
Statistical Science
2007, Vol. 22, No. 1, 74–97
DOI: 10.1214/088342306000000655
© Institute of Mathematical Statistics, 2007

Defining and Estimating Intervention
Effects for Groups that will Develop an
Auxiliary Outcome
Marshall M. Joffe, Dylan Small and Chi-Yuan Hsu

Abstract. It has recently become popular to define treatment effects for sub-
sets of the target population characterized by variables not observable at the
time a treatment decision is made. Characterizing and estimating such treat-
ment effects is tricky; the most popular but naive approach inappropriately
adjusts for variables affected by treatment and so is biased. We consider sev-
eral appropriate ways to formalize the effects: principal stratification, strati-
fication on a single potential auxiliary variable, stratification on an observed
auxiliary variable and stratification on expected levels of auxiliary variables.
We then outline identifying assumptions for each type of estimand. We evalu-
ate the utility of these estimands and estimation procedures for decision mak-
ing and understanding causal processes, contrasting them with the concepts
of direct and indirect effects. We motivate our development with examples
from nephrology and cancer screening, and use simulated data and real data
on cancer screening to illustrate the estimation methods.

Key words and phrases: Causality, direct effects, interaction, effect modifi-
cation, bias, principal stratification.

1. INTRODUCTION

In the recent literature on causal inference, it has be-
come popular to define treatment effects for subsets
of the target population characterized by variables not
observable at the time a treatment decision is made.
The most popular framework for doing this is princi-
pal stratification (PS); this name was introduced in a
unifying paper by Frangakis and Rubin (2002). The
ideas have been applied to a broad range of problems,
including censoring by death (Robins, 1986; Zhang
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and Rubin, 2003), noncompliance in randomized trials
(Angrist, Imbens and Rubin, 1996; Baker and Linde-
man, 1994), the estimation of the effects of vaccines
on post-infection outcomes (Gilbert, Bosch and Hud-
gens, 2003) and surrogate outcomes in randomized tri-
als (Frangakis and Rubin, 2002). As we shall see, PS is
one of several possible ways to define these effects.

The reasons for interest in effects defined by post-
treatment auxiliary variables are diverse. We consider
two problems, one in nephrology and one in cancer
screening, to provide motivation for interest in these
various estimands and estimation procedures.

Nephrologists have been frustrated by the lack of
a good means to lower the high rates of morbid-
ity and mortality among patients after the onset of
end-stage renal disease (ESRD), the point at which
kidney disease has progressed sufficiently to require
dialysis treatment. Suggested methods to reduce this
morbidity and mortality, which have included better or
more aggressive control of anemia and higher doses
of dialysis, have shown disappointing results (Pani-
agua, Amato, Vonesh, Correa-Rotter, Ramos, Moran
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and Mujais, 2002; Eknoyan, Beck, Cheung, Daugir-
das, Greene, Kusek, Allon, Bailey, Delmez, Depner,
Dwyer, Levey, Levin, Milford, Ornt, Rocco, Schul-
man, Schwab, Teehan and Toto, 2002; Besarab, Bolton,
Browne, Egrie, Nissenson, Okamoto, Schwab and
Goodkin, 1998). Frustration with the inability of treat-
ments or interventions given after the initiation of dial-
ysis to affect the course of ESRD has led some to hy-
pothesize that the period before ESRD develops may
provide a window of opportunity to improve outcomes
among ESRD patients. The hope is that interventions
or treatments applied before ESRD develops may af-
fect the clinical course after development of ESRD;
that is, it is hypothesized that treatments given before
ESRD affect outcomes after the development of ESRD.

This apparently simple hypothesis is surprisingly
hard to formalize. The difficulty stems from the fact
that not all subjects with advanced chronic renal insuf-
ficiency (CRI) progress to ESRD, and that the same
interventions that may affect outcomes after the on-
set of ESRD may themselves help determine who will
develop ESRD. After considering a naive approach
and illustrating its difficulties (Section 2), this paper
considers several ways to formalize the hypothesis;
for each, we briefly consider approaches to estimation
of relevant and causally meaningful parameters (Sec-
tion 3).

A second motivating problem concerns evaluation
of the efficacy of cancer screening. Successful meth-
ods for screening for cancer result in earlier diagno-
sis of cancer (or precancerous conditions); this early
detection may lead to treatment of the cancer while
the cancer is still curable and so to reduced mortality.
Randomized trials have been used to evaluate cancer
screening; often, people randomized to screen fail to
comply with their assignment. It is expected that any
benefit of assignment to screening would be restricted
to women who are screened. It might further be sur-
mised that any benefit of screening would be restricted
to screened women diagnosed with breast cancer and
that the benefit of screening would be restricted even
further to women whose cancer was diagnosed as a re-
sult of the screen. For explanatory purposes, it is of in-
terest to estimate the benefit of screening for women in
these subgroups. Hypotheses here may be formulated
in ways similar to those in the nephrology problem. In
these data, the outcome is failure-time, a censored con-
tinuous variable.

In Section 4 we consider statistical inference. We
consider ranges of assumptions that identify the var-
ious estimands, as well as methods of estimation.

Where necessary, we concentrate on continuous out-
comes, as some methods for inference are more
straightforward here. In Section 5 we consider a sim-
ulation experiment to provide some comparison of in-
ference under various approaches. In Section 6 we an-
alyze data about cancer screening from the Health In-
surance Plan (HIP) Study (Shapiro, Venet, Strax and
Venet, 1988), considering various estimands of inter-
est.

In Section 7 we evaluate and compare the vari-
ous approaches in terms of their utility for decision
making and explanation. In addition, we compare the
approaches conditioning treatment effects on post-
treatment auxiliary variables to the estimation of direct
and indirect effects. The paper concludes with discus-
sion of extensions of the estimands and methods to
more complex settings.

2. MOTIVATING EXAMPLE: DATA AND SIMPLE
ANALYSIS

2.1 Data and Potential Outcomes

We motivate our methodological development with
a simple numerical example. The example is from a
study in a cohort of subjects with chronic renal in-
sufficiency, a condition in which subjects have dimin-
ished kidney function but do not yet require dialysis or
transplant (Feldman, Appel, Chertow, Cifelli, Cizman,
Daugirdas, Fink, Franklin-Becker, Go, Hamm, He,
Hostetter, Hsu, Jamerson, Joffe, Kusek, Landis, Lash,
Miller, Mohler, Muntner, Ojo, Rahman, Townsend and
Wright, 2003); although the numbers are arbitrary, they
are intended to represent, in simplified fashion, the
problems and associations present in studying effects
in this population. Here, we wish to study the effect
of aggressive treatment of hypertension on myocardial
infarction (MI) among subjects who develop ESRD af-
ter the start of follow-up. We make several simplifying
assumptions, which we do not necessarily expect to
apply in real data:

1. each of our main study variables is binary and
scalar;

2. subjects are randomly assigned to either receive
or not receive aggressive management of hyperten-
sion;

3. no subject has ESRD at the start of follow-up; and
4. subsequent ESRD status is recorded before any MI

occurs.

We use A to refer to the treatment of interest [A = 1 (0)

indicates the presence (absence) of aggressive treat-
ment of hypertension], S to denote a post-treatment
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auxiliary variable [S = 1 (0) indicates the presence
(absence) of ESRD] and Y to refer to the outcome of
interest [Y = 1 (0) indicates the occurrence (absence
of occurrence) of an MI before the end of follow-up].

We adopt the potential outcomes approach (Neyman,
1990; Rubin, 1974) to illustrate and define our causal
estimands of interest. Let Ya denote the outcome that
would be seen were a subject given treatment level
a and let Sa denote the level of the auxiliary vari-
able were a subject given treatment a. Causal effects
are normally defined in terms of comparisons of the
outcomes that would be seen in the same individuals
or groups under different conditions; for example, as
comparisons of Ya and Ya′

for a �= a′. For this illus-
tration, we assume that aggressive treatment does not
affect MI for any individual (i.e., that Y 0 = Y 1 for
all subjects); however, aggressive treatment will pre-
vent ESRD for some subjects but never cause it, and so
S1 ≤ S0.

Table 1 classifies the population according to
whether they would develop ESRD if treated and if
untreated, and considers the risk of failure in all strata
based on the cross-classification of this auxiliary vari-
able. Half of the population would not develop ESRD
whether or not they were treated (i.e., S0 = S1 = 0);
the risk of MI in this group is low (10%). In another
30% of the population, aggressive treatment would pre-
vent ESRD (i.e., S1 = 0, S0 = 1); the risk of MI in this
group is higher (20%). The risk is highest (30%) in the
20% of the population doomed to get ESRD regardless
of treatment (i.e., S1 = 1, S0 = 1).

In any study, we cannot simultaneously observe what
would happen to any individual under aggressive treat-
ment (Y 1, S1) and in its absence (Y 0, S0), and so the
joint distribution of the variables represented in Ta-
ble 1 is not estimable. Table 2 shows what would be
observed in a randomized trial in which half of the
subjects receive aggressive treatment and half do not.
Because 30% of subjects in the cohort would develop
ESRD only if not treated aggressively (Table 1, row 2),

the proportion of subjects treated aggressively who de-
velop ESRD (20% = 100/500) is much lower than the
proportion of subjects not treated aggressively who de-
velop ESRD (50% = 250/500). Among untreated sub-
jects who develop ESRD, 24% develop an MI, whereas
30% of treated subjects who develop ESRD also de-
velop an MI. Similarly, 10% of untreated subjects who
do not develop ESRD later develop an MI, whereas
13.75% of treated subjects who do not develop ESRD
later develop an MI. All of this may be derived (in ex-
pectation) from Table 1.

2.2 A Naive Approach

To examine the effect of aggressive treatment on MI
among subjects who develop ESRD, some would com-
pare the probability of MI among aggressively treated
subjects who develop ESRD (0.3) with the proba-
bility of MI among untreated subjects who develop
ESRD (0.24). A naive interpretation is that the dif-
ference between these probabilities (0.06) represents
the effect of treatment for subjects who will develop
ESRD. This interpretation is not correct, since aggres-
sive treatment actually has no effect on MI for any
subject. The naive comparison pr(Y = 1|A = 1, S =
1) − pr(Y = 1|A = 0, S = 1) diverges from the true
individual causal effects because membership in the
groups being compared depends on treatment. Aggres-
sive treatment reduces the number of subjects with
ESRD. Subjects who would develop ESRD even if
treated aggressively comprise the sickest subgroup in
the study. A higher proportion of them than any other
subgroup would have developed MI whether or not
they had received aggressive treatment, and compar-
ing them with untreated subjects who develop ESRD is
comparing them to a combination of subjects from the
same subgroup and subjects who would develop ESRD
only if not treated aggressively. Thus, conditioning on
ESRD, a post-treatment variable, leads to inappropriate
estimates of overall treatment effect (Robins, Blevins,
Ritter and Wulfsohn, 1992; Rosenbaum, 1984).

