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Relaxation Penalties and Priors for
Plausible Modeling of Nonidentified
Bias Sources
Sander Greenland

Abstract. In designed experiments and surveys, known laws or design fea-
tures provide checks on the most relevant aspects of a model and identify
the target parameters. In contrast, in most observational studies in the health
and social sciences, the primary study data do not identify and may not
even bound target parameters. Discrepancies between target and analogous
identified parameters (biases) are then of paramount concern, which forces
a major shift in modeling strategies. Conventional approaches are based on
conditional testing of equality constraints, which correspond to implausible
point-mass priors. When these constraints are not identified by available data,
however, no such testing is possible. In response, implausible constraints
can be relaxed into penalty functions derived from plausible prior distribu-
tions. The resulting models can be fit within familiar full or partial likelihood
frameworks.

The absence of identification renders all analyses part of a sensitivity
analysis. In this view, results from single models are merely examples of
what might be plausibly inferred. Nonetheless, just one plausible inference
may suffice to demonstrate inherent limitations of the data. Points are illus-
trated with misclassified data from a study of sudden infant death syndrome.
Extensions to confounding, selection bias and more complex data structures
are outlined.

Key words and phrases: Bias, biostatistics, causality, epidemiology, mea-
surement error, misclassification, observational studies, odds ratio, relative
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1. BACKGROUND

1.1 Observational Epidemiologic Data Identify
Nothing

With few exceptions, observational data in the health
and social sciences identify no parameter whatso-
ever unless assumptions of uncertain status are made
(Greenland, 2005a). Even so-called “nonparametric
identification” depends on assumptions that are only
working hypotheses, such as absence of uncontrolled
bias. Worse, close inspection of the actual processes
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producing the data usually reveals far more complex-
ity than can be fully modeled in a reasonable length of
time. Formal analyses, no matter how mathematically
sound and elegant, never fully capture the uncertainty
warranted for inferences from such data, and in epi-
demiology and medicine often lead to inferences that
are later judged much farther off target than random
error alone could explain (Lawlor et al., 2004).

Many of the issues can be seen in simple cases. Sup-
pose our target parameter is the prevalence Pr(T = 1)

in a target population of a health-related exposure in-
dicator T , to be estimated from a sample of N persons
for whom T is measured. If A is the number of sampled
persons with T = 1, the conventional binomial model
leads to an unbiased estimator A/N of Pr(T = 1) and
many procedures for constructing interval estimates.
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But N is often considerably less than the number of el-
igible persons for whom contact attempts were made,
leaving uncertainty about what subset of the target was
actually sampled. One may not even be able to assume
independent responses: Physicians may refuse to pro-
vide their entire block of patients, or patients may en-
courage friends to participate, and these actions may be
related to T . Thus, the binomial model for A is a con-
vention adopted uncritically from simple and complete
random surveys; there are many ways this model may
fail, none testable from the data (A,N ) alone.

Next, suppose we have only an imperfect measure
X of T (e.g., a self-report of T ) in the sample. The
observable variable is now the count A of X = 1, and
binomial inference on Pr(T = 1) from A/N alone is
unsupported even with random sampling. Yet the usual
if implicit convention is to pretend that Pr(X = 1) =
Pr(T = 1) and discuss the impact of violations intu-
itively (e.g., Fortes et al., 2008). This is a poor strat-
egy because the convention derives from the assump-
tion X = T , which no informed observer holds, and
anchors subsequent intuitions to this extreme case. The
problem can be addressed by obtaining error-free mea-
surements of T , but that is often impossible, for exam-
ple, when T represents a lifetime chemical exposure or
nutrient intake. At best we might obtain alternate mea-
surements of T and incorporate them into a predictive
model for T , which would have its own nonidentified
features.

1.2 Identification versus Plausibility

To summarize the problem, conventional statistics
are derived from design mechanisms (such as random
sampling) or known physical laws that enforce the as-
sumed data model; but studies based on passive obser-
vation of health and social phenomena (such as stud-
ies of health-care data bases) have little or nothing in
the way of such enforcement, leaving us no assurance
that conventional statistics (even when nonparametric)
are estimating the parameter of interest. Furthermore,
because the actual data-generating process depends on
latent variables related to the target parameter, that pa-
rameter is not identified from the observed data. These
studies thus suffer from a curse of nonidentification,
in that identification can be achieved only by adding
constraints that are neither enforced by known mecha-
nisms nor testable with the observed data.

In light of this problem, many epidemiologic authors
have emphasized the need to unmoor observational
data analysis from conventional anchors (Phillips,
2003; Lash and Fink, 2003; Maldonado, 2008). There

is now a vast literature on models to fulfill this
need, sometimes described under the general head-
ing of bias analysis (Greenland, 2003a, 2005a, 2009;
Greenland and Lash, 2008). Examples include mod-
els for selection biases (Copas, 1999; Geneletti et
al., 2009; Scharfstein, Rotnitsky and Robins, 1999,
2003), nonignorable missingness and treatment as-
signment (Kadane, 1993; Baker, 1996; Moleberghs,
Kenward and Goetghebeur, 2001; Little and Rubin,
2002; Robins, Rotnitzky and Scharfstein, 2000; Rosen-
baum, 2002; Vansteelandt et al., 2006), uncontrolled
or collinear confounders (Bross, 1967; Leamer, 1974;
Greenland, 2003a; Gustafson and Greenland, 2006;
McCandless et al., 2007; Yanagawa, 1984), measure-
ment error (Gustafson, 2003, 2005; Greenland, 2009)
and multiple biases (Eddy, Hasselblad and Shachter,
1992; Greenland, 2003a, 2005a; Molitor et al., 2008;
Goubar et al., 2008; Turner et al., 2009; Welton et al.,
2009).

Despite the profusion of literature on the topic, inte-
gration of core ideas of bias analysis into basic educa-
tion, software and practice has been slow. One obstacle
may be the diversity of approaches proposed. Another
may be the failure to connect them to familiar, es-
tablished methods. Yet another obstacle may be the
greater demand for contextual input that most require.
Central to that input is the informal but crucial con-
cept of a plausible model. I will call a model plausible
if it appears to neither conflict with accepted facts nor
assume far more facts than are in evidence. Implausi-
ble models are then models rejectable a priori as either
conflicting with or going too far beyond existing back-
ground information.

The distinction between plausible and implausible
models is fuzzy, shifting and disputable, but many
models will clearly be implausible within a given con-
text. For example, models that assume zero exposure
measurement error (X = T above) are very implausi-
ble in environmental, occupational and nutritional epi-
demiology, because no one can plausibly argue such
errors are absent. In fact, most conventional data-
probability models appear implausible in epidemio-
logic contexts. Such models are often rationalized as
providing data summaries about identified parameters
such as Pr(X = 1) above, but their outputs are invari-
ably interpreted as inferences about targets such as
Pr(T = 1). Avoiding such misinterpretations requires
model expansion into the nonidentified dimensions that
connect observables to targets.

Plausibility concepts apply to models for prior prob-
abilities as well as to models for data-generating
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processes. For example, consider a prior for a disease
prevalence π that assigned Pr(π = 0.5) = 0.5 and was
uniform over the rest of the unit interval. This prior
would be implausible as an informed opinion because
no genuine epidemiologic evidence could provide such
profound support for π = 0.5 and yet fail to distinguish
among every other possibility. Analogous criticisms
apply to most applications of “spike-and-slab” priors
in the health and social sciences.

1.3 Outline of Paper

The present article reviews the above points, focus-
ing on plausible extensions of conventional models in
order to simplify bias analysis for teaching and facil-
itate its conduct with ordinary software. It begins by
outlining a likelihood-based framework for observa-
tional data analysis that mixes frequentist and Bayesian
ideas (as has long been recommended, e.g., Box, 1980;
Good, 1983). It stands in explicit opposition to the no-
tion that use of priors demands a fully Bayesian frame-
work or exact posterior computation, even though par-
tial priors in some form are essential for inferences
on nonidentified parameters. Instead, it encourages
use of partial priors as identifying penalty functions.
These functions may be translated into augmenting
data, which aids plausibility evaluation and facilitates
computation with familiar likelihood and estimating-
equation software.

