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1. CLARIFYING OUR POSITION ON DOUBLY
ROBUST ESTIMATORS

We are grateful to the editors for eliciting comments
from some of the most prominent researchers in this
exciting and rapidly developing field. After we drafted
our article, a number of important works on DR estima-
tors appeared, including Tan’s (2006) article on causal
inference, the monograph by Tsiatis (2006) and the
recent articles and technical reports cited by Robins,
Sued, Lei-Gomez and Rotnitzky. The discussants’ in-
sightful remarks highlight these recent developments
and bring us up to date.

Our purpose in writing this article was to provide
unfamiliar readers with gentle introduction to DR es-
timators without the language of influence functions,
using only simple concepts from regression analysis
and survey inference. We wanted to show that DR es-
timators come in many different flavors. And, without
minimizing the importance of the literature spawned by
Robins, Rotnitzky and Zhao (1994), we wanted to draw
attention to some older related methods from model-
assisted survey sampling which arrive at a similar po-
sition from the opposite direction.

Despite the good performance of figrs in our simu-
lated example, we have not and would not argue that it
be used routinely and uncritically. The pitfalls of rely-
ing solely on outcome regression or y-modeling have
been well documented for causal inference, where the
rates of missing information are high and the impact of
selection bias can be dramatic (e.g., Rubin, 2001). Nor
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do we wish to cast clouds of suspicion over all DR esti-
mators in all circumstances. In many situations, they do
work well. On the other hand, we still believe that pro-
cedures motivated by parametric y-models, when care-
fully implemented, remain a viable option and should
not be categorically dismissed.

Under ignorability, the propensities m; = P(t; =
1|x;),i =1, ..., n, play no role in likelihood-based or
Bayesian inference about p under a given y-model.
If we had absolute faith in one parametric form for
P (yilx;), then we could discard all information beyond
the sufficient statistics for that model. But the propensi-
ties carry information that helps us evaluate the quality
of the y-model, and we ignore this extra information at
our peril, because no model is above criticism. No sen-
sible statistician would argue that propensities should
not be examined. But reasonable persons may differ
over what role the propensities should play in formu-
lating an estimator. Those who favor a semiparamet-
ric approach devise influence functions that combine
inverse-propensity weights with regression predictions
for y. Parametric modelers, on the other hand, may
well argue that if the propensities reveal weaknesses
in the y-model, then that model should be revised and
corrected. The latter view has been expressed by Elliott
and Little (2000) in the context of survey estimation,
where the selection probabilities are known, but paral-
lels to uncontrolled nonresponse and causal inference
are obvious.

We believe that propensities are useful for model di-
agnosis and estimation, but we are still not convinced
that they need to enter an influence function as inverse-
propensity weights. The strength of weighting is that, if
done properly, it protects an estimate from bias regard-
less of how y is distributed. But this strength can also
be a weakness, because such a high level of protection
is not always warranted. If the propensities are unre-
lated to the linear predictors from a good y-model, then
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weighting may be superfluous. If the propensities are
poorly estimated or extreme, then combining weights
with the regression predictions may do more harm than
good. And if the propensities do reveal weaknesses
in the y-model, inverse-propensity weights are not the
only way to correct them.

2. RESPONSE TO TSIATIS AND DAVIDIAN

In their illuminating discussion, Tsiatis and Davidian
demonstrate that a wide variety of estimators for p can
be expressed as the solution to an estimating equation
based on an influence function. (One possible excep-
tion is the class of estimators based on propensity-score
matching, which we have not discussed.) Influence
functions present interesting results on semiparametric
efficiency, but we find them appealing for other reasons
as well. First, they show us how to compute a standard
error for whatever estimator we choose. Second, they
generalize nicely to finite-population sample surveys
with complex designs. Regression techniques for com-
plex surveys, as implemented in software packages like
SUDAAN (Shah, Barnwell and Biler, 1997), are based
on weighted influence functions, so any of the estima-
tors described by Tsiatis and Davidian can be extended
to surveys. Third, if we move on to causal inference, we
must address the thorny issue of the inestimable par-
tial correlation between the potential outcomes. Any
estimator of an average causal effect makes a work-
ing assumption about this correlation (e.g., setting it to
zero), but a standard error computed from an influence-
function sandwich may still perform well when this
working correlation is incorrect.