TABLE 1
Probability of MI if treated aggressively or not, by ESRD status if treated aggressively or not

ESRD status Probability of MI

if untreated (S0) if treated (S1) pr(Y 0 = 1|S0,S1) pr(Y 1 = 1|S0,S1) N

0 0 0.1 0.1 500
1 0 0.2 0.2 300
1 1 0.3 0.3 200
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TABLE 2
Probability of MI in randomized trial, by treatment arm and

observed ESRD status

Treatment (A) ESRD (S) N Probability of MI
(pr(Y = 1|S,A))

0 0 250 0.1
1 250 0.24

1 0 400 0.1375
1 100 0.3

A complementary approach to view the bias re-
sulting from conditioning on ESRD involves directed
acyclic graphs (DAGs) (Pearl, 1995, 2000). Figure 1
shows the relations between the observed variables
A,S and Y , and unobserved variable(s) U . The arrows
from U to both S and Y indicate that there are some
unmeasured common causes of both. The arrow from
A to S indicates that A influences S, whereas the ab-
sence of any directed path (i.e., a series of directed ar-
rows) from exposure to outcome indicates that A has
no effect on Y . S is known as a collider (i.e., there
are arrows which converge on S). It is well known that
conditioning on colliders induces associations between
the parents of the collider (i.e., between A and U ). Be-
cause U influences Y , the conditional association be-
tween A and U given S propagates to a conditional
association between A and Y given S. Structurally sim-
ilar problems involving selection bias in epidemiology
are discussed elsewhere (Greenland, 2003; Hernán,
Hernández-Diáz and Robins, 2004).

We consider briefly an appropriate causal interpreta-
tion of the naive comparison of observable conditional
distributions pr(Y = 1|A = 1, S = 1)−pr(Y = 1|A =
0, S = 1). In a randomized trial, the observed distrib-
ution pr(Y |A = a,S = s) equals the conditional dis-
tribution pr(Y a|Sa = s) of the potential outcome that
would be seen among subjects who would have a com-
mon value of the auxiliary variable S if they receive

FIG. 1. A directed acyclic graph representing the relations
among the variables in the example of Section 2.

level a of treatment. Here, this is the probability of MI
that would be seen in subjects developing ESRD were
all subjects to be treated aggressively (for a = 1) or not
receive aggressive treatment (for a = 0). A compari-
son of pr(Y a|Sa = s) for different values of treatment
a reflects the impact of treatment on the conditional
distribution of the potential outcome given the auxil-
iary outcome. In nonrandomized studies, the observed
conditional distributions pr(Y |A = a,S = s) will not
in general equal the potential conditional distributions
pr(Y a|Sa = s). So long as information is collected on
all subjects in a cohort, this conditional distribution
is identified under the commonly used assumption of
strongly ignorable treatment assignment (Rosenbaum
and Rubin, 1983),

pr(A = a|S,Y ,X) = pr(A = a|X) > 0,(1)

where S ≡ {Sa} and Y ≡ {Ya} denote the vectors of
potential auxiliary and main outcomes, respectively.
Strong ignorability identifies pr(Y a|X,Sa = s) as
pr(Y |X,A = a,S = s). The potential conditional dis-
tributions may be useful in decision making (Sec-
tion 7.1).

Sometimes, the effects of an intervention on a (con-
ditional) distribution will be all that is identifiable from
one’s data under plausible assumptions. Here, however,
there are other measures of effect that more closely re-
late to the scientific questions of interest, regarding the
effect that aggressive treatment has for subjects who
develop ESRD. We consider these in the following sec-
tions.

3. DEFINITION OF EFFECTS FOR A COMMON SET
OF INDIVIDUALS

We consider several ways of characterizing or defin-
ing effects for subjects who will develop (or are likely
to develop) an auxiliary outcome. In each approach, we
consider first the group or subgroup for whom effects
are defined; for each approach, the definition of effects
for this group follows in a straightforward way from
the potential outcomes approach. We relate the effects
to each other through a common probability model in
Section 3.7.

3.1 Principal Stratification

Principal stratification (PS) (Frangakis and Rubin,
2002) is a method proposed recently by several au-
thors for defining certain types of causal effects. In
this approach, effects are characterized within strata
defined by the vector of potential auxiliary outcomes
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(here S0 and S1). In our example, we may be interested
in the effect of aggressive treatment for subjects who
would develop ESRD whether or not they are treated
aggressively (i.e., S0 = S1 = 1). In particular, we con-
centrate here on comparing the proportion in this sub-
group that would have an MI if treated aggressively
[pr(Y 1 = 1|S0 = S1 = 1)] and the proportion in the
same subgroup who would have an MI if not treated
aggressively [pr(Y 0 = 1|S0 = S1 = 1)]. In general, the
approach compares the expected value or distribution
of potential outcome Ya for different levels of treat-
ment (a = 0,1) in strata defined by the levels the auxil-
iary variable would take under both levels of treatment
(i.e., strata are defined by S0 and S1 jointly). In our
data, this stratum is shown in the third data row of Ta-
ble 1; aggressive treatment has no effect on MI in this
group (as in all other principal strata).

In general, the principal strata are not fully iden-
tified from the data, because one cannot simultane-
ously observe both potential auxiliary outcomes S0 and
S1. In the data in Table 1, aggressive treatment some-
times prevents but never causes ESRD (i.e., S0 ≥ S1);
this monotonicity (Angrist, Imbens and Rubin, 1996)
is not completely plausible in the nephrology exam-
ple; Section 8.1 discusses this at more length. Under
monotonicity, the principal stratum of some subjects is
identifiable: aggressively treated subjects who develop
ESRD would have done so even had they not been
treated (i.e., A = 1, S = S1 = 1 implies S0 = S1 =
1), and untreated subjects who do not develop ESRD
would not have done so even had they been treated (i.e.,
A = 0, S = S0 = 0 implies S1 = S0 = 0).

3.2 Single Potential Stratification

One can define the effect of a treatment for a sub-
group defined by a single potential outcome. For ex-
ample, one may be interested in the effect of aggres-
sive treatment for people who would develop ESRD
if they were treated aggressively [a comparison of
pr(Y 1 = 1|S1 = 1) and pr(Y 0 = 1|S1 = 1); Table 1,
row 3], or in the effect of aggressive treatment on peo-
ple who would develop ESRD if they were not treated
aggressively [a comparison of pr(Y 1 = 1|S0 = 1) and
pr(Y 0 = 1|S0 = 1); the last two rows in Table 1]. Such
stratification may be viewed as a coarser form of PS.

Membership in this stratum, defined by a single aux-
iliary variable (S0 or S1), is only partially observed.
Whether a person is in this single auxiliary stratum de-
fined by Sa is known if a person receives treatment
level a. As above, this complicates statistical infer-
ence for effects defined for such groups. One may use

approaches such as those used for PS to estimate ef-
fects defined in this fashion; because of the connection
with observed auxiliary stratification, one can also use
methods described for the next sort of stratification we
discuss.

3.3 Observed Auxiliary Stratification

For this approach, we define effects for groups de-
fined by observed auxiliary variables. For example, we
might consider the effect of aggressive treatment for
subjects who received nonaggressive treatment and de-
veloped ESRD; that is, we compare pr(Y 1 = 1|S =
1,A = 0) with pr(Y 0 = 1|S = 1,A = 0). The sub-
jects for whom this effect is defined are the 250 sub-
jects in the second row of Table 2 (who comprise the
50% of the subjects in the second and third rows of
Table 1 who are untreated). Alternatively, we might be
interested in the effect of aggressive treatment for sub-
jects who received aggressive treatment and developed
ESRD; that is, we compare pr(Y 1 = 1|S = 1,A = 1)

with pr(Y 0 = 1|S = 1,A = 1) (here, the effects are
defined for the last row of Table 2, or the 50% of the
last row of Table 1 who are treated). We have called
the latter comparison the realized effect of treatment
(Joffe, 2001), because it represents the effect treatment
actually had within a subgroup (which, in this instance,
is defined by post-treatment variables).

In a randomized trial, observed auxiliary stratifica-
tion is equivalent to single potential auxiliary stratifica-
tion. To see this, note that pr(Y a′ = 1|S = 1,A = a) =
pr(Y a′ = 1|Sa = 1,A = a) = pr(Y a′ = 1|Sa = 1); the
last step follows because of randomization. Thus, for
example, in a randomized trial in our ESRD exam-
ple, aggressively treated subjects who develop ESRD
are comparable to the set of subjects who, if they had
received aggressive treatment, would have developed
ESRD. In observational studies, under ignorable treat-
ment assignment (Rosenbaum and Rubin, 1983), the
above holds conditional on covariates.

Here, the subgroup for whom the effect is defined
is fully observable; however, the effects are defined
for groups that are not identified at time of treatment
decision. Thus, like PS and single potential stratifica-
tion, this approach cannot be used directly to predict,
at the time of a treatment decision, the effect of that
decision. Further, there is an explanatory flavor to the
analysis and model: these effects, which have already
happened to defined subgroups, can be used to explain
differences between randomized groups.
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3.4 Expected Auxiliary Stratification

Unlike previous approaches, one can define effects
in a way that uses information on auxiliary variables
to define subgroups identifiable at the time treatment
decisions are made. Here, we define effects for a group
of subjects who are likely to develop ESRD if given
a particular treatment. Let µa(X) ≡ E(Sa|X) denote
the probability, given baseline covariates X, of devel-
oping ESRD if one were to receive treatment level a;
it is the expected value of the potential auxiliary
variable. µa(X) has been called a “principal score”
(Hill, Waldfogel and Brooks-Gunn, 2002). We then
define effects as a comparison of potential outcomes
(MI) for subjects with the same expected auxiliary
(ESRD), for example, E{Y 1|µ1(X)} − E{Y 0|µ1(X)}.
Alternatively, we can define effects for broader strata
based on µa(X), for example, E{Y 1|µ1(X) > 0.8} −
E{Y 0|µ1(X) > 0.8}, the effect of aggressive treatment
for subjects with at least an 80% chance of developing
ESRD if treated aggressively.

3.5 Expected Multiple Auxiliary Stratification

The approach of the last section may be extended to
condition effects on multiple expected auxiliary vari-
ables. Thus, one might be interested in the effect of
treatment for subjects with an 80% risk of develop-
ing ESRD if treated aggressively and a 90% risk if not
treated aggressively; that is, we derive effects for sub-
jects based in groups determined by both µ0(X) and
µ1(X). This approach has the flavor of PS; unlike PS,
the subgroups for whom effects are defined are fully
identified in the data, based solely on pretreatment in-
formation. As in the previous section, conventional sta-
tistical methods apply.

3.6 Conventional Approach

A final alternative is to estimate effects in subgroups
based solely on pretreatment covariates, where group
membership is not dependent on any risk score like
µa(X). Conventional estimation approaches may ap-
ply; we may look for effect modification by baseline
covariates directly, rather than indirectly through the
expected auxiliary.

3.7 Probability Models for the Data

Following Rubin (1978), we consider a formal prob-
ability model for the joint distribution of the observ-
able data and potential outcomes. We then consider
approaches to parametrizing parts of this distribution
(Section 4).

One general way to factor the joint density of the
observable quantities and potential outcomes is

f (X,S,Y ,A)
(2)

= f (X)f (S|X)f (Y |X,S)f (A|X,S,Y ).

This factorization is akin to selection models in com-
mon use in longitudinal data analysis (Little, 1995).
Strongly ignorable treatment assignment (Rosenbaum
and Rubin, 1983) is often assumed.

