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Model Assessment Tools for a Model
False World
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Abstract. A standard goal of model evaluation and selection is to find a
model that approximates the truth well while at the same time is as parsi-
monious as possible. In this paper we emphasize the point of view that the
models under consideration are almost always false, if viewed realistically,
and so we should analyze model adequacy from that point of view. We in-
vestigate this issue in large samples by looking at a model credibility index,
which is designed to serve as a one-number summary measure of model ade-
quacy. We define the index to be the maximum sample size at which samples
from the model and those from the true data generating mechanism are nearly
indistinguishable. We use standard notions from hypothesis testing to make
this definition precise. We use data subsampling to estimate the index. We
show that the definition leads us to some new ways of viewing models as
flawed but useful. The concept is an extension of the work of Davies [Statist.
Neerlandica 49 (1995) 185–245].

Key words and phrases: Model selection, statistical distance, bootstrap,
model credibility index, normality.

1. INTRODUCTION

Our starting point is the famous quotation of G. E. P.
Box:

All models are wrong, but some are useful
(1976).

In this article we will take as our initial premise
that “All models are wrong,” and see where it leads
us. A consequence of model falseness is that for every
data generating mechanism there exists a sample size
at which the model failure will become obvious.

Our second premise is that there are occasions when
one will want to use, in some fashion, a model that is
clearly false, provided that it provides a parsimonious
and powerful description of the generating mechanism.
Here we wish to emphasize that we are interested in de-
scription, not prediction, as there is a smaller advantage
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to simplicity when the overarching goal is accurate pre-
diction.

In order to explore this question, the key assump-
tion of this paper will be that the sample size under
which the data is collected, say, n, is sufficiently large
that many of the models under investigation are clearly
false. This would seem to be a reasonable assump-
tion in the modern data-mining environment. Just the
same, we wish to measure the quality of their approx-
imation to the true data generating mechanism to see
which ones most economically capture its main fea-
tures. Later in this paper we will use subsampling from
the data as a means of replicating the true data gener-
ating mechanism.

It is important to our theme that we are seeking to
measure attributes that are completely unrelated to the
value of n that generated the data at hand. We empha-
size this because the standard tools for model assess-
ment are highly n-dependent. For example, hypothesis
testing has played a prominent role in the assessment
of the models since the development of Pearson’s chi-
squared statistic. Unfortunately, it is based on the false
premise that the model is correct, and so for a large
enough sample size, we are doomed to reject any fixed
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model. That is, if we view these tests as answers to the
question: “Is this model useful?,” then what we mean
by usefulness is clearly related to not just the quality of
the model, but also the size of the sample that was used
in its assessment. So hypothesis testing does not meet
our need directly.

In our approach we use testing methodology but in
an inverted fashion. We treat the null hypothesis as be-
ing false, and ask questions about the power of the test
statistic as a function of its sample size. We define our
new index, called the model credibility index, as the
sample size needed to obtain a desirable power. Al-
though the point of view is not new that the power of
a test depends on the sample size, it is a novel idea to
propose the sample size as a model evaluation index.

Other standard risk analyses, the basis for AIC, Mal-
low’s Cp and other methods are n-dependent because
the goal there is to assess the quality of prediction using
the fitted model. These criteria for model selection de-
pend not just on the model itself, but also on the qual-
ity of the parameter estimation, which in turn depends
on n.

We hope that our new methods will be thought-
provoking because they involve only standard tools of
testing and risk assessment, so they could be readily
understood (and constructed) by any statistician.

Just the same, we think that our work presents a chal-
lenge to the standard statistical train of thought. Statis-
ticians are quite accustomed to taking the “model true”
point of view. After all, we have a huge box of statis-
tical tools that are based on the assumption. This can
make it hard for statisticians to maintain consistently a
“model false, but maybe useful” point of view.

For example, suppose we have a random sam-
ple X1,X2, . . . ,Xn with distribution τ . In traditional
model building much is made of the idea of consis-
tency, in the sense of finding the true distribution τ

based on the assumption it lies within some narrow set
of models. However, this true distribution is very likely
to be much too complex to be useful, especially if we
consider the discretization, rounding, misrecording and
measurement errors incumbent in real data. (For exam-
ple, see the discussion of Ghosh and Samanta, 2001,
page 1140.) For the duration of this article, at least, we
ask the reader to believe in model-falseness, and fur-
ther believe that usefulness is not necessarily tied to
consistency.

In the next subsection we give an informal introduc-
tion to our methodology. This will be followed by a
more detailed look at the contents of the paper.

1.1 Introducing Credibility Indices

Davies (2002) gave the following definition:

A probability model Pθ is an adequate ap-
proximation for the data set (x1, . . . , xn)

if “typical” samples (X1(θ), . . . ,Xn(θ)) of
size n generated using Pθ “look like” the
real data set (x1, . . . , xn).

This is clearly an n-dependent assessment, but it cap-
tures what we consider an important aspect of a good
model—that it is good at creating data similar to the
observed data.

To illustrate our thinking, let us start with the most
prominent statistical assumption, that the data is nor-
mally distributed. Surely we might believe that no data
is exactly normal in distribution, but that it is often use-
ful and plausible to assume so.

Berkson (1938) described the paradox that a good-
ness-of-fit test may become embarrassingly powerful
whenever the data are extensive:

I believe that an observant statistician who
has had any considerable experience with
applying the chi-square test repeatedly will
agree with my statement that, as a matter of
observation, when the numbers in the data
are quite large, the P ’s tend to come out
small. Having observed this, and on reflec-
tion, I make the following dogmatic state-
ment, referring for illustration to the nor-
mal curve: “If the normal curve is fitted to a
body of data representing any real observa-
tions whatever of quantities in the physical
world, then if the number of observations is
extremely large—for instance, on the order
of 200,000—the chi-square P will be small
beyond any usual limit of significance.”
If this be so, then we have something here
that is apt to trouble the conscience of a re-
flective statistician using the chi-square test.
For I suppose it would be agreed by statis-
ticians that a large sample is always better
than a small sample. If, then, we know in
advance the P that will result from an appli-
cation of a chi-square test to a large sample
there would seem to be no use in doing it
on a smaller one. But since the result of the
former test is known, it is no test at all!

As a response, Hodges and Lehmann (1954) sug-
gested that the difficulty could be avoided by mak-
ing distinction between “statistical significance” and
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“practical significance” in the formulation of the prob-
lem. The idea was to construct a larger hypothesis H1
of distributions about the null H0, representing distri-
butions that are close enough to H0 so that the differ-
ence is deemed not practically significant with the data
at hand. If one let H1 play the role of the null hypoth-
esis, then if the true distribution is an element of H1,
then one might still wish to use the model H0. Liu and
Lindsay (2009) expanded upon this idea, but still found
difficulty in creating a reasonable set H1 having a sim-
ple interpretation.

Conducting a goodness-of-fit test involves two
choices: the test and the significance level α. Given
an alternative, there is a resulting type II error β . We
start our development by showing how one can invert
goodness-of-fit testing to develop a new measure of
model failure. To help fix the idea, we use the following
example. The full data set consists of the diastolic and
systolic blood pressure data of 10,529 persons aged
from 35 to 84. We take only the 1239 normal females
as our data to be analyzed, because the blood pressures
of the full sample would likely be better modeled as
a mixture of normals. The original data was obtained
from the Clinical Trials Research Unit (CTRU) of New
Zealand. Central limit theory suggests that such data
might be rather normal in distribution. After looking
at the QQ plot Figure 1, where there is little deviation
from a straight line except at tails, we think many sta-
tisticians would be happy using a normal model for
such data.

