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A Selective Overview of Nonparametric
Methods in Financial Econometrics
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Abstract. This paper gives a brief overview of the nonparametric techniques
that are useful for financial econometric problems. The problems include es-
timation and inference for instantaneous returns and volatility functions of
time-homogeneous and time-dependent diffusion processes, and estimation
of transition densities and state price densities. We first briefly describe the
problems and then outline the main techniques and main results. Some use-
ful probabilistic aspects of diffusion processes are also briefly summarized to
facilitate our presentation and applications.
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1. INTRODUCTION tive methods such as statistics, probability and applied
Technological innovation and trade globalization mathematl_cs are essential tools to solve the quan'qtatlve
problems in finance. To name a few, complex finan-

have brought us into a new era of financial markets. ©. . :
Over the last three decades, a large number of neWC|aI products pose new challenges on their valuation

financial products have been introduced to meet cus-and risk management. Sophisticated stoc_hastlc mod-
tomers’ demands. An important milestone occurred in els have been introduced to capture the salient features
1973 when the world's first options exchange opened of underlying economic variables and to price deriva-

in Chicago. That same year, Black and Scholes [23] tives of securities. Statistical tools are used to identify
published their famous paper on option pricing and parameters of stochastic models, to simulate complex

Merton [90] launched the general equilibrium model fipgncia_ll systems and to test economic theories via em-
for security pricing, two important landmarks for mod- Pirical financial data.
ern asset pricing. Since then the derivative markets Animportant area of financial econometrics is study
have experienced extraordinary growth. ProfessionalsOf the expected returns and volatilities of the price dy-
in finance now routinely use sophisticated statistical Namics of stocks and bonds. Returns and volatilities
techniques and modern computational power in portfo- are directly related to asset pricing, proprietary trad-
lio management, securities regulation, proprietary trad-ing, security regulation and portfolio management. To
ing, financial consulting and risk management. achieve these objectives, the stochastic dynamics of
Financial econometrics is an active field that inte- underlying state variables should be correctly speci-
grates finance, economics, probability, statistics andfied. For example, option pricing theory allows one
applied mathematics. This is exemplified by the books to value stock or index options and hedge against the
by Campbell, Lo and MacKinlay [28], Gouriéroux risks of option writers once a model for the dynamics
and Jasiak [60] and Cochrane [36]. Financial activities of underlying state variables is given. See, for exam-
generate many new problems, economics provides useple, the books on mathematical finance by Bingham
ful theoretical foundation and guidance, and quantita- and Kiesel [20], Steele [105] and Duffie [42]. Yet many
of the stochastic models in use are simple and conve-
Jianging Fan is Professor, Benheim Center of Finance nient ones to facilitate mathematical derivations and
and Department of Operations Research and Financial statistical inferences. They are not derived from any
Engineering, Princeton University, Princeton, New economics theory and hence cannot be expected to fit
Jersey 08544, USA (e-mail: jgfan@princeton.edu). all financial data. Thus, while the pricing theory gives
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spectacularly beautiful formulas when the underlying spectacularly beautiful formulas for pricing contingent

dynamics is correctly specified, it offers little guid- claims. For an introduction to financial derivatives, see

ance in choosing or validating a model. There is al- Hull [78].

ways the danger the_lt mlsspecmcgtlon ofa model Ieadszl1 One-Factor Diffusion Models

to erroneous valuation and hedging strategies. Hence,

there are genuine needs for flexible stochastic model- Let S;4 denote the stock price observed at tinze

ing. Nonparametric methods offer a unified and elegant The time unit can be hourly, daily, weekly, among oth-

treatment for such a purpose. ers. Presented in Figure 1(a) are the daily log-returns,
Nonparametric approaches have recently been intro-defined as

duced to estimate return, volatility, transition densities N

and state price densities of stock prices and bond yields 109(S1a) = 10g(S-na) % (Sia = Su-a)/Sa-va,

(interest rates). They are also useful for examining the of the Standard and Poor’s 500 index, a value-weighted

extent to which the dynamics of stock prices and bond index based on the prices of the 500 stocks that account

yields vary over time. They have immediate applica- for approximately 70% of the total U.S. equity (stock)

tions to the valuation of bond price and stock options market capitalization. The styled features of the returns

and management of market risks. They can also be eminclude that the volatility tends to cluster and that the

ployed to test economic theory such as the capital assefmarginal) mean and variance of the returns tend to be

pricing model and stochastic discount model [28] and constant. One simplified model to capture the second

answer questions such as if the geometric Brownian feature is that

motion fits certain stock indices, whether the Cox— _ ~

Ingersoll-Ross model fits yields of bonds, and if in- 10g(S1) = 109(Su-1a) ~ o+ ové:.

terest rate dynamics evolve with time. Furthermore, Where{e, } is a sequence of independent normal random

based on empirical data, one can also fit directly the variables. This is basically a random walk hypothesis,

observed option prices with their associated character-regarding the stock price movement as an independent

istics such as strike price, the time to maturity, risk-free fandom walk. When the sampling time unit gets

interest rate, dividend yield and see if the option prices Small, the above random walk can be regarded as a

are consistent with the theoretical ones. Needless toandom sample from the continuous-time process:

say, rjonparametric _tec_hniqges will play an increas- (1) d10g(S,) = o + o1dW;,

ingly important role in financial econometrics, thanks _ _ _ _

to the availability of modern computing power and the Where {W;} is a standard one-dimensional Brownian

development of financial econometrics. motion andoy = oo/+/A. The process (1) is called
The paper is organized as follows. We first intro- 9e0metric Brownian motion a$; is an exponent of

duce in Section 2 some useful stochastic models for Brownian motionW,. It was used by Osborne [92]

modeling stock prices and bond yields and then briefly t0 model the stock price dynamic and by Black and

outline some probabilistic aspects of the models. In Scholes [23] to derive their celebrated option price for-

Section 3 we review nonparametric techniques used formula. , ,

estimating the drift and diffusion functions, based on  Interest rates are fundamental to financial markets,

either discretely or continuously observed data. In Sec-Consumer spending, corporate earnings, asset pricing,

tion 4 we outline techniques for estimating state price INflation and the economy. The bond market is even

densities and transition densities. Their applications in PI99€r than the equity market. Presented in Figure 1(c)

asset pricing and testing for parametric diffusion mod- '€ the interest rate(s, } of the two-year U.S. Treasury
els are also introduced. Section 5 makes some conclud!10tes at a weekly frequency. As the interest rates get
ing remarks higher, so do the volatilities. To appreciate this, Fig-

ure 1(d) plots the pair§r;_1, r; — r;—1)}. Its dynamic
is very different from that of the equity market. The
interest rates should be nonnegative. They possess het-
Much of financial econometrics is concerned with eroscedasticity in addition to the mean-revision prop-
asset pricing, portfolio choice and risk management. erty: As the interest rates rise above the mean leyel
Stochastic diffusion models have been widely used for there is a negative drift that pulls the rates down; while
describing the dynamics of underlying economic vari- when the interest rates fall below, there is a posi-
ables and asset prices. They form the basis of manytive force that drives the rates up. To capture these two

2. STOCHASTIC DIFFUSION MODELS
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Daily returns of SP500 log—price versus daily returns
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FiG. 1. (a)Daily log-returns of the Standard and PooB®0index from October 211980 to July 292004 (b) Scatterplot of the returns
against logarithm of the indefqrice leve). (c) Interest rates of two-year |3, Treasury notes from June 4976 to March 72003 sampled
at weekly frequencyd) Scatterplot of the difference of yields versus the yields

main features, Cox, Ingersoll and Ross [37] derived the and usually serves as a test case for proposed statistical

following model for the interest rate dynamic: methods.

