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Comment: Performance of Double-Robust
Estimators When “Inverse Probability”
Weights Are Highly Variable
James Robins, Mariela Sued, Quanhong Lei-Gomez and Andrea Rotnitzky

1. GENERAL CONSIDERATIONS

We thank the editor Ed George for the opportunity to
discuss the paper by Kang and Schaeffer.

The authors’ paper provides a review of double-
robust (equivalently, double-protected) estimators of
(i) the mean μ = E(Y ) of a response Y when Y is miss-
ing at random (MAR) (but not completely at random)
and of (ii) the average treatment effect in an observa-
tional study under the assumption of strong ignorabil-
ity. In our discussion we will depart from the notation
in Kang and Schaeffer (throughout, K&S) and use cap-
ital letters to denote random variables and lowercase
letter to denote their possible values.

In the missing-data setting (i), one observes n i.i.d.
copies of O = (T ,X,T Y ), where X is a vector of al-
ways observed covariates and T is the indicator that the
response Y is observed. An estimator of μ is double-
robust (throughout, DR) if it remains consistent and
asymptotically normal (throughout, CAN) when ei-
ther (but not necessarily both) a model for the propen-
sity score π(X) ≡ P(T = 1|X) = P(T = 1|X,Y ) or
a model for the conditional mean m(X) ≡ E(Y |X) =
E(Y |X,T = 1) is correctly specified, where the equal-
ities follow from the MAR assumption. The authors
demonstrate, via simulation, that when a linear logis-
tic model for the propensity score and a linear model
for the mean of Y given X are both moderately mis-
specified, there exists a joint distribution under which
the OLS regression estimator μ̂OLS of μ outperforms
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all candidate estimators that depend on a linear logistic
maximum likelihood estimate of the propensity score,
including all the DR estimators considered by the au-
thors.

Near the end of their Section 1, the authors state
that their simulation example “appears to be precisely
the type of situation for which the DR estimators of
Robins et al. were developed.” They then suggest that
their simulation results imply that the cited quotation
from Bang and Robins (2005) is incorrect or, at the
very least, misguided. We disagree with both the au-
thors’ statement and suggestion. First, the cited quote
neither claims nor implies that when a linear logistic
model for the propensity score and a linear model for
the mean of Y given X are moderately misspecified,
DR estimators always outperform estimators—such as
regression, maximum likelihood, or parametric (multi-
ple) imputation estimators—that do not depend on the
estimated propensity score. Indeed, Robins and Wang
(2000) in their paper “Inference for Imputation Estima-
tors” stated the following:

If nonresponse is ignorable, a locally semi-
parametric efficient estimator is doubly pro-
tected; i.e., it is consistent if either a model
for nonresponse or a parametric model for
the complete data can be correctly spec-
ified. On the other hand, consistency of
a parametric multiple imputation estimator
requires correct specification of a paramet-
ric model for the complete data. However,
in cases in which the variance of the ‘in-
verse probability’ weights is very large, the
sampling distribution of a locally semipara-
metric efficient (augmented inverse proba-
bility of response weighted) estimator can
be markedly skew and highly variable, and
a parametric imputation estimator may be
preferred.

The just-quoted cautionary message of Robins and
Wang (2000) is not far from K&S’s take-home mes-
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sage. In Section 5 we show that, in the authors’ simu-
lation example, the variance of the estimated “inverse
probability” weights is very large and the sampling dis-
tribution of their candidate DR estimators is skewed
and highly variable. It follows that their example is
far from the settings Bang and Robins had in mind
when recommending the “routine use of DR estima-
tors.” Rather, their example falls squarely into the class
for which Robins and Wang (2000) cautioned that a
parametric imputation estimator may be preferable to
DR estimators.

Even prior to Robins and Wang (2000), Robins, Rot-
nitzky and colleagues had published extensive warn-
ings about, and simulation studies of, the hazards of
highly variable “inverse probability” weights (Robins,
Rotnitzky and Zhao, 1995, pages 113–115; Scharf-
stein, Rotnitzky and Robins, 1999, pages 1108–1113),
although not specifically for DR estimators. Due to the
fact that the problem of highly variable weights was
not the focus of their paper and had already been dis-
cussed extensively in earlier papers by Robins and col-
leagues, Bang and Robins (2005) did not repeat Robins
and Wang’s (2000) cautionary message. In retrospect,
had they done so or had the authors been aware of
the Robins and Wang article, a misunderstanding could
perhaps have been averted.

Whenever the “inverse probability” weights are
highly variable, as in K&S’s simulation experiment,
a small subset of the sample will have extremely large
weights relative to the remainder of the sample. In this
setting, no estimator of the marginal mean μ = E(Y )

can be guaranteed to perform well. That is why, in such
settings, some “argue that inference about the mean
E(Y ) in the full population should not be attempted,”
to quote from the authors’ discussion. Yet, surpris-
ingly, in the authors’ simulation experiment, the regres-
sion estimator μ̂OLS performed very well with a mean
squared error (MSE) less than any of their candidate
DR estimators, all of which estimated the propensity
score by maximum likelihood under a linear logistic
model. The explanation is that, whether due to unusual
luck or to “cherry-picking,” the chosen data-generating
distribution was as if optimized to have μ̂OLS perform
well. Indeed, in Section 5, we “deconstruct” the cho-
sen distribution and show that it possesses a number
of specific, some rather unusual, features that together
served to insure μ̂OLS would perform well even under
K&S’s misspecified models.

Now, even were the chosen joint distribution of
(Y,T ,X) optimized to have μ̂OLS perform extremely
well as an estimator of E(Y ) on data (T Y,T ,X) in

which Y is observed only when T = 1, such optimiza-
tion would not guarantee that μ̂OLS would also perform
well on the data ((1 − T )Y,T ,X) in which Y is ob-
served only when T = 0. Based on this insight, in Sec-
tion 5, we repeat K&S’s simulation study, except based
on data ((1 − T )Y,T ,X) rather than data (T Y,T ,X),

and show that, indeed, μ̂OLS is now outperformed by
all candidate DR estimators in terms of both bias and
MSE.

In the analysis of real, as opposed to simulated data,
we do not know a priori whether the features of the
joint distribution of (Y,T ,X) do or do not favor μ̂OLS.

Furthermore, with highly variable “inverse probabil-
ity” weights, we generally cannot learn the answer
from the data, owing to poor power. This suggests
that, with highly variable weights, a single estimator,
whether μ̂OLS or a single DR estimator of the mean μ is
never adequate even with MAR data; rather an analyst
should either “not attempt to make inference about the
mean” or else provide a sensitivity analysis (in which
models for both the propensity score and the regression
of Y on X and estimators of μ are varied). In Section 6,
we sketch a possible approach to sensitivity analysis.

In this discussion we ask the following question: can
we find DR estimators that, under the authors’ cho-
sen joint distribution for (Y,T ,X), both perform al-
most as well as μ̂OLS applied to data (T Y,T ,X) and
yet perform better than μ̂OLS when applied to data
((1 − T )Y,T ,X). In Section 4 we describe the princi-
ples we used to search among the set of possible DR
estimators and discuss the expected performance of
various candidates. We define a general class of DR
estimators, which we refer to as “bounded,” that con-
tains the DR estimators that perform best in the setting
of highly variable “inverse probability” weights. We
further subdivide the class of bounded DR estimators
into two subclasses—bounded Horvitz–Thompson DR
estimators and regression DR estimators. We then de-
scribe various scenarios which favor one subclass over
the other. We also explain why certain DR estimators
perform particularly poorly in settings with highly vari-
able “inverse probability” weights. The performance
of our estimators is examined in the simulations re-
ported in Section 5, which both mimics the simula-
tions in S&K and also repeats it but now using data
((1 − T )Y,T ,X).

