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Professor Brillinger wrote a very stimulating paper
on Neyman’s life history and some of his contributions
to applied statistics. The paper’s central theme is to re-
view how Neyman used stochastic processes in data
analysis. The paper contains a number of illuminating
examples of Neyman and of Brillinger with other col-
laborators. I am honored to have been invited to be a
discussant.

Professor Brillinger quoted Neyman (1960), “The
time has arrived for the theory of stochastic processes
to become an item of usual equipment of every applied
statistician.” In the post-Neyman era, data come in our
way fast and in all forms, such as streams, functions,
manifolds, random shapes, trees and images. The im-
portance of the theory of stochastic processes in ap-
plied statistics cannot be overemphasized.

Brillinger’s observation of Neyman’s thought pro-
cesses in conducting applied research resonates with
me. My discussion will be primarily to amplify it from
a somewhat different perspective, namely from Ney-
man’s teaching and his research projects on sampling
and cancer. Included in the discussion will be recalls of
some of my personal experience having Neyman as a
teacher. Neyman’s sampling and cancer projects are se-
lected in this discussion in part because of their broad
impact which appears to be not a focus of Brillinger’s
paper. Although Neyman’s sampling work does not in-
volve stochastic processes, it fits the title of Brillinger’s
paper “Dynamic Indeterminism in Science.” Neyman
had engaged in cancer research for many years un-
til his death in 1981. His cancer research (includ-
ing survival analysis) used Markov processes exten-
sively. Neyman’s contribution to survival analysis links
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nicely to Brillinger’s view on the importance of point
processes. Special attention will be paid to Neyman’s
Lecture Notes and Conferences on Mathematical Sta-
tistics (1938, 1952) in which Neyman introduced many
fundamental statistical concepts and statistical theory,
and discussed his views on statistical research which I
believe are still very current.

1. NEYMAN AS A TEACHER AND HIS
PROBLEM-DRIVEN APPROACH

I was a student in several of Neyman’s classes and a
regular in his weekly seminar. My thesis advisor, Lu-
cien Le Cam, sent me to Neyman’s classes. Actually,
Neyman and Le Cam were like co-advisors to many
Ph.D. students of theirs. Neyman would say, “Go ask
Mr. Le Cam” or the other way around.

Neyman did not use notes and the lectures were
based mostly on his research work. A typical lecture
started with a description of a physical problem which
was then followed by a discussion of the chance mech-
anisms operating in the physical phenomenon, and the
construction of a model for the data. Next he would
pose a statistical hypothesis for testing or developing
some estimation procedures. We learned firsthand why
he introduced such statistical concepts and methods.
Neyman’s way of first studying a physical problem and
leading to the eventual development of a statistical pro-
cedure is quite opposite to the practice of starting with
some available statistical methods and applying them
to a physical problem. The order of attacking a scien-
tific problem seems reversed.

In these classes, we went through stochastic proces-
ses and solved differential equations for probability
generating functions with a wide range of applications.
For a while we had seminar every Wednesday evening,
discussing models of carcinogens and passing around
photos of tumors of all shapes (not pretty). Students
were called to the blackboard for questions and discus-
sions. Sometimes, the seminars could last until 11 PM
and Neyman would take us to Shattuck Avenue for
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cake and ice cream afterward. Neyman cared a great
deal about his students. Once a student did not show up
in his class for a couple of weeks. Neyman was worried
and knocked on the student’s apartment but there was
no answer. He had a policeman break into the apart-
ment. It turned out the student had taken a trip with-
out informing Neyman. He was a tremendous mentor
and continued to provide valuable advice to his formal
students throughout his life. What a privilege I had.
I had opportunities of seeing Neyman when he came
to Washington for meetings or to “shop for money” as
he put it. When in Washington, he stayed at the Cos-
mos Club. I recall, when we went to see him, while
his other academic siblings (Bob Traxler and Tom Dar-
den) could enter the club through the front door, I could
only use the side door entrance. That was in the 1970s.
Women were reminded often of their lack of social sta-
tus.