?) dr = k(o — ry)dit + orY2 aw There are many stochastic models that have been in-
! r troduced to model the dynamics of stocks and bonds.

For simplicity, we will refer it to as the CIR model. It Let X; be an observed economic variable at time

is an amelioration of the Vasicek model [106], This can be the price of a stock or a stock index, or

(3) dri=x(ax —r;)dt + o dW;, the yield of a bond. A simple and frequently used sto-

which ignores the heteroscedasticity and is also re—ChaS'tIC model is

ferred to as the Ornstein—Uhlenbeck process. While (5) dX; = u(X;)dt + o (X)) dW;.

this is an unrealistic model for interest rates, the _ _ _ _
process is Gaussian with explicit transition density. It The function,.(-) is often called a drift or instanta-
fact, the time series sampled from (3) follows the au- Neous return function and(-) is referred to as a dif-
toregressive model of order 1, fusion or volatility function, since

(4) Yi=Q—p)a+pY_1+e, w(Xy) :AlimoA_lE(X,+A - X,1X)),
—

where ¥, = r;a, € ~ N(0,0%(1 — p?)/(2¢)) and 5 o
p = exp(—«k A). Hence, the process is well understood o°(Xp) = A"TOA var( X+l Xo).
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The time-homogeneous model (5) contains many fa- 2.2 Some Probabilistic Aspects
mous one-factor models in financial econometrics. In

an effort to improve the flexibility of modeling interest The question when there exists a solution to the sto-

. chastic differential equation (SDE) (7) arises naturally.
Sg?r?emcl:cl?’Lg?::di al. [29] extends the CIR model (2) Such a program was first carried out by I1tdé [80, 81].
: For SDE (7), there are two different meanings of solu-
(6) dX;=«(a — X)) dt +o X! dW;. tion: strong solution and weak solution. See Sections
. _ _ _ 5.2 and 5.3 of [84]. Basically, for a given initial con-
Ait-Sahalia [3] introduces a nonlinear mean rever- giion ¢, a strong solution requires tha, is deter-
sion: while interest rates remain in the middle part ined completely by the information up to timeUn-
of their domain, there is little mean reversion, and at ger | jpschitz and linear growth conditions on the drift
the end of the domain, a strong nonlinear mean re- 54 diffusion functions, for every that is independent
version enltirges. He imposes t2he nonlinear drift of the ¢ {W,}, there exists a strong solution of equation (7).
form (@oX; ™ + a1+ 02X, +a2X7). See also Ahnand  gych a solution is unique. See Theorem 2.9 of [84].
Gao [1], which models the interest rates Xiy= X; *, For the one-dimensional time-homogeneous diffu-
in which the X, follows the CIR model. sion process (5), weaker conditions can be obtained for
Economic conditions vary over time. Thus, it is the so-called weak solution. By an application of the
reasonable to expect that the instantaneous returnts formula to an appropriate transform of the process,
and volatility depend on both time and price level one can make the transformed process have zero drift.
for a given state variable such as stock prices andThus, we can consider without loss of generality that
bond yields. This leads to a further generalization of the drift in (5) is zero. For such a model, Engelbert
model (5) to allow the coefficients to depend ontime  and Schmidt [45] give a necessary and sufficient condi-
tion for the existence of the solution. The continuity of
(7) dXo =Xy, nydi + o (Xi, 1) dWr. o suffices for the existence of the weak solution. See
Since only a trajectory of the process is observed Theorem 5.5.4 of [84], page 333, and Theorem 23.1
[see Figure 1(c)], there is not sufficient information of [83].
to estimate the bivariate functions in (7) without fur- ~ We will use several times the Itd formula. For the
ther restrictions. [To consistently estimate the bivariate processX; in (7), for a sufficiently regular functiorf
volatility function o (x, t), we need to have data that ([84], page 153),

eventually fill up a neighborhood of the poi(t x).] af (X, 1)
A useful specification of model (7) is df (X, 1) = {T
— B1(®) 2
(8) dX;={ao(t) +oar()X;}dt + Bo() X" dW;. (10) N 19 f(XZ,,t)GZ(XM)}dt
This is an extension of the CKLS model (6) by 2 dx
allowing the coefficients to depend on time and was f (X;, 1)
introduced and studied by Fan et al. [48]. Model (8) in- + 9x dXx;.

cludes many commonly used time-varying models for 1o formuyla can be understood as the second-order
the yields of bonds, introduced by Ho and Lee [75], Taylor expansion off (X,4a,t + A) — f(X,,1) by
Hull and White [79], Black, Derman and Toy [21] and noticing that(X,.a — X,)? is approximatelyo2(X,,
Black and Karasinski [22], among others. The expe- DA.
rignce in [48] and other studies of the varying c_ogffi- The Markovian property plays an important role
cient models [26, 31, 74, 76] shows that coefficient i, giatistical inference. According to Theorem 5.4.20
functions in (8) cannot be estimated reliably due to qf 84, the solutionX, to equation (5) is Markovian,
the collinearity effect in local estimation: localizing in proyided that the coefficient functions and o are
the time domain, the proceds,} is nearly constant  poynded on compact subsets. lpat(y|x) be the tran-
and hencexo(r) andea (1) andfo(r) andpy (1) cannot  ition density, the conditional density of, 4 = y
easily be differentiated. This leads Fan et al. [48] t0 gjyen X, = x. The transition density must satisfy the
introduce the semiparametric model forward and backward Kolmogorov equations ([84],
. B page 282).
(©)  dXi={ao) +erXi}di + fo() Xy AW, Under the linear growth and Lipschitz conditions,
to avoid the collinearity. and additional conditions on the boundary behavior of
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the functionsu ando, the solution to equation (1) is
positive and ergodic. The invariant density is given by

f(x)=2Coo 2(x)
(11)

-eXp<—2/ M(y)a‘z(y)dy),

whereCy is a normalizing constant and the lower limit
of the integral does not matter. If the initial distri-
bution is taken from the invariant density, then the
procesd X,} is stationary with the marginal density
and transition densitpa .

Stationarity plays an important role in time series
analysis and forecasting [50]. The structural invariabil-
ity allows us to forecast the future based on the his-
torical data. For example, the structural relation (e.g.,
the conditional distribution, conditional moments) be-
tweenX, andX, A remains the same over timeThis

321

2.3 Valuation of Contingent Claims

An important application of SDE is the pricing of fi-
nancial derivatives such as options and bonds. It forms
a beautiful modern asset pricing theory and provides
useful guidance in practice. Steele [105], Duffie [42]
and Hull [78] offer very nice introductions to the field.

The simplest financial derivative is the European call
option. A call option is the right to buy an asset at a
certain priceK (strike price) before or at expiration
time T. A put option gives the right to sell an asset
at a certain pricek (strike price) before or at expira-
tion. European options allow option holders to exercise
only at maturity while American options can be exer-
cised at any time before expiration. Most stock options
are American, while options on stock indices are Euro-
pean.

The payoff for a European call option(&r — K) .,

where X7 is the price of the stock at expiratidfi.

When the stock rises above the strike priceone can

makes it possible to use historical data to estimate theexercise the right and make a profitdf — K. How-

invariant quantities. Associated with stationarity is the

ever, when the stock falls belo®, one renders one’s

concept of mixing, which says that the data that are far right and makes no profit. Similarly, a European put op-
apart in time are nearly independent. We now describetion has payofi K — X7).. See Figure 2. By creating

the conditions under which the solution to the SDE (1)
is geometrically mixing.