On the other hand, suppose we use the Kolmogorov–
Smirnov goodness-of-fit test to test the normality as-

FIG. 1. QQ plot of the Blood Pressure data of 1239 females.

sumption. The test statistic is the greatest absolute ver-
tical distance between the empirical distribution func-
tion of blood pressures and the hypothetical normal
distribution function, evaluated on the 1239 sample
values. The parameters of the normal distribution are
estimated from the sample. Normality is strongly re-
jected (p-value = 0.0016), a fact which we might at-
tribute to the large sample size (n = 1239). That is, at
such a sample size, we have power against what ap-
pear to be very small deviations from normality. In this
example, the normality is rejected although data looks
quite normal at the center.

How can we say this data is very well described by
a normal model without saying it is exactly normal?
Here is one way to use statistical testing to answer the
question.

One starts with a goodness-of-fit test method that has
desirable operating characteristics. That is, it should
be sensitive to important model failures (alternatives)
but insensitive to trivial model failures. We discuss this
choice in the next subsection.

Given a true probability generating mechanism τ ,
that is not in the model, and a size α test procedure
I {Tm(X1, . . . ,Xm) > cm}, one can define the power
curve βτ (m) = Pτ {Tm(X1, . . . ,Xm) > cm}. See Fig-
ure 2 for such a plot based on the blood pressure data.
Here τ is the empirical distribution of the full data
set, the test is the Kolmogrov–Smirnov test for nor-
mality with α = 0.05. As a simple number summary
of such a plot, we define the maximum credible sample
size of the postulated model (here the normal model in

FIG. 2. Plot of test power vs. sample size.
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the blood pressure population) to be that sample size
N∗ = N∗(τ, M) at which we would reject the model
M 50% of time based on a size α (<0.5) goodness-of-
fit test. We will also call N∗ the model credibility index.
More generally, one could define N∗

β as the sample size
needed to attain power β , in which case the index N∗
is N∗

0.5.
Although one might choose other summaries of the

power curve, such as (N∗
0.25,N

∗
0.75), we find N∗ to be

a natural summary. It also creates certain asymptotic
simplifications.

If the model is actually correct, then N∗ = ∞. How-
ever, if the model is false, there is some finite sample
size at which the power would reach 0.50. Different
tests will have different power curves that in turn re-
veal different inadequacies of the model.

In Figure 2 we assumed that the true distribution τ

is random sampling from our set of 1239 scores, and
we determined β(m) by simulation. That is, we boot-
strapped repeated samples of various hypothetical sizes
m from the 1239 blood pressure values and repeat-
edly conducted the Kolmogorov–Smirnov test until we
found the m that gave power 0.5. For example, in our
example we found when m = 315, the normality as-
sumption was rejected by the Kolmogorov test approx-
imately 50% of the time (499/1000).

The choice of test size is also arbitrary. Table 1
shows the estimated sample size m when obtaining var-
ious power βτ (m) at a different testing significance.
The monotone pattern in the table indicates that one
would need a larger sample size in order to obtain more
testing power at a higher test size.

Based on this analysis, it is clear that it would be very
hard to detect non-normality in samples of size 100
from this true distribution (β(100) = 0.13). To put this
another way, the samples of size 100 must “look” very
much like samples from a normal distribution, and so
one might say that normality is a good descriptor of the
sampling mechanism at this sample size. Indeed, this

TABLE 1
m at various test sizes and power levels for blood pressure data

Test size

Power βτ (m) α = 0.1 α = 0.05 α = 0.01

0.3 115 200 410
0.5 225 315 600
0.7 360 490 795
0.9 540 695 1050

descriptive power holds till the sample size approaches
315, when the distinction between normal samples and
data mechanism samples must start to become more
obvious.

1.2 Role of Test Statistics

What kind of index is N∗, in a mathematical sense?
As we will see later, in a detailed analysis of some stan-
dard test statistics, it is inversely proportional to the
squared distance measure that was used to construct
the test statistic.

This makes it quite clear that the value of the model
credibility index N∗ depends strongly on the test sta-
tistic that is being used. If we wish N∗ to reflect use-
fulness of the model, then the test statistic must be sen-
sitive to those model failures which we consider most
important. Thus, the choice of the test must reflect our
statistical purposes, as well as which models we con-
sider to be competitors. For example, if we would con-
sider a t-distribution a useful alternative description,
having a test sensitivity to tail probabilities would be
desirable, say, Anderson–Darling.

The Kolmogorov–Smirnov test is a test of normality
for large samples. One of its limitation is that it is more
sensitive to deviations in the center rather than in the
tails. In the blood pressure example, at least the center
of data is quite normal (Figure 1). If one is interested
in the tail regions, then one should use other tests that
are more sensitive to tails. More generally, Claeskens
and Hjort (2003) develop model selection tools which
can focus on specific aspects of lack of fit.

While trying out other data sets to use in this pa-
per, we examined another data set with heights of 2603
female adults from the data surveys and collection sys-
tems of the Centers for Disease Control and Prevention
(NHANES, 1999–2000). The Kolmogorov–Smirnov
test for normality of this set gave a p-value greater
than 0.10. Although this data set didn’t meet Berk-
son’s criterion of 200,000, it was even more normal
than the blood pressure set. See Figure 3. We found
another interesting thing for this heights data. The orig-
inal data is coded in centimeters with one decimal ac-
curacy. However, when we rounded the data to integer
values, the p-value of the Kolmogorov–Smirnov test
became 0.000, leading to a rejection of normality. This
illustrates that the Kolmogorov–Smirnov test is sensi-
tive to data coding.

The Shapiro–Wilks W -statistic (1965) is a well-
known goodness-of-fit test for the normal distribution.
It is attractive because it has a simple, graphical inter-
pretation: one can think of it as the correlation between
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FIG. 3. QQ plot of the heights of 2603 female adults, both original and rounded data.

given data and their corresponding normal scores. The
Shapiro–Wilks test has good power properties across
a wide range of alternative distributions in compari-
son with other goodness-of-fit tests (Shapiro, Wilk and
Chen, 1968).

For the blood pressure data, normality is also re-
jected by the Shapiro–Wilks W -statistic (p-value =
0.0043). The credibility index is N∗ = 220 for the
Shapiro test.

The chi-square test, introduced by Pearson in 1900,
is the oldest and best known goodness-of-fit test. The
idea is to reduce the goodness-of-fit problem to a
multinomial setting by grouping data and comparing
cell counts. Chi-squared tests can be applied to any
type of variable: continuous, discrete or a combination
of these. However, grouping the data sacrifices infor-
mation, especially if the underlying variable is contin-
uous. For the blood pressure data, normality is rejected
by the chi-squared test with p-value = 0.0000; and the
credibility index is N∗ = 240.

In comparing these credibility indices, we recall
that—even though N∗ has a natural sample size inter-
pretation—it is

√
N∗ that is the more statistically

meaningful quantity, as it reflects the standard devi-
ation scale of uncertainty. (This in turn arises, math-
ematically, because N∗ is inversely proportional to
the squared distance, making its root inversely propor-
tional to the distance.) For these tests, the root indices

were
√

315 = 17.75,
√

220 = 14.83, and
√

240 =
15.49, very similar values, albeit measures of differ-
ent model fit features.