PS estimands depend only on one part of the joint
density: f (Y |X,S). Other causal estimands also in-
volve the density of the auxiliary outcome (and some-
times of the exposure). Single potential stratification
estimands involve f (Y |X,Sa). These estimands can
be obtained by integrating out the other potential aux-
iliary outcomes; that is, f (Y |X,Sa) = ∫

S¬a f (Y |X,

S)f (S|X)ds¬a/f (Sa|X), where S¬a refers to the vec-
tor of unobserved potential auxiliary outcomes. Ob-
served auxiliary estimands involve f (Y |X,S,A) =
f (Y ,A|X,S)/f (A|X,S) = ∫

S¬a f (Y |X,S)f (S|X) ·
f (A|X,S,Y )dS¬a/

∫
S¬a

∫
Y f (Y |X,S)f (S|X)f (A|X,

S,Y )dS¬a dY ; under ignorability, this simplifies to
f (Y |X,S,A = a) = ∫

S¬a f (Y |X,S)f (S|X)ds¬a/

f (Sa|X), which is the estimand of single potential
stratification. Expected auxiliary stratification involves
integrating out all the auxiliary potential outcomes; that
is,

f {Y |E(Sa|X) = s}

=
∫
X:E(Sa |X)=s

∫
S f (Y |X,S)f (S|X)f (X)dS dX

∫
X:E(Sa |X)=s f (X)dX

=
∫
X:E(Sa |X)=s f (Y |X)f (X)dX

∫
X:E(Sa |X)=s f (X)dX

;

in this formulation, one can ignore the density of
the auxiliary outcome except as it relates to iden-
tifying the subset over whom to average. Similarly,
in stratifying on observed variables, one can inte-
grate out and ignore the auxiliary outcome: f (Y |X) =∫
S f (Y |X,S)f (S|X)dX. Typically, inference con-

centrates on comparisons of the marginal densities
f (Y a|X, ·) of the potential outcomes for different treat-
ment levels a, rather than the joint density f (Y |X, ·) of
the potential outcomes Y .

4. CONTINUOUS OUTCOMES: MODELS AND
ESTIMATION

This section considers statistical inference about the
various estimands outlined in the previous section.
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Some estimation methods in this setting are more
straightforward with continuous outcome data, and so
we discuss models and estimation methods more fully
for such data. We apply these methods both to simu-
lated data (Section 5) and the HIP data (Section 6).

We now discuss estimation of the various causal
quantities defined in the previous sections, concentrat-
ing on identification of causal contrasts. We reverse
the order of discussion, beginning with stratification
on observed variables and ending with PS, as the na-
ture of the latent structure and identifying assumptions
becomes increasingly complex. The greater the degree
of latent structure, the more assumptions are needed to
estimate parameters in the model. The greater degree
of assumptions involved is justified if they lead to bet-
ter decision making, more explanatory power or greater
generalizability, issues we take up in Section 7.

4.1 Conventional Approaches

For the conventional approach, identification of the
marginal distributions f (Y a|X) may be based on the
assumption of ignorable treatment assignment (Rosen-
baum and Rubin, 1983), pr(A = a|X,Y ) = pr(A =
a|X), with 0 < pr(A = a|X) < 1 for all X,a. Under
this assumption, the observed density f (Y |X,A = a)

equals the density of the potential outcome f (Y a|X).
Thus, one can use standard approaches (e.g., regression
of Y on X and A) to estimate the effect of A on Y .

4.2 Stratification on Expected Auxiliaries

For stratification on expected auxiliary variables
(Hill, Waldfogel and Brooks-Gunn, 2002), identifica-
tion and estimation are somewhat more complicated.
The simplest method of estimation involves two steps:
estimating the expected auxiliary µa(X), and estima-
tion of effects by level of this expected auxiliary. One
can estimate the expected auxiliary under ignorable
treatment assignment [here f (A|X,S) = f (A|X)]
(Rosenbaum and Rubin, 1983) using standard meth-
ods. For example, one can regress S on X for subjects
with A = a, then compute the expected value as µ̂a(X)

based on the estimated regression coefficients. Alter-
natively, one can regress S on X and A, then estimate
µ̂a(X) as E(S|X,A = a), using, for each subject, his
or her observed X and the desired treatment level a for
all subjects; here, one may choose to include interac-
tions between A and X as appropriate.

Under ignorable treatment assignment for the out-
come Y , one can again use standard methods to esti-
mate the effect of treatment for a group classified by

µ̂a(X). For example, one can fit a regression

E{Y |µ̂a(X),A}
(3)

= β0 + µ̂a(X)βµ̂ + AβA + µ̂a(X)Aβµ̂A;
here, the effect of treatment E{Y 1|µ̂a(X)} − E{Y 0|
µ̂a(X)} for subjects with expected auxiliary µ̂a(X)

is βA + µ̂a(X)βµ̂a . These plug-in type estimates are,
in general, consistent for the true parameters βA and
βµa in the corresponding regression on the true scores
µa(X) but will typically be biased in small samples;
this bias results from the fact that the estimate µ̂a is
a mismeasured version on the true expected auxiliary
µa . It is of some interest to develop unbiased estima-
tors of these effects. Although we are unaware of any
such work in this setting, such work has been done with
other generated regressors (Pagan, 1984).

It is tempting to extrapolate the regression effect and
interpret βA +βµa as the effect for a subgroup in which
all subjects will develop ESRD if treated aggressively,
or as the effect for the group of subjects who will de-
velop ESRD if treated aggressively. These interpre-
tations are flawed. For the former, there may be no
subgroups identifiable on the basis of pretreatment co-
variates in which all subjects will develop ESRD, and
so the parameter is not meaningful. For the latter, addi-
tional assumptions may be required for this interpreta-
tion to hold, as has been discussed in a related context
(Joffe, Ten Have and Brensinger, 2003).

4.3 Stratification on Observed Auxiliaries

We are unaware of previous work on estimation
of parameters in models stratifying on observed aux-
iliary variables. Whereas the previous estimands al-
lowed nonparametric identification under ignorability
assumptions, estimation of these parameters will re-
quire additional assumptions. We sketch one approach
to estimation below; because of the relation between
observed auxiliary stratification and single potential
stratification and PS (Section 3.3), estimation may also
be based on estimating principal-strata specific effects
as described in the next subsection, then marginalizing
over the unobserved auxiliary outcomes S¬a .

We consider estimation based on the following idea,
similar to G-estimation in structural nested models
(Robins, 1992; Robins et al., 1992; Robins, 1994).
Estimation will require ignorability assumptions, as
above. Suppose our outcome Y is continuous; Y could
be the logarithm of a failure-time (e.g., time of breast
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cancer mortality). We first propose a model for the ef-
fect of treatment, for example,

E(Y 0|X,A,S)
(4)

= E(Y |X,A,S) − A(1 − S)�0 − AS�1.

Here, the realized effect of treatment for the sub-
group of subjects who received treatment and devel-
oped ESRD is �1, and the realized effect for the sub-
group which received treatment but did not develop
ESRD is �0. We have assumed that these effects do
not vary with covariates X.

Under ignorability, Y 0 is independent of A given X.
Let Y 0(�) = Y −A(1−S)�0 −AS�1; Y 0(�) may be
computed from observed quantities and putative values
for the causal parameters � . Based on the nonidentifi-
able assumption that treatment effects are the same for
all subjects with common values of A and S, Y 0(�)

may be viewed heuristically as the potential outcome
Y 0 if causal theories represented by {�0,�1} are true.
If the putative value of the causal parameter � is true,
Y 0(�) will be independent of A given X. Estimation
may be based on testing this independence for an as-
sumed value of the causal parameter � . Because � is
a vector of dimension 2, estimation using scalar esti-
mating equations will require either restriction of the
unknown parameter � or a vector of estimating equa-
tions of the same dimension as � .

In some cases, one might assume that either �0 or
�1 is 0. In the HIP study, it might be reasonable to
assume that screening affects breast cancer mortality
only for screened subjects diagnosed with breast can-
cer, or, further, only for screened subjects whose can-
cer was detected due to the screen (i.e., for subjects for
whom S = 1,A = 1), and so �0 = 0. For binary A,

∑

i

(A − p)g{Y 0(�),X} = 0(5)

provides valid estimating equations under the model
assumptions and ignorability, where p ≡ pr(A = 1|X)

and g(·) is a known function of its arguments. The
optimal function g(·) is a sometimes complex func-
tion of the joint density of the observables and po-
tential outcomes (Joffe and Brensinger, 2003; Robins,
1992; Robins et al., 1992). Efficiency, but not con-
sistency, depends on choosing this optimal function.
Suppose that the “error” terms ε = Y 0 − E(Y 0|X)

are normal, independent, identically distributed ran-
dom variables and that S1 is unrelated to Y 0 [i.e.,
f (Y 0|X,A,S1) = f (Y 0|X)]. The optimal function
is then g{Y 0(�),X} = ε(�)E(S|X,A = 1), where

ε(�) = Y 0(�) − E{Y 0(�)|X} (Joffe and Brensinger,
2003); the use of ε(�) is similar to Rosenbaum’s
(2002) use of such residuals in randomization-based
inference. The estimated probability of treatment may
be substituted for the typically unknown true p. The
asymptotic variance of the resulting estimator may be
derived using a sandwich-type formula (Robins, 1992;
Robins et al., 1992).

If one is unable to restrict the parameter � based
on subject-matter considerations, one must use a vec-
tor of estimating equations. Here, we will require vec-
tor functions g{Y(�),X}. Under the above normal-
ity and homoscedasticity assumptions and under the
assumption that f (Y 0|X,A,S1) = f (Y 0|X), the op-
timal function is the vector function g{Y 0(�),X} =
ε(�){1−E(S|X,A = 1),E(S|X,A = 1)}T . g{Y 0(�),

X} must have the same rank as the dimension of �;
thus, if the covariate does not predict the auxiliary out-
come among the treated, there will be no ability to esti-
mate the vector � . Under our assumptions of equal ef-
fect across strata of X, the effect of A on Y in any stra-
tum of X is �0{1 − E(S|X,A = 1)} + �1E(S|X,A =
1), each term corresponding to part of the vector func-
tion g{Y 0(�),X}.

The approach taken above is semiparametric; that is,
consistency of the estimators of the parameters of in-
terest � does not depend on parametric assumptions
about the distribution of ε or the association of X or
S with Y 0. The methods presented above are valid for
structural distribution models, which map percentiles
in the distribution of Y 1 to percentiles in the distribu-
tion of Y 0 in defined subgroups. In contrast, the weaker
structural mean models only map the mean of Y 1 to
the mean of Y 0 [as in the formulation in (4)]. Conse-
quently, there are fewer valid choices of the function
g(·) for use in estimation [i.e., the function g(·) must be
linear in Y 0(�)] (Robins, Rotnitzky and Scharfstein,
2000).