Many noted that Neyman had a great appreciation
of Lebesgue’s theory of integration. Indeed, Neyman
liked to ask us, “Do you know there is a difference be-
tween the improper Riemann integral and the Lebesgue
integral?” Cloud seeding was one of Neyman’s long-
term projects. Randomization of the decision to seed or
not seed was strictly observed. He had assistants in his
laboratory flip coins to decide on seeding or not seed-
ing in his experiments in Europe. When talking about
competing risks, he would ask if we have seen a death
certificate. Le Cam (a student of Neyman) (1995) de-
scribes Neyman, “He was always full of energy and
ideas and ‘imprinted’ them on his students in courses
or in individual contacts.”

A recent book by Calvin Moore (2007) on the his-
tory of the Berkeley Mathematics Department gives a
vivid account of Neyman’s early days in the Depart-
ment of Mathematics, and his 17 years of struggle to
form the Department of Statistics. “Neyman continued
to agitate for an independent department of statistics
(Moore, 2007, page 83).” The Department of Statistics
was established in 1955. Neyman would not give up.

2. NEYMAN’S TRIUMPHANT 1937 U.S. TOUR AND
ADOPTION OF SAMPLING IN U.S. 1940 CENSUS

At the invitation of Edward Deming, Neyman toured
the United States in the spring of 1937 for the first
time and gave lectures at the Graduate School of the
U.S. Department of Agriculture. His lectures were pub-
lished in Lecture Notes and Conferences on Mathemat-
ical Statistics, 1938. The second edition Lecture Notes
and Conferences on Mathematical Statistics and Prob-
ability was published in 1952. Notice the addition of

Probability in the title. The second edition differs sub-
stantially from the first edition because, according to
Neyman, of the extraordinary development of the eco-
nomics and stochastic processes (Doob and Feller’s
work on stochastic processes). Thus at least since the
early 1950s, Neyman had used stochastic processes ex-
tensively in his applied work. Neyman’s lectures at
the USDA included his revolutionary paper on sur-
vey sampling (1934) which marked a new era in sam-
pling theory. At that time, the representative method
of extracting information used by A. L. Bowley (1913)
became very popular among statisticians in different
countries. The popularity was partly due to the scarcity
of resources and shortness of time for an exhaustive
research. There are two aspects of the representative
method. One of them is called the method of random
sampling and the other the method of purposive selec-
tion. According to Neyman, the two kinds of methods
were discussed by A. L. Bowley (1925) and they are
treated as it were on equal terms, as being equally to
be recommended. Much the same attitude has been ex-
pressed in a ISI report (see Jensen, 1925). Twenty years
later, Neyman’s paper (1934) points out the logical dis-
tinction between these two methods. He cautioned the
use of purposive selection whose success is rather ex-
ceptional. Neyman’s paper systematically develops the
theory of stratified random sampling on the basis of
random sampling. The concept of confidence intervals
was also introduced in this paper. Neyman’s work had
a significant influence on the adoption of sampling pro-
cedure in the U.S. 1940 census. See N. Mann (1994) on
E. Deming. Recounted M. Hansen (1987), “Neyman’s
paper and the visit. . . contributed much to the welfare
of the U.S. and to the future acceptance of sampling, at
least in the Bureau of Census.”

Neyman’s probability sampling and optimum alloca-
tion of sample sizes have been used to this day. By now,
the notion and the practice of sampling have become
a way of life and inseparable from scientific investiga-
tion, be it nutrition survey, political polls, clinical trials,
or sample size determination.

Neyman believed “problems of science are a breed-
ing ground of novel mathematical disciplines.” With
the advent of computer technology, massive amounts
of data are coming our way in every direction. The
breeding ground is unprecedentedly fertile. Neyman’s
approach to mining survey data (massive enough) and
developing a sampling theory is an excellent example
of mining data albeit in cyber space.
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3. NEYMAN, MARKOV PROCESSES AND
SURVIVAL ANALYSIS

Neyman was taken by Markov processes. He used
them in cancer research. The following are two exam-
ples. The second example especially points to the im-
portance of constructing stochastic models in studying
the effect of radiation.