Section 3 illustrates points with data from a large
collaborative case-control study of sudden infant death
syndrome (SIDS). It starts with conventional analy-
ses of the data, describes a misclassification problem,
then provides analyses using priors only for noniden-
tified parameters. Section 4 then outlines extensions to
“validation” data, and describes how the misclassifica-
tion model can be re-interpreted to handle uncontrolled
confounders and selection bias. Throughout, the set-
tings of concern are those in which the data have been
collected but a “correct” model for their generation can
never be known or even approximated. In these set-
tings, we cannot even guarantee that inferences from
the posterior will be superior to inferences from the
prior (Neath and Samaniego, 1997). Thus, the impor-
tance of specific models and priors is de-emphasized
in favor of providing a framework for sensitivity analy-
sis across plausible models and priors. This framework
need not be all-encompassing, because often just a few
plausible specifications can usefully illustrate the illu-
sory nature of an apparently conclusive conventional
analysis.

2. PRIORS AND PENALTIES AS TOOLS FOR
ENHANCING MODEL PLAUSIBILITY

2.1 Models and Constraints

The formalism used here is similar to that in Green-
land (2005a) and Vansteelandt et al. (2006), tailored
to a profile penalized-likelihood approach. Consider a
family of models G = {G(a;γ , θ) : (γ , θ) ∈ � × �}
for the distribution of an observable-data structure A
taking values a in a sample space A with G satisfy-
ing any necessary regularity conditions. The inferential
target parameter will be a function τ = τ (γ , θ) of the
model parameters.

G represents a set of constraints on an unknown ob-
jective frequency distribution or “law” for A. In classi-
cal applied statistics these constraints are induced by
study design or physical laws. In contrast, in obser-
vational health and social sciences these constraints
are largely or entirely hypothetical, which motivates
the present treatment. The separation of the total pa-
rameter (γ , θ ) into components γ and θ is intended
to reflect some conceptual distinction that drives sub-
sequent analyses and will be clarified below. The as-
sumption (γ , θ) ∈ � × � (variation independence of
γ and θ) provides technical simplifications when us-
ing partial priors (Gelfand and Smith, 1999) and will
be discussed in Section 3.7.

When (γ , θ) is identified, γ could contain the pa-
rameters considered essential to retain in the model,
whereas θ could contain parameters considered op-
tional, as when θ contains regression coefficients of
candidate variables for deletion. Conventional model-
ing then considers only the following:

(1) Equality constraints (also known as “hard,” “sharp”
or “point” constraints) of the form r(θ) = c,
where c is a known constant (usually 0). This re-
duces the model family to {G(a;γ , θ) : (γ , θ) ∈
� × r−1(c)}, where r−1(c) is the preimage of
c in �, and constrains τ to {τ (γ , θ) : (γ , θ) ∈
� × r−1(c)}.

(2) No constraint apart from logical bounds (e.g., 0
and 1 for a probability): both γ and θ are treated
as “unknown constants,” which corresponds to no
constraint on the target beyond τ = τ (γ , θ).

The choice between these extremes is usually based on
a test of the constraint r(θ) = c, often derived from
the likelihood function L(γ , θ;a) = G(a;γ , θ) when
G is an exponential family, for example, by contrasting
the maximum of the deviance −2L(γ , θ;a) with and
without the constraint.
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In the problems considered in the present paper, op-
tions (1) and (2) are not available because θ is not iden-
tified, in the sense that, for each a ∈ A, the profile
likelihood L(θ;a) ≡ maxγ∈� L(γ , θ;a) is constant.
Thus, no test of r(θ) = c is available without intro-
ducing other nonidentified constraints. Consider again
the misclassification example observing A = a for the
X = 1 count, with τ = Pr(T = 1) and θ = Pr(X =
1) − Pr(T = 1). Then L(τ, θ;a) ∝ (τ + θ)a(1 − τ −
θ)N−a with L(θ;a) = (a/N)a(1 − a/N)N−a , a con-
stant; thus, we cannot test θ = 0 to evaluate use of
X for T in inference about τ . In fact, we may repa-
rameterize to remove θ from the likelihood: Defining
γ = Pr(X = 1), we obtain Pr(T = 1) = τ = γ − θ

and L(γ, θ;a) ∝ γ a(1 − γ )N−a , a transparent para-
meterization (Gustafson, 2005). This parameterization
shows that observation a places no constraint on θ and
hence no constraint on the target parameter τ = γ − θ .
Thus, τ is not even partially identified, despite having
an identified component γ .

2.2 Sensitivity to Bias Parameters

Because θ determines the discrepancy between the
target τ and the identified parameter γ often estimated
as if it were the target, θ may be called a bias pa-
rameter (Greenland, 2005a). Because inferences that
are sensitive to nonidentified parameters will remain
asymptotically sensitive to constraints on those para-
meters, θ has also been called a sensitivity parameter
(Moleberghs, Kenward and Goetghebeur, 2001). Con-
ventional sensitivity analysis shows how inferences
change as equality constraints are varied, for example,
as c in θ = c is varied (Rosenbaum, 2002; Greenland
and Lash, 2008).

Vansteelandt et al. (2006) allow relaxation of such
point constraints into a constraint of the form θ ∈ R,
where R represents a plausible range for θ . This con-
straint may be written as r(θ) = 1, where r(θ) is
the membership indicator for R. Let γ 0 be the true
value of γ , which is unknown but identified. Assuming
θ ∈ R then constrains τ to {τ (γ , θ) : (γ , θ) ∈ � × R}
and identifies the set {τ (γ 0, θ) : θ ∈ R} = τ (γ 0,R).
Vansteelandt et al. call τ (γ 0,R) an ignorance region
for τ and propose frequentist estimators of this region
as a means of summarizing a sensitivity analysis in
which θ is varied over R. To illustrate with the mis-
classification example, the constraint |θ | < 0.2 corre-
sponds to θ ∈ R = [0,0.2) and identifies the ignorance
region τ (γ 0,R) = {|γ0 − θ | : |θ | < 0.2}.

From a Bayesian perspective, sensitivity analysis by
varying c in r(θ) = c can be viewed as analyses of

sensitivity to priors in which the priors are limited
to point masses Pr(r(θ) = c) = 1. Similarly, analyses
based on θ ∈ R can be viewed as using a prior restricted
to R. Why limit analyses to such sharply bounded con-
straints or priors? A practical argument might be that
there are too many possible constraints or priors and,
thus, some limit on their form is needed. But typical
equality constraints (point priors) are very implausible,
insofar as they make assertions far beyond that war-
ranted by available evidence; that is, they are much
too informative. Similarly, restricting θ to a sharply
bounded region R risks completely excluding values
of θ that are plausible (and perhaps correct); expansion
of R to avoid this risk may result in a practically unin-
formative region τ (γ 0,R) for τ . A broad region R also
ignores what may be substantial differences in plausi-
bility among its members.

2.3 Relaxation Penalties and Priors

To address the deficiencies of point constraints for θ ,
we may instead relax (expand) the constraints into a
family D = {D(θ;λ) :λ ∈ �} of penalty functions in-
dexed by λ which subsumes the point constraints as
special or limiting cases. This situation arises in scat-
terplot smoothing, where γ may contain an intercept,
linear and quadratic term and θ may contain distinct
cubic terms for each design point, thus leaving (γ , θ)

nonidentified. Point constraints (such as setting all non-
linear terms to zero) exclude entire dimensions of the
regression space, and hence risk oversmoothing. In
contrast, having no constraint gives back the raw data
points as the fitted curve, resulting in no smoothing.
Penalties provide “soft” or “fuzzy” constraints that re-
lax the sharp constraints of conventional models to pro-
duce smooth curves between these extremes (Hastie
and Tibshirani, 1990).