A major point emphasized by K&S was that, in
their simulations, the regression estimator μ̂OLS out-
performed any DR estimator when both their model for
the propensity score and for the regression of Y on X

(from now on referred to as the “outcome model”) were
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misspecified. However, they restricted attention to lin-
ear logistic propensity score models. In Section 3, we
show that μ̂OLS is CAN for μ when either (but not nec-
essarily both) a linear model for the inverse propensity
score, 1/π(X) = XT α, or a linear model XT β for the
conditional mean E(Y |X) is correctly specified. That
is, by definition, μ̂OLS itself is a DR estimator of μ

when the inverse linear model π(X) = 1/(XT α) for
the propensity score is substituted for K&S’s linear lo-
gistic model!

In K&S’s simulation experiment, the linear model
XT β and the model π(X) = 1/(XT α) are both mis-
specified. Yet, under their scenario, μ̂OLS did not “out-
perform any DR estimator that is CAN when either the
regression model XT β or the model π(x) = 1/(xT α)

is correctly specified,” precisely because μ̂OLS is one
such DR estimator! Of course, the model π(X) =
1/(XT α) would rarely, if ever, be used in practice as
the model does not naturally constrain π(X) to lie in
[0,1]. Nonetheless, understanding that μ̂OLS is a DR
estimator provides important insight into the meaning
and theory of double-robustness.

2. GENERAL FORM OF DOUBLE-ROBUST
ESTIMATORS

The authors note that many different DR estimators
exist and give a number of explicit examples. The au-
thors restrict attention to MAR data with missing re-
sponse. In this setting Robins (2000), Robins (2002),
Tan (2006) and van der Laan and Robins (2003) had
previously proposed a rather wide variety of DR es-
timators, in addition to the DR estimators of Robins
and colleagues considered by the authors. Moreover,
Scharfstein et al. (1999) and van der Laan and Robins
(2003) provided general methods for the construction
of DR estimators in models with MAR or coarsened
at random (CAR) data. Robins and Rotnitzky (2001)
described a general approach to the construction of DR
estimators (when they exist) in a very large model class
that includes all MAR and CAR models as well as cer-
tain nonignorable (i.e., non-CAR) missing data mod-
els. Recently, van der Laan and Rubin (2006) have de-
veloped a general approach called “targeted maximum
likelihood” that has overlap with methods in Scharf-
stein et al. (1999), Robins (2000, 2002) and Bang and
Robins (2005) in the setting of missing response data.
We will use the general methods of Robins and Rot-
nitzky (2001) to find a candidate set of DR estimators
among which we then search for ones that perform in
simulations as well as or better than those discussed by
S&K.

Most of the DR estimators of μ discussed by K&S
are of the general form

μ̂DR(π̂, m̂) = Pn{m̂(X)} + Pn

[
T

π̂(X)
{Y − m̂(X)}

]
or

μ̂B-DR(π̂ , m̂) = Pn{m̂(X)}
(1)

+ Pn[T/π̂(X){Y − m̂(X)}]
Pn{T/(π̂(X))} ,

where throughout, Pn(A) is a shortcut for n−1 ·∑n
i=1 Ai. Robins, Sued, Lei-Gomez and Rotnitzky

(2007) show that these estimators are solutions to
particular augmented inverse probability weighted
(AIPW) estimating equations. The AIPW estimating
equations are obtained by applying the general meth-
ods of Robins and Rotnitzky (2001) to the simple
missing-data model considered by K&S.

Quite generally, to construct m̂ and π̂ we specify
(i) a “working” parametric submodel for the propen-
sity score π(X) ≡ Pr(T = 1|X) of the form

π(·) ∈ {π(·;α) :α∈R
q},(2)

where π(x;α) is a known function, for example,
π(x;α) = {1 + exp(−xT α)}−1 as in S&K and, (ii) a
working parametric model for m(X) ≡ E(Y |X) of the
form

m(·) ∈ {m(·;β) :β∈R
p},(3)

where m(x;β) is a known function, for example,
m(x;β) = xT β as in S&K. We then obtain estima-
tors α̂ and β̂ which converge at rate n1/2 to some con-
stant vectors α∗ and β∗, which are, respectively, equal
to the true value of α and/or β when the correspond-
ing working model is correctly specified, and define
m̂(x) ≡ m(x; β̂) and π̂(x) ≡ π(x; α̂). [In fact, under
mild additional regularity conditions, the rate n1/2 can
be relaxed to nζ , ζ > 1/4, a fact which is critical when
the dimensions p and q of β and α are allowed to in-
crease with n as nρ , ρ < 1/2.]

Under regularity conditions, if either (but not nec-
essarily both) (2) or (3) is correct, μ̂DR(π̂, m̂) and
μ̂B-DR(π̂, m̂) are consistent and asymptotically normal
(CAN) estimators of μ.

In the special case in which (a) π(x;α) = {1 +
exp(−xT α)}−1 and m(x;β) = �(xT β) where � is a
known canonical inverse link function, and (b) α̂ is
the MLE of α and β̂ is the iteratively reweighted least
squares estimator of β among respondents (throughout
denoted as β̂REG) satisfying

Pn[T X{Y − �(XT β̂REG)}] = 0,(4)
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we shall denote m̂ with m̂REG and the resulting DR esti-
mators as μ̂DR(π̂ , m̂REG) and μ̂B-DR(π̂ , m̂REG). When
� is the identity, β̂REG is thus the OLS estimator of β .
In such case, μ̂DR(π̂ , m̂REG) is the estimator denoted
μ̂BC-OLS in S&K and μ̂B-DR(π̂ , m̂REG) is the estimator
in the display following (8) in S&K.

3. μ̂OLS AS A DR ESTIMATOR UNDER A LINEAR
INVERSE PROPENSITY MODEL

As anticipated in Section 1, in this section we will
argue that the regression estimator μ̂OLS is indeed a
DR estimator with respect to specific working models.
Suppose that we postulate the linear inverse propensity
model, that is, in (2) we take π(x;α) = 1/(αT x). It
follows from (4) that for any α ∈ �,

Pn

[
T

π(X;α)
{Y − m̂REG(X)}

]
= 0.(5)

Thus, the regression estimator μ̂OLS is indeed equal
to μ̂DR(π(·;α), m̂REG) for any α and therefore DR
with respect to the linear inverse propensity model
Psub,inv and the outcome model �(xT β) = xT β .

To estimate α in model Psub,inv we may use ei-
ther the estimator α̂inv or the estimator ˆ̂αinv that, re-
spectively, minimize the log-likelihood Pn[T log{π(X;
α)} + {1 − T } log{1 − π(X;α)}] or squared norm
‖Pn[{ T

π(X;α)
− 1}X]‖2 both subject to the constraints

π(Xi;α) ≥ 0, i = 1, . . . ,N. Under regularity condi-
tions, α̂inv and ˆ̂αinv converge in probability to quan-
tities α∗

inv and α∗∗
inv with the property that when model

Psub,inv is correctly specified, π(X;α∗
inv) and π(X;α∗∗

inv)

are equal to the propensity score P(T = 1|X).

4. DOUBLE-ROBUST ESTIMATORS WITH
DESIRABLE PROPERTIES

4.1 Boundedness

We would like to have DR estimators of μ = E(Y )

with the “boundedness” property that, when the sam-
ple space of Y is finite, they fall in the parameter space
for μ with probability 1. Neither μ̂DR(π̂, m̂REG) nor
μ̂B-DR(π̂ , m̂REG) has this property. We consider two
separate ways to guarantee the “boundedness” prop-
erty.