Let H; be the operator defined by
(12)

(Hig)(x) = E(g(X)|Xo=x), x€R,

wheref is a Borel measurable bounded function®n
A stationary proces; is said to satisfy the condition
Go(s, o) of Rosenblatt [95] if there exists ansuch
that

E(H, f)%(X)

o? < 1,
Ef2(X)

IHlI3=  sup

{f 1 Ef(X)=0}

a portfolio with different maturities and different strike
prices, one can obtain all kinds of payoff functions. As
an example, suppose that a portfolio of options con-
sists of contracts of the S&P 500 index maturing in six
months: one call option with strike price $1,200, one
put option with strike price $1,050 and $40 cash, but
with short position (borrowing o1 contract) on a call
option with strike price $1,150 and on a put option with
strike price $1,100. Figure 2(c) shows the payoff func-
tion of such a portfolio of options at the expirati@h
Clearly, such an investor bets the S&P 500 index will
be around $1,125 in six months and limits the risk ex-
posure on the investment (losing at most $10 if his/her
bet is wrong). Thus, the European call and put options

namely, the operator is contractive. As a consequenced’® fundamental options as far as the payoff function

of the semigroupM;., = H H;) and contraction prop-
erties, the conditiorG, implies [16, 17] that for any
t €[0,00), | Hy|l2 < «'/s~1. The latter implies, by the
Cauchy—-Schwarz inequality, that

(13) p(1) = gSIUggcorr(gl(Xo), ga(Xy) <o'7H,

that is, thep-mixing coefficient decays exponentially
fast. Banon and Nguyen [18] show further that for
a stationary Markov procesg,(t) — 0 is equivalent
to (13), namelyp-mixing and geometrigp-mixing are
equivalent.

at time T is concerned. There are many other exotic
options such as Asian options, look-back options and
barrier options, which have different payoff functions,
and the payoffs can be path dependent. See Chapter 18
of [78].

Suppose that the asset price follows the SDE (7) and
there is a riskless investment alternative such as a bond
which earns compounding rate of interestSuppose
that the underlying asset pays no dividend. Bebe
the value of the riskless bond at timeThen, with an
initial investmentgo,

B: =ﬂoexp(/0trsds),
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Payoff of a call option Payoff of a put option A portfolio of options
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FiG. 2. (a)Payoff of a call option(b) Payoff of a put option(c) Payoff of a portfolio of four options with different strike prices and different
(long and shorx positions

thanks to the compounding of interest. Suppose thatthat makes the drift zero. To achieve this, we ap-
a probability measure is equivalent to the original peal to the Girsanov theorem, which changes the drift
probability measuré, namelyP (A) = 0 if and only if of a diffusion process without altering the diffusion
Q(A) =0. The measur@ is called an equivalent mar- via a change of probability measure. Under the “risk-
tingale measure for deflated price processes of givenneutral” probability measur@, the proces$; satisfies
securities if these processes are martingales with redY; = o Y; dW;, a martingale. Hence, the price process
spect toQ. An equivalent martingale measure is also X; = exp(rr)Y; underQ follows

referred to as a “risk-neutral” measure if the deflater is

the bond price process. See Chapter 6 of [42]. (15)

When the markets are dynamically complete, the yging exactly the same derivation, one can easily gen-
price of the European option with payo#(Xr) with eralize the result to the price process (5). Under the

initial price Xo = xo is risk-neutral measure, the price process (5) follows

T
(14) Po:exp<—/ rsds>EQ(\IJ(XT)|Xo:xo), (16) dX; =rX,;dt +0o(X;)dW;.
0

dX;=rXtdt+UX[th.

The intuitive explanation of this is clear: all stocks un-
der the “risk-neutral” world are expected to earn the
same rate as the risk-free bond.

For the geometric Brownian motion, by an applica-
tion of the Ité formula (10) to (15), we have under the
“risk-neutral” measure

where Q is the equivalent martingale measure for the
deflated price proces¥,/B;. Namely, it is the dis-
counted value of the expected payoff in the risk neutral
world. The formula is derived by using the so-called
relative pricing approach, which values the price of the
option from given prices of a portfolio consisting of a
risk-free bond and a stock with the identical payoff as (17) |ogX, — logXo = (r — 02/2)t + o2 W,.
the option at the expiration.

As an illustrative example, suppose that the price of Note that given the initial priceXo, the price fol-
a stock follows the geometric Brownian motidiX; = lows a log-normal distribution. Evaluating the expec-
wX, dt + o X, dW, and that the risk-free rateis con- tation of (14) for the European call option with payoff
stant. Then the deflated price proc&ss= exp(—rt) X, V(X7) = (X1 — K)+, one obtains the Black-Scholes
follows the SDE [23] option pricing formula

The deflated price process is not a martingale as thewhereds = {log(xo/K) + (r +02/2)T}{o /T } -1 and
drift is not zero. The risk-neutral measure is the one do =di — o /T.
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2.4 Simulation of Stochastic Models current valueX, = xo, one drawsX;, A from the tran-
sition densitypa (|xo). The initial condition can either
be fixed at a given value or be generated from the in-
variant density (11). In the latter case, the generated
sequence is stationary.

There are only a few processes where exact sim-
ulation is possible. For GBM, one can generate the
sequence from the explicit solution (17), where the
Brownian motion can be simulated from indepen-
dent Gaussian increments. The conditional density of
Vasicek's model (3) is Gaussian with mean
a + (xo — a)p and variancer? = o?(1— p?)/(2¢) as
indicated by (4). Generatkq from the invariant den-
sity N(a, 02/(2¢)). With Xo, generateX, from the
(19) Xion=X,+upt, X)A+0o(t, X)) AY %, normal distribution with meaa + (Xo — o) exp(—k A)
and varianceaﬁ. With XA, we generateXoa from
meana + (Xa — a) exp(—« A) and variancerﬁ. Re-

Simulation methods provide useful tools for the
valuation of financial derivatives and other financial
instruments when the analytical formula (14) is hard
to obtain. For example, if the price under the “risk-
neutral” measure is (16), the analytical formula for
pricing derivatives is usually not analytically tractable
and simulation methods offer viable alternatives (to-
gether with variance reduction techniques) to evaluate
it. They also provide useful tools for assessing perfor-
mance of statistical methods and statistical inferences.

The simplest method is perhaps the Euler scheme.
The SDE (7) is approximated as

where{e;} is a sequence of independent random vari-

ab!e§ with the standard normal distribution. The time peat this process until we obtain the desired length of
unit is usually a year. Thus, the monthly, weekly and o process

daily data correspond, respeptively,Ao: 1/12, _1/52 For the CIR model (2), provided that= 2ca /o2 —
and 3252 (there are approximately 252 trading days - g (4 sufficient condition foi, > 0), the transition
per year). Given an initial value, one can recursively density is determined by the fact that givai = xo,
apply (19) to obtain a sequence of simulated data,.y ' hag a noncentraf? distribution with degrees
{X;a,j=12..). The approximation error can bé t freedom 2 + 2 and noncentrality parameter: 2
reduced if one uses a smaller step sizeM foragiven | hara. — 21 /{02 (1— exp(—k AN}, u = cxoexpikA).
integer M to first obtain a more detailed sequence g inyariant density is the Gamma distribution with
{(Xja/m,j =1,2,...} and then one takes the sub- g,ahe narameter+ 1 and scale paramete?/(2x).