For many years, Neyman worked on cancer research
and the chance mechanism of carcinogenesis. He used
his own money to fund a conference on probabil-
ity models and cancer in July, 1981. He died a few
weeks later on August 5, 1981. The proceedings of
the conference were published posthumously in 1982
(Le Cam and Neyman, eds.). His cancer research ad-
dressed a wide range of topics including patient sur-
vival probability in clinical trials (more traditional bio-
statistics problems), modeling cancer growth at the cel-
lular level, and the effects of radiation on single cells
at the DNA level. I would mention two of his contribu-
tions, his work with Fix and with Puri.

Neyman–Fix Competing Risks model.(1)

Neyman became interested in problems with evalu-
ating the effects of breast cancer treatment discussed
at a meeting in New York in 1949. Subsequently, Fix
and Neyman (1951) used a four-state homogeneous
Markov chain to model the status of a patient trans-
ferring between the states of recovery and relapse until
she is either lost to follow-up (or censored in modern
terminology) or enters the (absorbing) state of death.
The paper gives a detailed discussion about the clas-
sification of states and their connections to the avail-
able observable data provided by two doctors. From
the Markov model the probability of a patient surviv-
ing beyond a specified time in the presence of com-
puting risks of relapse and censoring was estimated,
and the risks (or transitions rates) of moving from one
state to another were estimated. This survival probabil-
ity is used to evaluate the effectiveness of a treatment
method or to compare two different treatments. This
applied work created a new statistical theory. The no-
tion of competing risks and the model introduced by
Neyman and Fix laid the foundation for the future de-
velopment of the theory of competing risks. The exten-
sion of this work was carried out by his students, Chin-
Long Chiang in life-table constructions and medical
follow-up studies (1968) and A. Tsiatis (1975, com-
municated by Neyman to PNAS), among others. Tsi-
atis addressed the nonidentifiability problem of com-
peting risks. Fix and Neyman (1951) were concerned

about the validity of the assumption of constant risks in
their model. An extension to time-dependent compet-
ing risks (or nonparametric analysis) can be found in a
paper of B. Altshuler (1970). This paper was commu-
nicated by Neyman to the Mathematical Biosciences.
I am unable to find any information about the circum-
stance under which this investigation was carried out.
Was Altshuler a visitor of Neyman, of which Ney-
man had many? It is worthwhile to note that Altshuler
(1970) is one of the earliest papers addressing the es-
timation of a cumulative hazard function �(t). Alt-
shuler used it to construct an estimator of the survival
probability (beyond time t) of a subject in the pres-
ence of competing risks. His result generalizes the cel-
ebrated Kaplan–Meier estimator. The model used by
Altshuler can be recast into a finite-state nonhomoge-
neous Markov chain with one absorbing state (death!)
which was later studied in Aalen’s thesis (1975, super-
vised by Le Cam).

The product-limit form of the Kaplan–Meier type
of estimators made their analytical study challenging.
A breakthrough occurred in Aalen’s thesis (published
in 1978) that solved some long outstanding theoreti-
cal problems regarding the optimality and properties
of the Kaplan–Meier type of estimators. [A key step to
Aalen’s success was the formulation of the cumulative
hazard function and its estimator in terms of counting
processes and compensators with that, the martingale
calculus applies.] It is fitting to mention here that the
counting process approach was pointed out to Aalen
by D. Brillinger (duly acknowledged by Aalen); a tes-
timony to the powerful tools of stochastic differential
equations in solving real life (and death) problems. The
martingale method opened a new way of solving ana-
lytical problems in survival analysis whose results have
populated statistical literature in the last thirty-some
years.