First, suppose that we found DR estimators that
could be written in the IPW form

Pn{YT/π̂(X)}/Pn{T/π̂(X)}(6)

for some nonnegative π̂(·). Then the property would
hold for such estimators. Specifically, the quantity in

the last display is a convex combination of the ob-
served Y -values and thus always lies in the interval
[Ymin, Ymax] with endpoints the minimum and maxi-
mum observed Y -values. But, [Ymin, Ymax] is included
in the parameter space for μ because μ is the popula-
tion mean of Y .

Note that division by Pn{T/π̂(X)} is essential to
ensure that (6) is in [Ymin, Ymax]. In particular, the
Horvitz–Thompson estimator μ̂HT = Pn{YT/π̂(X)}
does not satisfy this property. For example, if Y is
Bernoulli, (6) lies in [0,1] but μ̂HT may lie outside
[0,1]. For instance, this will be the case if in the sample
there exists a unit with T = 1, π̂(X) < 1/n and Y = 1
since then μ̂HT will be greater than 1. Indeed, when
we carried out 1000 Monte Carlo replications of Kang
and Schaeffer’s simulation experiment for sample size
n = 1000 using their misspecified analysis model for
π(x), we found in one particularly anomalous replica-
tion, a simulated unit with T = 1 but with the unusually
small estimated propensity π̂(X) < 1/17,000. Thus,
had we simulated Y from a Bernoulli rather than from
a normal distribution, we would have had μ̂HT > 17 for
this anomalous replication!

The desire that an estimator falls in the interval
[Ymin, Ymax] is in conflict with the desire that it be
unbiased, as we now show. Suppose the propensity
score function π(x) were known. The set of exactly
unbiased estimators of μ (that are invariant to per-
mutations of the index i labeling the units) are con-
tained in the set {Pn[T {Y − q(X)}/π(X) + q(X)]}
as q(X) varies. It follows that no unbiased estimator
of μ exists for Y Bernoulli that is guaranteed to fall
in [Ymin, Ymax]. Taking q(X) identically zero, we ob-
tain μ̃HT = Pn{YT/π(X)}. Suppose that in an actual
study of 1000 subjects, a rare fluctuation had occurred
and there was a subject with T = 1 whose propensity
score π(X) was less than 1/17,000 so μ̃HT > 17. We
doubt any scientist could be convinced to publish the
logically impossible estimate μ̃HT for the mean of a
Bernoulli Y , with the argument that only then would
his estimator of the mean be exactly unbiased over hy-
pothetical repetitions of the study that, of course, nei-
ther have occurred nor will occur. Exactly analogous
difficulties arise for any other choice of q(X). With
highly variable weights, “boundedness” trumps unbi-
asedness.

Second, the boundedness property also holds for DR
estimators that can be written in the regression form

Pn{m̂(X)}(7)

with m̂(x) = �(xT β̂ + h(x)T γ̂ ) for some specified
function h(·) and an inverse link function � satisfying
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inf Y ≤ �(u) ≤ sup Y for all u, where Y is the sample
space of Y. This follows because (i) Pn{m̂(X)} falls
in the interval [m̂min, m̂max], with m̂min and m̂max the
minimum and maximum values of m̂(X) among the n

sample units and, (ii) the above choice of �(·) guar-
antees that [m̂min, m̂max] is contained in the parameter
space for μ.

Neither the estimator μ̂DR(π̂, m̂REG) nor the estima-
tor μ̂B-DR(π̂ , m̂REG) of Section 2 satisfies the “bound-
edness” property. Note, however, that μ̂B-DR(π̂, m̂)

satisfies |μ̂B-DR(π̂, m̂)| < maxi=1,...,n |Yi − m̂(Xi)| +
maxi=1,...,n |m̂(Xi)|. Thus when Y is Bernoulli and
m(X) = �(XT β) for � any inverse link with range in
[0,1], we have that |μ̂B-DR(π̂ , m̂)| < 2, so it is within
a factor of 2 of lying in the parameter space. In con-
trast, when Y is Bernoulli, μ̂DR(π̂, m̂), like μ̂HT , can
be extremely large.

In the next sections, we describe general approaches
to constructing DR estimators that can be written in the
form (6) or the form (7). Thus it is important to deter-
mine whether DR estimators that satisfy (6) perform
better or worse than those satisfying (7) when mod-
els for both m(·) and π(·) are wrong. Unfortunately,
no general recommendation can be given because the
answer will depend on the specific data generating
process and models used to estimate m(·) and π(·). For
example, suppose that as in Kang and Schaeffer’s sim-
ulation experiment, Y is continuous, var(Y |X) = σ 2

does not depend on X, � is the identity link and we
estimate the model XT β for m(X) = E(Y |X) by OLS.
When (i) σ 2/Var(Y ) is near zero and (ii) there exist
a number of nonrespondent units j (i.e., units j with
Tj = 0) whose values xj of X lie far outside the con-
vex hull of the set of values of X for the subsample
of respondents, then yj and m(xj ) will be close to
one another but not to m̂REG(xj ) except if, by luck,
the model E(Y |X) = XT β is so close to being cor-
rect that the fit of the model to the subsample of re-
spondents allows successful linear extrapolation to X’s
far from those fitted. As we shall see, it is precisely
such “luck” that explains the good performance of
μ̂OLS in the authors’ simulation experiment. Without
such luck, the estimator Pn{m̂REG(X)} may perform
poorly compared to Pn{YT/π̂(X)}/Pn{T/π̂(X)}, ow-
ing to unsuccessful linear extrapolation. On the other
hand, when σ 2/Var(Y ) is close to 1 and very few
units with T = 0 have values of X far outside the con-
vex hull of the set of X’s in the respondents subsam-
ple, Pn{m̂REG(X)} will generally perform better than
Pn{YT/π̂(X)}/Pn{T/π̂(X)},as the latter may be dom-
inated by the large weights 1/π̂(X) assigned to respon-

dents who have both very small values of π̂(X) and
large residuals Y − m(X).

4.1.1 Regression double-robust estimators. We re-
fer to DR estimators satisfying (7) as regression DR
estimators. They are obtained by replacing m̂REG in
μ̂DR(π̂, m̂REG) with m̂(X) satisfying

Pn

[
T

π̂(X)
{Y − m̂(X)}

]
= 0.(8)

Here we describe three such estimators, though others
exist (Robins et al., 2007).

The first one, proposed in Scharfstein et al. (1999)
and discussed further in Bang and Robins (2005), is
the estimator in K&S’s Table 8. To compute this es-
timator one considers an extended outcome model of
the form �(XT β + ϕπ̂(X)−1) adding the covariate
π̂(X)−1 (i.e., the inverse of the fitted propensity score).
One then jointly estimates (β,ϕ) with (β̃, ϕ̃) satisfy-

ing Pn[T {Y − �(XT β̃ + ϕ̃π̂ (X)−1)}
[

π̂(X)−1

X

]
] = 0.

The first row of this last equation is precisely (8)
with m̂(X) replaced with the fitted regression function
m̂EXT-REG(X) = �(XT β̃ + ϕ̃π̂ (X)−1). Consequently,
μ̂DR(π̂, m̂EXT-REG) = Pn{m̂EXT-REG(X)}. This estima-
tor is CAN provided either the model π(x;α) for
the propensity score π(x) or the model �(xT β) for
E(Y |X = x) is correct. In fact, it is CAN even if model
�(xT β) is incorrect provided the model �(XT β +
ϕ{π(X;α∗)}−1) is correct, where α∗ is the probability
limit of the estimator α̂ of α. In particular, as indicated
in the previous subsection, if Y is Bernoulli and � is
the inverse logit link, μ̂DR(π̂ , m̂EXT-REG) is always in
[0,1].