With binary outcomes, mean models are required.
Structural mean models using the identity link do
not restrict subgroup-specific means to the permissi-
ble range. With the usual logit link, semiparametric
models may be formulated, but consistent semipara-
metric estimators are not generally available (Robins,
Rotnitzky and Scharfstein, 2000; Robins and Rot-
nitzky, 2004). Extensions to binary outcomes whose
consistency depends on parametric assumptions are
available (Robins and Rotnitzky, 2004; Vansteelandt
and Goetghebeur, 2003).
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4.4 Principal Stratification

Because the principal strata of many subjects are not
determined by the usual combination of data and as-
sumptions, inference for PS estimands will be more
dependent on assumptions and complicated. The ob-
served density of the main and auxiliary outcomes may
be expressed in terms of the unobserved potential aux-
iliary outcomes SA as follows:

f (Y,S|A = a,X)

= f (Y |S,A = a,X)f (S|A = a,X)

= ∑

s¬a

f (Y |S,S¬a = s¬a,A = a,X)

· f (Sa, S¬a = s¬a|A = a,X)(6)

= ∑

s¬a

f (Y |S,S¬a = s¬a,A = a,X)

· f (S¬a = s¬a|S,A = a,X)

· f (S|A = a,X).

Under ignorability, the components of the right-hand
side of (6) are equivalent to models for the potential
main and auxiliary potential outcomes, f (Y |S,S¬a,

A = a,X) = f (Y a|S,X) and f (S,S¬a|A = a,X) =
f (S|X). Thus, parametrizing the models for the ob-
servables can lead to a likelihood for the causal quan-
tities of interest.

This likelihood is generally overparametrized. Sup-
pose that both S and A are scalar and binary. Then,
there are six unknown observed densities for each level
of covariates X: two for f (S|A = a,X) (one for each
level of A), and four for f (Y |S,A = a,X) (one for
each level of A and S). However, there are eleven den-
sities for the causal parameters in (6): three for f (S|X)

(there are four levels of S, but the probabilities sum
to 1), and eight for f (Y a|X,S) (two levels of a × two
levels of S × two levels of S¬A). Thus, identification
of causal effects will require further restrictions on the
parameters. Before proceeding to discuss such restric-
tions, we note that there are (at least) two approaches
which do not require identification: a Bayesian ap-
proach, in which prior information is combined with
the likelihood to produce a posterior (Imbens and Ru-
bin, 1997), and approaches which derive bounds on
causal effects (Balke and Pearl, 1997; Manski, 1990;

Robins, 1989; Rubin, 2004; Zhang and Rubin, 2003;
Cheng and Small, 2006).

There are several forms of restrictions that can be
applied. These include restrictions on the joint distrib-
ution of the potential auxiliary outcomes S (i.e., on the
principal strata), and restrictions on the marginal dis-
tributions of the potential main outcomes Ya .

One type of restriction on the auxiliary outcome oc-
curs when some level of the auxiliary outcome is im-
possible under some treatment level a. Consider first
randomized trials with noncompliance, one area in
which the ideas of PS have been applied frequently
(Angrist, Imbens and Rubin, 1996; Baker and Linde-
man, 1994). In one view of these studies (Imbens and
Rubin, 1997), one may view randomization, the con-
trolled factor, as the treatment A whose effect one is
interested in estimating, and the level of exposure to
the experimental therapy S as the auxiliary variable.
One may be interested in the effects of randomization
for different classes of subjects defined by the set of
behaviors S = {S0, S1} they would follow under dif-
ferent treatment assignments. In some randomized tri-
als, subjects assigned the control treatment (A = 0)

have no access to the experimental therapy (S = 1);
this may be common with investigational therapies not
available outside of the trial. In this case, there are two
rather than four principal strata S : {S0, S1} = (0,1)

(compliers) and {S0, S1} = (0,0) (never-takers). In the
HIP Study, it may be reasonable (under the condi-
tions of the study in the 1960s) to reason that sub-
jects not assigned to screening (A = 0) could not have
received mammograms and so could not have been
diagnosed as a result of mammography (S = 1). In
these cases, the principal stratum of the treated sub-
jects is known; since S0 = 0, knowing the observed
outcome S = S1 in a treated subject fully identifies
S. Further, under ignorability, the proportion of sub-
jects in each principal stratum pr(S|X) is identified.
Under ignorability, the densities f (Y 1|X,S0, S1 = s)

are identified as f (Y |X,S = s,A = 1), but the densi-
ties f (Y 0|X,S,A = 0) are not identified, and so the
stratum-specific causal effects are not identified with-
out further assumptions.

A more general form of restriction on the potential
auxiliary outcomes consists of monotonicity restric-
tions, which have been adduced in a variety of set-
tings (Efron and Feldman, 1991; Gilbert, Bosch and
Hudgens, 2003; Angrist, Imbens and Rubin, 1996). For
any two ordered levels of treatment a, a′, a′ > a, strict
monotonicity states that Sa′ ≥ Sa for all subjects (or,
alternatively, that Sa′ ≤ Sa). Monotonicity identifies
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the principal stratum of some subjects. For binary S,
monotonicity and ignorability together permit identifi-
cation of the proportion of subjects in each principal
stratum. In the HIP study, if S is cancer diagnosis, one
might assume that, if a cancer were detected in an un-
screened subject, it also would have been detected had
the subject been screened (i.e., S1 > S0). This assump-
tion may be incorrect; for example, a woman who has
been screened and who was told that she had no can-
cer may become less suspicious of cancer later, and so
screening might sometimes lead to a missed diagnosis
of cancer.

None of these monotonicity assumptions, even in
conjunction with ignorability, is sufficient to identify
stratum-specific treatment effects. Such identification
typically requires assumptions about the outcome dis-
tributions f (Y a|X,S). We outline several such as-
sumptions.

One strict set of assumptions is that treatment has
no effect on the outcome Y for some subsets of the
data defined by S. In randomized trials, it is common
(Mark and Robins, 1993a; Sommer and Zeger, 1991)
to assume that randomization has no effect for those
subjects for whom treatment has no effect on S [i.e.,
Ya = Ya′

if Sa = Sa′
, or f (Y a|X,S) = f (Y a′ |X,S)

if Sa = Sa′
, a weaker assumption]; this assumption is

known as an exclusion restriction in the econometrics
literature (Angrist, Imbens and Rubin, 1996). In stud-
ies of breast cancer screening (e.g., HIP), one might
assume that screening has no effect among subjects
whose tumors were not detected through screening
(i.e., for subjects with S1 = 0, S0 = 0 where S = 1
if a subject has a screen-detected tumor, 0 otherwise).
In both of these examples, these restrictions, together
with the monotonicity restrictions and ignorability, are
sufficient to identify the causal effects [and, in fact,
the marginal densities f (Y a|X,S)] in the single princi-
pal stratum in which treatment effects are not assumed
to be 0. To see this, note that the marginal density of
the outcome may be written f (Y a|X) = ∑

s pr(S =
s)f (Y a|X,S = s); under our assumptions, pr(S = s)

is known for all s, and f (Y a|X,S = s) is identified as
either f (Y a|X,S,A = a) or f (Y a|X,S,A = 1 − a) in
the principal strata in which treatment has no effect.
Further, the marginal densities f (Y a|X) are identified
from the data under ignorability. This leaves one un-
known quantity f (Y a|X,S = s) for the principal stra-
tum in which the effect is not assumed to be zero; we
then solve f (Y a|X) = ∑

s pr(S = s)f (Y a|X,S = s)

to find this unknown density.

When these assumptions are not reasonable, the prin-
cipal stratum-specific effects are not identified without
other assumptions. These assumptions can take sev-
eral forms: assumptions about how different principal
strata are from each other with respect to the potential
outcomes, assumptions about the distribution of poten-
tial outcomes within principal strata, and assumptions
about the associations of covariates X with the poten-
tial outcomes within principal strata.

Assumptions about the differences between princi-
pal strata may involve specifying E(Y 0|X,S = s) −
E(Y 0|X,S = s′) for some s, s′, s �= s′; such assump-
tions are also sometimes framed in terms of the de-
gree of dependence of S1−A on Y 0 in models for
pr(S1−A|X,S,A,Y 0). Such assumptions allow one to
avoid parametric assumptions about error distributions.
It is fairly difficult to have precise quantitative knowl-
edge about the degree of this dependency. One way
to deal with such uncertainty is to perform a sensi-
tivity analysis, in which one varies the sensitivity pa-
rameter(s) over a plausible range (Gilbert, Bosch and
Hudgens, 2003); another way is to put a prior distrib-
ution on the dependency parameter, as done in various
Bayesian analyses (Imbens and Rubin, 1997).

Assumptions about the distribution of outcomes Ya

within a principal stratum are sometimes made in
both Bayesian and frequentist inference. Most often,
f (Y a|S) is assumed to be normal with unknown mean
and variance (Imbens and Rubin, 1997); we will con-
sider likelihood-based inference under this assumption.
With these assumptions, identification results from the
identifiability of mixtures of certain parametric fam-
ilies of distributions (Teicher, 1963). For example,
consider a model with two principal strata, never-
takers and compliers, for which no exclusion restric-
tion is assumed but the densities f (Y a|S) are assumed
to be normal. Identifiability of f {Y 0|S = (0,1)} and
f {Y 0|S = (0,0)} results from the fact that f (Y |A = 0)

is a mixture of its two component normal distributions,
and the parameters of a mixture of two normals are
identifiable (Teicher, 1963). In order to identify which
mixture component represents f {Y 0|S = (0,1)} and
which represents f {Y 0|S = (0,0)}, it is required that
the proportion of compliers not equal 0.5. Identifica-
tion based on parametric assumptions about the dis-
tributions of outcomes f (Y a|S) may not be robust to
changes in parametric assumptions, as with selection
models (Copas and Li, 1997).

Finally, one can make assumptions about the asso-
ciations of covariates X with the potential outcomes
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within principal strata. For example, one might as-
sume that principal stratum-specific effects are con-
stant across covariates X [e.g., E(Y 1 −Y 0|X = x,S) =
E(Y 1 − Y 0|X = x′, S), for all x, x′]; this assumption
parallels assumptions we made for structural nested
models that effects conditional on observed auxiliaries
do not vary with X. One might also assume that the
association of the covariates with potential outcomes
has a particular parametric form [e.g., E(Ya|X,S) =
q(S) + Xβ].

5. A SMALL SIMULATION EXPERIMENT

In this section, we report results of a small sim-
ulation study to examine the performance of certain
PS and observed auxiliary stratification estimators. We
consider a continuous outcome Y , one binary covari-
ate X, and four settings (two sets of expected values
for outcomes within the A,X,S strata and two dis-
tributions of outcomes within the A,X,S strata for
each set of expected values). For the four settings,
the expected values of Y within the A,X,S strata are
shown in Table 3 along with the parametric distrib-
ution within the A,X,S strata. We label the princi-
pal strata S by (S0 = 0, S1 = 0) = immune (I), (S0 =
1, S1 = 0) = treatment protective (TP), (S0 = 0, S1 =
1) = treatment harmful (TH) and (S0 = 1, S1 = 1) =
doomed (D) (Greenland and Robins, 1986). For all set-
tings, the standard deviation of Y within each A,X,S

stratum is 1; E(Y |A,X = 1, S) − E(Y |A,X = 0, S) =
0.5 for all A,S, so that the principal stratum-specific
effects are constant across the covariate X; pr(S =
I) = 0.25, pr(S = TP) = 0.4, pr(S = TH) = 0.05
and pr(S = D) = 0.3; and pr(X = 1|S = I) = 0.5,
pr(X = 1|S = TP) = 0.75, pr(X = 1|S = TH) = 0.25
and pr(X = 1|S = D) = 0.5. The sample size is 5000

for each setting and the probability of being randomly
assigned treatment (A = 1) is 0.5.

