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1. INTRODUCTION

We congratulate Imai, King and Nall on a valuable
paper which will help to improve the design and analy-
sis of cluster randomized studies. The authors make
two key contributions: (1) they propose a design-based
estimator for matched pair cluster randomized studies
that in many circumstances is a better estimator than
the harmonic mean estimator; (2) they present convinc-
ing evidence that the matched pair design, when ac-
companied with good inference methods, is more pow-
erful than the unmatched pair design and should be
used routinely.

In this discussion, we would like to contribute
our thoughts on how to construct the matched pairs.
Greevy, Lu, Silber and Rosenbaum (2004) point out
that in most randomized studies, only one or two vari-
ables are used in constructing the pairs. To remedy this,
Greevy et al. present a method for optimal multivari-
ate matching. They demonstrate in an example with
14 covariates and 132 units that the optimal matching
achieves substantially better balance on all 14 covari-
ates than an unmatched design. Greevy et al. consid-
ered the situation in which we want to use all available
units in the experiment. In cluster randomized studies,
because of cost considerations, we can often only use
some of the clusters, that is, there are N = 2k clusters
but we would only like to include 2m (m < k) clusters
in the experiment; see Murray (1998), Chapter 10, for
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several examples. How should we choose the best m

matched pairs? In our discussion, we compare several
methods of constructing matched pairs for this setting.

Our discussion is organized in the following way. We
introduce and discuss four methods of matching in the
next section. Then we conduct simulations to compare
these methods and the results are summarized in Sec-
tion 3 and 4. Conclusions of our findings are given in
Section 5.

2. FOUR METHODS OF MATCHING PAIRS

The goal of matching is to produce a design for the
experiment that has high power relative to other de-
signs. Matching methods seek to do this by defining
a distance between every pair of units and then mak-
ing the total distance between the matched units as
small as possible. One distance for matching is the
Mahalanobis distance (Rubin, 1979). We will compare
matching methods by comparing the total Mahalanobis
distance between the matched units.

We consider four methods of constructing m match-
ed pairs when there are N = 2k (k > m) units. Three
of the methods make use of the optimal nonbipartite
matching algorithm described by Greevy et al. (2004)
which, for a given 2r units and a (2r) × (2r) distance
matrix, returns the r pairs which minimize the total dis-
tance between the units in the pairs.

1. The random method. A simple random sample of
2m units from the N units is selected. The selected
units are matched optimally using the optimal non-
bipartite matching algorithm.

2. The ranking method. Optimal nonbipartite match-
ing is applied to construct the k pairs from all 2k

units which minimize the total distance between
matched pairs. Then, the m pairs which have the
smallest distance are selected. King et al. (2007) use
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a variant of the ranking method in choosing which
clusters to conduct individual-level surveys in.

3. The greedy method. First, pick the pair with the
smallest distance over all pairs and then remove the
two units in this pair from consideration. Then pick
the pair with the smallest distance over all remain-
ing possible pairs, and remove the two units in this
pair from consideration. Continue until m pairs have
been selected.

4. The optimal method. The optimal method mini-
mizes the total distance within the m chosen pairs.
The procedure is as follows: (1) create N − 2m ar-
tificial sinks: the Mahalanobis distance between any
two artificial sinks is set to be large (ideally infinity)
while the distance between any artificial sink and
any real unit is set to be zero; (2) find the optimal
matching of N −m pairs of the combined 2N − 2m

units (the real units plus the artificial sinks) using
optimal nonbipartite matching; and (3) select the m

pairs that consist of two real units. The reasons that
this method chooses the optimal m pairs are the fol-
lowing. Since the distance between a real unit and
an artificial sink is 0 while the distance between any
two artificial sinks is very large, each artificial sink
will be matched to a real unit. Therefore, N − 2m

pairs of real units and artificial sinks will be con-
structed and the remaining 2m real units will form
pairs that we select. Since the distances between the
artificial sinks and the real units are 0, the total dis-
tance of the N − m pairs is the same as the total
distance of the m pairs formed by real units. There-
fore, minimizing the total distance of the N − m

pairs is the same as minimizing the total distance of
the selected m pairs of real units.

The random method is the easiest thing to do.
However, due to the fact that this method choose
units blindly from the pool, undesirable pairs can be
matched and the performance can be bad. The ranking
method and the greedy method both attempt to provide
the best pairs in the overall pool of units, but do not
typically choose the optimal pairs.