Nonetheless, when Y is continuous and � is the
identity, |μ̂DR(π̂, m̂EXT-REG)| can be disastrously large
when the estimated inverse probability weights π̂

(X)−1 are highly variable. Specifically, when π̂(X)−1

is highly variable, it could very well happen that in
most repeated samples the largest value of π̂−1 among
nonrespondents is manyfold greater than the largest
value among the respondent subsample. [E.g., a typ-
ical Monte Carlo replication of Kang and Schaeffer
under the wrong propensity score model had a largest
π̂(X)−1 of 80 in the respondent subsample but a largest
π̂(X)−1 of 1800 in the nonrespondent subsample.] In
such cases, enormously greater extrapolation would be
required with model �{XT β + ϕπ̂(X)−1} than with
model �(XT β) to obtain fitted values for Y in the non-
respondent subsample, clearly a problem if the extrap-
olation model �{XT β +ϕπ̂(X)−1} is also wrong. This
phenomenon explains the disastrous performance of
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μ̂DR(π̂, m̂EXT-REG) observed in K&S’s Table 8 when
both the model for the propensity score and the out-
come model are wrong.

A second DR estimator with the regression form (7)

is immediately obtained by estimating the parameter
β of the model E(Y |X) = �(XT β) with the weighted
least squares estimator β̂WLS that uses weights 1/π̂(X).
By definition, the estimator β̂WLS satisfies

Pn

[
T

π̂(X)
{Y − �(XT β̂WLS)}X

]
= 0

and consequently (8) is immediately true for m̂(X)

equal to m̂WLS(X) = �(XT β̂WLS) when, as we al-
ways assume in this discussion, the first component
of X is the constant 1. It therefore follows that when
model �(XT β) has an intercept, μ̂DR(π̂ , m̂WLS) =
Pn(m̂WLS). The estimator μ̂DR(π̂, m̂WLS) is called
μ̂WLS in K&S.

With highly variable π̂(X)−1 and incorrect mod-
els for both π(X) and E(Y |X), we would expect
μ̂DR(π̂, m̂WLS) to outperform μ̂DR(π̂, m̂EXT-REG) be-
cause it does not have the severe extrapolation problem
of μ̂DR(π̂, m̂EXT-REG). This expectation is dramatically
borne out in K&S’s simulations.

Some years ago, Marshall Joffe pointed out to us
that μ̂DR(π̂ , m̂WLS) was double-robust and asked us if
it had advantages compared to μ̂DR(π̂ , m̂EXT-REG). At
the time we had not realized that μ̂DR(π̂, m̂EXT-REG)

would perform so very poorly in settings with highly
variable π̂ (X)−1, so we told him that it probably of-
fered no particular advantage. Based on our bad advice,
Joffe never published a paper on μ̂DR(π̂, m̂WLS) as a
DR estimator. To our knowledge, Kang and Schaeffer
are the first to do so. We note that Kang and Schaeffer
do not consider μ̂DR(π̂, m̂WLS) to be an AIPW DR esti-
mator. However, the above derivation shows otherwise.

Even μ̂DR(π̂, m̂WLS) may not perform well in some
instances. For example, if Var(Y |X) = σ 2 is constant,
σ 2/Var(Y ) is near 1 and a number of nonrespondents
have X lying far outside the convex hull of the re-
spondents’ X values, then μ̂DR(π̂, m̂WLS) may perform
poorly. This is because the subjects who have the great-
est π̂(X)−1 in the respondents’ subsample will have
enormous leverage which can force their residual to
be nearly zero, which is a problem particularly when
σ 2/Var(Y ) is near 1 and the model �(XT β) is mis-
specified, as then extrapolation to the X’s far from the
convex hull will be poor.

The third DR regression type estimator is an exten-
sion of the estimator μ̂IPW-NR in Kang and Schaeffer.
To compute this estimator we extend the regression

model �(XT β) by adding the covariate π̂(X) (rather
than its inverse) to obtain �{XT β + ϕπ̂(X)} and then
jointly estimate (β,ϕ) with the estimator (β̃, ϕ̃) satis-
fying

Pn

[
T

π̂(X)

{
Y − �

(
XT β̃ + ϕ̃π̂ (X)

)} [
π̂(X)

X

]]
= 0.

Because we have assumed the vector X has one com-
ponent equal to the constant 1, (8) is satisfied with
m̂(X) equal to m̂DR-IPW-NR(X) = �{XT β̃ + ϕ̃π̂ (X)}.
Thus, μ̂DR(π̂, m̂DR-IPW-NR) = Pn(m̂DR-IPW-NR). Fur-
thermore, since by construction, Pn[T {Y −
m̂DR-IPW-NR(X)}] = 0, then μ̂DR(π̂, m̂DR-IPW-NR) is
also equal to Pn{T Y + (1 − T )m̂DR-IPW-NR(X)}. Be-
cause π̂(X) is bounded between 0 and 1, adding
the covariate π̂ (X) to model �(XT β), in contrast to
adding π̂(X)−1, does not induce model extrapolation
problems like the ones discussed above for μ̂DR(π̂,

m̂EXT-REG). We speculate that μ̂DR(π̂, m̂DR-IPW-NR)

will behave much better than μ̂DR(π̂, m̂EXT-REG) and
possibly similarly to μ̂DR(π̂, m̂WLS) when π̂(X)−1 has
high variance. Indeed, we have observed this behavior
in the simulation study of Section 5; however, due to
space limitations, results for μ̂DR(π̂, m̂EXT-REG) were
not reported as they were qualitatively similar to those
reported in K&S.

Finally, the estimator μ̂DR(π̂ , m̂EXT-REG) with � the
identity link is also an example of a DR targeted max-
imum likelihood estimator of the marginal mean μ in
the sense of van der Laan and Rubin (2006). We thus
conclude from the above discussion that with highly
variable π̂(X)−1 and incorrect parametric models for
π(X) and E(Y |X), certain targeted maximum likeli-
hood estimators can perform much worse than the ad
hoc estimator μ̂DR(π̂, m̂WLS).

4.1.2 Bounded Horvitz–Thompson double-robust
estimators. We refer to DR estimators satisfying (6)

as bounded Horvitz–Thompson DR estimators. They
are obtained by replacing π̂ in μ̂B-DR(π̂, m̂REG) with
π̂EXT satisfying

Pn

[(
m̂REG(X) − μ̂REG

)( T

π̂EXT(X)
− 1

)]
= 0(9)

where μ̂REG = Pn[m̂REG(X)]. We can obtain such a
π̂EXT(·) by considering the extended logistic model
πEXT(X) = expit{αT X + ϕh(X)} with h(X) a user-
supplied function and estimating ϕ with ϕ̃PROP-GREED
solving

Pn

[{
T

expit(α̂T X + ϕh(X))
− 1

}

· {m̂REG(X) − μ̂OLS}
]

= 0
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where α̂ is the MLE of α in the model π(X) =
expit(αT X). Then π̂EXT(X) = expit{α̂T X +
ϕ̃PROP-GREEDh(X)} satisfies (9) and consequently
μ̂B-DR(π̂EXT , m̂REG) is of the form (6). A default
choice for h(X) would be m̂REG(X) − μ̂OLS.

Interestingly, the OLS estimator μ̂OLS can be viewed
not only as a DR estimator, as seen in Section 3, but
also as a bounded Horvitz–Thompson DR estimator!
Specifically, suppose that ˆ̂αinvis used to estimate α in
the propensity model π(X;α) as in Section 3, except
that without imposing the constraints, so that indeed,
ˆ̂αinv solves 0 = Pn[{ T

π(X;α)
− 1}X]. Then

Pn

[{
T

π(X; ˆ̂αinv)
− 1

}(
m̂REG(X) − μ̂OLS

)] = 0

and μ̂OLS is equal to the inverse probability weighted
estimator

Pn

{
T

π(X; ˆ̂αinv)
Y

}/
Pn

{
T

π(X; ˆ̂αinv)

}
.