Tsiatis and Davidian mention that our estimator
fx-cov, Which incorporates propensity-related basis
functions into the OLS procedure, is not consistent un-
der My U Mjr unless the conditional mean of y; hap-
pens to be a linear combination of the particular basis
functions for m; used in the OR model. This is cer-
tainly true for the usual asymptotic sequence in which
the number of basis functions remains fixed as n — oo.
But if we allow the basis to grow with the sample size
(e.g., as in a smoothing spline), then it may become
DR (Little and An, 2004). Given a large sample, a good
data analyst will tend to fit a richer model than with a
small sample. If the analyst is allowed to build a rich
OR model that corrects for the kind of inadequacies
shown in our Figure 4, then the OLS procedure based
on the corrected OR model may be as good as any DR
procedure.

We like the suggestion by Tsiatis and Davidian
of using a hybrid estimator that combines inverse-
propensity weighting for cases with moderate propen-
sity and regression predictions for cases with small
propensity, an idea echoed by van der Laan and Rubin
(2006). As an alternative to a hard threshold § at which
the change is made, one could opt for a smoother tran-
sition by “weighting” each part of the influence func-
tion more or less depending on the estimated propen-
sity. We also agree with Tsiatis and Davidian that
estimators in the spirit of fir_, deserve more con-
sideration even though they are not DR over M; U My
in the usual asymptotic sequence. In the simulations
of our article, we expressed m; as a piecewise con-
stant function of 7; with discontinuities at the sample
quintiles of 7;. Another version of [i, ..., that we have
found to work well in many situations uses a linear
spline in 1; = log(7; /(1 — 7;)) with knots at the quin-
tiles.

3. RESPONSE TO TAN

Tan’s important work on regression estimators con-
nects the theory of influence functions to ideas of sur-
vey regression estimators and the use of control vari-
ates in importance sampling. His remarks and propo-
sitions are very helpful for understanding the behavior
of IPW, OR and DR methods in realistic settings where
all the models are incorrect.

We were initially puzzled by several of Tan’s points
but, upon further consideration, found them to be very
insightful. He states that it is more constructive to view
DR estimators as efficiency-enhanced versions of IPW
than as bias-corrected versions of OR. We find both
views helpful for understanding the nature and prop-
erties of DR methods. But, as he explains, there are
theoretical reasons to expect that his carefully crafted
DR estimators may lead to greater improvement over
IPW than over a good OR model, because IPW is con-
servative whereas OR is aggressive.

We are still unsure why Tan states that [IPW extrapo-
lates explicitly whereas OR extrapolates implicitly. To
us, fitting an OR model to respondents and using that
model to predict for nonrespondents is a very obvious
kind of extrapolation, especially if the leverage val-
ues for some nonrespondents are large relative to those
of the respondents. But his points about extrapolation
are well taken. All of our methods extrapolate. The as-
sumption of ignorability is itself an extrapolation.

He also points out that estimating an average causal
effect is more subtle than simply estimating the mean
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of each potential outcome and taking the difference.
This distinction is important in a semiparametric ap-
proach. A semiparametric method that is optimal for
estimating two means may not be optimal for estimat-
ing the mean difference. Similarly, a method that is op-
timal for estimating a population average causal effect
may not be optimal for estimating the average effect
among the treated, or for estimating differences in av-
erage causal effects between subpopulations. As para-
metric assumptions about the OR model are discarded,
it becomes important to tailor the estimation procedure
to the estimand, which his regression estimators appar-
ently do.

In Tan’s simulations, his alternative model in which
the analyst sees X4 = (Z3 + Z4 + 20)2 presents an
interesting situation where OLS predicts the y;’s for
the respondents almost perfectly (R 2 0.99), but the
extrapolated linear predictions for the nonrespondents
are biased because the unseen true values of y; turn
sharply away from those predictions in the region of
low propensity. This is a perfect illustration of how
the uncritical use of fiprs can lead us astray. But in
this example, propensity-based diagnostics reveal ob-
vious deficiencies in the linear model. Taking the ini-
tial sample of n = 200 observations from our article,
we fit the linear model to the respondents and a logistic
propensity model to all cases given X, X2, X3, and
Tan’s alternative version of X4. A plot of the observed
residuals from the y-model versus the estimated logit-
propensities from the -model is shown in Figure 1.
The loess curve clearly shows that the OLS predictions
are biased in the region of high propensity (where it
does not really matter) and in the region of low propen-
sity (where it matters very much). If we account for

o _
=
o (0]
o o
e |
= |
3 o )
? § %5
< o ©
)
o
2 | o
i
o
S
]
o
3 4
b T T T T T T T
-4 -3 -2 -1 0 1 2 3

linear predictor

FI1G. 1. Scatterplot of raw residuals from linear y-model fit to
respondents in Tan’s alternative model, versus the linear predictors
from a logistic w-model, with local polynomial (loess) fit.