Penalization is a form of shrinkage estimation,
wherein asymptotic unbiasedness may be sacrificed in
exchange for reduced expected loss. Nonetheless, in
identified models mild penalties can also reduce as-
ymptotic bias relative to ordinary maximum likelihood
(Bull, Lewinger and Lee, 2007). In observational stud-
ies the potential gain from penalization is far greater
because unbiasedness can be derived only by assum-
ing greatly oversimplified models that are likely false
(Greenland, 2005a). In particular, an estimator unbi-
ased under a model G(a;γ , c) may suffer enormous
bias if the point constraint θ = c is incorrect. Penal-
ties that relax θ = c to a weaker form can reduce this
source of bias (Greenland, 2000; Gustafson and Green-
land, 2006, 2010), although unbiasedness is arguably
an unrealistic goal in these settings.
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Given D, popular strategies for choosing λ include
empirical-Bayes and cross-validation (Hastie, Tibshi-
rani and Friedman, 2001). In the present applications,
however, λ is not identified and so external grounds for
choosing λ are needed. The interpretation of a penalty
function D(θ;λ) as the transform −2 ln{H(θ;λ)} of a
prior density H(θ;λ) can provide contextual guidance
for making good choices. To illustrate, let λ = (μ,W)

with W a positive-definite information matrix. Then
the quadratic (generalized ridge-regression) penalty
(θ − μ)′W(θ − μ) corresponds to a normal(μ,W−1)

prior on θ (Titterington, 1985). For diagonal W the ab-
solute (Lasso) penalty |θ − μ|′w1/2 corresponds to in-
dependent double-exponential (Laplacian) priors with
mean and scale vectors μ and w−1/2 where w is the
diagonal of W (Tibshirani, 1996).

Taking μ = c, in either case the point constraint θ =
c is now the limiting penalty as W−1 goes to 0, and thus
corresponds to infinite information. We should instead
want to choose W such that the resulting H(θ;λ) is no
more informative than we find plausible and assigns
more than negligible odds (relative to the maximum)
to all plausible possibilities. The form of the resulting
penalty will allow varying degrees of plausibility over
�, as it should; c becomes the most plausible value.
This use of priors to relax sharp constraints on non-
identified parameters does not entail commitment to
Bayesian philosophy, since the resulting penalized es-
timators can still be evaluated based in part on their
frequency properties (Gustafson, 2005; Gustafson and
Greenland, 2006, 2010).

In general, interpretation of a given penalty D(θ;λ)

involves transformation to see which if any λ yield con-
textually reasonable prior densities H(θ;λ) ∝
exp(−D(θ;λ)/2). If exp(−D(θ;λ)/2) is not inte-
grable, D(θ;λ) will not completely identify θ (the im-
plied prior is improper), although τ or some lower-
dimensional function of it may still have a proper prior
(Gelfand and Sahu, 1999). One may also vary λ to as-
sess sensitivity to its choice, or give λ a prior as in
Bayes empirical-Bayes estimation (Deely and Lindley,
1981; Samaniego and Neath, 1996).

2.4 Partial Priors

For a pragmatic frequentist who uses priors to im-
pose penalties or soft constraints, use of a prior for θ
alone is natural. For a pragmatic Bayesian, placing a
prior on θ alone is an effort-conserving strategy, recog-
nizing that thorough exploration of all priors is infea-
sible and that the dimensions demanding greatest care
in prior specification are the nonidentified ones (Neath

and Samaniego, 1997). In contrast, some or all identi-
fied dimensions may be judged not worth the effort of
formalizing, especially if the data have enough infor-
mation in those dimensions to overwhelm any cautious
or vague prior.

With prior specification limited to θ , the implicit
prior p(γ , θ) = p(θ) is improper on �, with poste-
rior p(γ , θ |a) ∝ L(γ , θ;a)H(θ;λ). The log poste-
rior is then a loglikelihood for (γ , θ) with penalty
−2 ln{H(θ;λ)}. The resulting penalized-likelihood
analyses have been called partial-Bayes or semi-Bayes
(Cox, 1975; Greenland, 1992; Bedrick, Christensen
and Johnson, 1996); they can also be applied if L(γ ,

θ;a) is a partial, pseudo or weighted likelihood.
Conventional analyses are extreme cases in which
θ is given a point prior. Identification of (γ , θ) by
L(γ , θ;a)H(θ;λ) corresponds to a unique maximum
penalized-likelihood estimate (MPLE) and a proper
posterior distribution for (γ , θ).

2.5 Plausible Penalties and Data Priors

Not all penalties or priors will appear plausible.
One way to evaluate plausibility is to construct a
thought experiment with sample space B such that
H(θ;λ) is the profile likelihood L(θ;bλ,λ) for θ de-
rived from an outcome bλ ∈ B. Specifically, we ex-
amine a family F = {F(b; θ,λ, δ), (θ, δ) ∈ � × 
} of
distributions conjugate to the prior-distribution fam-
ily H in that the “data prior” bλ yields L(θ;bλ,λ) =
maxδ∈
 F(bλ; θ ,λ, δ) = H(θ;λ) (Higgins and
Spiegelhalter, 2002; Greenland, 2003b, 2007a, 2007b,
2009); δ contains any nuisance parameters in the cho-
sen experiment. The experiment and its parameteriza-
tion is chosen to make δ variation independent of γ ;
there may, however, be no need for δ and so it will
henceforth be dropped.

To illustrate, consider again the binomial-survey ex-
ample reparameterized to γ = logit{Pr(X = 1)} and
logit{Pr(T = 1)} = γ − θ , so that θ now represents
the asymptotic bias in logit(A/N) as an estimator
of logit{Pr(T = 1)}. A convenient prior family for
θ is the generalized-conjugate or log-F distribution
(Greenland, 2003a, 2003b, 2003c; Jones, 2004), which
has density H(θ;λ) ∝ eznr/(1 + ez)n where z = (θ +
logit(r) − m)/s and λ = [m,s, r, n]′; m and s are the
desired mode and scale for the prior, 0 < r < 1 con-
trols skewness, and n > 0 controls tail weight (thin-
ner tails as n increases). When r = 0.5 this H(θ;λ)

is symmetric; it then equals the logistic density when
n = 2, and rapidly approaches normality as n increases.
It also equals a likelihood F(bλ; θ,λ) ∝ L(θ;bλ,λ) =
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ezb/(1 + ez)n from a single binomial observation of
bλ = nr successes on n trials when the success proba-
bility is ez/(1 + ez); thus, our prior-generating experi-
ment is a draw of bλ from the binomial F(b; θ,λ).

The representation (B,F,bλ) will not be unique, re-
flecting that different experiments may yield the same
likelihood function. This is no problem; in fact, al-
ternate representations can help gauge the knowledge
claims implicit in the prior H(θ;λ). Translating priors
into a likelihood of the form L(θ;bλ,λ) = F(bλ; θ ,λ)

provides a measure of information in H(θ;λ) that can
be appreciated in terms of effective sample size (above,
the total n in bλ) and other practical features that would
produce this information. The exercise thus helps judge
whether H(θ;λ) is implausibly informative (Green-
land, 2006). It also allows sensitivity analysis based on
varying bλ, which may be more intuitive than analyses
based on the original parameters in λ.

Note that conjugacy of H with the actual data model
G is not required: G and F may be different distribu-
tional families, so that the resulting actual likelihood
L(γ , θ;a) and the “prior likelihood” L(θ;bλ,λ) may
be different functional forms related only through θ .

2.6 Computation

The penalized loglikelihood ln{L(γ , θ;a)H(θ;
λ)} = ln{L(γ , θ;a)L(θ;bλ,λ)} can be summarized
in the usual way, with the maximum and negative
Hessian (observed penalized information) supplying
approximate posterior means and standard deviations
(Leonard and Hsu, 1999). When ln{H(θ;λ)} itself de-
composes into a sum of “prior likelihood” components,
as when bλ is a vector of independent prior observa-
tions, the result is typically a posterior more normal
than L(γ , θ;a). This improves the numerical accu-
racy of posterior tail-area approximations based on the
profile-penalized likelihood (Leonard and Hsu, 1999),
which can be remarkably close to exact tail areas even
with highly skewed distributions (Greenland, 2003b).
If H and G are conjugate, approximate Bayesian in-
ferences can be obtained simply by appending the
prior data bλ to the actual data a and entering the
augmented data set into ordinary maximum-likelihood
software along with appropriate offsets (Greenland,
2003b, 2007a, 2007b, 2009).