Robins (2001) and van der Laan and Rubin (2006)
describe particular bounded Horvitz–Thompson DR
estimators μ̂(∞) that are obtained by iterating to
convergence a sequence μ̂(j) of estimators that are
not themselves bounded Horvitz–Thompson estima-
tors. However, the Robins (2001) estimator performed
poorly in our simulations (results not shown) and no
simulation study of the van der Laan and Rubin (2006)
estimator has been published to our knowledge with
highly variable inverse probability weights. In fact, van
der Laan and Rubin (2006) describe an estimator μ̂(∞)

that is simultaneously a bounded Horvitz–Thompson
and a regression DR estimator that is obtained by it-
erating to convergence a sequence μ̂(j) of estimators
without this dual property. Again we do not know of a
simulation study showing that the estimator generally
performs well in practice with highly variable inverse
probability weights.

5. SIMULATION STUDIES

To investigate the nature of the surprisingly good
performance of the regression estimator μ̂OLS in the
simulation study of K&S and to evaluate the perfor-
mance of the additional estimators described in Sec-
tion 4, we replicated the simulation study of K&S.
Table 1 reports the Monte Carlo bias, variance and
mean squared error for twelve different estimators of
μ = 210, sample sizes n = 200 and 1000 and the
four possible combinations of model specifications for
the propensity score and the conditional mean of the

response given the covariates (the latter referred to
throughout as the outcome model).

The estimators reported in rows 1 and 9, rows 3
and 11, rows 4, 12, 17 and 22 and rows 5, 13, 18 and
23 are, respectively, the estimators μ̂OLS, μ̂IPW-POP,

μ̂BC-OLS and μ̂WLS investigated by K&S. Through-
out we use the notational conventions of Sections
2–4, and thus we rename μ̂BC-OLS and μ̂WLS with
μ̂DR(π̂, m̂REG) and μ̂DR(π̂ , m̂WLS), respectively. The
estimator μ̂HT is the Horvitz–Thompson type estimator
Pn{T Y/π̂(X)}. All remaining estimators are DR esti-
mators of μ and are defined in Sections 2 and 4.

When both working models are correct, theory
indicates that all DR estimators are CAN, asymptot-
ically equivalent, and efficient in the class of esti-
mators that are CAN even if the outcome model is
incorrect. We were not surprised then to find that all
DR estimators reported in rows 4–8 of Table 1 per-
formed identically and were more efficient than the in-
efficient IPW estimators μ̂IPW-POP and μ̂HT . However,
the near-identical behavior of the regression estimator
μ̂OLS caught our attention. The estimator μ̂OLS is the
maximum likelihood estimator of μ, and hence effi-
cient, in a semiparametric model that assumes a para-
metric form for the conditional mean of Y given the
covariates. Thus, we would have expected it to have
smaller variance than that of the DR estimators of μ,
because when both the propensity score model and
the regression model are correct, the latter attains the
semiparametric variance bound in the less restrictive
(nonparametric) model that does not impose restric-
tions on the conditional mean of Y. A closer exam-
ination of the data generating process used by K&S
explains this unusual behavior. Under S&K data gen-
erating process Yi = 210 + 13.7Z∗

i + εi , where Z∗
i =

2Z1i + ∑4
j=2Zji, with Zji, j = 1, . . . ,4, and εi mutu-

ally independent N(0,1) random variables. But under
this process Z∗

i , and hence Zi = (Z1i ,Z2i ,Z3i ,Z4i),

is an essentially perfect predictor of Yi : the residual
variance var(Yi |Z∗

i ) is equal to var(Yi)/195. This strik-
ing feature of K&S data generating process is illus-
trated in Figure 1. The figure shows a scatterplot of Y

versus the predicted values from the fit of the correct
outcome model to the respondents in a random sample
of n = 200 units. Dark dots correspond to data points
of respondents. White dots correspond to the simulated
missing outcomes Yi of the nonrespondents plotted
against the predicted values Z′

i β̂ . The white dots follow
nearly perfectly a straight line through the origin and
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TABLE 1
Results for simulation study as in K&S

Sample size 200 Sample size 1000

Row Estimator Bias Var MSE Bias Var MSE

Both models right
1 μ̂OLS 0.13 5.97 5.98 −0.03 1.41 1.41
2 μ̂HT −0.08 148.92 148.92 0.17 26.46 26.49
3 μ̂IPW-POP −0.06 14.12 14.13 −0.03 3.43 3.43
4 μ̂DR(π̂, m̂REG) 0.13 5.96 5.98 −0.03 1.41 1.41
5 μ̂DR(π̂, m̂WLS) 0.13 5.97 5.98 −0.03 1.41 1.41
6 μ̂DR(π̂, m̂DR-IPW-NR) 0.13 5.97 5.98 −0.03 1.41 1.41
7 μ̂B-DR(π̂ , m̂REG) 0.13 5.96 5.98 −0.03 1.41 1.41
8 μ̂B-DR(π̂EXT , m̂REG) 0.13 5.97 5.98 −0.03 1.41 1.41

Both models wrong
9 μ̂OLS −0.39 10.91 11.06 −0.83 2.19 2.88

10 μ̂HT 16.87 4110.86 4395.39 38.97 39933 41452
11 μ̂IPW-POP 1.67 73.39 76.17 4.81 108.86 131.95
12 μ̂DR(π̂, m̂REG) −4.90 145.93 169.91 −13.91 6853.68 7047.12
13 μ̂DR(π̂, m̂WLS) −2.01 10.70 14.74 −2.98 2.20 11.08
14 μ̂DR(π̂, m̂DR-IPW-NR) −1.76 11.82 14.90 −2.49 1.81 8.02
15 μ̂B-DR(π̂ , m̂REG) −3.82 40.07 54.65 −8.03 128.61 193.13
16 μ̂B-DR(π̂EXT , m̂REG) −2.25 11.77 16.82 −3.33 3.44 14.54

π -model right, outcome model wrong
17 μ̂DR(π̂, m̂REG) 0.55 11.82 12.12 0.07 2.81 2.82
18 μ̂DR(π̂, m̂WLS) 0.65 8.82 9.24 0.16 1.90 1.93
19 μ̂DR(π̂, m̂DR-IPW-NR) 0.06 7.39 7.40 −0.10 1.58 1.59
20 μ̂B-DR(π̂ , m̂REG) 0.56 11.51 11.83 0.08 2.79 2.80
21 μ̂B-DR(π̂EXT , m̂REG) 0.53 9.41 9.69 0.11 2.08 2.09

π -model wrong, outcome model right
22 μ̂DR(π̂, m̂REG) 0.14 5.95 5.97 −0.03 1.77 1.77
23 μ̂DR(π̂, m̂WLS) 0.13 5.97 5.98 −0.03 1.41 1.41
24 μ̂DR(π̂, m̂DR-IPW-NR) 0.13 5.97 5.98 −0.03 1.41 1.41
25 μ̂B-DR(π̂ , m̂REG) 0.13 5.96 5.97 −0.02 1.43 1.43
26 μ̂B-DR(π̂EXT , m̂REG) 0.13 5.96 5.98 −0.02 1.42 1.42

with slope 1: the predicted values are essentially per-
fect predictors of the missing outcomes! When the out-
come and propensity score models are correctly spec-
ified, the asymptotic variance of the DR estimator is
equal to var(Y ) + var[π(Z){1 − π(Z)}−1 var(Y |Z)].
When Z is a perfect predictor of Y, this variance re-
duces to var(Y ), the variance of the standardized dis-
tribution of μ̂FULL, the sample mean of Y of respon-
dents and nonrespondents. This is not surprising be-
cause it is well known that, when the outcome model
is correctly specified, a DR estimator asymptotically
extracts all the information available in Z to predict
Y. Since the regression estimator μ̂OLS cannot be more
efficient than μ̂FULL, we conclude that μ̂OLS and the
DR estimators should have nearly identical variance
when Z is an almost perfect predictor of Y and indeed
this variance should be also almost the same as that

of the infeasible estimator μ̂FULL. In our study we had
simulated the outcomes of the nonrespondents. Thus,
we were indeed able to compute μ̂FULL and its Monte
Carlo variance. As expected, the Monte Carlo variance
of μ̂FULL was essentially the same as that of μ̂OLS for
both sample sizes.