We consider two PS estimators and one observed
auxiliary stratification estimator. The PS estimators as-
sume normal outcomes within each A,X,S stratum.
This assumption is satisfied for settings I(A) and II(A)
and violated for settings I(B) and II(B). The PS esti-
mators furthermore make the correct assumption that
E(Y |A,X = 1, S) − E(Y |A,X = 0, S) is the same
for all A,S. The first PS estimator we consider does
not put any constraints on E(Y |A,X,S). The sec-
ond estimator constrains the average effect of treat-
ment in the immune principal stratum given a value
of X[E(Y |A = 1,X,S = I) − E(Y |A = 0,X,S = I)]
to be equal to the average effect of treatment in the
treatment protective principal stratum given the same
value of X and constrains the average effect of treat-
ment in the treatment harmful principal stratum given
a value of X to be equal to the average effect of treat-
ment in the doomed principal stratum given the same
value of X. The constraint made by the second PS es-
timator is correct for settings I(A) and I(B) but is in-
correct for settings II(A) and II(B). We used the EM
algorithm to implement the PS estimators and used the
true parameters as the starting values. The observed
auxiliary stratification estimator is based on model
(4) and uses the function g{Y 0(�),X} = ε(�){1 −
E(S|X,A = 1),E(S|X,A = 1)}T discussed in Sec-
tion 4.3. Model (4) is correct for settings I(A) and
I(B) but is incorrect for settings II(A) and II(B); in set-
tings II(A) and II(B), E(Y |X,A,S) − E(Y 0|X,A,S)

varies with X. For the observed auxiliary stratifica-
tion estimator, we used the computational procedure
for weighted G-estimation described in Ten Have, El-
liott, Joffe, Zanutto and Datto (2004) using the true val-
ues as the starting values. R code for the simulations

TABLE 3
Parameter values for simulation study

Setting I(A) I(B) II(A) II(B)

E(Y |A = 1,X = 0, S = immune) 2 2 2 2
E(Y |A = 0,X = 0, S = immune) 1 1 1 1
E(Y |A = 1,X = 0, S = treatment protective) 2.5 2.5 2.5 2.5
E(Y |A = 0,X = 0, S = treatment protective) 1.5 1.5 1 1
E(Y |A = 1,X = 0, S = treatment harmful) 1.25 1.25 1.25 1.25
E(Y |A = 0,X = 0, S = treatment harmful) 0.75 0.75 0.75 0.75
E(Y |A = 1,X = 0, S = doomed) 1.75 1.75 2.25 2.25
E(Y |A = 0,X = 0, S = doomed) 1.25 1.25 1.25 1.25
Distribution within each A,X,S0, S1 stratum Normal Gamma Normal Gamma
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TABLE 4
Simulation study results

Settings I(A) and I(B)

Setting I(A) Setting I(B)

Estimator Truth Mean SD Truth Mean SD

Principal stratification estimator I average effects of treatment

Immune 1 0.97 0.23 1 0.11 0.14
Treatment protective 1 1.00 0.13 1 0.82 0.05
Treatment harmful 0.5 0.54 0.48 0.5 0.68 0.06
Doomed 0.5 0.51 0.19 0.5 1.36 0.10

Principal stratification estimator II average effects of treatment

Immune=treatment protective 1 1.00 0.03 1 0.78 0.14
Treatment harmful=doomed 0.5 0.50 0.04 0.5 0.60 0.08

Observed auxiliary stratification

�0 1 1.00 0.12 1 1.00 0.12
�1 0.5 0.50 0.21 0.5 0.50 0.21

Settings II(A) and II(B)

Setting II(A) Setting II(B)

Estimator Truth Mean SD Truth Mean SD

Principal stratification estimator I average effects of treatment

Immune 1 0.98 0.22 1 0.00 0.14
Treatment protective 1.5 1.52 0.14 1.5 1.91 0.06
Treatment harmful 0.5 0.60 0.54 0.5 1.16 0.08
Doomed 1 0.96 0.21 1 0.43 0.08

Principal stratification estimator II average effects of treatment

Immune=treatment protective 1.42 1.33 0.03 1.42 1.63 0.04
Treatment harmful=doomed 0.93 0.88 0.04 0.93 −0.01 0.07

Observed auxiliary stratification

�0 1.42 1.51 0.12 1.42 1.52 0.13
�1 0.93 0.56 0.23 0.93 0.53 0.23

and analysis and an example dataset are available at
www.cceb.upenn.edu/ faculty/?id=157.

Table 4 displays the means and standard deviations
of the estimators for 500 simulations of each setting.
In setting I(A), the assumptions made by all three esti-
mators are correct. All the estimators provide approx-
imately unbiased estimates of their corresponding es-
timands. The PS II estimator that constrains certain
average effects of treatment within principal stratum
to be equal is the most efficient estimator. The PS II
estimator and the observed auxiliary stratification es-
timator make similar assumptions, but the additional
parametric assumptions made by the PS II estimator
make it considerably more efficient. In setting I(B), the

assumptions made by the observed auxiliary stratifi-
cation estimator continue to hold but the parametric
assumptions made by the PS estimators are false. The
observed auxiliary stratification estimator performs
similarly in setting I(B) as it did in setting I(A)—it
is approximately unbiased and has a similar variance.
In contrast, the PS estimators exhibit considerable bias
for some of their estimands in setting I(B). The PS I es-
timator has a particularly large bias for the average ef-
fects of treatment in the immune and doomed principal
strata. In settings II(A) and II(B), the assumption made
by the observed auxiliary stratification estimator that
treatment effects conditional on observed auxiliaries
do not vary with the covariate X is false. In the “Truth”

www.cceb.upenn.edu/faculty/?id=157
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column for �0 and �1, we list the average realized ef-
fects of treatment for subjects with S1 = 0 and S1 = 1,
respectively. The observed auxiliary stratification esti-
mator of �0 for settings II(A) and II(B) does not show
much bias but the estimator of �1 shows considerable
bias. For the PS estimators, the assumptions made by
PS estimator I are true in setting II(A) and false in set-
ting II(B), and the assumptions made by PS estimator
II are false in both settings. As in settings I(A) and
I(B), PS estimator I is approximately unbiased when
its parametric assumptions hold [setting II(A)] but is
considerably biased for some estimands when its para-
metric assumptions do not hold [setting II(B)]. For set-
ting II(A), PS estimator II provides slightly biased but
low variance estimates of the average effects of treat-
ment across the immune and treatment protective strata
and the average effect of treatment across the treatment
harmful and doomed strata (the value listed in the Truth
column for the PS II estimator for immune=treatment
protective is the average effect of treatment among sub-
jects with S1 = 0 and for treatment harmful=doomed
is the average effect of treatment among subjects with
S1 = 1). For setting II(B), PS estimator II’s estimate
of the average effect of treatment across the treatment
harmful and doomed strata is substantially biased.

In summary, all of the estimators are somewhat sen-
sitive to their assumptions. The PS I estimator makes
no assumption about how the average effects within
a principal stratum [E(Y |A = 1,X,S) − E(Y |A =
0,X,S)] compare between principal strata, but is sen-
sitive to its parametric assumptions. The PS II estima-
tor and observed auxiliary stratification estimator both
put the same constraints on how the average effects
within principal strata compare, and both estimators
are sensitive to these constraints holding. The PS II es-
timator was considerably more efficient than the ob-
served auxiliary stratification estimator when its para-
metric assumptions held, but showed considerable bias
for some estimands when its parametric assumptions
did not hold. We also performed the same set of simula-
tions for a sample size of 500; the results are not shown
but are available from the authors. The performance
of the estimators and the way in which the estimators
compare were similar to what is shown in Table 3 for
the larger sample size of 5000. Some notable features
of the simulations for the smaller sample size of 500
were: (1) in a very small proportion of simulations (ap-
proximately 0.005%), the observed auxiliary stratifica-
tion estimator produced estimates that were very large
in absolute value (more than 100 times the true value);

(2) in a very small proportion of simulations (approxi-
mately 0.1%), the PS I estimator did not converge; and
(3) the PS estimators exhibited a small amount of bias
(a maximum of about 0.1) for some estimands even
when their parametric assumptions held.

For the settings considered in Table 3 (with a sample
size of 5000), we also computed the expected auxiliary
stratification estimator based on model (3). The means
of the estimates of βA + βµA were −3.00, −2.99,
−2.18 and −2.19 for settings I(A), I(B), II(A) and
II(B), respectively. These mean estimates are not close
to the effect of treatment for the subgroup of subjects
with S1 = 1. These results illustrate the point men-
tioned at the end of Section 4.2 that the expected aux-
iliary stratification estimates cannot necessarily be ex-
trapolated to reliably estimate the effect of treatment
for the subgroup of subjects who will have a certain
value of the auxiliary variable if treated.

6. ANALYSIS OF THE HIP DATA

The Health Insurance Plan (HIP) Study (Shapiro
et al., 1988) was a randomized trial of screening for
breast cancer, in which more than 60,000 women aged
40–64 at the start were randomized into two groups.
In the treatment arm, women were offered screening
examinations, consisting of mammography and clini-
cal exam, to be provided in an initial visit and three
annual follow-up visits. About one-third of women in
the treatment arm refused screening; some of the others
did not receive some of the follow-up exams; this infor-
mation is also recorded. Women in the control group
received usual care. The study recorded information
on date of death for women who died; cause of death
was classified as being due to breast cancer or not. The
study also recorded information on whether and when a
participant was diagnosed with breast cancer, and if so,
whether the cancer was detected by one of the screen-
ing exams in the study.

We analyzed the HIP data using G-estimation of
structural models. For these analyses, our outcome Y

is the natural logarithm of our failure-time, death from
breast cancer. Because most subjects in the study do
not experience the outcome of interest before the end
of follow-up, the outcome is said to be censored.

We consider several choices of the auxiliary out-
come S. For the first, S = 1 if a subject receives a
screen, 0 otherwise; for the second, S = 1 if a sub-
ject is screened and diagnosed with breast cancer, 0
otherwise; for the third, S = 1 if a subject is diag-
nosed with breast cancer and that cancer was detected
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by the screen, 0 otherwise. Here, the treatment of in-
terest A is (randomized) assignment to the screening
arm. We assume that assignment to the screening arm
has no effect on the outcome unless a subject actually
is screened and is diagnosed (for the third choice, di-
agnosed based on the screen), and so �0 = 0. Because
of censoring, we use as our function g{Y 0(�),X} =
�(�), where �(�) ≡ I {Y(�) < C(�)}, C(�) =
min{C,C exp(�)} (for binary A,S, and scalar �), and
C denotes a subject’s potential censoring time (here
ten years). Other references (Joffe, 2001; Mark and
Robins, 1993b; Robins, 1992) discuss the more gen-
eral approach to dealing with administrative or gen-
eralized type I censoring. Joffe (1994) provides fuller
justification for use of this particular function. To deal
with competing risks, we weight the estimating func-
tions for subjects not censored by competing risks by
the inverse of their probability of being uncensored at

the end of their follow-up; Robins et al. (1992) pro-
vide more details. We consider subjects who died of
other causes as censored by a competing risk, although
this is somewhat problematic (Kalbfleisch and Pren-
tice, 2002).