Markov–Branching model for effect of radiation.(2)

At the DNA level, Neyman and his students inves-
tigated the effect of ionizing radiation on single cells.
The survival probability of single cells in response to
dose of radiation is used as a measure of the effect.
The cell mutation probability is another measure. Un-
derstanding the dose-response relationship clearly has
therapeutic implications in developing criteria for ei-
ther diagnosis or treatment of cancer. Moreover, ra-
diation effects are readily observable at high doses,
whereas for many matters of public policy, such as en-
vironmental cancer risk assessment and development
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of radioepidemiological tables for computing the prob-
ability of causation of cancer as mandated by Public
Law 97–414, one needs the dose-response relationship
at low doses. Low-dose experiments are very difficult
to perform (if they are possible at all) and mathemat-
ical models become almost the only tool available to
infer information about low-dose responses.

In radiation and biophysics literature, cell survival
probability is typically modeled by exp(−αD − βD2)

where D denotes the dose, the so-called linear quadra-
tic model [see Le Cam and Neyman (1982)]. The pres-
ence of a quadratic term is known as the shoulder effect
(concave) in the log survival curve (see Figure 1). The
shoulder effect is a critical experimental finding with
serious implications. It implies that the radiation (low
LET, such as X-rays) up to certain dose level has lit-
tle effect on cell survival. The molecular mechanisms

used to explain the quadratic term (the shoulder) differ
significantly among researchers resulting in different
models (same mathematical form but different inter-
pretation); see Yang and Swenberg (1991) and refer-
ences therein. In these models, the chance mechanism
has not been systematically included by following the
experimental protocol. Therefore it is difficult to sort
out major experimental parameters that affect the cell
survival in these models and their relations to the para-
meters α and β .

An elaborate stochastic model of a radiation experi-
ment that considers the chance mechanisms of energy
deposition, biological responses and design of the ex-
periment was developed by Neyman and Puri (1976,
1981).

In simple terms, a radiation experiment consists of
counting the proportion of cells that survive the irradi-

FIG. 1. Surviving fractions of yeast cells as a function of doses irradiated with 30-MeV electrons at dose rate r = 7800 Gy/h. Solid lines
denote the least-squares fit to the model. Dashed lines represent the effect of changing parameters ξ = 0.32 and a = 1.08/h, with all other
parameters unchanged. Experimental data indicated by filled circles and filled squares from Frankenberg-Schwager et al. (1980). [First
published as Figure 3 in Yang and Swenberg (1991), “Stochastic modeling of dose-response for single cells in radiation experiments,” Math.
Scientist, vol. 16, pages 46–65. Copyright © Applied Probability Trust 1991.]
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ation of a given dose; the actual procedure, however, is
very involved. The survival of a single cell is neither
directly nor immediately observable after irradiation.
The survival of a cell is thus defined by its proliferative
ability to form a colony of a given (observable) size
within a specified time after irradiation. Without ob-
servations, mathematical model is almost the only tool
available to study the evolution of cells after irradia-
tion.

A cell can survive radiation damage if the radiation-
induced lesions are repaired completely, or survive as a
mutant if it is repaired incorrectly, or be inactivated and
unable to divide (death of a cell). A mutant can divide
and may lead to a cancerous growth.

The Neyman–Puri model assumes the following:
1. Energy deposition. The primary radiation particles

reach the cell according to a Poisson process with rate
λ(t) per unit time and unit volume.

2. Branching of primary radiation particles. Each
primary radiation particle generates a random num-
ber M of “spurs” with probability generating function
g(s). Each spur has a probability π1 of generating a
potentially lethal lesion, probability π2 of generating
an irreparable lesion (a lethal lesion) and probability
1 − π1 − π2 of generating no lesion in the cell.

3. Cell’s repair and misrepair mechanism. The evolu-
tion of the cell during and after radiation is modeled by
a vector-valued Markov process {(Xt , Yt ,Zt ); t ≥ 0},
where Xt is the number of potentially lethal lesions in
the cell at time t , Yt is the number of mutated lesions in
the cell at time t and Zt is the number of lethal lesions
the cell has experienced up to time t .

