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A Selective Overview of Nonparametric
Methods in Financial Econometrics
Jianqing Fan

Abstract. This paper gives a brief overview of the nonparametric techniques
that are useful for financial econometric problems. The problems include es-
timation and inference for instantaneous returns and volatility functions of
time-homogeneous and time-dependent diffusion processes, and estimation
of transition densities and state price densities. We first briefly describe the
problems and then outline the main techniques and main results. Some use-
ful probabilistic aspects of diffusion processes are also briefly summarized to
facilitate our presentation and applications.
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1. INTRODUCTION

Technological innovation and trade globalization
have brought us into a new era of financial markets.
Over the last three decades, a large number of new
financial products have been introduced to meet cus-
tomers’ demands. An important milestone occurred in
1973 when the world’s first options exchange opened
in Chicago. That same year, Black and Scholes [23]
published their famous paper on option pricing and
Merton [90] launched the general equilibrium model
for security pricing, two important landmarks for mod-
ern asset pricing. Since then the derivative markets
have experienced extraordinary growth. Professionals
in finance now routinely use sophisticated statistical
techniques and modern computational power in portfo-
lio management, securities regulation, proprietary trad-
ing, financial consulting and risk management.

Financial econometrics is an active field that inte-
grates finance, economics, probability, statistics and
applied mathematics. This is exemplified by the books
by Campbell, Lo and MacKinlay [28], Gouriéroux
and Jasiak [60] and Cochrane [36]. Financial activities
generate many new problems, economics provides use-
ful theoretical foundation and guidance, and quantita-
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tive methods such as statistics, probability and applied
mathematics are essential tools to solve the quantitative
problems in finance. To name a few, complex finan-
cial products pose new challenges on their valuation
and risk management. Sophisticated stochastic mod-
els have been introduced to capture the salient features
of underlying economic variables and to price deriva-
tives of securities. Statistical tools are used to identify
parameters of stochastic models, to simulate complex
financial systems and to test economic theories via em-
pirical financial data.

An important area of financial econometrics is study
of the expected returns and volatilities of the price dy-
namics of stocks and bonds. Returns and volatilities
are directly related to asset pricing, proprietary trad-
ing, security regulation and portfolio management. To
achieve these objectives, the stochastic dynamics of
underlying state variables should be correctly speci-
fied. For example, option pricing theory allows one
to value stock or index options and hedge against the
risks of option writers once a model for the dynamics
of underlying state variables is given. See, for exam-
ple, the books on mathematical finance by Bingham
and Kiesel [20], Steele [105] and Duffie [42]. Yet many
of the stochastic models in use are simple and conve-
nient ones to facilitate mathematical derivations and
statistical inferences. They are not derived from any
economics theory and hence cannot be expected to fit
all financial data. Thus, while the pricing theory gives
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spectacularly beautiful formulas when the underlying
dynamics is correctly specified, it offers little guid-
ance in choosing or validating a model. There is al-
ways the danger that misspecification of a model leads
to erroneous valuation and hedging strategies. Hence,
there are genuine needs for flexible stochastic model-
ing. Nonparametric methods offer a unified and elegant
treatment for such a purpose.

Nonparametric approaches have recently been intro-
duced to estimate return, volatility, transition densities
and state price densities of stock prices and bond yields
(interest rates). They are also useful for examining the
extent to which the dynamics of stock prices and bond
yields vary over time. They have immediate applica-
tions to the valuation of bond price and stock options
and management of market risks. They can also be em-
ployed to test economic theory such as the capital asset
pricing model and stochastic discount model [28] and
answer questions such as if the geometric Brownian
motion fits certain stock indices, whether the Cox–
Ingersoll–Ross model fits yields of bonds, and if in-
terest rate dynamics evolve with time. Furthermore,
based on empirical data, one can also fit directly the
observed option prices with their associated character-
istics such as strike price, the time to maturity, risk-free
interest rate, dividend yield and see if the option prices
are consistent with the theoretical ones. Needless to
say, nonparametric techniques will play an increas-
ingly important role in financial econometrics, thanks
to the availability of modern computing power and the
development of financial econometrics.

The paper is organized as follows. We first intro-
duce in Section 2 some useful stochastic models for
modeling stock prices and bond yields and then briefly
outline some probabilistic aspects of the models. In
Section 3 we review nonparametric techniques used for
estimating the drift and diffusion functions, based on
either discretely or continuously observed data. In Sec-
tion 4 we outline techniques for estimating state price
densities and transition densities. Their applications in
asset pricing and testing for parametric diffusion mod-
els are also introduced. Section 5 makes some conclud-
ing remarks.

2. STOCHASTIC DIFFUSION MODELS

Much of financial econometrics is concerned with
asset pricing, portfolio choice and risk management.
Stochastic diffusion models have been widely used for
describing the dynamics of underlying economic vari-
ables and asset prices. They form the basis of many

spectacularly beautiful formulas for pricing contingent
claims. For an introduction to financial derivatives, see
Hull [78].