For our analysis, we consider the first ten years of
follow-up for each subject. In this period, 1259 sub-
jects were diagnosed with breast cancer (626 of these
were in the screening arm). There were 340 deaths at-
tributed to breast cancer: 193 in the control arm and
147 in the screening arm. Among the 441 cancers diag-
nosed among subjects who received at least one screen,
132 cancers were detected by the screen; among the
100 screened breast cancer cases who died of breast
cancer, 27 had been detected by the screen.

We applied the modified G-estimation approach to
these data. Figure 2 plots the Z-test statistics for each
choice of S against �1. The test statistics for �1 = 0

FIG. 2.
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are identical [Z = −2.39,p = 0.017 (2-sided)]. When
S denotes diagnosis of breast cancer among screened
subjects, the absolute value of the statistic is mini-
mized around �1 = −0.20, and the 95% confidence
interval is (−0.49,−0.06); this means that screening
lengthens the time to breast cancer mortality by a fac-
tor of [exp{−(−0.2)} − 1] ∗ 100% = 22% (6%,63%)

among screened subjects diagnosed with breast cancer.
We obtain identical results when S denotes receiving
a screen, and so the model estimates may also be in-
terpreted as the effect of screening on screened sub-
jects. This is so because, for any given value of � ,
g{Y 0(�),X} = �(�) is the same whether S denotes
screening or cancer diagnosis following screening.
Because screening is unavailable in the control arm,
these estimates are also estimates of complier aver-
age causal effects (Imbens and Rubin, 1997). When
S denotes breast cancer diagnosis as the result of a
screen, the corresponding point estimate (95% confi-
dence interval) is −0.76 (−1.15,−0.27); the corre-
sponding lengthening is 114% (31%, 216%). Thus, the
effect of screening among screened subjects diagnosed
with breast cancer is less than the effect on the subset
of these subjects whose diagnosis was a result of the
screening, as would be expected.

7. UTILITY OF VARIOUS APPROACHES

Causal modeling has multiple purposes. These
include assisting in making decisions about possible
interventions, predicting the results of those interven-
tions, and better understanding of the processes lead-
ing to the outcome(s) under study. We consider the ap-
proaches sketched above in terms of their utility for
these purposes, as well as generalization of study re-
sults.

7.1 Making Decisions

Making decisions about possible interventions and
predicting the results of those interventions are closely
linked. Normally, one would want to choose, for any
individual, the treatment that leads to the best possi-
ble expected result, however that is defined. This deci-
sion must be made on the basis of information available
at the time of the decision; for point exposures, that
means only baseline covariates may be used to predict
outcomes under a given treatment and so guide treat-
ment decisions.

We formalize this within a decision-theoretic frame-
work. Let Li(S

a,Y a;a) denote an individual’s loss
function associated with decision a. The loss func-
tion may be associated with the subject’s principal

stratum, observed auxiliaries or outcomes, measured
pretreatment covariates, or other individual-specific
factors. To formalize this idea, let Q denote a collec-
tion of variables. We can write the expected loss given
Q as E{Li(S

a
i , Y a

i , a)|Q}. Under the usual decision-
theoretic framework, a decision should depend only on
information available at the time of the decision; fur-
ther, if the decision is to be based only on information
available in the statistical models fit to the data, we can
condition only on measured baseline covariates X. Un-
der these constraints, decisions should be based only
on comparisons of E{Li(S

a
i , Y a

i , a)|X} for different
treatments a, and so depend on the joint density of the
potential outcomes f (S,Y |X) only through the mar-
ginal densities f (Sa,Y a|X) = f (Sa|X)f (Y a|Sa,X),
where S ≡ {Sa}, a ∈ A and A denotes the set of pos-
sible treatments a. Thus, the optimal feasible deci-
sion based solely on data available to the study will
depend on the marginal distributions f (Sa|X) and
f (Y a|Sa,X), both of which are estimable using con-
ventional methods (the latter as described in Sec-
tion 2.2); the use of the factorization of the marginal
density f (Sa,Y a) for estimation will be particularly
important when Ya is undefined for some values of Sa

(e.g., with censoring by death). Relying solely on the
marginal density f (Y a|X) will be adequate for decid-
ing among treatments if the loss does not depend on Sa

or if the auxiliary variable is not affected by treatment
and the loss function may be written as the sum of sep-
arate components associated with main and auxiliary
outcomes [i.e., if Li(S

a,Y a;a) = q1(S
a) + q2(Y

a) for
some functions q1(·) and q2(·)]. If the loss is a func-
tion of Sa , none of the estimands discussed in Sec-
tion 3 is adequate by itself, as they focus only on the
density of Ya [some methods proposed in conjunction
with PS (Imbens and Rubin, 1997) yield estimates of
f (Sa|X) and so potentially could be used to estimate
f (Sa,Y a)]. In the nephrology example, the auxiliary
outcome, ESRD, is a condition with severe and life-
disrupting consequences (requiring dialysis or trans-
plant) which would normally influence the loss func-
tion.

Suppose that the loss is not a function of Sa . In the
cancer screening example, it is arguable that the ben-
efits of screening should be assessed solely in terms
of mortality Ya , even though there are costs that are
associated with cancer diagnosis, including the fi-
nancial costs of administering screening exams, pa-
tient inconvenience, and the costs of falsely diagnos-
ing a subject as having cancer who actually does not,
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which can both lead to unnecessary surgical proce-
dures and have adverse psychological impact (Brett,
Bankhead, Henderson, Watson and Austoker, 2005;
Barratt, Irwig, Glasziou, Salkeld and Houssami, 2002).
If the loss is a function of Ya alone, optimal decisions
should be based on f (Y a|X); that is, we should seek
to minimize E{Li(S

a,Y a, a)|X} = E{Li(Y
a, a)|X} =∫

Ya Li(Y
a, a)f (Y a|X)dY a . Suppose that, as is typical,

Li(Y
a
i , a) is a monotonic function of Ya

i for all sub-
jects (e.g., mortality is never a desired outcome); sup-
pose further that Li(Y

a
i , a) does not depend on a and so

Li(Y
a
i , a) = Li(Y

a′
i , a′) for all a, a′ (e.g., the loss asso-

ciated with mortality does not depend on whether one
had been screened). Then, the relative expected loss for
an individual under one treatment relative to another
can be assessed by comparing the densities f (Y a|X)

and f (Y a′ |X).
Although these quantities may be evaluated from

a model which conditions on a post-treatment auxil-
iary, such evaluation will typically be more involved
than the simpler and more direct modeling of the mar-
ginal densities f (Y a|X). Let Z denote a post-treatment
auxiliary; Z can be a principal stratum or the single
potential auxiliary Sa . We can compute and estimate
f (Y a|X,Z) using methods discussed above (includ-
ing the methods based on observed auxiliary stratifi-
cation; Section 4.3); nonetheless, to make a decision,
we must integrate out the auxiliary Z, as it is un-
known at the time a decision is being made. Thus,
from models based on PS or single potential auxil-
iaries, we can assess the loss by evaluating f (Y a|X) =∑

z f (Y a|X,Z = z)pr(Z = z|X); these calculations
are more involved than those based on stratifications
based on the observed covariates X, where the most
relevant comparison of densities can be read simply (or
directly) from a single regression of Y on X and A.
Further, the increased number and complexity of the
models required to evaluate the desired quantities may
lead to increased likelihood of obtaining incorrect con-
clusions due to model misspecification. If the sharp
null hypothesis of no effect is true, tests of the null
using G-estimation of parameters in structural nested
mean models will be (relatively) robust to model mis-
specification in randomized trials, because they essen-
tially are based on intent-to-treatment tests of the null
(Robins, 1992).

Information on the expected value of post-treatment
auxiliaries more generally might be of use in making
decisions in situations in which decision makers had a
better idea of the value of these post-treatment auxil-
iaries than can be assessed from the data. This could

happen if, for example, a new test were developed that
discriminates well between subjects who will and will
not develop the auxiliary outcome. Then, effects for
groups defined by an auxiliary variable might be used
to infer the effects of treatment for groups defined by
this baseline variable. Additionally, finding that effects
of treatment differ for subjects with different levels of
the auxiliary variable could be a useful spur to find
baseline variables which predict the auxiliary variable
well.

For making decisions, even the expected auxiliary
outcomes play no special role in principle. For this
purpose, covariates which strongly modify the effects
of treatment (measured on a clinically relevant scale)
are of greatest value. Sometimes, the expected aux-
iliary may be such an effect modifier; in the cancer
screening example, it is plausible that the risk of breast
cancer would be an important modifier of the benefit
of screening, especially if the benefit is assessed on
the scale of difference in probability of mortality if
screened or not. Unfortunately, we cannot evaluate this
in the HIP study, which collected little covariate infor-
mation.

7.1.1 Treatments given over an extended period.
Where the treatment is actually applied over an ex-
tended period of time, estimands stratifying on post-
treatment auxiliaries may have more immediate rele-
vance for decision making. Suppose that the auxiliary
variable is measured shortly after the initiation of treat-
ment. Suppose further that treatment never changes
over the course of follow-up and that the effect of treat-
ment on the ultimate outcome, measured at the end of
a fixed follow-up period, is cumulative (i.e., the effect
of treatment given early during follow-up on this out-
come is in the same direction as the effect of treat-
ment later). Then, finding that treatment is beneficial
for some groups defined by post-treatment variables
and harmful for others will lead to recommendations
to discontinue treatment for the group for whom treat-
ment is harmful.

To illustrate and formalize this, consider elaborating
model (4) to model the effect of the different com-
ponents Ak of treatment received at different times
k, k = 1, . . . ,K . Let Ȧ ≡ (

∑K
k=1 Ak)/K be the aver-

age value of treatment received during follow-up. The
model

Y 0 = Y − Ȧ(1 − S)�0 − ȦS�1(7)

is indistinguishable from model (4) when treatment for
all subjects remains constant over time; if the model is
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correct and S is assessed early in follow-up, one would
then be justified in making treatment decisions beyond
k based on the value of S measured by k. Such infer-
ence is, however, strongly dependent on modeling as-
sumptions. To see this, consider the model

Y 0 = Y − A1(1 − S)�0 − A1S�1,(8)

which specifies that the only treatment which affects
the outcome is that received during the first period.
When treatment Ak remains constant over time, this
model is indistinguishable in the data from model (7);
nonetheless, one model will suggest that treatment may
be beneficial beyond k, whereas the other will not.

7.2 Explanatory Analyses

Another possible use of analysis stratifying on post-
treatment auxiliaries is explanatory. In scientific work,
one typically wants to explain the data in ways which
will lead not only to an understanding of the data them-
selves but also to generalization to other settings (of-
ten beyond the sampling frame of the study). In this
section, we consider the utility of analysis stratify-
ing on post-treatment auxiliaries for such explanation
and contrast it with approaches which concentrate on
causal mechanism.