Nonetheless, posterior simulation is widely pre-
ferred for Bayesian analyses. Markov chain sam-
plers sometimes incur burdens due to autocorrela-
tion and convergence failure, especially when dealing
with nonidentified models and improper priors. Un-
der a transparent parameterization with p(γ , θ |a) =

p(γ |a)p(θ |γ ) and G(a;γ , θ) = G(a;γ ), we can in-
stead make independent draws from p(γ , θ |a) if we
can make independent draws γ ∗ from p(γ |a), then
draw from p(θ |γ ∗). In the application below, p(γ )

is constant or conjugate with G(a;γ ), hence, p(γ |a)

is conjugate and easy to independently sample when
G(a;γ ) is a conventional count model. Additionally,
with a partial prior p(γ , θ) = p(θ), or more generally
with p(γ , θ) = p(γ )p(θ), drawing from p(θ |γ ) re-
duces to drawing from p(θ) = H(θ;λ).

3. ANALYSES OF A SIDS STUDY

3.1 Conventional Analyses

Table 1 presents the relation of maternal antibi-
otic report during pregnancy (X) to SIDS occurrence
(Y ) (Kraus, Greenland and Bulterys, 1989). Given the
rarity of SIDS, the underlying population risk ratio
comparing the exposed to the unexposed (X = 1 vs.
X = 0) is well approximated by the corresponding
odds ratio ORXY . Thus, we may take this odds ratio
or β = ln(ORXY ) as the target parameter. The usual
maximum-likelihood estimate (MLE) of ORXY is the
sample odds ratio 173(663)/134(602) = 1.42, with
standard error for the log β̂ of (1/173 + 1/602 +
1/134 + 1/663)1/2 = 0.128 and 95% confidence lim-
its (CL) for ORXY of exp{ln(1.42) ± 1.96 · 0.128} =
1.11,1.83. Absent major concerns about bias, such re-
sults would commonly be interpreted as providing an
inference that ORXY is above 1 but below 2.

Consider next a prior for the odds ratio. At the time
of the study only weak speculations could be made.
Not even a direction could be asserted: Antibiotics
might be associated with elevated risk (marking ef-
fects on the fetus of an infection, or via direct effects)
or with reduced risk (by reducing presence of infec-
tious agents). Nonetheless, by the time of the SIDS
study, US antibiotic prevalence had climbed to 20%
over the preceding four decades and yet the SIDS rate
remained a fraction of a percent. This high exposure

TABLE 1
Data from case-control study of SIDS (Kraus, Greenland and

Bulterys, 1989). X indicates maternal recall of antibiotic
use during pregnancy and Y indicates SIDS

(Y = 1 for cases, Y = 0 for controls)

X = 1 X = 0

Y = 1 173 602
Y = 0 134 663
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prevalence and the prominence of the outcome effec-
tively ruled out odds ratios on the order of 5 or more
because those would have generated notably higher
background SIDS risk in earlier studies and surveil-
lance. Thus, one plausible starting prior would have
placed 2 : 1 odds on ORXY between 1

2 and 2, and 95%
probability on ORXY between 1

4 and 4. These initial
bets follow from a normal(μ,σ 2) prior for β that satis-
fies exp(μ ± 1.96 · σ) = 1

4 ,4. Solving, we get E(β) =
μ = 0, σ 2 = 1

2 , for a penalty of (β − μ)2/σ 2 = 2β2,
hence subtraction of β2 from the loglikelhood.

Let aXY = (663,134,602,173)′ be the vector of
counts from Table 1. Without further prior specifica-
tion, the maximum penalized-likelihood estimate and
posterior mode of β is 0.341, so p(β|aXY ) is approxi-
mately normal with mean E(β|aXY ) = 0.341 and stan-
dard deviation 0.126. These yield an approximate pos-
terior median for ORXY = eβ of exp(0.341) = 1.41
with Wald-type 95% posterior limits of exp(0.341 ±
1.96 · 0.126) = 1.10,1.80. These results are barely dis-
tinct from the conventional results because the conven-
tional likelihood dominates the prior.

3.2 Model Expansion to Accommodate
Misclassification

Although the above antibiotic-SIDS prior makes
little difference using the conventional likelihood, it
makes a profound difference when we expand the like-
lihood to allow for misclassification. X represents only
mother’s report of antibiotic use. Let T be the indi-
cator of actual (true) antibiotic use. There is no doubt
that mistaken reports (T �= X) occur. Moreover, recall
bias seems likely, with false positives more frequent
among cases and false negatives more frequent among
controls (more T < X when Y = 1, more T > X when
Y = 0).

Let Atxy be the unobserved count variable at T = t ,
X = x, Y = y, Etxy ≡ E(Atxy) and let a “+” sub-
script indicate summation over the subscript. AXY =
(A+00,A+10,A+01,A+11)

′ is now the vector of mar-
ginal XY count variables with EXY ≡ E(AXY ) =
(E+00,E+10,E+01,E+11)

′. The problem can then be
restated as follows: We observe only the XY mar-
gin AXY and get an estimator A+11A+00/A+10A+01
of the marginal XY odds ratio ORXY = E+11E+00/

E+10E+01. But the odds ratio of substantive interest
(i.e., the real target parameter τ ) is the marginal T Y

odds ratio τ = ORT Y = E1+1E0+0/E1+0E0+1.
With no measurement of T , data on T are miss-

ing for everyone (T is latent) and ORT Y is not iden-
tified or even bounded by AXY . To estimate ORT Y ,

TABLE 2
Imputed complete-data table from SIDS study. T indicates actual

antibiotic use during pregnancy

X = 1 X = 0

Y = 1 Y = 0 Y = 1 Y = 0

T = 1 173π111 134π110 602π101 663π100
T = 0 173π011 134π010 602π001 663π000

Totals 173 134 602 663

we need information linking T to X and Y , such as
prior distributions, subjects with data on T as well
as X and Y , or both. Examples include information
on predicting T from XY , that is, information on the
predictive values πtxy ≡ Pr(T = t |X = x,Y = y). Be-
cause π0xy = 1−π1xy , there are only four distinct clas-
sification parameters, which may be taken as πT =
(π111, π110, π101, π100)

′. Knowing πT would allow us
to impute T in the data, as shown in Table 2. Unfortu-
nately, the XY data in Table 1 say nothing about πT ,
that is, πT is not identified by those data. One must im-
pose supplementary constraints to say anything about
the target ORT Y based on the XY data.

Despite these problems, many epidemiologists an-
chor inferences for the target parameter tightly around
uncorrected estimates. Here, the ORXY estimate (1.42,
95% limits 1.11, 1.83) is exactly what one gets for
ORT Y by assuming X = T (no error in X). It is
also the answer from a semi-Bayes analysis using a
degenerate (single-point-mass) prior for πT that as-
signs Pr(π11y = 1) = Pr(π10y = 0) = 1, an extreme
prior which no one holds. In other words, basing in-
ference on the conventional results relies on highly
implausible equality constraint; it takes no account
of the actual uncertainty or prior information about
πT , which is vague but at least bounds the π1xy

away from 0 and 1. The same criticism applies to the
conventional Bayesian result (1.41, 95% limits 1.10,
1.80), which are based on the same equality constraint
for πT .