How might one use the N∗-index? Certainly in any
particular data set N∗ = 315 has its own direct statisti-
cal interpretation. And one can use simulation method-
ology to obtain a better feel for the magnitude of
N∗ = 315, as we do in Section 3.3. More generally,
given a specific testing method and type of data set,
one could use the N∗-values to address the question as
to which data set is a better fit to the model and quan-
tify the differences. However, the greatest strength of
this methodology is that it creates a universal tool that
transcends particular data types and particular testing
methods. That in turn raises questions as to whether it
is possible to compare N∗-values across different set-
tings in a reasonable way. In particular, one might ask
whether an N∗-value is large or small given the number
of parameters included in the model. This last question
we defer to future research.

1.3 Estimating N∗

To this point, we have treated N∗ as a population
quantity, where the population in our example is a
large data set. As such, there is only simulation error
in our bootstrap estimation. Inference about N∗ when
the large data set is itself treated as a sample of size
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n from a yet large population, so τ is unknown, cre-
ates some challenging inference problems. One can, as
before, estimate the power curve βτ (m) by averaging
over bootstrap samples of size m, but now the estima-
tor is not unbiased for βτ (m) unless we use sampling
without replacement, a method we will simply call sub-
sampling (see Politis, Romano and Wolf, 1999).

The subsampling framework gives us several tools to
tackle inferential questions. In a later section we will
show that we have consistent and asymptotically nor-
mal estimation of βτ (m) when m is fixed and n → ∞.
However, in a more realistic scenario in which the sam-
pling fraction φ = m/n is fixed as n → ∞, the inverse
ratio φ−1 = n/m is shown to be an important measure
of the quality of N∗ inference. When φ−1 is small, say,
10 or less, then the estimator of βτ (m) has considerable
uncertainty.

1.4 Our Contents

We have now introduced a measure of the credibility
of a model which depends on the hypothesis testing
methodology, but it comes with a new interpretation.
Note that it is a characteristic of the model, the test
statistic and the data generating mechanism, but not the
de facto sample size n used to estimate it. It is a highly
portable statistic, as one can use it in any context where
there is a known goodness-of-fit procedure. However,
it is also clear that it can only be estimated well when
the de facto sample size is large enough to make the
model in question clearly false.

In this paper we start by discussing how the work of
Davies inspired our approach in Section 2, and review-
ing briefly other related literature. We then formally de-
fine the model credibility index in Section 3. There we
also expand upon the normal example so as to com-
pare numerically two-sample and one-sample testing
approaches and to compare bootstrapping and subsam-
pling as methods to compute N∗.

In Section 4 we explore the asymptotic properties of
the power estimators associated with the model credi-
bility index. We then in Section 5 examine the structure
of the model credibility index in greater detail in the
context of likelihood ratio testing in categorical mod-
els. We will show how these indices are closely re-
lated to Kullback–Leibler discrepancy measures, and
give some further numerical examples. Section 6 con-
cludes the paper and proposes topics worthy of further
investigation.

2. BACKGROUND

In this section we will review some related work
on the conceptual difficulty involved in using models
while assuming they are false.

2.1 Distance-Based Indices of Fit

A more standard approach to model-false analysis
would be to characterize model fitness by choosing a
suitable distance measure, then doing inference on the
distance between the true distribution and the model.

In 1954 Hodges and Lehmann proposed using tol-
erance zones around the null hypothesis. They con-
structed H1 as a set of distributions whose distance
to H0 doesn’t exceed a specified bound c under a dis-
tance measurement. Hodges and Lehmann’s analysis
was in the context of the chi-squared goodness-of-fit
test. They used a weighted Euclidean distance as the
distance from a model element to the truth. The usual
chi-squared distance is included by choosing appropri-
ate weights.

Hodges and Lehmann didn’t give a detailed discus-
sion on how one should choose c. They mentioned that
the specification of c would “present problems simi-
lar to those encountered in choosing the alternative at
which specified power is to be obtained.” This quoted
statement presents some difficulties in its interpretation
and implementation.

Liu and Lindsay (2009) expanded on this tubular
model idea, but used two different distances, likeli-
hood for the test statistic and Kullback–Leibler for the
tube hypothesis. Their tubular model consisted of all
multinomial distributions lying within a distance-based
neighborhood of the parametric model of interest. The
distance between the true multinomial distribution and
the parametric model was used as the index of fit. Liu
and Lindsay developed a likelihood ratio test (LRT)
procedure for testing the magnitude of the index.

Goutis and Robert (1998) proposed a Bayesian ap-
proach for the model selection problem based on the
likelihood deviation between two nested models, called
the full and restricted models. The full model space
was considered to contain the true distribution. The
Bayesian approach was implemented by specifying a
prior distribution in the full model, possibly an im-
proper prior. Each prior distribution was projected onto
the restricted model space and the corresponding min-
imum distance measure was computed. Therefore, the
posterior distribution of the distance from a prior distri-
bution to the restricted model can be derived. Bayesian
inference was made on the restricted model based on
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the posterior distribution. For example, one criterion
was to reject the restricted model if the posterior prob-
ability that the distance was less than a certain bound c

was small enough. Other aspects of the posterior distri-
bution could be considered as the testing criteria. When
one doesn’t have a strong prior belief, several priors
could be used to assess the distance between models.
The sensitivity of the inference to the priors could be
used as a factor in making the model choice.

Dette and Munk (2003) used the Euclidean distance
in the problem of testing for a parametric form hypoth-
esis in regression. They assumed that the true model
was an unknown nonparametric regression function.
Goodness of fit was measured by the Euclidean dis-
tance between the unknown true regression function
and the parametric model.

Dette and Munk first estimated the Euclidean dis-
tance under the null hypothesis. To obtain the distance
under the alternative, the classical concept of analysis
of variance was generalized to the nonparametric set-
ting. Their goodness-of-fit statistic measure could be
interpreted as the difference between variance estima-
tors under the null model and the nonparametric model.

The challenge one faces with all approaches that use
distances directly, such as those described above, is that
it is very difficult to give statistically meaningful in-
terpretations to the numerical values of the distance.
The credibility indices we have explored here are, in
essence, reciprocals of such distances. However, we
believe that they are easier to interpret, as they measure
the ability of the model to describe samples of various
sizes. They are also more universal, having meaning
across a wide range of settings.

2.2 Davies

In our search for a reasonable way to measure how
well a model describes a data generating mechanism,
we came across the work of Davies.

Davies (1995) proposed the idea of judging model
adequacy using the concept of data feature. The ba-
sic idea is that if samples that are simulated from the
model are largely indistinguishable from the real data,
then the model should be regarded as adequate. A sim-
ilar idea is expressed in Donoho (1988) via the follow-
ing statement: “No distribution which produces sam-
ples very much like those actually seen should be ruled
out a priori.”

Davies’ formal theory of data features is very sim-
ilar to hypothesis testing for goodness of fit, with the
test statistics being designed to assess whether the data
had the same features as a sample from the model. In

common with testing theory (but contrary to us), he
measures the adequacy of models from the null-centric
convention (i.e., that the model is correct) and does so
at the de facto sample size.

Another distinction from our approach is that rather
than using model-based one-sample test statistics, he
would use a nonparametric two-sample test to compare
the data not with the model, but with samples from the
model. This has the conceptual advantage of being a
direct answer to the question “Does this data look like
a typical sample from the model?”

The disadvantage to this approach is that it limits the
number of testing procedures available for model as-
sessment. We believe that a one-sample test is address-
ing the right question, but it does have more power
because it removes sampling uncertainty. An example
in Section 3.3 shows that there would be a substantial
change in magnitude of N∗ if we used a two-sample
approach.