sequenceX;a, j =1,2,...}. For example, to simu- As an illustration, we consider the CIR model (7)
late daily prices of a stock, one can simulate hourly ,,:.in parametersc = 0.21459, « = 0.08571, o =

data first and then take the daily closing prices. Since 37830 andaA — 1/12. The model parameters are

the step size\ /M is smaller, the approximation (19) sy en from [30]. We simulated 1000 monthly data val-
is more accurate. However, the computational cost is a5 sing both the Euler scheme (19) and the strong

about a factor oM higher. 2 whi order-one approximation (20) with the same random
The Euler scheme has convergence e, which  ghqcs Figure 3 depicts one of their trajectories. The

is called strong order.B approximation by Kloeden  jigerence is negligible. This is in line with the ob-

et al. [87]. The higher-order approximations can be 0b- geations made by Stanton [104] that as long as data
tained by the It6-Taylor expansion (see [100], 56 sampled monthly or more frequently, the errors in-
page 242). In particular, a strong order-one approxi- yoqyced by using the Euler approximation are very
mation is given by small for stochastic dynamics that are similar to the
(20) Xiva = X; + 1(t, X)A + o (t, X)) A2, CIR model.
20

+ %o(t, X))ol (t, X1 Afe? — 1), 3. ESTIMATION OF RETURN AND VOLATILITY

whereo (¢, x) is the partial derivative function with re- FUNCTIONS

spect taxr. This method can be combined withasmaller There is a large literature on the estimation of
step size method in the last paragraph. For the time-the return and volatility functions. Early references
homogeneous model (1), an alternative form, without include [93] and [94]. Some studies are based on
evaluating the derivative function, is given in (3.14) continuously observed data while others are based on
of [87]. discretely observed data. For the latter, some regard

The exact simulation method is available if one can tending to zero while others regardfixed. We briefly
simulate the data from the transition density. Given the introduce some of the ideas.
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Euler vs order 1 scheme, monthly

10

Rates

0 200 400

T T T

600 800 1000

Time

Difference between two schemes

0.3
Il

0.2

Rates
0.1

0.0

0 200 400

600 800 1000

Time

Fic. 3. Simulated trajectorieémultiplied by100)using the Euler approximation and the strong order-one approximation for a CIR model
Top panelsolid curve corresponds to the Euler approximation and the dashed curve is based on the order-one approBotadiomanel
the difference between the order-one scheme and the Euler scheme

3.1 Methods of Estimation

We first outline several methods of estimation for

estimator is very difficult to find, as the transition den-
sity involves the modified Bessel function of the first
kind.

parametric models. The idea can be extended to non- o simple technique is to rely on the Euler ap-
parametric models. Suppose that we have a sampleyroximation scheme (19). Then proceed as if the data

{Xia,i =0,...,n} from model (5). Then, the likeli-
hood function, under the stationary condition, is

n
(21) log f(Xo)+ Y _logpa(XialXi-1)a)-
i=1
If the functionsy ando are parameterized and the ex-
plicit form of the transition density is available, one can
apply the maximum likelihood method. However, the
explicit form of the transition density is not available

for many simple models such as the CLKS model (6).

Even for the CIR model (2), its maximum likelihood

come from the Gaussian location and scale model. This
method works well whem\ is small, but can create
some biases when is large. However, the bias can be
reduced by the following calibration idea, called indi-
rectinference by Gouriéroux et al. [61]. The idea works
as follows. Suppose that the functionsand o have
been parameterized with unknown parameterbise
the Euler approximation (19) and the maximum likeli-
hood method to obtain an estimage For each given
parametep arounddo, simulate data from (5) and ap-
ply the crude method to obtain an estiméi&) which
depends oA. Since we simulated the data with the true
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parameted, the functiondy(9) tells us how to cali-  The right-hand side is the expectationdyf(X,). By
brate the estimate. See Figure 4. Calibrate the estimatdtd’s formula (10), the above equation reduces to
via 67 *(do), which improves the bias of the estimate. / , )
One drawback of this method is that it is intensive in (22) Elg (XDu(X0) + g7 (X)o*(X1)/2] =0.
computation and the calibration cannot easily be done
when the dimensionality of parametérss high.
Another method for bias reduction is to approximate
f[he t_ransition density in (2_1)_ by a higher or_der approx- Eexp(—aX){u(X;) —ac?(X;)/2} =0.
imation, and to then maximize the approximated like-
lihood function. Such a scheme has been introducedThis can produce an arbitrary number of equations by
by Ait-Sahalia [4, 5], who derives the expansion of choosing different’s. If the functionsi ando are pa-
the transition density around a normal density function rameterized, the number of moment conditions can be
using Hermite polynomials. The intuition behind such more than the number of equations. One way to effi-
an expansion is that the diffusion process o — X; ciently use this is the generalized method of moments
in (5) can be regarded as sum of many independentintroduced by Hansen [65], minimizing a quadratic
increments with a very small step size and hence theform of the discrepancies between the empirical and
Edgeworth expansion can be obtained for the distribu- the theoretical moments, a generalization of the clas-
tion of X, Ao — X; given X,. See also [43]. sical method of moments which solves the moment
An “exact” approach is to use the method of momentsequations. The weighting matrix in the quadratic form
If the processX, is stationary as in the interest-rate can be chosen to optimize the performance of the re-
models, the moment conditions can easily be derivedsulting estimator. To improve the efficiency of the es-

For example, ifg(x) = exp(—ax) for some given
a > 0, then

by observing timate, a large system of moments is needed. Thus,
the generalized method of moments needs a large sys-
E{ lim A7YE[g(X,4n) — g(X)|X;] tem of nonlinear equations which can be expensive in
A=0 computation. Further, the moment equations (22) use
= AIimOA‘lE[g(X,JrA) —g(Xp)]=0 only the marginal information of the process. Hence,
—

the procedure is not efficient. For example, in the
for any functiong satisfying the regularity condition CKLS model (6),c and« are estimable via (22) only
that the limit and the expectation are exchangeable.througho?/x.

[llustration of indirect inference

Estimated parameter
3
1
V

T T T T T

1.0 1.5 2.0 25 3.0
True parameter
Fic. 4. The idea of indirect inferencé&or each given tru&, one obtains an estimate using the Euler approximation and the simulated

data This gives a calibration curve as showow for a given estimaté, = 3 based on the Euler approximation and real datae finds the
calibrated estimaté;” 1(3) = 2.080.
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3.2 Time-Homogeneous Model

The Euler approximation can easily be used to
estimate the drift and diffusion nonparametrically.
Let Yia = A (Xu4pa — Xia) and Zip =
A7 (X (+1a — Xia)? Then

EYialXin) = pn(Xia) + O(A)
and
E(ZialXin) =0%(Xia) + O(A).

Thus, u(-) ando?(-) can be approximately regarded
as the regression functions & o and Z;a on X;a,

J. FAN

These are the key properties for the bias reduction of
the local linear method as demonstrated in [46]. Fur-
ther, Fan and Yao [49] use the squared residuals

_ . 2
A l(X(i+l)A — Xin — (Xin)A)

rather thariZ; » to estimate the volatility function. This
will further reduce the approximation errors in the
volatility estimation. They show further that the con-
ditional variance function can be estimated as well as
if the conditional mean function is known in advance.
Stanton [104] derives a higher-order approximation
scheme up to order three in an effort to reduce bi-
ases. He suggests that higher-order approximations

respectively. Stanton [104] applies kernel regression must outperform lower-order approximations. To ver-

[102, 107] to estimate the return and volatility func-
tions. LetK (-) be a kernel function and be a band-
width. Stanton’s estimators are given by

Z?:_ol YinKp(Xia —x)
SIS K (Xia —x)

flx) =

and
Y s ZiaKn(Xia — x)
Y Kn(Xia — x)

where K, (u) = h~1K (u/h) is a rescaled kernel. The
consistency and asymptotic normality of the estimator
are studied in [15]. Fan and Yao [49] apply the local
linear technique (Section 6.3 in [50]) to estimate the
return and volatility functions, under a slightly differ-
ent setup. The local linear estimator [46] is given by