3.3 Loglinear Parameterization

Because nonidentification makes inferences arbitrar-
ily sensitive to the prior, it is essential to consider para-
meterizations with simple contextual meanings so that
sensible priors can be posited. The set of expected
counts Etxy could be taken as a saturated parameter-
ization for the joint distribution of the Atxy . One repa-
rameterization that facilitates both prior specification
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and use of conventional software is

Etxy(β) = exp(β0 + βT t + βXx + βY y

+ βT Xtx + βT Y ty(1)

+ βXY xy + βT XY txy),

where β = (β0, βX,βY ,βXY ,βT ,βT X,βT Y ,βT XY )′.
Dependence of Etxy on β will be left implicit below.
The π1xy follow a saturated logistic model for the re-
gression of T on X and Y :

π1xy ≡ Pr(T = 1|X = x,Y = y)
(2)

= expit(βT + βT Xx + βT Y y + βT XY xy),

where expit(u) ≡ eu/(1 + eu). πT is a 1–1 function of
the parameter subvector βT = (βT ,βT X,βT Y ,βT XY )′
of coefficients in the imputation model for the missing
T data. In the earlier general notation, θ = βT .

The T Y odds ratio when X = 0 is exp(βT Y ) and is
related to the target ORT Y by

R(βX)

= ORT Y / exp(βT Y )

= {1 + exp(βX + βT X + βXY + βT XY )}
· {1 + exp(βX)}
/{1 + exp(βX + βT X)}{1 + exp(βX + βXY )},

where βX = (βX,βT X,βXY ,βT XY )′. The latter ex-
pression is a factor for a problem in which X is a
confounder rather than a measurement of T (Yana-
gawa, 1984); it can also be used to represent selec-
tion bias (see below). Here it is useful for deriving
the prior for βT Y from priors or constraints on βX

and ORT Y . For example, ascertainment of X before Y

occurs may lead to X⊥⊥Y |T (nondifferential misclas-
sification), which is equivalent to βXY = βT XY = 0; in
that case R(βX) = 1 and exp(βT Y ) = ORT Y , so that
the priors on exp(βT Y ) and ORT Y must be identical.
Nondifferentiality can be relaxed by using priors cen-
tered at zero for βXY and βT XY .

3.4 Transparent Reparameterization

The full model involves 8 parameters for the 4 obser-
vations, and no component of β is identified without
some constraint. We can, however, reparameterize the
saturated model into an identified parameter EXY and
the nonidentified πT or (equivalently) βT ,

Etxy = E+xyπtxy

= E+xy expit(βT + βT Xtx + βT Y ty(3)

+ βT XY txy).

In the general notation we have a = aXY , γ = EXY ,
θ = βT , and G(a;γ , θ) = Pr(AXY = aXY |EXY ,βT ) =
Pr(AXY = aXY |EXY ). The likelihood depends solely
on the identified parameter EXY (i.e., for any con-
stant c, EXY = c defines a level set of the likeli-
hood surface). It follows that there is no updating of
p(βT |EXY ), that is, p(βT |EXY ,AXY ) = p(βT |EXY ),
hence, p(βT ,EXY |AXY ) = p(βT |EXY )p(EXY |AXY ).

Because Et+y = E+1yπt1y + E+0yπt0y , the target
parameter ORT Y = E1+1E0+0/E1+0E0+1 is a mix-
ture of identified parameters E+xy and nonidenti-
fied πtxy . Thus, ORT Y may be updated both through
p(EXY |AXY ) and p(βT |EXY ); but with p(βT |EXY ) =
p(βT ), as here, the update will involve only
p(EXY |AXY ).

3.5 An Initial Prior Specification

As with specifications for regression models, no
prior distribution could be claimed “correct.” Nonethe-
less, some specifications are plausible and others are
not in light of background information. For the non-
identified T -predictive parameter βT , consider first
Pr(T = 1|X = 0), the probability among noncases
that a “test negative” (X = 0) is erroneous. Because
of SIDS rarity we have Pr(T = 1|X = 0) ≈ Pr(T =
1|X = 0, Y = 0) = expit(βT ) = π100. Antibiotic preva-
lence Pr(T = 1) in unselected pregnancies was ex-
pected to be well below 50%, hence, we should expect
π100 to be small but nonzero to reflect false negatives.
These considerations suggest that plausible distribu-
tions for expit(βT ) include some placing 95% proba-
bility between 0.05 and 0.20.

Next, let ϕxty = Pr(X = x|T = t, Y = y). Then
ϕ1ty = expit(βX +βT Xt +βXY y +βT XY ty) and the Y -
specific receiver-operating characteristic (ROC) odds
ratios (true-positive odds/false-positive odds) are

ORT X(y) = (ϕ11y/ϕ01y)/(ϕ10y/ϕ00y)

= (π11y/π10y)/(π01y/π00y)

= exp(βT X + βT XY y).

If X is pure noise, a p-coin flip, then ϕ11y = ϕ10y = p,
βT X = βT XY = 0 and ORT X(y) = 1. Background liter-
ature (e.g., Werler et al., 1989) suggests X is nowhere
near this bad. Plausible values for ϕ110 include 0.6
and 0.8, and for ϕ100 include 0.1 and 0.2, hence,
plausible values for ORT X(0) = exp(βT X) include
(0.6/0.4)/(0.2/0.8) = 6, (0.6/0.4)/(0.1/0.9) = 13.5,
(0.8/0.2)/(0.2/0.8) = 16, (0.8/0.2)/(0.1/0.9) = 36,
suggesting that plausible distributions for exp(βT X)
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include some with at least 95% probability between
5 and 40.

The greater uncertainty about ORT X(1) =
exp(βT X +βT XY ), the ROC odds ratio among cases, is
captured by ORT X(1)/ORT X(0) = exp(βT XY ), which
exceeds 1 if cases have more accurate recall on balance
than noncases and is under 1 if vice-versa. A com-
mon assumption is that the misclassification is non-
differential, that is, that X and Y are independent
given T , or equivalently, equal sensitivity and speci-
ficity across Y . Because βXY and βXY + βT XY are the
XY log odds ratios in the T = 0 and T = 1 strata, un-
der nondifferentiality we have βXY = βT XY = 0, mak-
ing exp(βT XY ) = 1, R(βX) = 1, and hence, ORT Y =
exp(βT Y ) (Greenland, 2003c).

Self-report X could be affected by the outcome Y ,
hence, nondifferentiality is not a justifiable assump-
tion. Nonetheless, it is plausible that the impact of
Y on X is limited. Furthermore, it is difficult to pre-
dict which of cases or noncases would have a higher
ROC odds ratio: Cases may have improved recall of
true exposure (ϕ111 > ϕ110) but also more false expo-
sure recall (ϕ011 > ϕ010), which have opposing effects
on exp(βT XY ). In line with these considerations, plac-
ing 95% probability on exp(βT XY ) between 1

2 and 2
provides a modest expansion for the distribution of
ORT X(1) beyond that of ORT X(0).

These considerations are also relevant to βT Y . If
the departures from nondifferentiality are limited, the
departures of βXY and βT XY from zero are small,
which in turn implies that R(βX) is small and, hence,
exp(βT Y ) is close to ORT Y (Greenland, 2003c). These
results suggest using a prior for exp(βT Y ) similar to
that for ORT Y , for example, a lognormal prior with
95% probability between 1

4 and 4.
Table 3 presents a set of normal priors that are con-

sistent with the preceding considerations, along with

the implied density for βT X + βT XY . The correspond-
ing joint prior density is independent-normal with
mean μT ≡ (μT ,μT X,μT Y ,μT XY )′ = (logit(0.1),

ln(13.5),0,0)′ and covariance matrix with diago-
nal νT ≡ (νT , νT X, νT Y , νT XY )′ = (0.16,0.25,0.50,

0.125)′. In the general notation with θ = βT and λ =
[μT , νT ], the joint prior density H(βT ;λ) corresponds
to the penalty −2 ln{H(βT ;λ)} = �i(βi − μi)

2/νi

where i = T ,T X,T Y,T XY .
As one gauge of prior information, Table 3 shows the

number ni = 4/νi of Bernoulli(1
2) trials with B “suc-

cesses” that would make the approximate sampling
variance 1/{ni(

1
2)(1

2)} = 4/ni of logit(B/ni) equal to
the prior variance νi . One can penalize βi with ordi-
nary maximum-likelihood logistic-regression software
by entering a data record with bi = 2/νi “successes”
out of ni = 4/νi trials, zero for all covariates except
i (for which it is 1) and an offset −μi (Greenland,
2007a). The result is a binomial likelihood contribution