Deriving the probability generating function of the
process {(Xt , Yt ,Zt ); t ≥ 0} allows one to calculate the
cell’s survival probability and the mutation probability
at any specified time.

The Armed Forces Radiation Research Laboratory
(AFRRI) paid special attention to the Neyman–Puri
model. I was contacted by Dr. Charles Swenberg of
ARRFI which led to our collaboration to study the ef-
fects of radiation. We picked up the work left by Ney-
man and Puri who died in 1989. The Neyman–Puri
model was given a careful examination by comparing
it step by step with the protocol of the radiation ex-
periment performed in Dr. Swenberg’s laboratory. Our
study resulted in modifying the Neyman–Puri formu-
lation by including the cell repair time and nonlinear
initiation of lesions. Figure 1 shows a fit of survival
probability, and a fit of mutation probability is given in
Figure 2, taken from Yang and Swenberg (1991). The

paper was dedicated to the memory of J. Neyman, P. S.
Puri and E. L. Scott.

Both the Neyman–Puri model and our modifica-
tion neglect the possibility of a cell’s nonlinear repair-
misrepair mechanism. Le Cam (1995) pointed out that
there is considerable evidence that the repairs are not-
linear and some repair is an interaction of two lesions.
Solving nonlinear equations in Markov processes is
mathematically difficult. There are many problems in
this area that need to be studied. Le Cam (1995) wrote,
“Neyman was one of the first statisticians to look at
applications of statistics in molecular biology.”

The preceding examples of Neyman and Brillinger’s
paper illustrate what Neyman’s students wrote in the
Foreword in a volume of selected early papers of
J. Neyman, edited by students of Neyman (1966), “The
interesting feature of the approach used by Neyman is
that, in all these papers, the substantive problem is dis-
cussed per se and a mathematical model of the phe-
nomenon is constructed. An effort is then made to de-
rive from the structure of the mathematical model new
statistical methods particularly adapted to the solution
of the problems under consideration. Mere applica-
tion of standard statistical techniques does not occur
in these or later papers.”

Neyman was a founding father of modern statistics.
Perhaps, the prominence of his fundamental work in
the statistics theory overshadows his applied work. In
fact, his contribution to and broader impact in applied
statistics are equally profound. In Washington, D.C.,
his applied work is felt through government agencies.

I end with Neyman’s remark on the issue of theoret-
ical and applied statistics:

This postscript has to deal with the general
character of statistical research and with
the ties that exist between the pure math-
ematical theory of statistics and the applied
work. I deeply regret the not infrequent em-
phatic declarations for or against pure the-
ory and for or against work in applications.7

It is my strong belief that both are im-
portant and, certainly, both are interesting.
The Berkson–Dantzig–Stein incident just
recounted provides an excellent illustration
of the view. . . , The results of Dantzig and
Stein* are certainly contributions to pure
theory of statistics. Yet, whether the two
authors are aware of the fact or not, the
theoretical problems they solved originated
from difficulties in applied work. . . (Ney-
man, 1952, page 268).
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FIG. 2. Dose-response relationship for pink mutant events per hair after X-irradiation. Filled dot and square denote the experimental
mutation fractions. Solid curves denote the least-squares fit of the model mutation probability to the data. [First published as Figure 4
in Yang and Swenberg (1991), “Stochastic modeling of dose-response for single cells in radiation experiments,” Math. Scientist, vol. 16,
pages 46–65. Copyright © Applied Probability Trust 1991.]

7Quite recently I was shown some letters re-
garding myself. One very nice person wrote
“I met Neyman. In general he is O.K., but
hopelessly mathematical. . . .” The letter of
another equally nice person stated: “Once
upon a time Neyman did some real work.
Now, however, he is interested in applica-
tions.”
*Refers to Stein’s two-stage sequential pro-
cedure.

In Neyman’s case, he did both the applied and theo-
retical work. Neyman’s monumental accomplishments
did not happen by chance.

(A photo of Neyman receiving the National Medal
of Science from President Lyndon Johnson appears on
page 75.)
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