3. CREDIBILITY INDEX

3.1 The Formal Definition

In constructing these indices, we have used the con-
ventional test size α = 0.05. For a given test, we let
N∗ = N∗(τ , M) be the value of n that gives this test
power 0.5 at true distribution τ , when the model is M.
Any test that is consistent for every alternative hypoth-
esis (i.e., an omnibus test of fit) will give a finite N∗
under the false model assumption.

The choice of α here seems like an arbitrary element,
but we will see later that it plays a minor role in the
comparison of N∗-values. The choice of power 0.5 is
also somewhat arbitrary, but there are two strong rea-
sons behind this choice. First, there is the intuitive ap-
peal of the idea that the model decision is 50/50 at this
point and so the decision is “up for grabs.” The index is
the middle value of the power curve and so provides a
natural one number summary (e.g., Figure 2). Second,
this value of the power greatly facilitates the asymp-
totic analysis, as we will soon see.

In an intuitive sense, the model credibility index
N∗(τ , M) operates reciprocally to distance in the fol-
lowing sense. When a true distribution τ is moved
closer to the model, so the distance is reduced, the sam-
ple size index should increase because a larger sam-
ple size n would be needed for discrimination between
τ and M . Typically goodness-of-fit test statistics are
based on distance measures; in these cases the recipro-
cal connection can be made more precise, as we will
soon see.
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3.2 Determination of N∗

One attractive thing about the testing index N∗ is that
it admits an elementary subsampling estimation. This
could be carried out in a typical IID setting as follows.

Given a target size α and a data set x1, . . . , xn, sup-
pose one would ordinarily conduct the goodness-of-
fit test of the model based on an asymptotic critical
value. One could then estimate N∗ for this test proce-
dure by conducting a nonparametric bootstrap simula-
tion using various sample sizes m to estimate the power
βτ (m), the goal being to find the value of m such that
βτ (m) = 0.5. If we let the symbol F̂ represent the em-
pirical distribution, we are treating F̂ as τ , and calcu-
lating N̂∗ = N∗(F̂ , M). Now assuming the model M
does not include the empirical distribution F̂ , the boot-
strap sampling distribution is under the alternative, and
so the rejection probability, which is the power of the
test, should increase in m. The female blood pressure
example in Section 1 is an example of the bootstrap
determination of N∗.

As we will explain later, there are good reasons to
use sampling without replacement (“subsampling”) in-
stead of with replacement (“bootstrapping”). In sub-
sampling the largest possible value of m is n, and
the resulting estimated power β̂(n) is 1, if the test re-
jects, and 0, if the test accepts. This reflects our lack
of knowledge (in the model false world) about the
model’s capacity to explain future samples of size n

or larger.
To carry out a subsampling or a bootstrap determina-

tion of N∗, one needs to define an efficient algorithm
so as to minimize computation time. Obviously, sensi-
ble interpolation methods should be used. Moreover, it
would be nice to have a good starting value based on
asymptotic approximations. See Section 5.1 for more
on this issue.

3.3 One-Sample and Two-Sample Indices

In this section we use a particular simulation model
to compare different ways of computing N∗. We start
by comparing one- and two- sample credibility indices.
In this process we also learn something more about
how to interpret the magnitude of a model credibility
index.

Suppose we draw two samples of size m, say, one
each from a normal and a logistic distribution, where
the parameters are chosen to make the distributions as
similar as possible. We could measure their similarity
by using a two-sample test to see if the samples are
detectably different. Doing this repeatedly gives us the

TABLE 2
Power of the Kolmogorov–Smirnov test

(two-sample method) to detect the difference
between normal and logistic distributions at

selected sample sizes

m Rejection proportion

100 0.044
500 0.116

1000 0.169
2000 0.361

N̂∗ = 2650 0.513
4000 0.768
6000 0.907

power of the two-sample test between the two distrib-
utions.

We did this using the two-sample Kolmogorov–
Smirnov test, using 1000 samples for each m. Table 2
lists the number of rejections for various sample sizes.

Suppose we let the model credibility index N∗ be the
value of n that gives power 0.50. In this example, N∗ ≈
2650. We found it quite striking that the normal and
logistic models would be so poorly discriminated on
the basis of this test.

A one-sample version of this index could be cre-
ated by fixing the normal density as the null hypoth-
esis, and investigating the power of the one-sample
Kolmogorov–Smirnov using logistic samples. As seen
in Table 3, this test is considerably more powerful than
the two-sample one.

Note that this analysis also shows that N∗, when the
model is normal and the true distribution is logistic, is
about 485, and so logistic samples are closer to nor-
mality than is the blood pressure data set.

TABLE 3
Power of the Kolmogorov–Smirnov test

(one-sample method) to detect the difference
between normal and logistic distributions at

selected sample sizes

m Rejection proportion

100 0.126
400 0.435
450 0.479

N̂∗ = 485 0.500
500 0.518

1000 0.824
2500 1.000
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TABLE 4
Simulated power of normality test for finite population from logistic

Bootstrap Subsampling Subsampling

n Mean Deviation Mean Deviation φ−1 = n
m EISS

1000 0.659 0.1753 0.493 0.2472 1000
485 = 2.06 4.14

10,000 0.517 0.0710 0.499 0.0735 10,000
485 = 20.6 44.3

100,000 0.503 0.0278 0.501 0.0252 100,000
485 = 206.2 393.7

Finally, we use this example to compare the bias and
deviation of N̂∗ when estimated by bootstrap simu-
lation with N̂∗ when estimated by subsampling sim-
ulation. Consider a large data set of size n from the
logistic distribution. We let m be fixed and simulate
the powers of the one-sample Kolmogorov test for nor-
mality by bootstrapping and by subsampling. We take
500 data sets from logistic distribution at each size n.
The simulated average and standard deviation of power
are in Table 4 for m = 485 and n = 1000, 10,000 and
100,000.

The true power for the infinite population is approx-
imately 0.5. The results show that as the empirical data
size n gets larger and larger, the simulated power gets
closer and closer to the true value. Although the stan-
dard deviations are almost the same for the bootstrap
method and the subsampling method, the simulated
power by bootstrap is much more biased for small n.
With the bootstrap method, sample size 485 is esti-
mated to have 0.66 power when n is 1000. That again
indicates that estimation of N∗ by bootstrap tends to
have a downward bias.

The reader should note the large standard deviation
when n = 1000. The last two columns will be dis-
cussed later in the context of understanding how well
one can estimate power nonparametrically.

4. ASYMPTOTIC ISSUES IN POWER ESTIMATION

In this section we examine the asymptotic properties,
as n → ∞, when one estimates the power curve βτ (m)

by subsampling or bootstrapping.
Suppose our test statistic is Tn = Tn(x1, . . . , xn),

symmetric in its arguments. Suppose our test procedure
is to reject H0 when {Tn(X1, . . . ,Xn) > cα}, where cα

is an asymptotic critical value for the test. The object
of interest is

β(m) = Pτ {Tm(X1, . . . ,Xn) > cα}.
When the null hypothesis is true (i.e., includes τ ), we
have Pτ {Tn(X1, . . . ,Xn) > cα} → α as n → ∞.