7.2.1 Two types of explanation: effect modification
vs. causal mechanism. Effects which vary by post-
treatment auxiliaries can be used to explain observ-
able differences in outcomes between groups receiving
different treatments (White and Goetghebeur, 1998).
For example, in the HIP study, an effect of screen-
ing �1 of −0.2 for screened subjects diagnosed with
breast cancer (or −0.76 for screened subjects diag-
nosed due to the screen), together with no screening
effect in the remaining subjects, can explain the dif-
ferences in survival between the randomized groups.
We say that there is effect measure modification (Roth-
man and Greenland, 1998) here by the post-treatment
auxiliary (diagnosis after screen or diagnosis due to
screen) because the measure of treatment effect differs
between the different groups defined by the auxiliary
[i.e., �1 �= �0 in (4)]; this variation in effects can be
used to explain the differences between the groups.

One might be tempted to conclude that cancer di-
agnosis (or its correlates) participates in the processes
leading to improved survival and perhaps interacts
causally with the treatment of interest. Such mechanis-
tic inference will often be suggestive but is fraught with
pitfalls (Thompson, 1991). In particular, the concept of
effect measure modification (a.k.a. statistical interac-
tion) differs from mechanistic interaction in that effect

measure modification does not require that the modi-
fier itself be a variable which can be modified directly,
whereas mechanistic interaction requires the modifier
to be the subject of intervention. Thus, one need not
speak of the causal effect of an effect modifier.

Effect modification by post-treatment auxiliary vari-
ables provides less satisfactory and less satisfying ex-
planations of observed associations when divorced
from the concepts of causal mechanism and causal in-
termediates. To see this, consider a scenario in which
the effect of aggressive blood pressure management on
MI is greater for subjects who subsequently develop
ESRD [e.g., |g{E(Y 1|A = 1, S = 1)} − g{E(Y 0|A =
1, S = 1)}| > |g{E(Y 1|A = 1, S = 0)} − g{E(Y 0|A =
1, S = 0)}| for some monotone link function g(·); typ-
ically g(y) is either y (the identity link, leading to risk
differences), ln(y) (the log link, leading to risk ratios)
or logit(y) (the logit link, leading to odds ratios)]. Con-
trast the following four statements:

1. The effect of aggressive treatment of blood pressure
on MI is greater for people who subsequently de-
velop ESRD (observed auxiliary stratification), with
the effects in the different subgroups explaining the
overall difference between subjects treated aggres-
sively and those not.

2. The effect of aggressive treatment of blood pres-
sure on MI is greatest for people who would de-
velop ESRD only if not treated aggressively (prin-
cipal stratification).

3. Aggressive treatment of blood pressure prevented
the development of ESRD in some subjects (one
principal stratum). This, in turn, prevented the de-
velopment of MI for some subjects. Thus, ESRD
mediated in part the effect of aggressive manage-
ment of blood pressure on MI.

4. Aggressive treatment of blood pressure prevents the
development of ESRD in some subjects. This, in
turn, prevents the development of MI for some sub-
jects. Thus, ESRD mediates in part the effect of ag-
gressive management of blood pressure on MI.

The last two statements attempt to provide some un-
derstanding of the causal mechanisms leading from
blood pressure treatment to MI; these are often con-
sidered in terms of direct and indirect effects (Pearl,
2001; Robins and Greenland, 1992; Robins, 1999). The
first two do not attempt such explanation. Statements
3 and 4 are identical except for the tense. Statement 3
is an attempt to explain what has happened; statement
4 refers to more general causal processes and in prin-
ciple is an attempt to predict the future and so is more
ambitious.
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In general, we prefer statements 3 and 4. Statements
1 and 2 are not, in general, useful for making treat-
ment decisions, and the quality of their explanations of
the data is poor. Where warranted based on appropri-
ate subject-matter considerations, statements 3 and 4
provide informative explanations. At the risk of gen-
eralizing beyond the data at hand, statement 4 makes
general statements about causal processes which are
then potentially testable in other data. An important
role of science is to extrapolate from one’s data and
make predictions which may be testable in other data
or designs; this is most easily fostered by considering
causal mechanisms. This important scientific goal is
sometimes fostered by considering effects of auxiliary
variables that are not under the direct control of the in-
vestigator in the given study; Rubin (2004) presents a
somewhat contrary view.

In the nephrology example, it is meaningful to con-
sider the effect of ESRD on MI; this accords nicely
with common usage. The effect can be approximated
by comparing what would happen to someone who has
or develops ESRD with what would have happened
had that person received a transplant from a genetically
identical person (an identical twin or identical triplets)
who did not have ESRD. Even though this experiment
could rarely, if ever, be carried out, it provides a useful
approach for defining the effect in terms of a thought
experiment.

DAGs provide a nice intuitive representation of di-
rect and indirect effects; the ideas of potential out-
comes and counterfactuals allow these ideas to be
made more precise. Figure 3 shows causal relation-
ships among the variables. In this graph, the path A →
S → Y represents the indirect effect of A on Y (i.e.,
that part of the effect of A that is mediated by the spec-
ified variable S; it is necessary to specify the auxiliary
variable(s) S to define what is meant by indirect and

FIG. 3. A directed acyclic graph representing the relations
among the variables in the example of Section 7.2.

direct effects), and A → Y represents the direct effect
of A on Y (i.e., that part of the effect not mediated
by S). Graphs like this are sometimes known as path
diagrams and have been used to justify the use of lin-
ear models for multivariate normal data (Pearl, 2000).
The path-analytic approach suffers from the lack of a
nonparametric definition of causal effects and gener-
ally unrealistic assumptions of multivariate normality;
further, it does not extend naturally to settings with in-
teractions among the variables or to nonlinear models.

The ideas of potential outcomes may be used to de-
fine direct, indirect and joint effects of treatment. Let
Ya,s denote the (continuous) outcome one would see
for a given subject at level a of the main treatment of
interest (e.g., management of hypertension) and level s

of the auxiliary outcome (e.g., ESRD). Underlying the
notation is the assumption that the auxiliary outcome
is in some sense manipulable. The notation has been
used in conjunction with PS (Angrist, Imbens and Ru-
bin, 1996) as well as discussions of direct and indirect
effects.

The direct effect of the main treatment A control-
ling for an auxiliary variable S may be defined as
the contrast of Ya1,s and Ya0,s for an individual or a
group; that is, the direct effect contrasts the outcome
that would be seen under two different levels of the
primary treatment, physically manipulating the auxil-
iary variable to a given level s. Direct effects are not
uniquely defined; there are separate direct effects for
each level of the auxiliary variable s.

There are, in fact, two separate types of direct effects
(Pearl, 2001; Robins and Greenland, 1992; Robins,
2003), depending on the nature of the manipulation of
the auxiliary variable. If the auxiliary variable is set to
a prespecified level s, the resulting contrasts are known
as “controlled” direct effects. If the auxiliary variable is
set to the level it would have reached at some reference
level a∗ of the treatment, the effects are known as “nat-
ural” direct effects; natural direct effects are contrasts
of Ya1,Sa∗

and Ya0,Sa∗
, a∗ ∈ {a0, a1}. For a∗ = a0, the

natural direct effect is a contrast of the potential out-
come that would have been seen had the main treat-
ment been set to level a1 but the auxiliary variable set
to the level Sa0

it would have taken had the subject
been given level a0 with the potential outcome that
would have been seen had the subject been given level
a0 of the main treatment.

Although there is no general definition of controlled
indirect effects, natural indirect effects are nonpara-

metrically defined as contrasts of Ya∗,Sa1

and Ya∗,Sa0

;
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that is, for a∗ = a0, the indirect effect is a contrast of
what would have happened had a subject been given
treatment a0 but had his or her auxiliary variable set
to the level Sa1

it would have attained had he or she
been given a1 with what would have happened had the
subject been given a0. Statements 3 and 4 above may
be understood as speaking about the natural indirect ef-
fects of aggressive management of blood pressure.

7.2.2 Contrasting models for contrasting explana-
tions. We present here a simple semiparametric model
which allows us to contrast the ideas of mediation with
those presented previously, in particular, with the mod-
ification of treatment effect by post-treatment covari-
ates, as in (4). We consider a continuous outcome vari-
able Y . A simple model for the joint effects of hyper-
tension management and ESRD is

Ya,s = Y 0,0 + aγ1 + sγ2 + asγ3.(9)

In this model, γ1 represents the controlled direct ef-
fect of aggressive treatment of blood pressure (hold-
ing S at 0), γ2 represents the effect of modification of
ESRD and γ3 represents an interaction between ESRD
and aggressive treatment of blood pressure. Under an
assumption of monotonicity of the effect of treatment
A on S (e.g., S1 ≤ S0), the parameter γ ≡ {γ1, γ2, γ3}
is related to the effects of aggressive treatment of blood
pressure on principal strata as follows:

for subjects doomed to develop ESRD (S1 = S0 =
1), the effect of aggressive treatment (Y 1 − Y 0 =
Y 1,S1 − Y 0,S0

) is γ1 + γ3;
for subjects immune to ESRD (S1 = S0 = 0), the
effect of aggressive treatment is γ1;
for subjects for whom treatment prevents ESRD, the
effect of aggressive treatment is γ1 − γ2.

In this model, statement 2 (now relating to a contin-
uous cardiovascular outcome) that the beneficial effect
of aggressive treatment of blood pressure is greatest for
people who would develop ESRD only if not treated
aggressively is implied by γ2 > 0, γ3 > −γ2 (assum-
ing small values of Y are better outcomes). Further, if
γ2 > 0 and aggressive treatment and ESRD do not in-
teract in affecting the outcome (i.e., γ3 = 0), then state-
ment 2 is true, as is statement 4.

Further, the effect of treatment among treated sub-
jects who do not develop ESRD is

E(Y 1|A = 1, S = 0) − E(Y 0|A = 1, S = 0)

= E(Y 1,S1 − Y 0,S0 |A = 1, S1 = 0)

= ∑

s

pr(S0 = s|A = 1, S1 = 0)

· E(Y 1,S1 − Y 0,S0 |A = 1, S1 = 0, S0 = s)

= γ1 − pr(S0 = 1|S1 = 0)γ2,

and the effect of treatment among the treated who
develop ESRD is γ1 + γ3. Thus, �0 in (4) equals
γ1 − pr(S0 = 1|S1 = 0)γ2, and �1 = γ1 + γ3.

In a randomized trial of A, the parameters in model
(9) are identified from the data under two types of as-
sumptions:

1. The assumption that the initial treatment A is
randomized, along with the modeling assumptions in-
herent in (9) (Robins and Greenland, 1994; Ten Have
et al., 2004). In this approach, the modeling assump-
tions are not fully testable, even in very large stud-
ies. This approach is similar to that proposed above
for observed auxiliary stratification and under some
conditions is essentially identical. For G-estimation,
the approach requires the same number of estimat-
ing equations as the number of free parameters. Un-
der the above normality and homoscedasticity as-
sumptions and the assumption that f (Y 0,0|X,A,S1) =
f (Y 0,0|X), the optimal function is the vector func-
tion g{Y 0,0(γ ),X} = ε(γ ){1,E(S|X,A = 1) − E(S|
X,A = 0),E(S|X,A = 1)}T . We now require the co-
variate vector to predict not only the level of the
auxiliary variable among the treated [as was true
for model (4)], but also to predict the effect of the
primary treatment on the auxiliary, and we require
the three elements {1,E(S|X,A = 1) − E(S|X,A =
0),E(S|X,A = 1)} to not be collinear; this often re-
quires at least two covariates. Restrictions on the para-
meter space can result in a smaller vector of estimat-
ing functions; typically, the restrictions are either that
there is no interaction between A and S (i.e., γ3 = 0)
(Robins and Greenland, 1994; Ten Have et al., 2004),
or that some parameters play no role in explaining the
data and so are not estimable. To explain the latter, sup-
pose that one level of a binary auxiliary variable S does
not occur for some level of treatment A; for example,
pr(S = 1|A = 0) = 0; in the HIP study, this is true both
when S denotes screening and when S denotes diagno-
sis due to screen. Under this condition, S = AS for all
subjects, and one cannot simultaneously estimate both
the main effect of S (γ2) and its interaction with A (γ3)

in (9). Under this model, for a binary treatment and
auxiliary variable, the effect of the auxiliary treatment
S (γ2) is the same as the effect of the main treatment
A among treated subjects with S = 1(�1). Thus, the
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effect of assignment to screening for screened women
who are diagnosed due to the screen [�1 in (4)] might
also be interpreted as the effect of diagnosis or early
detection by screen [γ2 in (9)], and the effect of as-
signment to screen among subjects who received the
screen might also be interpreted as the effect of screen-
ing.