this trend by introducing the squared linear predictor
from the logit model ﬁlz = (xiTéz)2 as one more covari-
ate in the y-model, the performance of [igrs greatly
improves. Even better performance is obtained with
splines, which tend to predict better than ordinary poly-
nomials over the whole range of 7;’s. We created a lin-
ear spline basis for 7; with four knots located at the
sample quintiles of 7;. That is, we added the four co-
variates

i — k1) +,

(i — k3)+,

to the y model, where (z)+ = max(0, z) and k1, k>, k3,
ks are the knots. Over 1000 samples, we found that
this new version of [iors (which, in our article, we
would have called [i;.c,y) performed as well as any
of Tan’s estimators in the scenario where both models
were incorrect. With n = 200, we obtained bias = (.16,
% bias = 5.70, RMSE = 2.78 and MAE = 1.78. With
n = 1000, we obtained bias = 0.30, % bias = 24.6,
RMSE = 1.27 and MAE = 0.88. The performance of
Tan’s regression estimators in these simulations is im-
pressive. The performance of [iors is equally impres-
sive if we allow the analyst to make a simple correction
to adjust for the y-model’s obvious lack of fit.

M —k2)+,
(D .
Mi —ka)+

4. RESPONSE TO RIDGEWAY AND MCCAFFREY

Ridgeway and McCaffrey correctly observe that, for
estimating propensity scores, there are many good al-
ternatives to logistic regression. In addition to their
work on the generalized boosted model (GBM), some
have been estimating propensities using classification
trees (Luellen, Shadish and Clark, 2005) and neural
networks (King and Zeng, 2002).

A rich propensity model should improve the per-
formance of the weighted estimator. The advantage
of procedures like classification trees and GBM is
that they allow us to search through a large space of
m-models, accounting for the effects of many covari-
ates and their interactions, thereby reducing bias in the
resulting estimator regardless of how y; is distributed.
These procedures may also reduce variance, because,
as explained by Tan, in a sequence of increasingly rich
propensity models, the asymptotic variance of an aug-
mented IPW estimator decreases to the semiparamet-
ric bound. In principle, one could apply similar pro-
cedures like regression trees to create a rich y-model.
But, as Ridgeway and McCaffrey point out, this raises
the possibility of data snooping. As we search through
larger and more complicated spaces to find the best
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y-model, it becomes increasingly difficult to compute
honest standard errors.

Ridgeway and McCaffrey’s simulations with the ex-
tra interaction term again reveal the dangers of un-
critically relying on figrs. This interaction increases
the degree to which the additive and linear y-model
is misspecified, so in this scenario we would expect
the performance of [tors to worsen. The final columns
of their Tables 1 and 2 show that, when this interac-
tion is present, propensity-based and DR estimators
strongly outperform ftors. Using the wrong covariates
in the propensity model does little harm to the flex-
ible GBM procedure. But one could argue that these
comparisons between GBM and i are unfair in the
following sense: They resemble a situation where the
analyst is allowed to fit a rich and flexible 7 -model but
is given no leeway to improve the y-model. We exam-
ined many samples of n = 200 from this new popu-
lation and found X X» to be a strong and highly sig-
nificant predictor of y in every sample. If we add this
one interaction to the y-model, the bias in [1ors nearly
vanishes, and its RMSE becomes comparable to that of
the best DR estimators that Ridgeway and McCaffrey
tried. Other interactions are often significant as well.
We have not examined the performance of jiprs when
these other interactions are included; doing so would
be an interesting exercise.

Our point here is not to argue for the superiority of
foLs over the DR procedures. Either can work well
if applied carefully with appropriate safeguards. And
either can be made to fail if we, through the design of a
simulation, impose artificial restrictions that force the
analyst to ignore clear evidence in the observed data
that the procedure is flawed.

5. RESPONSE TO ROBINS, SUED, LEI-GOMEZ
AND ROTNITZKY

The comments by Robins et al. contain many use-
ful observations and helpful references. Their simula-
tions that reverse the roles of #; and 1 — ¢; are instruc-
tive. However, in the process of arguing that we mis-
understood the message of Bang and Robins (2005),
they have apparently misunderstood ours. Their insinu-
ations of cherry-picking might be understandable if we
had been arguing for the superiority of [toLs, but that is
not what we have done. Quite honestly, we began this
investigation fully expecting to demonstrate the ben-
efits of dual modeling when neither model is exactly
true.