Theory also indicates that the IPW estimators
μ̂IPW-POP and μ̂HT of rows 2 and 3 should be CAN.
However, in our simulations, these estimators were
nearly unbiased but their sampling distribution was
skewed to the right and had very large variance. Fig-
ure 2 shows smooth density estimators for these sam-
pling distributions for sample sizes n = 200 and n =
1000. The skewness and large variance of the IPW esti-
mators were caused by few samples which had respon-
dents with large values of Y and very large weights
1/π̂ . Specifically, in most samples, the true π values of
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FIG. 1. K&S simulation experiment. Outcomes vs predicted values. Sample size 200. Top: correct y model. Bottom: wrong y model. Dashed
line is the line Y = X. Dark dots: respondents. White dots: nonrespondents.
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the respondents were not too small, and consequently
the weights 1/π̂ not too large, precisely because by
the very definition of π, having a respondent with a
small π is a rare event. In the data generating process
of K&S, π(Z) is negatively correlated with Y ; the cor-
relation is roughly equal to −0.6. Thus, in most sam-
ples, the 1/π̂ -weighted mean of the Y values of the
respondents tended to be smaller than μ. However, in a
few samples, some anomalous respondent had a small
value of π. In the computation of μ̂HT , this anomalous
respondent carried an unusually large weight 1/π̂ and
because his Y value tended to be larger than the mean
μ, the estimator μ̂HT in those rare samples tended to be
substantially larger than μ. The skewness lessens as the
sample size increases because with large sample sizes,
the number of samples which have respondents with
small values of π also increases. The skewness is also
substantially less severe for μ̂IPW-POP compared to that
of μ̂HT also as expected since, as discussed in Sec-
tion 4.1, in any given sample, |μ̂IPW-POP| is bounded
by the largest observed |Y | value.

Although the Monte Carlo sampling distribution of
the IPW estimators gives a rough idea of the shape of
the true sampling distribution of these estimators, nei-
ther the Monte Carlo bias nor the Monte Carlo variance
should be trusted. One thousand replications are not
enough to capture the tail behavior of highly skewed
sampling distributions, and as such cannot produce re-
liable Monte Carlo estimates of bias, much less of vari-
ance.

Turn now to the case in which the propensity score
model is correct but the outcome model is incorrect.
Theory indicates that the DR estimators of rows 17 to
21 of Table 1 should be CAN. However, in our simula-
tions nearly all the DR estimators were slightly biased
upward. Nevertheless, all DR estimators performed as
well as or better, in terms of MSE, than the OLS esti-
mator of row 9.

Consider now the case in which the propensity score
model is incorrect but the outcome model is correct.
Once again, the almost identical performance of all DR
estimators in rows 22–26 of Table 1 with that of the
OLS estimator of row 1 is no surprise after recalling
that Z is a perfect predictor of Y . Specifically, the fact
that Z∗

i is a nearly perfect predictor of Yi implies that
m̂(Zi) is almost identical to the outcome Yi regardless
of whether unit i is a respondent or a nonrespondent
and regardless of whether m̂(Zi) was fit by ordinary
least squares or by weighted least squares. Thus, the
average of m̂(Zi) is essentially the same as μ̂FULL and

the sum of Tiπ̂
−1
i (Yi − m̂(Zi)) is almost zero regard-

less of the model under which π̂ was computed. Con-
sequently, all DR estimators must be nearly the same
as the infeasible full data sample mean μ̂FULL.

Finally, turn to the case in which both propensity
score and the outcome models are wrong. The perfor-
mance of the IPW estimators is disastrous as well as
that of the DR estimator in row 12 and, to a lesser ex-
tent, that of the estimator in row 15. Figure 3 shows
smooth density estimators of the sampling distribu-
tion of these four estimators when the sample size is
1000. The estimators μ̂HT and μ̂IPW-POP have dis-
tributions heavily skewed to the right while the es-
timators μ̂DR(π̂ , m̂REG) and μ̂B-DR(π̂, m̂REG) have
distributions heavily skewed to the left. The skew-
ness is far more dramatic for the estimators μ̂HT and
μ̂DR(π̂, m̂REG) than for their counterparts μ̂IPW-POP
and μ̂B-DR(π̂ , m̂REG), reflecting the fact that μ̂IPW-POP
and μ̂B-DR(π̂, m̂REG) are bounded in the sense de-
scribed in Section 4.1 while μ̂HT and μ̂DR(π̂, m̂REG)

are unbounded. [Indeed, to avoid distortions, in con-
structing the density plots of μ̂HT and μ̂DR(π̂, m̂REG)

we have omitted the extreme values of 5873 and
−2213, respectively, from one simulation replication.]
Rows 12 and 14 of Table 1 report that the Monte Carlo
bias and variance indeed are even larger for n = 1000
than for n = 200. The extreme distribution skewness
and the increase in bias and variance with sample size
are explained as follows. As noted earlier, even when
the π ’s are estimated from a correct model, the distri-
bution of μ̂HT and μ̂IPW-POP will tend to be skewed
to the right when 1/π is positively correlated with Y

because of the presence of a few unusual samples with
anomalous respondents with large Y values and small
π values. Now, because of the nature of the wrong an-
alytic propensity score model used in the simulations,
the estimated π̂ ’s corresponding to the anomalous units
in the unusual samples were many times smaller than
the true π ’s. As a consequence the, usually large, val-
ues of Y of the anomalous units essentially determined
the values of μ̂HT and μ̂IPW-POP in the unusual samples
and consequently, exacerbated even more the skew-
ness of the Monte Carlo sampling distribution of the
IPW estimators. The larger bias and variance when
n = 1000 than when n = 200 were due to two repli-
cations with sample size 1000 in which the values of
the estimators were extreme [specifically, μ̂HT = 1475
and 2884, and μ̂DR(π̂ , m̂REG) = −2213 and −175].
These outlying values were caused by one anomalous
nonrespondent in each sample with large values of Y

(the second largest Y values in one sample and the
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FIG. 2. Distributions of μ̂HT and μ̂IPW-POP under correct propensity score models.

largest in the other). For these units, the 1/π values
were 38.7 and 50.9 but 1/π̂ were 17,068 and 399, re-
spectively. When the two samples with these anom-
alous units were removed, the variance of the estima-
tors μ̂HT and μ̂DR(π̂, m̂REG) decreased to 6729 and
890, respectively. The paradoxical increase in Monte
Carlo variance with sample size is but another proof
that the Monte Carlo variance in simulations with 1000
replications is not a reliable estimator of the true vari-
ance for estimators with highly skewed distributions.

The different directionality of the skewness of the IPW
and DR estimators is explained as follows. In the com-
putation of μ̂DR(π̂ , m̂REG) and μ̂B-DR(π̂ , m̂REG) we
inverse probability weight the values of (m̂REG − Y).

Consequently since, as indicated below, under K&S’s
wrong analytic outcome model, m̂REG was reasonably
bounded; thus, in the few unusual samples, the anom-
alous units with small π ’s had large and negative val-
ues of (m̂REG − Y) and produced extremely small val-
ues of the DR estimators.
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FIG. 3. Distributions of μ̂HT , μ̂IPW-POP, μ̂DR(π̂ , m̂REG) and μ̂B-DR(π̂ , m̂REG) under incorrect propensity score and outcome models.