Li ≡ L(βi;bi) ∝ expit(βi − μi)
bi expit(−βi + μi)

bi

= exp(βi − μi)
bi /{1 + exp(βi − μi)}2bi ,

which is close to normal for ni ≥ 8, becoming heavier-
tailed for smaller ni . With bλ = (bT , bT X, bT Y ,

bT XY )′ = 2/νT , we obtain H(βT ;λ) = F(bλ;βT ,

μT ) ∝ L(βT ;bλ,μT ) = �iLi .
As another gauge of prior information, bi may also

be interpreted as the number of cases one would have
to observe in each arm of a randomized trial of a
treatment and a rare outcome with allocation ratio
exp(−μi) to obtain an approximate variance of νi for
the log odds-ratio estimate (Greenland, 2006). More
generally, as mentioned earlier, one can derive the bi ,
ni , and offset or allocation needed to produce a likeli-
hood that is exactly proportional to a generalized log-F
density with 2bi and 2(ni−bi) degrees of freedom; this
extension allows skewness or heavy tails for the prior
(Greenland, 2003b, 2007b).

TABLE 3
Parameters of normal priors for coefficients in the logistic regression of T on X and Y (prior for βT X + βT XY induced by priors for

βT X and βT XY )

Mean Variance 95% prior limits for n = 2b = 4/variance∗

βT logit(0.1) 0.16 expit(βT ): 0.05,0.20 25
βT X ln(13.5) 0.25 exp(βT X): 5,36 16
βT Y 0 0.50 exp(βT Y ): 1

4 ,4 8

βT XY 0 0.125 exp(βT XY ): 1
2 ,2 32

βT X + βT XY ln(13.5) 0.375 exp(βT X + βT XY ): 4.1,45 (not used)

∗Number of binomial trials needed to make asymptotic variance estimate of logit(B/n) equal to prior variance when the number of successes
B is b = n/2; used for penalized estimation.
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3.6 Penalized-Likelihood and
Posterior-Sampling Analyses

Using the loglinear parameterization and prior like-
lihoods Li , the penalized likelihood is L(β|aXY ,λ) =
L(β;aXY )H(βT ;λ) = L(β;aXY )L(βT ;bλ,μT ), in
which L(β;aXY ) derives from actual-data records with
T missing, and L(βT ;bλ,μT ) derives from hypo-
thetical complete-data records. Analysis can then pro-
ceed using standard likelihood methods for missing
data (McLachlan and Krishnan, 1997; Little and Ru-
bin, 2002). Alternatively, using the transparent pa-
rameterization, we obtain independent draws from
the exact marginal posterior p(ORT Y |aXY ) as fol-
lows: (1) draw E∗

XY from p(EXY |aXY ); (2) draw β∗
T

from p(βT |E∗
XY ); (3) compute π∗

T from β∗
T , E∗

t+y =
E∗+1yπ

∗
t1y + E∗+0yπ

∗
t0y , and OR∗

T Y = E∗
1+1E

∗
0+0/

E∗
1+0E

∗
0+1. With a noninformative prior for EXY and

p(βT |EXY ) = p(βT ), as here, step (2) reduces to
drawing β∗

T from p(βT ) and the resulting sampler
is approximated by Monte Carlo Sensitivity Analysis
(MCSA) in which bootstrap draws a∗

XY from aXY re-
place E∗

XY (Greenland, 2005a).
Using the partial prior p(βT ) in Table 3 with Atxy

either Poisson or multinomial conditional on the Y

margin (a++1, a++0), the penalized-likelihood esti-
mate for ORT Y is 1.19, with Wald 95% limits of
0.41, 3.43. Both exact posterior sampling and MCSA
with 250,000 draws yield a median for ORT Y of 1.19
with 2.5th and 97.5th percentiles of 0.37, 3.42, not
much different in practical terms from the 95% prior
limits (0.25, 4). The posterior variance of ORT Y is
more sensitive to the prior variance νT Y for βT Y than
to the other prior variances. Upon increasing νT Y

to make the prior 95% limits for exp(βT Y ) equal to
0.125, 8, the 2.5th and 97.5th sampling percentiles for
ORT Y become 0.20, 6.1, again not much different from
the prior in practical terms. A common response to this
variance sensitivity would be to set a hyperprior on the
prior variance νT Y ; that would, however, obscure both
the contextual meaning of the prior and the extreme
sensitivity of the results to νT Y .

In examing these results, there are several ways to
contrast the contribution of p(βT |EXY ), which repre-
sents uncertainty about πT , against the contribution
of p(EXY |aXY ), which represents uncertainty about
EXY . One natural way to gauge the contribution of
p(βT |EXY ) is to contrast posterior intervals, such
as the 95% posterior sampling interval (0.37, 3.42),
against analogous intervals that assume no uncertainty
about πT , such as the conventional 95% interval (1.11,

1.83). Another way is to take the ratio of the estimated
sampling variance of ln(ORXY ) to the posterior vari-
ance of ln(ORT Y ), which here is 5.6%. Either way,
the results show that the precision of the conventional
frequentist and Bayesian results is due entirely to the
equality constraints on the predictive values πtxy , that
is, p(π11y = 1) = p(π00y = 1) = 1. This is unsurpris-
ing insofar as ORT Y is not identified by the expanded
likelihood; hence, the data add little information about
ORT Y beyond that in the prior.

3.7 Dependent Parameterizations

The general ideas discussed so far apply to arbitrary
parameterizations of the data model G(a;γ , θ), includ-
ing those in which θ is partially identified through de-
pendence on γ . In the misclassification problem an
example occurs when the bias parameter θ is taken
to be βX = (βX,βT X,βXY ,βT XY )′ rather than βT =
(βT ,βT X,βT Y ,βT XY )′. Specification of θ = βX and
its prior follows naturally when the initial priors are
for the true and false positive probabilities (the ϕ1ty),
because these probabilities are functions solely of βX :
ϕ1ty = expit(βX +βT Xt +βXY y +βT XY ty). However,
the identified expectations in γ = EXY imply bounds
on the ϕ1ty ; hence, EXY constrains βX and the data
AXY identify these constraints. In other words, unlike
EXY and βT , EXY and βX are variation dependent,
which can viewed as a logical prior dependence.

Such dependence can be handled by general fit-
ting methods (Joseph, Gyorkos and Coupal, 1995;
Gustafson, Le and Saskin, 2001; Gustafson, 2003),
but invalidates simplified posterior computations like
MCSA that assume no updating of the bias parame-
ters. And although a proper prior on βX will identify
the target parameter ORT Y , it will lead to an improper
posterior for the full parameter β if no further prior
specification is made (see Gelfand and Sahu, 1999,
for more general results along these lines). Thus, if a
dependent parameterization is preferred (say, for ease
of prior specification), one way to proceed is to pe-
nalize as necessary to ensure identification of the full
parameter vector and employ fitting methods that do
not assume prior independencies. As illustrated in Sec-
tion 3.5, however, one could instead retain the trans-
parent parameterization (and the simplifications its use
entails) by incorporating prior information on the ϕ1ty

into the prior specification process for βT .

3.8 How Conditional Should the Probability Model
Be?

Log-linear analysis of case-control counts was intro-
duced over 30 years ago (Bishop, Fienberg and Hol-
land, 1975) but appears to have been forgotten in favor
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of logistic regression with Y as the outcome, which
developed in the same era. The history is unsurpris-
ing: Unlike logistic regression, the usual log-linear ap-
proach requires categorization of continuous covari-
ates and is quite limited in the number of covariates
it can handle. Furthermore, in case-control studies (in
which the Y total is constrained by design), penaliza-
tion does not affect the consistency of odds-ratio esti-
mates from logistic regression with Y as the outcome
(Greenland, 2003b, Section 3). Nonetheless, the log-
linear approach provides a model of the joint distribu-
tion of observed and latent variables in a single regres-
sion, which can greatly simplify bias analysis, hence
its resurrection here.