3. COMPARISON OF THE FOUR METHODS
THROUGH SIMULATION

Our first simulation is conducted in the following
way. Let N = 100, k = 50 and m = 10. The data are
generated with eight covariates: C1 is from an expo-
nential distribution with mean 1; C2 is from a t distri-
bution with 3 degrees of freedom; C3 is from a normal
distribution with mean 1 and variance 1; C4 is from
a uniform distribution over [0, 2]; C5, C6, C7 and C8
are from a multivariate normal distribution with mean
vector (1,1 + 1

99 ,1 + 2
99 , . . . ,1 + 98

99 ,2), and a covari-
ance matrix that has 1’s on the diagonal and 0.5 off-
diagonal. C1, C2, C3, C4 are independent of each other
and are independent from the last four covariates.

We ran the simulation 10,000 times and calculate the
ratios of total distance between the optimal method and
the three other methods. The ratios are denoted R1 (the
random method compared to the optimal method), R2
(the ranking method compared to the optimal method)
and R3 (the greedy method compared to the optimal
method).

The summary of R1, R2 and R3 is given in Table 1
and the histograms of R1, R2 and R3 are given in Fig-
ure 1.

The optimal method is much better than the random
method in terms of total distance; on average, the op-
timal method reduces the distance 50%. In all simula-
tions, the optimal method provided at least 30% im-
provement and in some situations, it provided more
than 70% improvement.

Compared to the ranking method (matching 50 pairs
and selecting the best 10 out of 50), the optimal method
gained a median of 2.5% and as much as 35%.

The greedy algorithm performed almost as well as
the optimal method for this setting. However, when
we want to match a higher proportion of the available
units, the greedy algorithm does not perform as well;
we shall discuss this later.

We conducted another simulation with a different
setup where the data are skewed and have heavier tails.
The eight covariates are generated as follows: C1 is

TABLE 1
Summary of R1, R2 and R3 in the first case

Minimum 25% quantile Median Mean 75% quantile Maximum

R1 0.2927 0.4523 0.4832 0.4842 0.5148 0.6818
R2 0.6517 0.9535 0.9744 0.9603 0.9879 1.0000
R3 0.9604 1.0000 1.0000 0.9989 1.0000 1.0000
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FIG. 1. Histograms of R1, R2 and R3 in the first case.

from an exponential distribution with mean 1; C2 is
from a t distribution with 3 degrees of freedom; C3 is
from a Cauchy distribution; C4 is from a uniform dis-
tribution over [0, 2]; C5, C6, C7 and C8 are from ex-
ponentiating the multivariate normal data generated as
in the previous setup. C1, C2, C3, C4 are independent
of each other and are independent from the last four
covariates.

The summary of R1, R2 and R3 is given in Table 2
and histograms of R1, R2 and R3 are given in Figure 2.

We can see that compared to the previous simulation,
we gain more in all three ratios. The gains in R1 and
R2 are more significant.

Our simulation shows that the optimal method is
far better than the random method. Also, the opti-
mal method is always at least as good as the ranking
method and can be much better in some situations. Fi-
nally, the optimal method is always at least as good as
the greedy method but they have similar performance.

4. COMPARISON OF THE OPTIMAL METHOD AND
THE GREEDY METHOD

We know that the optimal method gives the best m

pairs among N = 2k clusters in all circumstances and

for all m. However, the greedy method performs al-
most as well as the optimal method in the situations
discussed above, namely the gain from utilizing the
optimal method is only about 1%. In this section, we
investigate situations when the greedy method does
not perform as well. Again in this section we simulate
10,000 times for each case.

We first consider matching methods when m = 30,
m = 45 and m = 50, where N always equals 100, over
three kinds of single-covariate data here. (1) One co-
variate from a standard Cauchy distribution. (2) One
covariate from a standard normal distribution. (3) One
covariate from a uniform distribution over [0,1]. The
results are shown in Table 3 and Figure 3.

We see that when m = 30, the optimal method gains
most from the Cauchy data, but only 3.1% on average.
The optimal method gains 1.2% and 0.5% on average
when m = 30 from the normal data and the uniform
data, respectively. When m = 45, the optimal method
gains most from the Cauchy data too, with 17.0% on
average. The optimal method gains 11.1% and 8.7%
on average when m = 45 from the normal data and the
uniform data, respectively.

TABLE 2
Summary of R1, R2 and R3 in the second case

Minimum 25% quantile Median Mean 75% quantile Maximum

R1 0.1763 0.3152 0.3524 0.3548 0.3923 0.6029
R2 0.6146 0.9455 0.9703 0.9536 0.9862 1.0000
R3 0.9373 1.0000 1.0000 0.9978 1.0000 1.0000
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FIG. 2. Histograms of R1, R2 and R3 over three kinds of data.