2. The assumptions above, plus the assumption the
assignment of the auxiliary variable S is ignorable;
that is, pr(S|X,A,L,Y a,s) = pr(S|X,A,L), where
X refers to covariates measured at baseline and L

to covariates measured after baseline but before S

(Robins and Greenland, 1992). Under the additional
but untestable ignorability assumption, the structural
model (9) is fully testable.

The DAG in Figure 3, which corresponds to a ran-
domized trial of the main treatment A, is consistent
with assumption 1 but not assumption 2. The assump-
tion of initial randomization is justified because there
are no arrows into A; further, the arrow from X to S is
consistent with an association between X and S among
treated subjects (also part of assumption 1). Assump-
tion 2 is not justified, because the arrows from U to
S and U to Y imply that the effect of S on Y is con-
founded.

The joint effects of A and S are, in principle, iden-
tifiable without making modeling assumptions in an
experiment in which both factors (e.g., blood pressure
treatment and kidney function) are experimentally con-
trolled and both treatments assigned randomly. Kid-
ney function might be controlled experimentally by
surgery. Ethical considerations preclude performing
such experiments in humans; animal experimentation
could, in principle, be used to learn about the direct
effect of blood pressure control.

Model (9) is fairly simple and might not be a faith-
ful representation of the real-world situation. In par-
ticular, the effects A and S in (9) might vary with ob-
served covariates (e.g., baseline covariates X or ob-
served treatment levels A) or latent covariates (e.g.,
the principal strata). Approaches for dealing with
these issues (Robins, 1999; Robins, Rotnitzky and
Scharfstein, 2000; van der Laan and Petersen, 2004;
Robins, 2003) are beyond the scope of this paper.

7.2.3 Explanation and generalization. Explanatory
analysis can serve to explain the findings in the data
at hand in ways which may generalize further to other
populations or settings, a more ambitious task requir-
ing further assumptions. Generalizability beyond one’s
data is enhanced if the relations found in one’s data are

likely to hold in other settings. Two strategies for this
are:

1. Obtaining a finer understanding of the causal
processes leading from treatment to outcome. With suf-
ficiently detailed and accurate understanding, altering
one component in the causal system may not change
the other causal mechanisms in the system; this may
allow better prediction of the effects of interventions in
other settings (Pearl, 1995, 2000). Partitioning effects
into component direct and indirect effects is an attempt
to obtain understanding in those terms.

2. Estimating the effects of treatment for homoge-
nous subgroups in which causal effects in the popula-
tion under study can be assumed to be similar to like
groups in other populations. This can be done by esti-
mating the effects of treatment for subgroups defined
by observable variables X or S, or by the latent princi-
pal strata S. Principal stratification can lead to a finer
partition of the population than stratification on ob-
served variables alone, and so can potentially lead to
more generalizable conclusions.

These strategies are not mutually exclusive. Struc-
tural nested models have been formulated in a way
which recognizes possible differences in effect in sub-
groups not identifiable at baseline (Robins et al., 1992;
Robins, Rotnitzky and Scharfstein, 2000); our ap-
proach to using G-estimation for estimating treatment
effects for strata defined by observed post-treatment
auxiliaries allows finer stratification. Further, PS ap-
proaches have been used in conjunction with ap-
proaches which allow one to consider partitioning
causal effects (Angrist, Imbens and Rubin, 1996).

8. FUTURE WORK: EXTENSIONS OF ESTIMANDS
AND ESTIMATION

We conclude the paper with a discussion of vari-
ous additional complications which may arise in ap-
plied problems, and outline possible directions for fu-
ture work in this context.

8.1 Multiple Types of Auxiliary Variables

In considering conditioning on a post-treatment aux-
iliary S, we have so far considered settings in which
the outcome of interest Y is meaningful for all lev-
els of S. Sometimes, the outcome of interest Y is not
defined at some levels of S. Most notably, if S is (or
includes) an indicator of vital status, the outcome Y

may not be defined meaningfully for subjects who die,
and so the effect of A on Y (i.e., the contrast of Y 1

and Y 0) will be defined only for subjects who would
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live whether or not treated (i.e., the principal stratum
in which S1 = S0 = 1, where S = 1 indicates being
alive).

In the nephrology example, some subjects may de-
velop ESRD only if their blood pressure is treated ag-
gressively, because aggressive treatment may prevent
mortality. Thus, a simple version of the monotonic-
ity assumption stating that aggressive treatment never
causes ESRD will not be true. Because of countervail-
ing biases, the direction of bias of the naive approach
(comparing among treated and untreated subjects who
develop ESRD) may not be predictable.

Where there is a composite auxiliary variable (e.g.,
death and ESRD), there are several possible estimands.
Let S1 denote an auxiliary variable for which out-
comes are well defined at all values of the variable
(e.g., ESRD), and let S2 denote an auxiliary variable
for which outcomes are well defined only for one value
of the variable (e.g., death; S2 = 1 if a subject lives,
0 if dead). Because other outcomes are not meaning-
fully defined for people who die (Frangakis and Rubin,
2002; Kalbfleisch and Prentice, 2002), it is difficult to
ignore mortality in defining causal estimands for this
setting. This leaves fewer options for dealing with mor-
tality: looking at the effect of treatment on the condi-
tional distribution of Y given survival, and PS. Within
the framework of PS for mortality, almost any of the
solutions above for the other auxiliary variable (ESRD)
may be applied for defining causal estimands. The pos-
sible estimands include comparisons of the following
expectations for different levels a of treatment:

1. E(Ya|S0
2 = 1, S1

2 = 1), the effect of treatment for
subjects who would not die whether or not treated.

2. E(Ya|Sa
2 = 1), the effect of treatment on the expec-

tation of MI for subjects who would not die under
that treatment. As before (Section 2.2), this is not a
comparison of outcomes for a common set of sub-
jects. This estimand is most easily understood in
conjunction with the effect of treatment on survival
[i.e., comparisons of E(Sa

2 )]. This and the previous
estimand are not defined in terms of ESRD. Esti-
mands which use ESRD include:

3. E(Ya|Sa
1 = 1, Sa

2 = 1), the effect of treatment on
the distribution of MI among subjects who would
be alive and have ESRD under that treatment;

4. E(Ya|S0
1 = 1, S1

1 = 1, S0
2 = 1, S1

2 = 1), the effect
of treatment among subjects who, under both treat-
ment levels, would be alive and develop ESRD (full
or dual PS);

5. E(Ya|S1
1 = 1, S0

2 = 1, S1
2 = 1), the effect of treat-

ment on subjects who would live whether or not
treated and develop ESRD if treated (single po-
tential auxiliary stratification for S1 in conjunction
with PS for S2);

6. E(Ya|S1 = 1, S0
2 = 1, S1

2 = 1,A = 1), the effect of
treatment on subjects who would live whether or
not treated, who are treated and develop ESRD (ob-
served auxiliary stratification); and

7. E{Ya|E(S0
1 |X),S0

2 = 1, S1
2 = 1,A = 1}, the effect

of treatment on subjects at a particular risk of ESRD
who would live whether or not treated.

We expect that the likelihood-based or sensitivity
analysis methods mentioned in Section 4.4 could be
extended to deal with these issues and estimands.

8.2 Other Extensions

Many real-world problems, including studying the
effect of the aggressive management of blood pressure
on renal patients, involve problems that are substan-
tially more complicated than those considered here.
Complications arise from the fact that all three main
variables under study (i.e., treatment A, auxiliary vari-
able S and outcome Y ) may be more complex than the
simple binary variables we have discussed. The addi-
tional complexity of each may require refinement or
redefinition of the effects under study as well as of the
methods used to estimate them.

The auxiliary variable S of interest may, in fact, be
measured repeatedly over time. In the renal study, the
time ESRD develops will be noted; in the HIP study,
the time of breast cancer diagnosis will be noted. For
such a failure-time variable S, one could define ef-
fects of treatment based on the actual failure-time [e.g.,
compare E(Ya|S1, S0) for different a], or on whether
the failure-time exceeds some threshold [e.g., com-
pare E{Ya|I (S1 > s), I (S0 > s)} for different a]. For
failure-time outcomes, as in the HIP study, we can re-
vise the causal estimand to account for the timing of
changes in the auxiliary variable. Let S(t) = 1 after
a subject with breast cancer is diagnosed by screen,
0 otherwise (a modification of the third definition of S

in Section 6). A version of the accelerated failure-time
model with time-varying covariates [a generalization
of (4)] is T 0 = ∫ T

0 exp{AS(t)�}dt (Cox and Oakes,
1984; Robins, 1992; Robins et al., 1992), where T is
the subject’s failure time and T 0 the failure-time if the
subject had not been screened. The causal parameter
� now represents the effect of screening in shortening
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time from cancer diagnosis to mortality among screen-
diagnosed subjects. G-estimation could be applied for
estimating parameters in this model.

Similarly, the outcome variable Y may be a repeated
measures outcome. This allows many options for the
time that the value of the auxiliary variable is mea-
sured: one may be interested in defining effects of treat-
ment conditional on the value of the auxiliary variable
at the time the outcome Y is measured, or one year
previously, or on the time of failure for a failure-time
auxiliary such as ESRD. If the outcome is defined at all
levels of the auxiliary, all options are potentially mean-
ingful. We expect that any of the methods for defining
and estimating causal quantities sketched above (Sec-
tions 3 and 4) could apply.

The study exposure or treatment is often not a simple
scalar but may vary over time, and the joint effects of
treatments received at different points in time may be
of interest; this is true of observational studies of the
effect of aggressive management of blood pressure, in
which therapy is provided over an extended period and
changes may be made over that time. Robins (Robins,
Rotnitzky and Scharfstein, 2000) has provided a gen-
eral approach to defining the component and joint ef-
fects of treatments given over an extended period; this
approach would need to be generalized to allow the
effects of a component of treatment or of a treatment
plan to depend on auxiliary variables subsequent to
the treatment. For defining the component effect of a
treatment At applied at t , we might want to allow the
effect to depend on St+1, for example. Alternatively,
we might want to allow the joint effect of the compo-
nent treatments in a prespecified regime to depend on
the level of an auxiliary variable that applies at a fixed
point in time after the start of follow-up.
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