Most literature on tabular data adheres to models that
condition on the total or a margin of the tabular data,
even when those quantities are not fixed by design.
This practice creates no issue for odds-ratio analyses:
One obtains identical likelihood-based inferences on
odds ratios from multinomial or binomial (conditional)
and Poisson (unconditional) sampling models that in-
clude fixed margins as unconstrained log-linear effects
(Bishop, Fienberg and Holland, 1975, Sections 3.5
and 13.4.4). Nonetheless, these design effects imply
that no prior should be placed on parameters that are
functions of sample size or sampling ratios. For exam-
ple, in a case-control study the log-linear intercept and
disease coefficient, β0 in βY model (1), are functions of
the design and so should receive no prior. These con-
siderations are a further reason for adopting the partial-
prior (semi-Bayes) analysis used here.

4. EXTENSIONS AND GENERALIZATIONS

The above formulation has straightforward exten-
sions to other biases and more general data models.
These are sketched briefly here.

4.1 Validation and Alternative Measurements

Adding a plausible measurement model shows that
the SIDS data offer far less information about the target
ORT Y than the conventional analysis makes it seem.
Sharper inference about ORT Y requires sharper infor-
mation about the T XY distribution. Short of measuring
T directly on everyone in the study, such information
might come from an alternate measurement W of T

on a sample from the source population of the study,
along with X and Y . If this measurement is error-free
(W = T ) or assumed so, the alternate measurements
are called “validation data” (Carroll et al., 2006) and
yield actual-data records with T present.

Unfortunately, validation data are often unavailable,
impractical to obtain in a timely manner or inade-
quate in quantity. Then too, they suffer their own er-
rors and biases. Subjects do not randomly refuse fur-
ther study, and alternate measurements have errors
(W �= T ). Thus, regardless of the data available, an
accurate uncertainty assessment requires an expanded
model to link the observations (T XY and the partially
observed W ) to unobserved variables (T and miss-
ing W ). The identification problem is not removed,
rather W is added to certain records, whose informa-
tiveness depends entirely on the priors relating them to
the target variables.

In the SIDS example, a pseudo-random sample of
medical records was used to check maternal responses
in the subsample (Drews, Kraus and Greenland, 1990).
W is the record indicator for antibiotic prescription. Ta-
ble 4 shows the data from Table 1 separated into W -
known (alternate or complete-data, with W = 1 or 0)
and W -unknown (incomplete-data) strata. If W = T ,
the resulting data provide a likelihood for the T |XY

parameter vector πT or βT . Because the T XY model
is saturated, maximum likelihood simplifies to using
the MLEs π̂txy from Table 4 in place of the πtxy in Ta-
ble 2 to impute T where it is missing, followed by col-
lapsing over X (Lyles, 2002). The resulting marginal
T Y odds ratio ÔRT Y is the MLE of ORT Y . For unsat-
urated models, ÔRT Y has no closed form but may be
replaced by any reasonably efficient closed-form esti-
mator (Greenland, 2007c); otherwise a full likelihood
method may be used (Espeland and Hui, 1987; Little
and Rubin, 2002; Carroll et al. 2006).

Assuming W = T , ÔRT Y = 1.21 with Wald 95%
confidence limits 0.79, 1.87. Adding the partial prior
in Table 3, an approximate posterior median for ORT Y

is 1.20 with 95% Wald limits of 0.81, 1.77, close to
the results without the prior. This result shows that the
prior is considerably less informative than the record
data when we assume W = T . But, as with X = T , the
constraint W = T is unjustified: First, the records only
show prescription, not compliance (hence, we should
expect for some women T < W ); second, the records
must have some errors due to miscellaneous oversights
(e.g., miscoding).

Even if we assume that oversights are negligible,
the effect of W is a prescribing (intention-to-treat)
effect, and thus (due to noncompliance) is likely bi-
ased for the biologic effect of T . As before, if we
lack T for samples of cases and controls, identifica-
tion of ORT Y depends entirely on priors for π1wxy ≡
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TABLE 4
SIDS data separated into strata with prescription examined in medical record (“validated,” assuming W = T ) and remainder: W = 1 if

record shows prescription, W = 0 if not

Y = 1 Y = 0

X = 1 X = 0 X = 1 X = 0

Medical-record data on W :
W = 1 29 17 21 16
W = 0 22 143 12 168

Totals 51 160 33 184
π̂1xy 0.569 0.106 0.636 0.087

No W data:
W missing 122 442 101 479

Imputed counts (for W = 1, π̂1xy times W -missing count; for W = 0, π̂0xy times W -missing count):
W = 1 73.2 44.2 60.6 47.9
W = 0 48.8 397.8 40.4 431.1

Pr(T = 1|W = w,X = x,Y = y). Frequentist analy-
ses arise from sets of equality constraints (point pri-
ors) that identify the parameter of interest. W = T is
sufficient by itself but implausible, so less strict con-
straints such as cov(W,X|T ) = 0 may be introduced
along with other conditions as needed for identification
(Hui and Walter, 1980; Carroll et al., 2006; Messer and
Natarajan, 2008).

Additional data sources or variables may also pro-
vide partial identification (Johnson, Gastwirth and
Pearson, 2001; Small and Rosenbaum, 2009). But
without such information, results depend on the π1wxy

priors in an unlimited fashion: With noninformative
priors for the π1wxy , we obtain a noninformative pos-
terior for ORT Y . If these priors are only vaguely in-
formative, as those above, the posterior distribution for
ORT Y will be very dispersed.

I omit an extended (T WXY ) analysis because it
would merely illustrate again how posterior concen-
tration is purchased by using extremely informative
priors even when alternate measurements are made.
Such priors may sometimes be plausible. Nonetheless,
in many situations the true exposure history can never
be known without considerable potential for system-
atic error (e.g., lifetime occupational exposures, envi-
ronmental exposures and nutrient intakes). In these sit-
uations, equality constraints need to be recognized as
priors, because failure to do so risks overconfident in-
ferences.

These remarks should not be taken as discouraging
collection of additional predictors of the true expo-
sure T , since such data provide an empirical basis for
addressing measurement issues. The present discussion

merely cautions against overlooking the nonidentified
elements in any model for their use.

4.2 Unmeasured Confounders

Consider a setting in which X rather than T is the
exposure variable of interest and T is an unmeasured
confounder of the effect of X on Y . The target ef-
fect is now that of X on Y ; nonetheless, the regres-
sion models used for misclassification can be applied
unchanged. This effect may be parameterized by the
pair of T -conditional X–Y odds ratios exp(βXY ) and
exp(βXY + βT XY ). It is usually assumed that these
odds ratios are equal (βT XY = 0), leaving exp(βXY )

as the target; although this equality is another unjus-
tified point prior, it may incur only minor bias in es-
timating summary effects (Greenland and Maldonado,
1994). With the assumption, the T -adjusted odds ratio
exp(βXY ) is related to the unadjusted odds ratio ORXY

by

R(βT ) = ORXY / exp(βXY )

= {1 + exp(βT + βT X + βT Y )}{1 + exp(βT )}
/{1 + exp(βT + βT X)}{1 + exp(βT + βT Y )}

(Yanagawa, 1984). Without data on T , βT and hence
R(βT ) are not identified. Thus, assuming p(βT |
EXY ) = p(βT ) = H(βT ;λ), to draw exp(β∗

XY ) from
p{exp(βXY )|aXY }, we draw E∗

XY from p(EXY |aXY ),
compute OR∗

XY = E∗+11E
∗+00/E

∗+10E
∗+01, draw β∗

T

from H(βT ;λ), and compute exp(β∗
XY ) = OR∗

XY /

R(β∗
T ). Assuming p(βT ,EXY ) = p(βT ), MCSA uses

bootstrap draws a∗
XY from aXY in place of E∗

XY

(Greenland, 2003a).
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In two-stage (two-phase) studies, T is measured on
subsamples of subjects randomly selected within X–Y

levels (White, 1982; Walker, 1982). This design is for-
mally identical to validation subsampling; the resulting
complete records may be entered into the analysis as
described earlier.