The performance of the remaining DR estimators in
rows 13, 14 and 16 is heterogeneous. Some, though
still biased, have bias and variance orders of mag-
nitude smaller than the variance of the estimators
μ̂DR(π̂, m̂REG) and μ̂B-DR(π̂ , m̂REG).

In a second simulation experiment described below,
the relative performance of the DR estimators was
somewhat different than in this simulation study and,
as we explain later, better than that of the regression es-
timator μ̂OLS. This attests to the obvious fact that when
the propensity score and outcome models are both in-

correct we cannot expect to find a single clear winner.
The relative performance of the estimators will very
much depend on the data generating process and the
nature of the model misspecifications.

To understand why the regression estimator μ̂OLS

performed so remarkably well when both models were
wrong, we first note that because the outcome model
was a linear regression model with an intercept fitted
by ordinary least squares in the respondent subsam-
ple, the sum of the predicted values X′β̂ and the sum
of Y in the respondent subsample are the same. Thus,
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FIG. 4. Y vs predicted values in one sample of size 1000 generated under K&S experiment. Dashed line is the line Y = X. Dark dots:
respondents. White dots: nonrespondents.

μ̂OLS = (nobs/n)Y obs + (nmiss/n) (X′β̂)miss, where

(X′β̂)miss is the average of the predicted values for
the missing outcomes. The bias of μ̂OLS therefore de-

pends on the bias of (X′β̂)miss as an estimator of the
mean of Y in the nonrespondent subpopulation. If, due
either to good luck or “cherry picking,” the predic-
tion function x′β̂ from a misspecified regression model
x′β successfully extrapolates to the covariates of non-
respondents, even when these are far from the con-
vex hull of covariates in the respondent subsample,

(X′β̂)miss − Y miss will be roughly centered around 0,
and consequently μ̂OLS will be a nearly unbiased esti-
mator of the mean of Y . We now show this phenom-
enon explains the excellent performance of μ̂OLS in
Kang & Schaeffer’s simulation. In Figure 4 we plot-
ted the outcomes Y versus the predicted values X′β̂ in
the previously mentioned unusual sample of size 1000
with both the propensity and outcome models mis-
specified, where μ̂DR(π̂, m̂REG), μ̂B-DR(π̂, m̂REG) and
the IPW estimators did disastrously due to the pres-
ence of one anomalous unit with extremely small π̂ .

The dark dots correspond to the observed data values
of the respondents. White dots correspond to the ac-
tual simulated missing outcomes Y of the nonrespon-
dents plotted against the predicted values X′β̂ . We can

see that the predicted values of the nonrespondents are
reasonably centered around the straight line even for
those points with predicted values far from the pre-
dicted values of the respondents. In this sample, μ̂OLS

was 205.78, a far more reasonable value than those ob-
tained for the IPW and just-mentioned DR estimators.

To demonstrate that μ̂OLS can have a substantially
worse performance than the DR estimators, we con-
ducted a second simulation experiment. This second
experiment, like our first, redid K&S’s simulation by
generating the data (Y,T ,X) from K&S’s chosen dis-
tributions. However, in our second experiment we ana-
lyzed the data ((1−T )Y,T ,X) in which Y is observed
only when T = 0, rather than the data (T Y,T ,X) that
was analyzed by us in our first experiment and by
K&S in their paper. [To do so, since the data ((1 −
T )Y,T ,X) can be recoded as ((1 − T )Y,1 − T ,X),

we simply recompute each of the estimators reported
in Table 1 except now we everywhere replace π̂ and
T by 1 − π̂ and 1 − T .] The results are displayed in
Table 2. We observe that, with both models wrong, the
bias and MSE of μ̂OLS now exceed those of any DR
estimator!

As in our first experiment, due to the extreme vari-
ability in the estimated “inverse probability” weights,
the DR estimators appear to have considerable finite
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TABLE 2
Results for simulation study as in K&S but with the roles of T and 1 − T reversed

Sample size 200 Sample size 1000

Row Estimator Bias Var MSE Bias Var MSE

Both models right
1 μ̂OLS 0.12 5.96 5.98 −0.03 1.41 1.41
2 μ̂HT −0.46 49.14 49.36 −0.24 8.45 8.51
3 μ̂IPW-POP 0.45 14.76 14.96 0.05 3.11 3.12
4 μ̂DR(π̂, m̂REG) 0.12 5.96 5.98 −0.02 1.41 1.41
5 μ̂DR(π̂ , m̂WLS) 0.12 5.96 5.97 −0.02 1.41 1.41
6 μ̂DR(π̂ , m̂DR-IPW-NR) 0.12 5.96 5.97 −0.02 1.40 1.41
7 μ̂B-DR(π̂ , m̂REG) 0.12 5.96 5.97 −0.02 1.41 1.41
8 μ̂B-DR(π̂EXT , m̂REG) 0.12 5.96 5.97 −0.02 1.40 1.41

Both models wrong
9 μ̂OLS 4.97 7.97 32.68 4.97 1.91 26.62

10 μ̂HT 0.55 40.27 40.57 0.39 6.27 6.43
11 μ̂IPW-POP 3.92 9.67 25.03 3.68 2.22 15.79
12 μ̂DR(π̂, m̂REG) 3.33 8.79 19.90 3.07 2.12 11.53
13 μ̂DR(π̂ , m̂WLS) 3.17 8.21 18.24 2.81 1.97 9.84
14 μ̂DR(π̂ , m̂DR-IPW-NR) 3.11 8.21 17.90 2.64 1.97 8.94
15 μ̂B-DR(π̂ , m̂REG) 3.32 8.70 19.69 3.04 2.10 11.34
16 μ̂B-DR(π̂EXT , m̂REG) 3.30 8.68 19.55 3.01 2.10 11.16

π -model right, outcome model wrong
17 μ̂DR(π̂, m̂REG) 0.71 12.60 13.11 0.14 2.96 2.98
18 μ̂DR(π̂ , m̂WLS) 0.99 8.04 9.02 0.23 1.92 1.97
19 μ̂DR(π̂ , m̂DR-IPW-NR) 0.71 7.26 7.76 0.18 1.72 1.75
20 μ̂B-DR(π̂ , m̂REG) 0.75 11.21 11.76 0.14 2.76 2.78
21 μ̂B-DR(π̂EXT , m̂REG) 0.86 10.38 11.12 0.18 2.71 2.74

π -model wrong, outcome model right
22 μ̂DR(π̂, m̂REG) 0.12 5.96 5.97 −0.02 1.40 1.41
23 μ̂DR(π̂ , m̂WLS) 0.12 5.96 5.97 −0.02 1.40 1.41
24 μ̂DR(π̂ , m̂DR-IPW-NR) 0.12 5.96 5.97 −0.02 1.40 1.41
25 μ̂B-DR(π̂ , m̂REG) 0.12 5.96 5.97 −0.02 1.40 1.41
26 μ̂B-DR(π̂EXT , m̂REG) 0.12 5.96 5.97 −0.02 1.40 1.41

sample bias, especially at the smaller sample size of
200, when the propensity model is correct but the out-
come model is wrong. In fact, this bias is larger than
it was in the first simulation experiment, which was to
be expected as the variability in the estimated “inverse
probability” weights was greater in the second than the
first experiment (data not shown).

6. SENSITIVITY ANALYSIS

Consider again the missing-data setting with the
mean μ of Y as the parameter of interest. When the
covariate vector X is high dimensional, one cannot be
certain, owing to lack of power, that a chosen model for
the propensity score is nearly correct, even if it passes
standard goodness-of-fit tests. Therefore a large num-
ber of models for the propensity score with different

subsets of the covariates, different orders of interac-
tions and different dimensions of the parameter vec-
tor should be fit to the data. Similarly, many different
outcome models should be fit. This raises the question:
once fit, how should these many candidate models be
used in the estimation of the mean of Y ?