When Bang and Robins (2005) recommended cer-
tain DR procedures for routine use, they did so with-
out qualifications or cautionary statements. Now they
quote a passage from another article published five
years earlier, which Bang and Robins (2005) did not
cite, to demonstrate that this was not what they had in
mind. Readers cannot react to what they have in mind,
but only to what they write. Dr. Robins and his col-
leagues are eminent researchers, and their statements
carry considerable weight. The fact that they knew that
these estimators sometimes misbehave but failed to ac-
knowledge it makes their blanket recommendations in
2005 even more troubling.

For the record, we will clarify how we came up with
our simulated example. As mentioned in our Section 4,
we were trying to loosely mimic a quasi-experiment
to assess the average causal effect of dieting on body-
mass index among adolescent girls. We decided be-
forehand that y; should be predicted from the ob-
served x; with R ~ 0.80, as in the actual data. We
decided that the distributions of the estimated propen-
sity scores should resemble those in our Figure 3(e),
as in the actual data. We decided that the linear pre-
dictors from the y-model and w-model should have a
correlation of at least 0.5, as in the actual data, so that
Y1 = ;tiyi/ > ;ti would be a strongly biased as an
estimator of . We decided that the covariates in x;
should not be normally distributed, but they should not
be so heavily skewed that a data analyst would need to
transform them to reduce the leverage of a few large
values. We decided that x; must be a one-to-one trans-
formation of the unseen true covariates z; over the ef-
fective support of the z; (without this condition, non-
response would not be ignorable given x;). Finally, we
decided that the linear regression of y; and the logistic
regression of #; on x; would be misspecified to about
the same extent, in the sense that the correlations be-
tween the linear predictors from each model and the
corresponding true linear predictors would be about
0.9.

After considerable trial and error, we came up with
one example that met all of these criteria. As we ran
our simulations, we were truly surprised to see [(ioLs
perform as well as it did, consistently beating all com-
petitors. We expected that at least some of the DR es-
timators would improve upon [iors, but none did. In
fact, we were tempted to look for a different example
that would demonstrate some of the benefits of DR, but
we decided against it precisely because we wanted to
avoid cherry-picking.
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As Robins et al. deconstruct our simulated exam-
ple, they suggest that our misspecified linear model
E(y) = xl-T,B is so close to being true that figrs is
virtually guaranteed to outperform all competitors. If
that were so, then why did the DR estimators ,3WL5
and [igc.oLs not perform as well, as those estimators
were given the same opportunity to take advantage
of this nearly correct y-model? And, if that were so,
why would [iors perform so poorly in their simulations
when the roles of #; and 1 — #; were reversed?

The first plot in Figure 1 by Robins et al. reveals
that (a) the model for y; given the vector of true co-
variates z; is a linear with very high R? and (b) the
nonresponse is ignorable, so that P(y; | z;,; = 1) and
P(yi | zi, t; = 0) are the same. This plot implies that
conditions where the analyst is allowed to see the z;’s
are unrealistic, because knowing z; is essentially equiv-
alent to knowing y;. But this plot says nothing about
the performance of [igrs or any other estimator when
z; is hidden and the analyst sees only x;, which is
the only scenario that we have claimed is realistic. [In
fact, the first simulated example published by Bang and
Robins (2005) yields a similar picture, because their
true data-generating mechanism is also linear and their
R? is 0.94.] The conditional variance V(y; | z;) was
one of many parameters that we had to adjust to cre-
ate an example that satisfied all of the criteria that we
have mentioned. We tried to set V (y; | z;) to larger val-
ues, but doing so decreased the signal-to-noise ratio in
the observed data to the point where we no longer saw
meaningful biases in any estimators when n = 200.

With their Figure 2, Robins et al. purport to show
that our misspecified linear regression model fits so
well that the predicted values xiT /§ are essentially un-
biased predictions of the missing y;’s, which guaran-
tees excellent performance for figrs. They state, “We
can see that the predicted values of the nonrespon-
dents are reasonably centered around the straight line
even for those points with predicted values far from the
predicted values of the respondents.” On the contrary,
our linear model E(y;) = xl.T B does not give unbiased
predictions for nonrespondents or respondents, espe-
cially not in the region of extrapolation. To illustrate,
we took one simulated sample of n = 1000 observa-
tions, regressed y; on x; among the respondents, and
computed the regression predictions xl-T ,@ and resid-
uals y; — xiTB for both groups. A plot of the resid-
uals versus the regression predictions is displayed in
Figure 2, along with local polynomial (loess) trends.
Respondents are shown in black, and nonrespondents
are shown in gray. (For visual clarity, only 20% of the
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FIG. 2. Residuals versus predicted values for respondents
(t; = 1) (black dots) and nonrespondents (t; = 0) (gray dots) from
one sample of n = 1000 from our original simulation, with local
polynomial (loess) trends for each group. For visual clarity, only
20% of the sampled points are shown.

