testing for the presence of mixing in
the log-concave model is given by Walther (2001) and
Walther (2002), where the latter approach uses the fact
that a log-concave mixture allows the representation

FIG. 4. Contours of the estimated model obtained from the log-concave EM algorithm of Chang and Walther (2007) (left) and from the
Gaussian EM algorithm (right) based on the plotted observations. The underlying distribution has a skewed (shifted gamma) distribution in
the y-direction of the top component. The plots are from Chang and Walther (2007).
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FIG. 5. The Wisconsin breast cancer data (top), with benign cases as open circles and malignant cases as crosses. The bottom plot shows
the fitted mixture distribution from the log-concave EM algorithm. The plots are from Cule, Samworth and Stewart (2008).

exp(φ(x)+c‖x‖2) for some c ≥ 0 and a concave func-
tion φ.

While log-concave distributions allow for flexible
modeling, the structure provided by a log-concave es-
timator has turned out to result in advantageous prop-
erties in a number of other inference problems:

Dümbgen and Rufibach (2009) use the fact that the
hazard rate of a log-concave density is automatically
monotone and construct a simple plug-in estimator of

the hazard rate which is nondecreasing. Rates of con-
vergence for f̂n automatically translate to rates for the
hazard rate estimator.

Müller and Rufibach (2009) report an improved per-
formance for certain problems in extreme value theory
when employing a log-concave estimator.

Dümbgen, Hüsler and Rufibach (2007) show how
the assumption of log-concavity allows the estimation
of a distribution based on arbitrarily censored data us-
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ing the EM algorithm. They replace the log-likelihood
function by a function that is linear in φ. This func-
tion can be interpreted as the conditional expectation of
the log-likelihood function given the available data and
represents the E-step in the EM algorithm. The M-step
consists of maximizing this function using the active
set algorithm described in Section 4.

Balabdaoui, Rufibach and Wellner (2009) investigate
the mode of f̂n as an estimator of the mode of f . Esti-
mation of the mode of a unimodal density has received
considerable attention in the literature. Typically, some
choice of bandwidth or tuning parameter is required
due to the problems with the MLE of a univariate den-
sity described in Section 1. The MLE of a log-concave
density does not suffer from this problem and provides
an estimate of the mode as a by-product. Balabdaoui,
Rufibach and Wellner (2009) establish the limiting dis-
tribution of this estimator and show that the estimator
is optimal in the asymptotic minimax sense.

7. SUMMARY AND FUTURE WORK

Log-concave distributions constitute a flexible non-
parametric class which allows modeling and inference
without a tuning parameter. The MLE has favorable
theoretical performance properties and can be com-
puted with available algorithms. These advantageous
properties have resulted in tangible improvements in a
number of relevant problems, such as in clustering and
when handling censored data.

As for future work, there is clearly the potential for
similar improvements in a host of other problems, such
as regression (see, e.g., Eilers, 2005) or Cox regres-
sion under shape constraints on the hazard rate. Fur-
ther, it would be useful to study the consequences of
model misspecification. For example, the mode of the
log-concave MLE is a useful tool for data analysis. It
would thus be interesting to investigate how far off
this mode can be from the population mode in the
case where the population distribution is unimodal but
not log-concave. The outstanding performance of the
multivariate MLE reported in the simulation studies in
Cule, Samworth and Stewart (2008) lends importance
to a theoretical investigation of its convergence prop-
erties. Finally, it would be desirable to develop faster
algorithms for computing the multivariate MLE.

For modeling with heavier, algebraic tails, it may
be of interest to consider the more general class of
ρ-concave densities; see Avriel (1972), Borell (1975)
and Dharmadhikari and Joag-Dev (1988). First results
about nonparametric estimation and computational is-
sues in this class were obtained in Koenker and Mizera
(2008) and Seregin (2008).
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