4.3 Selection Bias

Consider again a setting in which T is the exposure
variable of interest. Let X = 1 − S where S is the se-
lection indicator, so only subjects with X = 0 are ob-
served. The models and target parameter ORT Y used
for misclassification are unchanged, but now observed
records are complete (include T ,X,Y ) and they are
confined to the X = 0 stratum: The observations are
a0 = (a101, a100, a001, a000)

′.
With no data at X = 1, the log-linear parameteri-

zation is transparent with identified component γ =
(β0, βT ,βY ,βT Y )′ and nonidentified X|T Y compo-
nent θ = βX = (βX,βT X,βXY ,βT XY )′. The T Y odds-
ratio parameter in the X = 0 stratum is exp(βT Y ) =
E101E000/E100E001, and is related to the target by
ORT Y = exp(βT Y )R(βX). Thus, assuming p(βX|
E0) = p(βX) = H(βX;λ), to draw OR∗

T Y from
p{ORT Y |a0}, we draw E∗

0 from p(E0|a0), compute
exp(β∗

T Y ) = E∗
101E

∗
000/E

∗
100E

∗
001, draw β∗

X from
H(βX;λ), and compute OR∗

T Y = exp(β∗
T Y )R(β∗

X).
Assuming p(βX,EXY ) = p(βX), MCSA uses boot-
strap draws a∗

0 from a0 in place of E∗
0. If, however,

selection is modeled as a Poisson process with T Y -
dependent sampling rate exp(βS + βST t + βSY y +
βST Y ty), as in “density” (risk-set) sampling, R(βX)

simplifies to exp(−βST Y ), hence, one need only spec-
ify and sample from p(βST Y ) (Greenland, 2003a).

Occasionally, information on nonrespondents (sub-
jects with X = 1) becomes available. Such information
may arise from general records or from call-back sur-
veys of nonrespondents. Nonetheless, respondents in
call-back surveys are unlikely to be a random sample
of all the original nonrespondents, hence, further para-
meters will be needed to relate survey exclusion to T ,
X and Y .

4.4 Multiple Biases and Multiple Variables

The above approach supplements the observed vari-
ables Z (representing available measurements) with
wholly latent variables T (representing unobserved tar-
get variables and unmeasured confounders). It then
formulates an identified observable model P(z|γ ),
a selection-rate model S(t, z;βS), an imputation model
P(t|z;βT ) for T and a plausible prior H(θ;λ) for the

nonidentified θ = (βS,βT ). Inference to population
quantities involving T can then be based on p(t, z) ∝
P(t|z;βT )P (z|γ )/S(t, z;βS). For discrete data, we
may replace P(z|γ ) with Ez(γ ), the expected data
count at Z = z. With p(γ , θ) = p(γ )p(θ), posterior
sampling reduces to sampling from p(γ |z)H(θ;λ);
with an improper prior p(γ , θ) = p(θ) = H(θ;λ), we
may replace P(z|γ ) by its bootstrap estimate. Addition
of identifying data on T is handled in the more usual
Bayesian framework.

The general approach models the joint distribution of
all variables in the problem, including several wholly
latent variables; thus, the number of parameters can
become huge. Effective degrees of freedom can be
reduced via hierarchical modeling of the parameters
(Greenland, 2003a, 2005a); for example, Greenland
and Kheifets (2006) analyzed 60 observed counts with
hierarchical models that included 135 first-stage (data-
level) bias parameters generated from second-stage lin-
ear models. The profusion of parameters reflects a re-
ality of observational research hidden by conventional
analyses, which implicitly set most parameters to zero.
Nonetheless, uncertainty can often be addressed ade-
quately by rather simple analyses of one or two bi-
ases; in the example, those analyses quickly reveal that
the data cannot sustain any accurate inference about
the target parameter given uncertainties about the bias
sources.

4.5 Semi-parametric Modeling

Semi-parametric methods have been extended to in-
corporate nonidentified confounding and selection bi-
ases when these biases reduce to simple multiplica-
tive or additive forms (e.g., Brumback et al., 2004;
Robins, Rotnitzky and Scharfstein, 2000; Scharfstein,
Rotnitsky and Robins, 1999). Adjustment factors in
these extensions correspond to model-based factors
such as R(βX), but lack the finer parametric structure
of the latter. As illustrated above, the parameters within
these factors can serve in prior specification from back-
ground information. This role is important insofar as
prior specification is the hardest task in bias modeling,
especially because noninformative and other reference
priors are not serious options for nonidentified parame-
ters.

Note that semi-parametric robustness is achieved
by only partially specifying the distribution of ob-
servables, and thus does not extend to specification
of nonidentified model components. Nonetheless, the
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approach illustrated here can be used to extend semi-
parametric models by penalizing the partial- or pseudo-
loglikelihood, or by subtracting half the penalty gra-
dient from the estimating function (or equivalently,
adding the gradient of the log partial prior to that func-
tion).

5. DISCUSSION

The present paper has addressed settings in which
target models or parameters are not identified, and
hence, the data cannot tell us whether we are close to
or far from the target, even probabilistically. There are
two sound responses by the analyst. One is to focus
on describing the study and the data, resisting pres-
sures to make inferences, in recognition that a sin-
gle observational study will provide a basis for action
only in extraordinary circumstances (Greenland, Gago-
Domiguez and Castellao, 2004). If instead inference is
mandated, as in pooled analyses to advise policy, we
must admit we can only propose models that incorpo-
rate or are at least consistent with facts as we know
them, and that all inferences are completely dependent
on these modeling choices (including nonparametric or
semi-parametric inferences).

In the latter process, we must recognize that there
will always be an infinite number of such models and
they will not all yield similar inferences. In this sense,
statistical modeling provides only inferential possibili-
ties rather than inferences. Any analysis should thus be
viewed a part of a sensitivity analysis which depends
on external plausibility considerations to reach conclu-
sions (Greenland, 2005b; Vansteelandt et al., 2006).
Results from single models are merely examples of
what might be plausibly inferred, although just one
plausible inference may suffice to demonstrate inher-
ent limitations of the data.

Vansteelandt et al. (2006) offer a rationale for their
region-constraint approach beyond those mentioned
above (Section 2.1): To keep ignorance about θ (un-
certainty about bias), expressed as the region R, dis-
tinct from imprecision (statistical or random error) as
sources of uncertainty about τ . As shown in the ex-
ample, the same distinction can be made when us-
ing relaxation penalties, and the two sources of uncer-
tainty can be compared. Nonetheless, in observational
health and social science there is no objective basis
for the data model G(a;γ , θ) (no known randomizer,
random sampler or physical law), which undermines
the physical distinction between ignorance and impre-
cision. In these settings, G(a;γ , θ) merely expresses

our conditional (residual) ignorance about where the
data would fall even if we were given (γ , θ ); it dif-
fers from H(θ;λ) only in that G(a;γ , θ) is invariably
a conventional (intersubjective) form representing con-
straints that would have been enforced by an experi-
mental design, but in reality were not enforced.

Whatever their value for summarization, conven-
tional models do not satisfy plausibility considerations
because they incorporate point constraints on unknown
parameters. These include many bias parameters that
can be forced to their null by successful design strate-
gies, but are probably not null in most observational
settings. Likewise, interval constraints rarely satisfy
all plausibility considerations and thus may not be
suitable for assessing total uncertainty (as opposed to
providing sensitivity-analysis summaries). In contrast,
relaxation penalties and priors allow expansion of con-
ventional models and point constraints into the plausi-
ble realm, and thus can provide more plausible infer-
ences. These capabilities justify their addition to basic
statistical training for observational sciences. Progress
beyond such penalties can be made only by obtaining
data from a design that eliminates or at least partially
identifies at least one previously nonidentified bias pa-
rameter (Rosenbaum, 1999; Greenland, 2005a).
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