We will derive asymptotic results for subsampling
based estimation of β(m), with side notes on the ef-
fect of using bootstrap sampling instead. Notice that
I {Tm(Xs1, . . . ,Xsm) > cα}, for any set of distinct in-
tegers a1, . . . , am, is an unbiased estimator of β(m).
Let S = {s1, . . . , sm} be a subset of m distinct integers
sampled from {1, . . . , n}, and let XS = (Xs1, . . . ,Xsm).
Finally, let Km(XS) = I {Tm(Xa1, . . . ,Xam) > cα}. We
can construct a U -statistic estimator of β(m) by

Ucomp(X) = 1(n
m

) ∑
S∈S

Km(XS),

where S is the set of all distinct subsets of {1, . . . , n} of
size m. We can also write this as an expectation:

Ucomp(X) = E[Km(XS)|X1, . . . ,Xn].(4.1)

Here the expectation is over samples of m integers
without replacement from {1, . . . , n}, with X = (X1,

. . . ,Xn) fixed.
We will call this the complete U -statistic; in prac-

tice, we are unlikely to use it because of the
(n
m

)
calcu-

lations required. The approximation we consider will
replace this exact expectation with a subsampling esti-
mator created by randomly sampling S. Another possi-
ble computational shortcut would be to use a statistical
design for the selection of a subset of S (Blom, 1976).
We will focus here on the properties of Ucomp itself,
corresponding to an ideal infinite subsampling scheme.
In this setting, we can think of the estimator obtained
by bootstrap subsampling as being the corresponding
V -statistic estimator of β .

4.1 Fixed m Asymptotics

We can now make some observations about the con-
sistency of this form of estimation. The answer de-
pends on the asymptotic setting. If we assume that m is
held fixed as n → ∞, fixed m asymptotics, then we can
apply the following standard U -statistic theory, and ob-
tain consistency and asymptotic normality for the esti-
mation of β(m) as follows.
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The exact and asymptotic variance of Ucomp is de-
scribed in Theorem 4.1 (Lehmann, 1999).

THEOREM 4.1. If Var[Km(x1, . . . , xi,Xi+1, . . . ,

Xm)] = σ 2
i , then:

(1) The variance of the U -statistic is equal to

Var(Ucomp) =
m∑

i=1

(
m

i

)(
n − m

m − i

)
σ 2

i

/(
n

m

)
.

(2) If σ 2
1 > 0 and σ 2

i < ∞ for all i = 1, . . . ,m, then

Var
(√

nUcomp
) → m2σ 2

1 .

Theorem 4.2 gives the asymptotic normal property
of Ucomp.

THEOREM 4.2. (1) If 0 < σ 2
1 < ∞, then as n →

∞,

√
n(Ucomp − β)

d→ N(0,m2σ 2
1 );

(2) If σ 2
i < ∞ for all i = 1, . . . ,m, then

Ucomp − β√
Var(Ucomp)

d→ N(0,1).

Because for us Km is an indicator function, the con-
dition that σ 2

i < ∞ for all i is obviously satisfied.
When m is fixed, these limiting distribution results hold
for the bootstrap estimator of β(m) because it is the
corresponding V -statistic.

4.2 Fixed Sampling Ratio Asymptotics

Unfortunately using fixed m asymptotics is incredi-
bly optimistic in our setting, as we wish to be able to
estimate β(m) for m as close to n as possible. The more
realistic asymptotics we will use to study this case will
consider sequences in n in which m = mn is some fixed
fraction φ of n, which we call fixed ratio asymptotics.
In this setting the target value βτ (mn) will be changing
in n, going to 1, and so we also need to consider local
alternative sequences τn.

To study this, we first derive some properties of
Var(Ucomp(m)). For any two independent samples S1

and S2 of size m from {1,2, . . . , n}, let |S1 ∩ S2| =
O(S1, S2) be the number of common elements. We will
call O(S1, S2) the sample overlap. It has a hypergeo-
metric distribution, so it is an elementary calculation
to show that E{O(S1, S2)}/m = m/n = φ. That is, the
sampling fraction φ is also the mean fractional overlap

between subsamples. We can then write

E(U2
comp(m))

=
m∑

k=0

E[Km(S1)Km(S2)|O(S1, S2) = k](4.2)

× Pr[O(S1, S2) = k].
As we will show below, the U -statistic can suffer a
severe degradation in variance, relative to the fixed m

asympotics, if the mean overlap φ in the indices is too
large. (Note that φ goes to zero in fixed m asymptotics,
so the overlap mean goes to zero.) As a way to measure
the overlap effect, we define an equivalent independent
sample size (EISS) measure using the formula

Var(Ucomp(m)) = Var(Km(X1, . . . ,Xm))

EISS
.

For our indicator kernel Km this gives the formula

Var(Ucomp(m)) = βτ (m)(1 − βτ (m))

EISS

and so we can think of EISS as being the sample size
we would need to conduct an IID experiment with
equivalent accuracy in estimating β(m).

From a standard U -statistic inequality (Blom, 1976,
page 574), we have

Var(Ucomp) ≤ Var(I {Tm(X(S)) > cα})
n/m

(4.3)

= βτ (m)(1 − βτ (m))

n/m
.

As a consequence, we are guaranteed consistent esti-
mation of βτn(mn), along any sequence of alternatives
τn, when φ = mn/n goes to zero. We note that boot-
strap resampling does not have this strong guarantee of
consistency, as general results require m2/n to go to
zero (Politis, Romano and Wolf, 1999).

This inequality also implies that EISS ≥ φ−1 = n/m.
That is, φ−1 gives us a lower bound for EISS for
β(m) inference. For example, a sampling fraction of
φ = 1/25 is guaranteed to provide at least as accurate
an estimation of p = β(m) as would 25 draws from a
Bernoulli distribution with success probability p. As
we will later see, this inequality can also be thought of
as an approximation when φ−1 is small, helping to give
one the proper degree of pessimism about N∗ inference
in this case.
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4.3 Local Alternatives: A Closer Look

To more closely examine this approximation, we
consider certain local alternatives τn to the null hy-
pothesis. We will assume now that the test statistic at
hand admits a standard local asymptotic analysis un-
der alternatives of the form τn = F0 + n−1/2cg(x),
for fixed g(x), positive c and null element F0. In this
setting one can typically show that βτn(n) → βloc(c)

as n → ∞, where the local alternative power curve
βloc(c) is a continuous increasing function of c. For ex-
ample, for Pearson’s chi-square test, the local analysis
leads to a noncentral chi-square distribution. (See Fer-
guson, 1996, page 63.) To find the local power along
the sequence τn when a different sample size is used,
say, mn = φn, we can rewrite the alternative as

τn = F0 + m−1/2
n φ1/2cg(x).

The sample size changes the scaling factor from c to
φ1/2c. Hence, the asymptotic power approximation for
samples of size mn from τn is βloc(φ

1/2c). Assuming
that c is chosen so that βloc(c) > 1/2, there will be a
fraction φ0.5 such that βloc(φ

1/2
0.5 c) = 1/2. That is, if we

choose φ = φ0.5, we have βτn(mn) → 0.5, for mn =
φ0.5n. As a consequence, the true N∗ value for the τn

sequence grows proportionally to n, namely, φ0.5 × n.
Since φ = m/n is fixed, our proceeding result about

the consistency of Ucomp is not operative. In fact, in lo-
cal alternative settings, the estimator is generally not
consistent. However, it is possible to obtain useful un-
derstanding of how the variance changes as a function
of φ, and so examine its role in estimation. Returning
to the formula

E(U2
comp(m)) =

m∑
k=0

E[Km(S1)Km(S2)|O(S1, S2) = k]

× Pr[O(S1, S2) = k],
the second term on the right has the elementary calcu-
lation

Pr[O(S1, S2) = k] =
(m
k

)(n−m
m−k

)
(n
m

) .