652(x) =

n—1

(23) ) =Y Ki(Xia —x,X)Yia,
i=0

where

Sn,2(x) — uSy,1(x)
Sn,Z(X)Sn,O(x) - Sn,l(x)z’

with S, (x) = Y3 Kin(Xia — x)(Xia — x)/, is the
equivalent kernel induced by the local linear fit. In con-
trast to the kernel method, the local linear weights de-
pend on bothX; andx. In particular, they satisfy

(24) Kn(u,x) = Kp(u)

n—1
> Kn(Xia—x,x)=1
i—1

and

n—1
Y Ku(Xia —x,x)(Xia —x) =0.
i=1

ify such a claim, Fan and Zhang [53] derived the fol-
lowing orderk approximation scheme:

E(Y/\|Xin) = u(Xin) + O(A5),

(25) ) )
E(Zi\|Xin) =0%(Xin) + O(AY),
where
k
Vi =AY ap i { X+ ja — Xia)
Jj=1
and

k
Zia =AY 4 (X pa — Xia )
i=1

and the coefficients; ; = (—1)f+1(’;.)/j are chosen to

make the approximation error in (25) of ordé&f. For
example, the second approximation is

L5(X;4n — X1) — 0.5(X 428 — Xiga).

By using the independent increments of Brownian mo-
tion, its variance is B2 + 0.52 = 2.5 times as large as
that of the first-order difference. Indeed, Fan and Zhang
[53] show that while higher-order approximations give
better approximation errors, we have to pay a huge pre-
mium for variance inflation,

var(Yi | Xia) = o2(Xin) Vi) A™H1 4 0(A)),
var(Zi | Xia) = 204 (X;a) V2() {1+ O(A)},

where the variance inflation factoig (k) and V,(k)
are explicitly given by Fan and Zhang [53]. Table 1
shows some of the numerical results for the variance
inflation factor.

The above theoretical results have also been veri-
fied via empirical simulations in [53]. The problem is
no monopoly for nonparametric fitting—it is shared by
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L TABLEL _ As an illustration, we take the yields of the two-year
Variance inflation factors by using higher-order differences Treasury notes depicted in Figure 1. Figure 5 presents

nonparametrically estimated volatility functions, based

Order & on orderk = 1 andk = 2 approximations. The local
! 2 3 4 5 linear fit is employed with the Epanechnikov kernel
V1(k) 1.00 2.50 4.83 @5 18.95 and bandwidttk = 0.35. Itis evident that the order two
Va(k) 1.00 3.00 8.00 266 61.50 approximation has higher variance than the order one

approximation. In fact, the magnitude of variance in-
flation is in line with the theoretical result: the increase

. f the standard deviation ig3 from order one to order
the parametric methods. Therefore, the methods base(ENO approximation 93

on higher-order differences should seldomly be used /rigys discretization schemes and estimation meth-
unless the sampling interval is very wide (e.g., quar- ods have been proposed for the case with high
terly data). It remains open whether it is pOSSibIe to frequency data over a |ong time horizon. More pre-
estimate nonparametrically the return and the volatility cisely, the studies are under the assumptions that
functions without seriously inflating the variance with A, — 0 andnA, — oco. See, for example, [12, 27,
other higher-order approximation schemes. 39, 58, 59, 85, 109] and references therein. Arapis

First order difference

15 20 25
.
o

volatility
10

rate

volatility

rate

Fic. 5. Nonparametric estimates of volatility based on order one and two differefibesbars represent two standard deviations above
and below the estimated volatilitfop panel order one fit Bottom panelorder two fit
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and Gao [11] investigate the mean integrated squareZhang [53] for checking whether the return and volatil-
error of several methods for estimating the drift and ity functions possess certain parametric forms.
diffusion and compare their performances. Ait-Sahalia Another viable approach of model validation is
and Mykland [9, 10] study the effects of random and to base it on the transition density. One can check
discrete sampling when estimating continuous-time whether the nonparametrically estimated transition
diffusions. Bandi and Nguyen [14] investigate small density is significantly different from the parametri-
sample behavior of nonparametric diffusion estima- cally estimated one. Section 4.3 provides some addi-
tors. Thorough study of nonparametric estimation of tional details. Another approach, proposed by Hong
conditional variance functions can be found in [62, 69, and Li [77], uses the fact that under the null hypothesis
91, 99]. In particular, Section 8.7 of [50] gives var- the random variable§Z;} are a sequence of i.i.d. uni-
ious methods for estimating the conditional variance form random variables whet& = P(X;aA|Xi—1)a.0)
function. Wang [108] studies the relationship between and P(y|x,6) is the transition distribution function.
diffusion and GARCH models. They propose to detect the departure from the null
hypothesis by comparing the kernel-estimated bivari-
ate density of{(Z;, Z;11)} with that of the uniform
Stanton [104] applies his kernel estimator to a Trea- distribution on the unit square. The transition-density-
sury bill data set and observes a nonlinear returnbased approaches appear more elegant as they check
function in his nonparametric estimate, particularly in simultaneously the forms of drift and diffusion. How-
the region where the interest rate is high (over 14%, ever, the transition density does often not admit an
say). This leads him to postulate the hypothesis thatanalytic form and the tests can be computationally in-
the return functions of short-term rates are nonlin- tensive.
ear. Chapman and Pearson [3_’0] study the fini_te SaM-3 4 Fixed Sampling Interval
ple properties of Stanton’s estimator. By applying his
procedure to the CIR model, they find that Stanton’s For practical analysis of financial data, it is hard to

procedure produces spurious nonlinearity, due to thedetermine whether the sampling interval tends to zero.
boundary effect and the mean reversion. The key determination is whether the approximation

Can we apply a formal statistics test to €rrors for small A" are negligible. It is ideal when a
Stanton’s hypothesis? The null hypothesis can sim-method is applicable whether or nak" is small. This
ply be formulated: the drift is of a linear form as kind of method is possible, as demonstrated below.
in model (6). What is the alternative hypothesis? For The simplest problem to illustrate the idea is the ker-
such a problem our alternative model is usually vague. el density estimation of the invariant density of the
Hence, it is natural to assume that the drift is a nonlin- Stationary proces§X,}. For the given sampléX;},
ear smooth function. This becomes a testing problemthe kernel density estimate for the invariant density is

3.3 Model Validation

with a parametric null hypothesis versus a nonpara- R n

metric alternative hypothesis. There is a large body (26) fe)=n"1Y Kn(Xia —x),

of literature on this. The basic idea is to compute a i=1

discrepancy measure between the parametric estimatebased on the discrete datX;A,i = 1,...,n}. This

and nonparametric estimates and to reject the parametmethod is valid for allA. It gives a consistent estimate
ric hypothesis when the discrepancy is large. See, forof f as long as the time horizon is longA — co.
example, the book by Hart [73]. We will refer to this kind of nonparametric method as
In an effort to derive a generally applicable principle, state-domain smoothing, as the procedure localizes in
Fan et al. [54] propose the generalized likelihood ra- the state variablg,. Various properties, including con-
tio (GLR) tests for parametric-versus-nonparametric or sistency and asymptotic normality, of the kernel esti-
nonparametric-versus-parametric hypotheses. The bamator (26) are studied by Bandi [13] and Bandi and
sic idea is to replace the maximum likelihood under Phillips [15]. Bandi [13] also uses the estimator (26),
a nonparametric hypothesis (which usually does notwhich is the same as the local time of the process
exist) by the likelihood under good nonparametric es- spending at a point except for a scaling constant, as a
timates. Section 9.3 of [50] gives details on the im- descriptive tool for potentially nonstationary diffusion
plementation of the GLR tests, including estimating processes.
P-values, bias reduction and bandwidth selection. The Why can the state-domain smoothing methods be
method has been successfully employed by Fan andemployed as if the data were independent? This is due
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to the fact that localizing in the state domain weakens dices of the data that fall in the local window are quite
the correlation structure and that nonparametric esti-far apart. This in turn implies the weak dependence
mates use essentially only local data. Hence many re-for the data in the local window, that is, “whitening
sults on nonparametric estimators for independent databy windowing.” See Section 5.4 of [50] and Hart [72]
continue to hold for dependent data as long as theirfor further details. The effect of dependence structure
mixing coefficients decay sufficiently fast. As men- on kernel density estimation was thoroughly studied by
tioned at the end of Section 2.2, geometric mixing and Claeskens and Hall [35].