points are displayed, but the loess trends are estimated
from the full sample.) For each group, the least-squares
regression model strongly underpredicts near the cen-
ter and overpredicts at the extremes. The reason why
[oLs performs well in this example is not that the linear
model is approximately true, but that the positive and
negative residuals in the nonrespondent group approx-
imately cancel out. The average value of y; — xiT ,3 for
respondents is exactly zero (a consequence of OLS),
and the average value of y; — xl.T ,3 for nonrespondents
is close to zero. Over 1000 simulated samples, the av-
erage of y; — xl.T ,é among nonrespondents was 1.68.
Multiplying this by —0.5 (because the average nonre-
sponse rate is 50%) gives —0.84, the estimated bias for
[Lors reported in our Table 3.

Figure 2 also reveals why [1ors was not beaten in this
example by any of the dual-modeling methods. The
differences between the two loess curves in Figure 2
are not large, showing that the OLS predictions have
similar patterns of bias for respondents and nonrespon-
dents. When the predictions from a y-model are bi-
ased, and the biases are similar when t;, =1 and t; =0,
they are not easily corrected by an estimated propensity
model.

If we reverse the roles of #; and 1 — ¢;, as Robins et
al. have done, the situation dramatically changes. Tak-
ing the same sample of n = 1000, we regressed y; on
x; when t; = 0 and predicted the responses for both
groups. Residuals versus predicted values from this re-
verse fit are shown in Figure 3. (Once again, for vi-
sual clarity, only 20% of the sampled points are shown,
but the loess trends are estimated from the full sam-
ple.) For the #; = 0 group, the linear model underpre-
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FI1G. 3. Plot analogous to Figure 2, with the roles of t; and 1 — t;
reversed. Cases with t; =0 and t; = 1 are denoted by black and
gray dots, respectively, with local polynomial (loess) trends shown
for each group. For visual clarity, only 20% of the sampled points
are shown.

dicts at the center and overpredicts at the extremes,
and the average value y; = xl-T /§ is zero. But for the
t; = 1 group, the linear model consistently overpredicts
across the entire range, introducing a strong upward
bias into fiors.

This alternative simulation by Robins et al. is a clas-
sic example where patterns of bias in a linear y-model
cause [Lors to perform poorly. But because the pat-
terns are dramatically different when t;, =0 and t; = 1,
it is also a classic example where the failure can be
readily diagnosed and corrected by fitting a 7-model.
A plot of the residuals y; — xl-T B for the #; = 0 group
versus the linear predictors from a logistic propensity
model is shown in Figure 4. The plot, which is based
only on (x;, #;, (1 —#;)y;), shows a strong tendency for
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FIG. 4.  Scatterplot of residuals from a linear y-model fitto t; = 0
cases, versus linear predictors from a logistic w-model, with local
polynomial (loess) fit in one sample of n = 1000 from the alterna-
tive simulation study by Robins et al.

the linear y-model to overpredict when P(#; = 1) is
low or high. To correct this bias, we created a spline
basis as in expression (1), with knots at the sample
quintiles, and included the four extra terms as predic-
tors in the linear y-model. The performance of fiors
(which we would now call fiy.c.,) improved dramati-
cally, and the new estimator worked better than any of
the dual-modeling methods reported by Robins et al.
The performance statistics in the both-models-wrong
scenario were Bias = 2.21, Var. = 12.61 and MSE =
17.46 when n = 200, and Bias = 2.40, Var. = 1.88,
and MSE = 7.66 when n = 1000, which compare fa-
vorably to the results shown by Robins et al. in their
Table 2.

6. CONCLUDING REMARKS

As statisticians devise newer and fancier methods,
we hope to find one that is foolproof, yielding good
results no matter when and how it is applied. But the
search for a foolproof method is quixotic and futile.
Some procedures are, on balance, better than others,
but each one requires many subjective inputs, and none
should be applied routinely or uncritically. As we de-
velop better estimators, we should also strive to give
potential users a healthy dose of intuition about how
the procedures work, their limitations, sound recom-
mendations about their use, and diagnostics that can
help users decide when a procedure is trustworthy and
when it is not.

In conclusion, we believe that propensity modeling
is prudent and even necessary when rates of missing
information are high. But we are still not convinced
that estimated inverse propensities must always be used
as weights.
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