This hypergeometric distribution has mean φm = (m/

n) · m and variance bounded above by mφ(1 − φ), the
corresponding binomial variance. Hence, O(S1, S2)/

m, the fractional overlap, converges in probability to
φ in our asymptotic setting.

For this reason, it is reasonable to approximate the
terms

E[Km(S1)Km(S2)|O(S1, S2) = kn]

along a sequence of k’s for which the samples have a
fixed fractional overlap, say, kn = amn = aφn, in order
to approximate the important terms in the variance.

Although such a task is dependent on the structure
of the test statistic, we think it is worthwhile to illus-
trate here how these calculations could be carried out.
We consider a test statistic which is asymptotically chi-
squared distributed, with degrees of freedom d under
the null hypothesis, and is asymptotically noncentral
chi-squared, with noncentrality parameter δ under the
local alternatives sequence.

If we let G(t) = Pr{χ2
d−1 > t}, then for fixed overlap

fraction a, then under standard local asymptotic calcu-
lations,

E[Km(S1)Km(S2)|O(S1, S2) = kn] → A,

where A can be calculated as the expectation of

G

(
1

1 − a
cα

−
(
X +

((
Z

√
a

1 − a
+

√
1

1 − a
δ

)2

+ a

1 − a
W

)1/2)2)
(4.4)

× G

(
1

1 − a
cα

−
(
Y +

((
Z

√
a

1 − a
+

√
1

1 − a
δ

)2

+ a

1 − a
W

)1/2)2)

where X,Y,Z are independent normal variables and W

is independently χ2
d−1.

In Table 5 we show some calculations from this for-
mula for d = 25, where δ is chosen as 3.67 so as
to obtain asymptotic power 0.5. The critical value is
c0.05 = 37.66.

We note several features here. First, φ−1 is rela-
tively conservative, but for small values does provide
the right caution. Here φ−1 = 10 gives an EISS of 32.6,
something like a bare minimum needed for N∗ infer-
ence. If we compare this table with the values from the
simulation in Table 4, we see that in the latter, EISS
was about 2 × φ−1 across a larger range of sampling
fractions, and so did not show the steady improvement
found in Table 5.
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TABLE 5
Simulated EISS for various sampling fraction φ

φ−1 EISS φ−1 EISS φ−1 EISS

2 4.2 15 52.9 50 231.6
3 7.4 20 74.6 60 294.1
4 10.7 25 97.7 75 398.0
5 14.1 30 122.0 80 435.6

10 32.6 40 174.3 100 601.7

5. CREDIBILITY IN CATEGORICAL DATA MODELS

Our setting for analyzing the mathematical features
of credibility indices more carefully will be likelihood
ratio tests in categorical models.

5.1 Asymptotic Approximations

We derive two approximations to N∗ here, focus-
ing on the likelihood ratio test in multinomial models.
Here the data will be an IID sample from a multinomial
distribution, as summarized by the counts n(t) in the
cells t = 1, . . . , T . The cell proportions will be denoted
d(t) = n(t)/n, which represent the empirical distribu-
tion d of the data. The model M will have elements
Fθ(t) representing a parametric model for the multino-
mial cells—for example, a log-linear model. The test-
ing statistic will be the likelihood ratio, and we will
assume that the test statistics have the standard asymp-
totic chi-squared distributions under the null models.

In this context we can derive a simple asymptotic
version of the testing index and show that it is pro-
portional to a reciprocal squared distance. This in turn
leads to an elementary consistent estimator of the as-
ymptotic index. This estimator has two important uses:
It can be used for a preliminary value of the index
for bootstrap or subsampling testing. It can also itself
be bootstrapped or subsampled, which then provides a
simple way to assess the variability of the estimated
index.

The likelihood deviation between a multinomial dis-
tribution p and a model element Fθ is defined as
L2(p,Fθ ) = ∑

p(t) log(p(t)/Fθ (t)). This is a version
of the Kullback–Leibler distance; we call it the likeli-
hood deviation to clarify the asymmetric role of p and
F. Technically it operates as a squared distance, which
is why we use the superscript 2. We also define the
likelihood deviation from a multinomial distribution p
to the model M to be

L2(p, M) = inf
θ

L2(p,Fθ ).(5.1)

For the true sample distribution τ , if the infinum is
attained at a particular θ , it will be denoted θτ , and
the model element that approximates τ is therefore de-
noted Fθτ .

In the likelihood ratio test, one rejects the null hy-
pothesis H0: τ ∈ M at asymptotic size α, if the likeli-
hood ratio test statistic is large enough, that is,

2nL2(d, M) ≥ χ2
df (α),

where χ2
df (α) is the upper 1−α quantile of chi-squared

distribution with df = the degrees of freedom. The
power of the test at sample size n when dn ∼ τ /∈ M is

Pτ {2nL2(dn, M) ≥ χ2
df (α)}.

Our goal is to determine the sample size N∗ at which
the testing power for the alternative τ /∈ M is 0.5. That
is,

Pτ {2N∗L2(dN∗, M) ≥ χ2
df (α)} = 0.5.

Our first approximation to N∗ uses the fact that when
the model is false, the centered likelihood ratio statis-
tic has, asymptotically, a centered normal distribution.
The approximation, as derived in the Appendix, is

N∗
asy(τ ) = χ2

df (α)

2L2(τ, M)
.(5.2)

Here our choice of the power 0.5 greatly simplifies the
expression. Other choices for N∗

β would depend on the
limiting variance for the normal distribution.

Our second approximation is a bit more sophisti-
cated. We consider local alternatives that approach the
null as the sample size goes to infinity. This gives a
noncentral chi-square approximation:

N∗
asy2(τ ) = (δ∗)2

X2(τ, M)
.(5.3)

In equation (5.3), X2(τ, M) is the Pearson chi-
square distance,

X2(τ,F ) = ∑ (τ − F)2

F
,

and (δ∗)2 is the noncentrality parameter that satisfies

P {χ ′2
df ((δ

∗)2) > χ2
df (α)} = 0.5,(5.4)

where χ ′2
df (δ

2) is a noncentral χ2 distribution with de-

grees of freedom df and noncentrality parameter (δ∗)2.
One can generalize this approximation by changing the
right-hand side of (5.4) to a chosen power level. See the
Appendix for more details.
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The second approximation should be more accurate
than the first for situations when τ is close to the model.
Notice that both approximations (5.2) and (5.3) show
an inverse relationship to squared distance. Moreover,
we can see that α plays a role only in the numerator of
the approximation. Given two models with the same
testing degrees of freedom, the ratio of approximate
N∗-values does not depend on α.

Another useful feature of N∗
asy arises in confidence

assessment. One could form asymptotic confidence in-
tervals for N∗(τ ) by bootstrapping N̂∗, but this re-
quires double bootstrapping, an expensive possibility.
But bootstrapping N∗

asy(d) is relatively inexpensive and
it can give a useful picture of the uncertainty involved.
More rigorous methods of using subsampling to esti-
mate standard errors are under investigation by the au-
thors.

5.2 Numerical Examples

We next assess model credibility for the data in
Tables 6 and 7. Table 6, considered earlier by Snee
(1974), is a 4 × 4 table cross-classifying eye color and
hair color. The sample size n = 592 is somewhat large,
but the table does have some small entries. The Pearson
statistic for the independence model is X2 = 138.290
on 9 degrees of freedom, and the likelihood ratio statis-
tic is L2 = 146.444. The model would be rejected on
the basis of these quantities.

We tested the independence model for the data in Ta-
ble 6, where the degrees of freedom are 9. We then ap-
ply the two approximations, (5.2) and (5.3), to obtain
the starting value for N∗(d), which are N∗

asy(d) = 34
and N∗

asy2(d) = 37.
We further refine the preliminary value by bootstrap.