One approach is to use modern techniques of model
selection to choose a single propensity and outcome
model. Specifically, there has been a recent outpouring
of work on model selection in regression. This work
has shown that one can use cross-validation and/or pe-
nalization to empirically choose, from among a large
number of candidates, a model whose predictive risk
for the response variable in the regression is close
to that of the best candidate model. In fact, van der
Laan (2005) has proposed that k-fold cross-validation
should be routinely employed to select the model for
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the propensity score and for the outcome regression
that are to be used in the construction of a DR esti-
mator.

An alternative approach which we are currently
studying is the following. Suppose one has fit Jp

propensity score models and Jo outcome models. For
a favorite DR estimator μ̂, define μ̂ij as the DR esti-
mator that uses the fitted values from the ith propen-
sity model and the j th outcome model. Now, if the
ith propensity model is correct, all Jo estimators in
the set Ep,i ≡ {μ̂ij ; j = 1, . . . , Jo} will be CAN es-
timators of μ. Thus, an α-level test of the homo-
geneity hypothesis Hpi :EA(μ̂i1) = EA(μ̂ij ) for all
j ∈ {2, . . . , Jo} [where EA(·) stands for large sample
mean, i.e., the probability limit of ·] is also an α-level
goodness-of-fit test for the propensity model that is di-
rectly relevant to its use in a DR estimator of μ. Sim-
ilarly if the j th outcome model is correct, all Jp es-
timators in the set Eo,j ≡ {μ̂ij ; i = 1, . . . , Jp} will be
CAN for μ and a test of the homogeneity hypothesis
Hoj :EA(μ̂1j ) = EA(μ̂ij ) for all i ∈ {2, . . . , Jp} is a
test of fit for the outcome model. This suggests that
one could choose as a final estimator of μ the DR esti-
mator μ̂i∗j∗, where i∗ is the i for which the test of the
hypothesis Hpi gave the largest p-value and j∗ is the j

for which the test of the hypothesis Hoj gave the largest
p-value. However, this method of selecting i∗ and j∗
is nonoptimal for two reasons. First, it could easily se-
lect a misspecified propensity model i for which the
power of the test of the hypothesis Hpi is particularly
poor and similarly for the outcome regression. This re-
mark implies that some measure of the spread of the
elements of Ep,i and Eo,j should also contribute to
the selection of i∗ and j∗. Second, the method does
not exploit the fact that if i∗ and j∗ are correct, then
EA(μ̂ij∗) = EA(μ̂i∗j ) for all i and j, suggesting that
an optimal method should select i∗ and j∗ jointly. Al-
ternative approaches for selecting i∗ and j∗ will be
reported elsewhere. In any case, the very fact that input
to the selection algorithm requires the matrix μ̂ij pro-
vides an informal sensitivity analysis; we directly ob-
serve the sensitivity of our DR estimator to the choice
of propensity and outcome regression model.

The approach just described could also be combined
with the model selection approach. Specifically, one
first uses cross-validation to choose not one but rather
Jp and Jo propensity and outcome models (the ones
with the Jp and Jo lowest cross-validated risk esti-
mates) out of a much larger number of candidate mod-
els and next, one uses these Jp +Jo models as input for
the approach described above. Sensitivity to the choice

of the particular DR estimator might be included by
using a number of different DR estimators and select-
ing among or averaging over DR estimators that give
similar estimates μ̂i∗j∗ .

van der Laan (2005) has proposed some new ap-
proaches to model selection for DR estimation that
go beyond his above-mentioned approach, which we
do not discuss here due to space limitations. Finally,
Wang, Petersen, Bangsberg and van der Laan (2006)
have proposed using the parametric bootstrap to study
the sensitivity of DR estimates to highly variable “in-
verse probability” weights.

7. FURTHER CONSIDERATIONS

Estimation of Causal Effects

K&S briefly touch on the problem of estimating the
difference of the outcome means corresponding to two
treatments in an observational study under ignorabil-
ity. This difference is often referred to as the average
causal effect (ACE). K&S view the problem of esti-
mating ACE essentially as two missing-data problems,
each one regarding the outcomes of subjects that do not
follow the treatment of concern as missing. The differ-
ence of the DR estimators of the separate means serves
as an estimator of the mean difference ACE. However,
the difference of the two DR estimators will have poor
small sample behavior if there is incomplete overlap
of the estimated propensity scores in the treated and
untreated. In fact, in the presence of incomplete over-
lap, most investigators argue against trying to estimate
ACE and in favor of estimating the causal effect in
the subpopulation of subjects with overlapping propen-
sity scores. However, assuming the ACE parameter is
of some substantive interest, Robins et al. (2007) sug-
gest an alternative to reporting the difference of two
DR estimators of the separate means. Their approach
is based on fitting a linear semiparametric regression
model for the unknown conditional effect function en-
coding the dependence of the conditional treatment ef-
fect on the baseline covariates X. Their model has the
property that it is guaranteed to be correctly specified
under the null hypothesis that the conditional effect
function is the zero function. Robins et al. (2007) show
that this strategy results in estimators of the ACE that
greatly outperform any estimator based on the differ-
ence of double-robust estimators, whenever the model
for the conditional effect function is correctly speci-
fied; in particular, when the aforementioned null hy-
pothesis is true.
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Multiple Robustness

Consider again the MAR missing-data model with X

very high dimensional (say 20–100 continuous covari-
ates) so we cannot possibly hope to model the propen-
sity score or the outcome regression nonparametrically.
Double-robust estimators of the mean μ of Y are n1/2-
consistent if either one of two parametric models is
correct but inconsistent if both models are misspeci-
fied. This property of DR estimators seems unsatisfac-
tory, as it means that one does very, very well if one of
the two models is correct but can do very, very poorly
when both are incorrect. Might we do better?

Define an estimator to be m-robust for μ at rate nα

if the estimator is nα-consistent for μ when any one of
m parametric models is correct, but inconsistent if all
m models are misspecified. A DR estimator is then a
2-robust estimator with α = 1/2. Our view is that an
m-robust estimator with m large, even though this may
require α to be much smaller than 1/2 and so entail
a much slower rate of convergence, would usually be
preferable to a DR estimator for the following two rea-
sons. First, if one uses an m-robust rather than a DR
estimator, one is more likely to be using a consistent
estimator of μ (as it is always more likely that at least
one of m, rather than one of two, models is correct).
Second, the slower rate of convergence (under the as-
sumption one of the m models is correct) will result
in wider nominal confidence intervals than the usual
nominal intervals of length 1/n1/2 associated with a
DR estimator. Such a wide interval seems to us a more
appropriate measure of the actual uncertainty about μ,

more accurately reflecting the fact that our estimator
could even be inconsistent if all m models are incor-
rect.

These observations raise the following questions.
Do m-robust estimators exist for arbitrarily large m

if we are willing to sacrifice n1/2-consistency for nα-
consistency with α perhaps much smaller than 1/2?
What is the maximum value of α we can achieve for
a given m? If m-robust estimators exist for m > 2,

how do we construct them? Answers to these ques-
tions can be found in Robins, Li, Tchetgen and van
der Vaart (2007), where it is shown that, under weak
assumptions, (i) m-robust estimators exist for all m,
(ii) m-robust estimators are (m − 1) dimensional U-
statistics, for which explicit closed-form expressions
are given, and (iii) the maximal possible α is of-
ten less than 1/2 and sometimes much less. How-
ever, the finite sample properties of m-robust esti-
mators have yet to be studied even by simulation.
Thus we will have to wait to see if they are as use-
ful in practice as theory would indicate they should
be.
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