mixing are equivalent for time-homogeneous diffusion  The diffusion function can also be consistently esti-
processes. Hence, the mixing coefficients decay usu-mated whem\ is fixed. In pricing the derivatives of in-
ally sufficiently fast for theoretical investigation. terest rates, Ait-Sahalia [2] assumes) = k(o — x).

The localizing and whitening can be understood Using the kernel density estimatgrand estimatea
graphically in Figure 6. Figure 6(a) shows that there is and « from a least-squares method, he applied (11)
very strong serial correlation of the yields of the two- to estimater (-):62(x) = 2[5 fa(u) f(u)du/ f (x). He
year Treasury notes. However, this correlation is signif- further established the asymptotic normality of such an
icantly weakened for the local data in the neighborhood estimator. Gao and King [56] propose tests of diffusion
8%+ 0.2%. In fact, as detailed in Figure 6(b), the in- models based on the discrepancy between the paramet-
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FiG. 6. (a)lLag 1 scatterplot of the two-year Treasury note dafh) Lag 1 scatterplot of those data falling in the neighborhood
8% + 0.2%—the points are represented by the times of the observed Thaéanumbers in the scatterplot show the indices of the data
falling in the neighborhood(c) Kernel density estimate of the invariant density
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ric and nonparametric estimates of the invariant den- of convergence for such a scheme, using a wavelet ba-
sity. sis. In particular, [58] shows that for fixetl, the op-
The Ait-Sahalia method [2] easily illustrates that the timal rates of convergence far ando are of orders
volatility function can be consistently estimated for O (n~%/®*9) and 0 (n=%/**3), respectively, where
fixed A. However, we do not expect that it is effi- s is the degree of smoothnessofindo .
cient. Indeed, we use only the marginal information of
the data. As shown in (21), almost all information is
contained in the transition densifya (-]-). The tran- The time-dependent model (8) was introduced to ac-
sition density can be estimated as in Section 4.2 be-commodate the possibility of economic changes over
low whetherA is small or large. Since the transition time. The coefficient functions in (8) are assumed to
density and drift and volatility are in one-to-one cor- be slowly time-varying and smooth. Nonparametric
respondence for the diffusion process (5), the drift and techniques can be applied to estimate these coefficient
diffusion functions can be consistently estimated via functions. The basic idea is to localizing in time, re-
inverting the relationship between the transition den- sulting in a time-domain smoothing.
sity and the drift and diffusion functions. We first estimate the coefficient functiong(z)
There is no simple formula for expressing the drift anda(z). For each given tima), approximate the co-
and diffusion in terms of the transition density. The in- efficient functions locally by constantar) ~ a and
version is frequently carried out via a spectral analysis B(r) = b for ¢ in a neighborhood afy. Using the Euler
of the operatoi{, = exp(AL), where the infinitesimal  approximation (19), we run a local regression: Mini-

3.5 Time-Dependent Model

operatorL is defined as mize
O,Z(x) 1 / nl 2 .
Lg(x) = ——g"(0) + p(x)g'(x). (27) > (Yia—a—bX;n)°Ku(iA —t0)

i=0
Ithas the property with respect toa and b. This results in an estimate
Lg(x)= lim A NE{g(X;1n)|X: =x} — g(x)] Go(to) = a and a1(tg) = b, wherea and b are the
A0 minimizers of the local regression (27). Fan et al. [48]
by [td’s formula (10) The operatdt o is the transition suggest using a one-sided kernel SUCIKaﬂ) =(1-
operator in that [see also (12)] u?)I(—1 < u < 0) so that only the historical data in
Hag(x) = E{g(XA)|Xo = x}. the time_ interva_lkto —h to) are used i_n the above Ioc_al
regression. This facilitates forecasting and bandwidth
The works of Hansen and Scheinkman [66], Hansen, selection. Our experience shows that there are no sig-
Scheinkman and Touzi [67] and Kessler and Sgrensemjficant differences between nonparametric fitting with
[86] consist of the following idea. The first step is to es- one-sided and two-sided kernels. We opt for local con-
timate the transition operatdi, from the data. From  stant approximations instead of local linear approxi-
the transition operator, one can identify the infinitesi- mations in (27), since the local linear fit can create

mal operatoiZ and hence the functions(-) ando (). artificial albeit insignificant linear trends when the un-
More precisely, leti; be the largest negative eigen- derlying functionsao(z) and a1(¢) are indeed time-
value of the operatat with eigenfunctioré1(x). Then  independent. To appreciate this, for constant functions
L& = Ai&1, or equivalently,o 2] + 2ué] = 2h61. a1 anday a large bandwidth will be chosen to reduce

This gives one equation szandff- Another equation  the variance in the estimation. This is in essence fitting
can be obtained via (11Jo“f)" — 2uf = 0. Solving 3 global linear regression by (27). If the local linear ap-

these two equations we obtain proximations are used, since no variable selection pro-
o x cedures have been incorporated in the local fitting (27),
oo(x) = 2)‘1/0 §E1(N S (M dy/Lf (0)§1(x)] the slopes of the local linear approximations will not be

estimated as zero and hence artificial linear trends will
be created for the estimated coefficients.

The coefficient functions in the volatility can be es-
timated by the local approximated likelihood method.
Let

and another explicit expression farx). Using semi-
group theory ([44], Theorem IV.3.7%1 is also an
eigenfunction off 5 with eigenvalue ex@\i1). Hence,
the proposal is to estimate the invariant dengitgnd
the transition densitya (y|x), which implies the val-
ues ofa; and&;. Gobet [58] derives the optimal rate E,=A"Y2(X, 1 n — X, — (Go(r) + 61(1)X,) A)
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be the normalized residuals. Then Based on the GLR technique, Fan et al. [48] proposed
a formal test for this kind of problem.

The coefficient functions in the semiparametric
model (9) can also be estimated by using the profile
approximated-likelihood method. For each givén
one can easily estimatgo(-) via the approxima-

(28) Er ~ Bo(t) X1 Vs, .