Given the target size α = 0.05, we took various sample
sizes m, then generated B = 1000 bootstrap samples
d∗

b from Multinomial(m,d), with margins not fixed.
We then conducted the size α likelihood ratio test, and
recorded the fraction of rejections, #{2nL2(d∗

b, M) ≥

TABLE 6
Cross-classification of eye color and hair color (size n = 592)

Hair color

Eye color Black Brunette Red Blonde

Brown 68 119 26 7
Blue 20 84 17 94
Hazel 15 54 14 10
Green 5 29 14 16

TABLE 7
Cross-classification of number of children by annual income

(size n = 25,263)

Annual income

No. of children 0–1 1–2 2–3 3+

0 2161 3577 2184 1636
1 2755 5081 2222 1052
2 936 1753 640 306
3 225 419 96 38

4+ 39 98 31 14

χ2
df (α)}/B . The estimate of N∗(τ ), N∗(d), would be

that sample size that gives rejection fraction 50%. See
Table 8 for the numbers, as well as a comparison of
bootstrap and subsampling in this example.

In this case N∗(d) = 32, which is very close to the
first asymptotic value of 34. A 95% bootstrap interval
for N∗

asy(τ ) was found to be (25,43). Note that φ−1 =
592/32 = 18.5, suggesting that inference about N∗ is
reasonable.

Diaconis and Efron (1985), in addressing the same
problem posed by this paper, suggested a different way
of generating an assessment of this particular data set.
They compared the observed X2-value with those of
all possible 4 × 4 tables with n = 592. They found
that, among all 4 × 4 tables with n = 592 (margins not
fixed), approximately 10% have X2-values less than
138.29. They concluded that the given 4 × 4 table does
not lie particularly close to independence.

Our second example, Table 7, originally published in
Cramér (1946), is a 5 × 4 table cross-classifying num-
ber of children by annual income levels. The sample
size is n = 25,263, which is very large. The goodness-
of-fit statistics are X2 = 568.566 and L2 = 569.420
on 12 degrees of freedom. The χ2-statistics have ex-
tremely small p-values, leading to rejection using the
conventional criteria.

Diaconis and Efron (1985) used this example as
well. They found that, among all 5 × 4 tables with
n = 25,263 (margins not fixed), the proportion of those
having X2 less than 568.576 is 2.1 × 10−7. They con-
cluded that the observed table is extremely close to in-
dependence, which is dramatically opposite from the
conclusion drawn from the χ2-values.

The credibility index for Table 7 was calculated as
follows. The starting estimate value of N∗

asy(d) for
the data in Table 7 was 470 and its bootstrap range
was (386,548), while N∗

asy2(d) = 439. We refined the
estimate to N∗(d) = 425 using the bootstrap proce-
dure (margins not fixed). Here the closeness of the
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TABLE 8
Summary of sample sizes and the corresponding power for data in Tables 6 and 7

Power for Table 6 Power for Table 7

m Bootstrap Subsampling m Bootstrap Subsampling

34 0.676 0.568 470 0.578 0.548
N̂∗ = 32 0.505 0.497 450 0.544 0.529

31 0.512 0.484 430 0.505 0.507
30 0.481 0.474 N̂∗ = 425 0.495 0.500
29 0.480 0.467 400 0.482 0.479

model and sample explains why N∗
asy2 worked bet-

ter as a bootstrap starting value. Note that φ−1 =
25,263/425 = 59.4, suggesting that inference on N∗
is reasonable. See Table 8 for more details.

It is clear that Table 7 lies much closer to the in-
dependence model than Table 6. Using the credibility
index as a guide, we would say that the row-column in-
dependence model is credible only for samples of size
N = 32 or smaller for the population represented by
Table 6. Table 7 is credible for samples that are more
than ten times as large.

The magnitude of the ratio for the Efron–Diaconis
statistics is on a completely different scale, being 4.8×
105. Of course, the statistics involved are quite differ-
ent in interpretation. The Efron–Diaconis statistic and
our index are not asking the usual questions for contin-
gency tables. The Efron–Diaconis statistic seems to ask
“is this table surprisingly close to independence?” It
is calculated by assuming that prior to data collection,
every possible table of that sample size was equally
likely. We ask instead, “does this table come from a
population that generates samples that look indepen-
dent, even for large n?”

6. DISCUSSION

The statistical community is currently facing an
enormous challenge (and opportunity) that arises from
the new data generating capacity of science and engi-
neering. This paper has been concerned with the ques-
tion: “How should we reconcile our parametric mod-
eling tools with the fact that in a truly large data set,
parametric models are either clearly false or are too
complex to be concise descriptors of the key data fea-
tures?” We have tackled one small part of this problem,
assessing the quality of a model’s fit while assuming
it is false. We have done so by modifying hypothesis
testing methods so that they can be used from a model
false perspective.

If model credibility indices are a good idea, then
many questions remain. For example, can we design
the test procedures, and the corresponding N∗ values,
that would reassure us about the robustness of using a
standard model-based statistical procedure? Is there a
good way to use N∗ quantifying, in an absolute sense,
what it means for a model to be a surprisingly good
fit to a set of data, as in saying that a data set is
“highly normal”? The theoretical development of this
idea might involve comparison of the credibility of the
chosen model with a randomly selected model with the
same number of parameters.

Another issue regards the comparison of N∗-values
in models across differing numbers of parameters. One
possibility is to create an index that adjusts for the
number of parameters, such as N∗/(# parameters). The
form of such an index then could depend on how we
might “expect” N∗ to grow when the number of para-
meters grows, given a sequence of arbitrary models.

Although we recognize that the ideas presented here
are only a beginning, we hope the reader has found
them to be stimulating.

APPENDIX: TWO APPROXIMATIONS TO N∗

A.1 Approximation Through Normal Distribution

We can obtain a quick-and-dirty approximation us-
ing the fact that—when the model is false—the cen-
tered likelihood ratio statistic has, asymptotically, a
centered normal distribution.

LEMMA A.1. If {n(t)} are a multinomial sample
of size n from a fixed distribution τ not in M, then as
n → ∞,

√
n
(
L2(dn, M) − L2(τ , M)

) −→ N(0, σ 2),

provided that the asymptotic variance σ 2 is not zero or
infinity.
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The lemma is just the maximum likelihood within
von Mises’ framework (Serfling, 1980, page 211). Fre-
itag and Munk (2005) have a bootstrap variant, which
is an interesting extension of the lemma.

Note that this lemma applies to bootstrap sampling
from the empirical distribution d(t) (treating it as τ)

whenever the data d(t) is not perfectly fit by the model.
Now the value of N that we seek satisfies

P

{√
NL2(dN, M) − √

NL2(τ, M)

≥ 1

2
√

N
χ2

df (α) − √
NL2(τ, M)

}
= 0.5.

Since the left-hand term is asymptotically normal with
mean zero, this suggests that we need N to solve

1

2
√

N
χ2

df (α) − √
NL2(τ, M) = 0.

Note that this calculation is independent of the un-
known σ 2 due to the choice of power 0.50. It gives
us the approximation

N∗
asy(τ ) = χ2

df (α)

2L2(τ, M)
.(A.1)

Thus, the asymptotic version of N∗ is inversely propor-
tional to the squared likelihood deviation.

Of course, our argument was somewhat specious:
one cannot simultaneously let N go to infinity and
solve for finite N . Regardless, N∗

asy provides an ele-
mentary and useful approximation to the index N∗,
both its theoretical value (sampling under τ ) and the
estimator (sampling under d).