When m = 50, we see a different pattern in which the
gain is greater for the normal and uniform data than
the Cauchy. For the Cauchy data, the average gain is
16.4%, while for the normal data and the uniform data,
the gains are 42.1% and 44.2%, respectively.

We also investigate cases when there are two co-
variates in the data. We take N = 100 and m = 50
and consider twelve cases. In the first three cases we
consider (1) independent covariates generated from the
standard Cauchy distribution, (2) independent covari-
ates generated from the standard normal distribution
and (3) independent covariates generated from the uni-
form distribution over [0, 1]. We consider nine other
cases in which the covariates are independently gener-
ated from discrete multimodal distributions. The prob-
ability mass functions are summarized in the table be-
low.

The summary of ratios of total distances is given in
the boxplots in Figure 4 and the histograms in Figure 5.

We observe that the gains of the optimal method
when the underlying distributions are normal or uni-
form are around 20%, which is not as much as the 40%
gain in the one covariate case. We also observe that
as the number of modes increases, the gains become
greater and the histograms of ratios become more sim-
ilar to the ones of the normal and uniform distributions
(Cases 2 and 3).

5. CONCLUSION

Imai et al. have made an important contribution to
the design and analysis of cluster randomized trials
by showing the advantages of a matched pair design
compared to an unmatched pair design and providing
an inference method that is appropriate for a matched
pair design. In our discussion, we have considered how
to construct the matched pairs when we only want to
use a proportion of the pool of available clusters in

TABLE 3
Summary of ratios over three kinds of data

m Minimum 25% quantile Median Mean 75% quantile Maximum

Cauchy data 30 0.8087 0.9451 0.9687 0.9631 0.9873 1.0000
Gaussian data 30 0.8510 0.9706 0.9879 0.9816 1.0000 1.0000
Uniform data 30 0.8696 0.9782 0.9945 0.9869 1.0000 1.0000

Cauchy data 45 0.5484 0.7787 0.8291 0.8244 0.8747 0.9919
Gaussian data 45 0.6777 0.8543 0.8884 0.8853 0.9200 1.0000
Uniform data 45 0.7434 0.8831 0.9128 0.9103 0.9406 1.0000

Cauchy data 50 0.3503 0.6847 0.8357 0.8036 0.9424 1.0000
Gaussian data 50 0.2966 0.4755 0.5786 0.5848 0.6849 0.9854
Uniform data 50 0.2747 0.4637 0.5576 0.5612 0.6524 0.9611
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FIG. 3. Histograms of ratios over three kinds of data.

FIG. 4. Boxplots of ratios for cases in Table 4.
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TABLE 4
Probability mass functions in considered cases

Possible values Probability Number of modes

Case 4 (−10,−1,1,10) (0.4,0.1,0.1,0.4) 2

Case 5 (−10,−1,1,10) (0.1,0.4,0.1,0.4) 2

Case 6 (−10,−1,2,20) (0.6,0.1,0.2,0.1) 2

Case 7 (−20,−10,−1,1,10,20) ( 1
12 , 1

3 , 1
12 , 1

12 , 1
3 , 1

12 ) 2

Case 8 (−20,−10,−1,1,10,20) ( 1
12 , 1

3 , 1
12 , 1

12 , 1
12 , 1

3 ) 2

Case 9 (−20,−10,−1,2,20,40) ( 1
12 , 1

3 , 1
12 , 1

12 , 1
12 , 1

3 ) 2

Case 10 (−10,−10 + 20
19 , . . . ,10) ( 1

50 , 4
50 , 4

50 , 1
50 , 1

50 , 4
50 , . . . , 1

50 ) 10

Case 11 (−10,−10 + 20
19 , . . . ,10) ( 1

50 , 4
50 , 1

50 , 4
50 , . . . , 4

50 ) 10

Case 12 (−10,−10 + 40
19 , . . . ,30) ( 4

50 , 1
50 , 4

50 , 1
50 , . . . , 1

50 ) 10

FIG. 5. Histograms of ratios for cases in Table 4.

the experiment. We have shown by simulation that it is
very important to consider all available clusters when
constructing the matched pairs rather than randomly
choosing some to focus on. Among the methods which
focus on all available clusters, the ranking method and
the greedy method perform acceptably but the optimal
method can be substantially better than them in some
situations. Consequently, we recommend use of the op-
timal method in constructing matched pairs.
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