The conditional log-likelihood of;; given X, can eas-
ily be obtained by the approximation (28). Using lo-

cal constant approximations and incorporating the ker- y = _ )
tion (28), resulting in an estimag&(-; f1). Regarding

nel weight, we obtain the local approximated likeli- h e . bei
hood at each time point and estimates of the functions!N® dnt;)npargmetrlc é’ch%ﬁ(’('.)has el_ng psrameter—
Bo(-) and B1(-) at that time point. This type of local '2€d PYfo('; f1), mode (28) withBy (1) = p becomes

approximated-likelihood method is related to the gen- _?_r;‘synthesmted" pararEetrlc fmocie(lj vgltht#nknom.
eralized method of moments of Hansen [65] and the @ N Foe;;?nn;?e?j’)g 1Iilfe?|?ho§ de;éThi: Ngte t?ngxgz-um
ideas of Florens-Zmirou [55] and Genon-Catalot and . bp : . ”

Jacod [57]. timated by using all the data points, whif(t) =

Since the coefficient functions in both return and 20 A1) is obtained by using only the local data

- . . . o points. See [48] for detalils.
volatility functions are estimated using only historical For other nonparametric methods of estimating vola-
data, their bandwidths can be selected based on aforrr{i",[y in time inhomogeneous models, see Hardle
of the average prediction error. See Fan et al. [48] for Herwartz and Spokoiny [68] and l(/lercurio and’
details. The local least-squares regression can also b%pokoiny [89]. Their methods are based on model (8)
applied to estimate the coefficient functiofgr) and With ay(r) = (1) = 0.

B1() via the transformed model [see (28)]

log(E?) ~ 2109 Bo(t) + B1(¢) l0g(X?) + log(s?),
O(ED) 9holt) + Pr(1)l0G(X;) o) So far, we have introduced both state- and time-

but we do not continue in this direction since the lo- domain smoothing. The former relies on the structural
cal least-squares estimate is known to be inefficient in invariability implied by the stationarity assumption and
the likelihood context and the exponentiation of an es- depends predominantly on the (remote) historical data.
timated coefficient function of lofo(¢) is unstable. The latter uses the continuity of underlying parame-
The question arises naturally if the coefficients in ters and concentrates basically on the recent data. This
the model (8) are really time-varying. This amounts, is illustrated in Figure 7 using the yields of the three-
for example, to testinddp : Bo(t) = Bo andB1(z) = B1. month Treasury bills from January 8, 1954 to July 16,

3.6 State-Domain Versus Time-Domain Smoothing

Yields of 3—-month Treasury Bills from 1954 to 2004
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Fic. 7. lllustration of time- and state-domain smoothing using the yields of three-month Treasunfbédlstate-domain smoothing is
localized in the horizontal barsvhile the time-domain smoothing is concentrated in the vertical.bars
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2004 sampled at weekly frequency. On December 28,Let us assume again that the observed progggsol-
1990, the interest rate was about 6.48%. To estimatelows the SDE (5). In this case?(X,) is the derivative
the drift and diffusion aroundk = 6.48, the state- of the quadratic variation process &f and hence is
domain smoothing focuses on the dynamics where in-known up to time7". By (11), estimating the drift func-
terest rates are around 6.48%, the horizontal bar withtion x(x) is equivalent to estimating the invariant den-
interest rates falling in @8%4 0.25%. The estimated  sity f. In fact,

volatility is basically the sample standard deviation of 2 ,

the differenceqdX;n — X;—1)a} within this horizon- (29) p(x) =lo"@) fNI/[2f ().
tal bar. On the other hand, the time-domain smoothing The invariant densityf can easily be estimated by
focuses predominantly on the recent history, say onekernel density estimation. Whe~ — 0, the summa-
year, as illustrated in the figure. The time-domain esti- tion in (26) converges to

mate of volatility is basically a sample standard devia- T

tion within the vertical bar. (30) fx)= T‘lf Kn(X, —x)dt.

For a given time series, it is hard to say which esti- 0
mate is better. This depends on the underlying stochas-This forms a kernel density estimate of the invari-
tic processes and also on the time when the forecast i€ant density based on the continuously observed data.
made. If the underlying process is continuous and sta-Thus, an estimator foru(x) can be obtained by
tionary, such as model (5), both methods are applica-substituting f(x) into (29). Such an approach has
ble. For example, standing at December 28, 1990, onebeen employed by Kutoyants [88] and Dalalyan and
can forecast the volatility by using the sample standard Kutoyants [40, 41]. They established the sharp asymp-
deviation in either the horizontal bar or the vertical bar. totic minimax risk for estimating the invariant density
However, the estimated precision depends on the lo-f and its derivative as well as the drift functign In
cal data. Since the sample variance is basically linearParticular, the functiong, f" andu can be estimated
in the squared differencé&?, }, the standard errors of Wit rates7 ~Y/2, 7=2/@&+D and7~2/&+1), respec-
both estimates can be assessed and used to guide tH&/ely, wheres is the degree of smoothnessof These
forecasting. are the optimal rates of convergence.

For stationary diffusion processes, it is possible to An alternative approach is to estimate the drift func-
integrate both the time-domain and state-domain esti-tion directly from (23). By lettingA — 0, one can
mates. Note that the historical data (with interest rates€asily obtain alocal linear regression estimator for con-
in 6.48%-£ 0.25%) are far apart in time from the data tinuously observed dgtg, which admits a similar form
used in the time-domain smoothing (vertical bar), ex- {0 (23) and (30). This is the approach that Spokoiny
cept the last segment, which can be ignored in the state{103] used. He showed that this estimator attains the
domain fitting. The next-to-last segment with interest OPtimal rate of convergence and established further a
rates in 648%- 0.25% is May 11 to July 20, 1988, data-drlvep bandwplth sth that the local linear esti-
123 weeks prior to the last segment. Hence, these twoMator attains adaptive minimax rates.
estimates are nearly independent. The integrated esti-
mate is a linear combination of these two nearly in- 4 ESTIMATION OF STATE PRICE DENSITIES AND

dependent estimates. The weights can easily be cho- TRANSITION DENSITIES

sen to minimize the variance of the integrated estima-  The state price density (SPD) is the probability den-
tor, by using the assessed standard errors of the statesijty of the value of an asset under the risk-neutral
and time-domain estimators. The optimal weights are world (14) (see [38]) or equivalent martingale mea-
proportional to the variances of the two estimators, sure [71]. Itis directly related to the pricing of financial
which depend on time This forms a dynamically inte-  derivatives. It is the transition density &f given X
grated predictor for volatility estimation, as the optimal under the equivalent martinga(@. The SPD does not
weights change over time. depend on the payoff function and hence it can be used
to evaluate other illiquid derivatives, once it is esti-
mated from more liquid derivatives. On the other hand,
At the theoretical level, one may also examine the the transition density characterizes the probability law
problem of estimating the drift and diffusion functions of a Markovian process and hence is useful for validat-
assuming the whole process is observable up tofime ing Markovian properties and parametric models.

3.7 Continuously Observed Data
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4.1 Estimation of the State Price Density they reduced the dimensionality to three. Ait-Sahalia

For some specific models, the state price density canf"md Lo [7]imposed a semiparametric form on the pric-

be formed explicitly. For example, for the GBM (1) ing formula,
with a constant risk-free ratg according to (17), the C(S,K.T,r,8)=Cgs(F.K.T,r,0(F,K,T)),
SPD is log-normal with mean log + (r — o)/ (2T)
and variance 2. whereCgs(F, K, T, r, o) is the Black—Scholes pricing
Assume that the SP* exists. Then the European formula given in (18) and (F, K, T) is the implied
call option can be expressed as volatility, computed by inverting the Black—Scholes
T 00 formula. Thus, the problem becomes one of nonpara-
C:exp(—/ I ds)/ (x — K)f*(x)dx. metrically estimating the implied volatility function
0 K _ o(F,K,T). This is estimated by using a nonparamet-
See (14) (we have changed the notation frBgto C i regression technique from historical data, namely,
to emphasize the price of the European call option).
Hence, o, =0(F;, K;, T;) + &,
—— d 9%C whereo; is the implied volatility of C;, by inverting
(31) fE) = exp(fo s ds) 0K?2’ the Black—Scholes formula. By assuming further that