A.2 Second Approximation to N∗ Using
Noncentral Chi-Square Distribution

One could construct more sophisticated asymptotic
approximations of N∗. One method would be based
on using “local alternatives”; that is, based on letting
the alternatives approach the null, as n → ∞, obtain-
ing noncentral chi-square approximations.

We imagine a sequence of true alternatives with
τm = (1 − m−1/2)F + m−1/2g, where F is a model
element and g is some fixed alternative not depend-
ing on m. Therefore, the likelihood ratio test statis-
tics 2mL2(dm,F ) −→ χ ′2

df (δ
2) as m → ∞ under τm,

where δ2 = X2(g,F ), the Pearson chi-squared dis-
tance,

∑
(g − F)2/F , and χ ′2

df (δ
2) is a noncentral chi-

square distribution with degrees of freedom df and
noncentrality parameter δ2 (Agresti, 2002).

Therefore, one can obtain the power as a function of
m at a fixed g, based on the sequence of τm. However,

what we want is the power at a particular τ , which we
can approximate by inventing a different g for each m.
At the targeted m,

τ = τm = (1 − m−1/2)F + m−1/2gm

implies

gm = F + m1/2(τ − F).

This gives the corresponding noncentrality parame-
ter

δ2 = ∑ (gm − F)2

F
= mX2(τ,F ).

We then get the power at τ for large n being approx-
imately

P {χ ′2
df (δ

2) > χ2
df (α)}.

One can find the noncentrality parameter (δ∗)2(df )
such that

P {χ ′2
df ((δ

∗)2) > χ2
df (α)} = 0.5,

then N∗ can be approximated by

N∗
asy2 = (δ∗)2(df )

X2(τ,F )
.(A.2)

ACKNOWLEDGMENT

Supported in part by NSF Award DMS-04-05637.

REFERENCES

AGRESTI, A. (2002). Categorical Data Analysis, 2nd ed. Wiley,
New York. MR1914507

BERKSON, J. (1938). Some difficulties of interpretation encounted
in the application of the chi-square test. J. Amer. Statist. Assoc.
33 526–536.

BLOM, G. (1976). Some properties of incomplete U -statistics. Bio-
metrika 63 573–580. MR0474582

BOX, G. E. P. (1976). Science and statistics. J. Amer. Statist. Assoc.
71 791–799. MR0431440

CLAESKENS, G. and HJORT, N. L. (2003). The focused informa-
tion criterion. With discussions and a rejoinder by the authors.
J. Amer. Statist. Assoc. 98 900–945. MR2041482

CRAMÉR, H. (1946). Mathematical Methods of Statistics. Prince-
ton Univ. Press, Princeton, NJ. MR0016588

DAVIES, R. B. (2002). Hypothesis testing when a nuisance para-
meter is present only under the alternative: Linear model case.
Biometrika 89 484–489. MR1913976

DAVIES, P. L. (1995). Data features. Statist. Neerlandica 49 185–
245. MR1345378

DETTE, H. and MUNK, A. (2003). Some methodological aspects
of validation of models in nonparametric regression. Statist.
Neerlandica 57 207–244. MR2028913

http://www.ams.org/mathscinet-getitem?mr=1914507
http://www.ams.org/mathscinet-getitem?mr=0474582
http://www.ams.org/mathscinet-getitem?mr=0431440
http://www.ams.org/mathscinet-getitem?mr=2041482
http://www.ams.org/mathscinet-getitem?mr=0016588
http://www.ams.org/mathscinet-getitem?mr=1913976
http://www.ams.org/mathscinet-getitem?mr=1345378
http://www.ams.org/mathscinet-getitem?mr=2028913


318 B. LINDSAY AND J. LIU

DIACONIS, P. and EFRON, B. (1985). Reply to comments on
“Testing for independence in a two-way table: New interpre-
tations of the chi-square statistic.” Ann. Statist. 13 905–913.
MR0803747

DONOHO, D. L. (1988). One-sided inference about functionals of
a density. Ann. Statist. 16 1390–1420. MR0964930

FERGUSON, T. S. (1996). A Course in Large Sample Theory. Texts
in Statistical Science Series. Chapman and Hall/CRC Press,
Boca Raton, FL. MR1699953

FREITAG, G. and MUNK, A. (2005). On Hadamard differentiability
in k-sample semiparametric models—with applications to the
assessment of structural relationships. J. Multivariate Anal. 94
123–158. MR2161214

GHOSH, J. K. and SAMANTA, T. (2001). Model selection—An
overview. Current Sci. 80 1135–1144.

GOUTIS, C. and ROBERT, C. P. (1998). Model choice in gen-
eralised linear models: A Bayesian approach via Kullback–
Leibler projections. Biometrika 85 29–37. MR1627250

HODGES, J. L. and LEHMANN, E. L. (1954). Testing the approxi-
mate validity of statistical hypotheses. J. Roy. Statist. Soc. Ser. B
16 261–268. MR0069461

LEHMANN, E. L. (1999). Elements of Large-Sample Theory.
Springer, New York. MR1663158

LIU, J. and LINDSAY, B. G. (2009). Building and using semi-
parametric tolerance regions for parametric multinomial mod-
els. Ann. Statist. 37 3644–3659. MR2549573

POLITIS, D. N., ROMANO, J. P. and WOLF, M. (1999). Subsam-
pling. Springer, New York. MR1707286

SERFLING, R. J. (1980). Approximation Theorems of Mathematical
Statistics. Wiley, New York. MR0595165

SHAPIRO, S. S. and WILK, M. B. (1965). An analysis of variance
test for normality: Complete samples. Biometrika 52 591–611.
MR0205384

SHAPIRO, S. S., WILK, M. B. and CHEN, H. J. (1965). A compar-
ative study of various tests for normality. J. Amer. Statist. Assoc.
63 1343–1373. MR0237069

SNEE, R. D. (1974). Graphical display of two-way contingency
tables. Amer. Statist. 28 9–12.

http://www.ams.org/mathscinet-getitem?mr=0803747
http://www.ams.org/mathscinet-getitem?mr=0964930
http://www.ams.org/mathscinet-getitem?mr=1699953
http://www.ams.org/mathscinet-getitem?mr=2161214
http://www.ams.org/mathscinet-getitem?mr=1627250
http://www.ams.org/mathscinet-getitem?mr=0069461
http://www.ams.org/mathscinet-getitem?mr=1663158
http://www.ams.org/mathscinet-getitem?mr=2549573
http://www.ams.org/mathscinet-getitem?mr=1707286
http://www.ams.org/mathscinet-getitem?mr=0595165
http://www.ams.org/mathscinet-getitem?mr=0205384
http://www.ams.org/mathscinet-getitem?mr=0237069

	Introduction
	Introducing Credibility Indices
	Role of Test Statistics
	Estimating N*
	Our Contents

	Background
	Distance-Based Indices of Fit
	Davies

	Credibility Index
	The Formal Definition
	Determination of N
	One-Sample and Two-Sample Indices

	Asymptotic Issues in Power Estimation
	Fixed m Asymptotics
	Fixed Sampling Ratio Asymptotics
	Local Alternatives: A Closer Look

	Credibility in Categorical Data Models
	Asymptotic Approximations
	Numerical Examples

	Discussion
	Appendix: Two Approximations to N*
	Approximation Through Normal Distribution
	Second Approximation to N* Using Noncentral Chi-Square Distribution

	Acknowledgment
	References