This was observed by Breeden and Litzenberger [25].0 (F, K, T) = o(F/K,T), the dimensionality is re-
Thus, the state price density can be estimated from theduced to two. This is one of the options in [4].
European call options with different strike prices. With ~ The state price density* is nonnegative and hence
the estimated state price density, one can price new oithe functionC should be convex in the strike pride.
less liquid securities such as over-the-counter deriva-Ait-Sahalia and Duarte [6] propose to estimate the op-
tives or nontraded options using formula (14). tion price under the convexity constraint using a local
In general, the price of a European call option de- linear estimator. See also [70] for a related approach.
pends on the current stock pridethe strike pricek,
the time to maturityT", the risk-free interest rateand
dividend yield rates. It can be written ag’ (S, K, T, The transition density of a Markov process charac-
r,8). The exact form ofC, in general, is hard to de- terizes the law of the process, except the initial distrib-
termine unless we assume the Black—Scholes modelytion. It provides useful tools for checking whether or

4.2 Estimation of Transition Densities

Based on historical datq(C;, S;, K;, Ti, ri, i), i = not such a process follows a certain SDE and for statis-
1,....n}, where C; is the ith traded-option price tjcal estimation and inference. It is the state price den-
with associated characteristics;, K;. 7i, i, 8;), Ait- ity of the price process under the risk neutral world. If
Sahalia and Lo [7] fit the nonparametric regression gy ch a process were observable, the state price density
Ci=C(S;, Ki, T, ri,8;) + ¢ would be estimated using the methods to be introduced.

Assume that we have a samflE;x,i =0,...,n}

to obtain an estimate of the functi@ghand hence the " -1 (5). The “double-kernel” method of Fan,

SPD f*. .
Due to the curse of dimensionality, the five-dimen- Yao and Tong [51] is to observe that
sional nonparametric function cannot be estimated well E{Wi,(Xia — )| Xi—1na =x} =~ pa(y]x)
with practical range of sample sizes. Ait-Sahalia and (32)
Lo [7] realized that and proposed a few dimensionality ashy — 0,

reduction methods. First, by assuming that the option
price depends only on the futures priee= S exp((r —
8)T), namely,

for a kernel functionW. Thus, the transition density
pa(y|x) can be regarded approximately as the non-
parametric regression function of the response variable
C(S,K,T,r,8)=C(F,K,T,r) Wi, (Xian —y) On X;_1ya. An application of the local

(the Black—Scholes formula satisfies such an assump/inear estimator (23) yields
tion), they reduced the dimensionality from five to four. n
By assuming further that the option-pricing function is pAa(ylx) = Z Kn(Xi-1a —x,x)

homogeneous of degree onefirand K, namely, (33) i=1
C(S,K,T,r,5)=KC(F/K,T,r), 'th(XiA_y),
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where the equivalent kernek,(u,x) was defined The transition density-based methods depend on two
in (24). Fan, Yao and Tong [51] establish the asymp- bandwidths and are harder to implement. Indeed, their
totic normality of such an estimator under stationar- null distributions are harder to determine than those
ity and p-mixing conditions [necessarily decaying at based on the transition distribution methods. In com-
geometric rate for SDE (5)], which gives explicitly parison with the invariant density-based approach of
the asymptotic bias and variance of the estimator. SeeArapis and Gao [11], it is consistent against a much
also Section 6.5 of [50]. The cross-validation idea of larger family of alternatives.
Rudemo [98] and Bowman [24] can be extended to One can also use the transition density to test
select bandwidths for estimating conditional densities. whether an observed series is Markovian (from per-
See [52, 63]. sonal communication with Yacine Ait-Sahalia). For ex-
The transition distribution can be estimated by in- ample, if a proces§X;} is Markovian, then
tegrating the estimator (33) over By letting 2o — 0, +00
the estimator is the regression of the indicatoX; » < p2a(ylx) = / pa(ylz)pa(zlx)dz.
y) on X;_1a. Alternative estimators can be obtained B
by an application of the local logistic regression and Thus, one can use the distance betwggn(y|x) and
adjusted Nadaraya—Watson method of Hall et al. [64]. J—w Pa(y|2)Pa(zlx) dz as a test statistic.
Early references on the estimation of the transition The transition density can also be used for parameter

distributions and densities include [96, 97] and [95].  estimation. One possible approach is to find the para-
meter which minimizes the distangi®’a — Pa ¢|. In

4.3 Inferences Based on Transition Densities this case, the bandwidth should be chosen to optimize
With the estimated transition density, one can now the performance for estimatirty The approach is ap-

verify whether parametric models such as (1)—(3), (6) Plicable whether or noA — 0.

are consistent with the observed data. gty (y|x)

be the transition density under a parametric diffusion 5. CONCLUDING REMARKS

model. For example, for the CIR model (2), the pa-  Enormous efforts in financial econometrics have

rametert = («x, o, o). As in (21), ignoring the initial  peen made in modeling the dynamics of stock prices

value Xo, the paramete# can be estimated by maxi- and bond yields. There are directly related to pricing

mizing derivative securities, proprietary trading and portfo-
n lio management. Various parametric models have been

L(pap) = Z|ngA,9(X[A|X(,'_1)A). proposed to facilitate mathematical derivations. They

i=1 have risks that misspecifications of models lead to er-

roneous pricing and hedging strategies. Nonparamet-
ric models provide a powerful and flexible treatment.
They aim at reducing modeling biases by increasing
somewhat the variances of resulting estimators. They
GLR={¢(pp) — t(py g)s provide an elegant method for validating or suggesting
a family of parametric models.

The versatility of nonparametric techniques in fi-

Let 6 be the maximum likelihood estimator. By the
spirit of the GLR of Fan et al. [54], the GLR test for
the null hypothesisiy: pa(y|x) = pa o(¥]x) IS

where p is a nonparametric estimate of the transi-
tion density. Since the transition density cannot be es-|,,1cial econometrics has been demonstrated in this

timated well over th_e region where data are SParséaner. They are applicable to various aspects of dif-
(usually at boundaries of the process), we need t0f5ion models: drift, diffusion, transition densities and
truncate the nonparametric (and simultaneously para-qen state price densities. They allow us to examine
metric) evaluation of the likelihood at appropriate in- \hether the stochastic dynamics for stocks and bonds
tervals. _ are time varying and whether famous parametric mod-
In addition to employing the GLR test, one can also g5 are consistent with empirical financial data. They
compare directly the difference between the paramet-permit us to price illiquid or nontraded derivatives from
fic and nonparametric fits, resulting in test statistics jiquid derivatives.
such as| pa — PA,é”z and I1Pa = PA,é”Z for an ap- The applications of nonparametric techniques in fi-
propriate normj - ||, whereP5 and P, ; are the esti-  nancial econometrics are far wider than what has been
mates of the cumulative transition distributions under presented. There are several areas where nonparamet-
respectively the parametric and nonparametric models.ric methods have played a pivotal role. One example
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is to test various versions of capital asset pricing mod- [12] Arri, M. (1998). Non-parametric variance estimation from

els (CAPM) and their related stochastic discount mod-

ergodic samplesScand. J. Statis5 225-234.

els [36]. See, for example, the research manuscript [13] BANDI, F. (2002). Short-term interest rate dynamics: A spa-
by Chen and Ludvigson [34] in this direction. An-

other important class of models are stochastic volatil-
ity models [19, 101], where nonparametric methods

[14]

can be also applied. The nonparametric techniques [15]
have been prominently featured in the RiskMetrics of

J. P. Morgan. It can be employed to forecast the risks

of portfolios. See, for example, [8, 32, 33, 47, 82] for

related nonparametric techniques on risk management.
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