2.1 One-Factor Diffusion Models

Let St� denote the stock price observed at timet�.
The time unit can be hourly, daily, weekly, among oth-
ers. Presented in Figure 1(a) are the daily log-returns,
defined as

log(St�) − log
(
S(t−1)�

) ≈ (
St� − S(t−1)�

)
/S(t−1)�,

of the Standard and Poor’s 500 index, a value-weighted
index based on the prices of the 500 stocks that account
for approximately 70% of the total U.S. equity (stock)
market capitalization. The styled features of the returns
include that the volatility tends to cluster and that the
(marginal) mean and variance of the returns tend to be
constant. One simplified model to capture the second
feature is that

log(St�) − log
(
S(t−1)�

) ≈ µ0 + σ0εt ,

where{εt } is a sequence of independent normal random
variables. This is basically a random walk hypothesis,
regarding the stock price movement as an independent
random walk. When the sampling time unit� gets
small, the above random walk can be regarded as a
random sample from the continuous-time process:

d log(St ) = µ0 + σ1 dWt,(1)

where {Wt } is a standard one-dimensional Brownian
motion andσ1 = σ0/

√
�. The process (1) is called

geometric Brownian motion asSt is an exponent of
Brownian motionWt . It was used by Osborne [92]
to model the stock price dynamic and by Black and
Scholes [23] to derive their celebrated option price for-
mula.

Interest rates are fundamental to financial markets,
consumer spending, corporate earnings, asset pricing,
inflation and the economy. The bond market is even
bigger than the equity market. Presented in Figure 1(c)
are the interest rates{rt } of the two-year U.S. Treasury
notes at a weekly frequency. As the interest rates get
higher, so do the volatilities. To appreciate this, Fig-
ure 1(d) plots the pairs{(rt−1, rt − rt−1)}. Its dynamic
is very different from that of the equity market. The
interest rates should be nonnegative. They possess het-
eroscedasticity in addition to the mean-revision prop-
erty: As the interest rates rise above the mean levelα,
there is a negative drift that pulls the rates down; while
when the interest rates fall belowα, there is a posi-
tive force that drives the rates up. To capture these two
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FIG. 1. (a)Daily log-returns of the Standard and Poor’s500 index from October 21, 1980 to July 29, 2004. (b) Scatterplot of the returns
against logarithm of the index( price level). (c) Interest rates of two-year U.S. Treasury notes from June 4, 1976 to March 7, 2003 sampled
at weekly frequency. (d) Scatterplot of the difference of yields versus the yields.

main features, Cox, Ingersoll and Ross [37] derived the
following model for the interest rate dynamic:

drt = κ(α − rt ) dt + σr
1/2
t dWt .(2)

For simplicity, we will refer it to as the CIR model. It
is an amelioration of the Vasicek model [106],

drt = κ(α − rt ) dt + σ dWt,(3)

which ignores the heteroscedasticity and is also re-
ferred to as the Ornstein–Uhlenbeck process. While
this is an unrealistic model for interest rates, the
process is Gaussian with explicit transition density. It
fact, the time series sampled from (3) follows the au-
toregressive model of order 1,

Yt = (1− ρ)α + ρYt−1 + εt ,(4)

where Yt = rt�, ε ∼ N(0, σ 2(1 − ρ2)/(2κ)) and
ρ = exp(−κ�). Hence, the process is well understood

and usually serves as a test case for proposed statistical
methods.

There are many stochastic models that have been in-
troduced to model the dynamics of stocks and bonds.
Let Xt be an observed economic variable at timet .
This can be the price of a stock or a stock index, or
the yield of a bond. A simple and frequently used sto-
chastic model is

dXt = µ(Xt) dt + σ(Xt) dWt .(5)

The functionµ(·) is often called a drift or instanta-
neous return function andσ(·) is referred to as a dif-
fusion or volatility function, since

µ(Xt) = lim
�→0

�−1E(Xt+� − Xt |Xt),

σ 2(Xt) = lim
�→0

�−1 var(Xt+�|Xt).
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The time-homogeneous model (5) contains many fa-
mous one-factor models in financial econometrics. In
an effort to improve the flexibility of modeling interest
dynamics, Chan et al. [29] extends the CIR model (2)
to the CKLS model,

dXt = κ(α − Xt) dt + σX
γ
t dWt .(6)

Aït-Sahalia [3] introduces a nonlinear mean rever-
sion: while interest rates remain in the middle part
of their domain, there is little mean reversion, and at
the end of the domain, a strong nonlinear mean re-
version emerges. He imposes the nonlinear drift of the
form (α0X

−1
t + α1 + α2Xt + α2X

2
t ). See also Ahn and

Gao [1], which models the interest rates byYt = X−1
t ,

in which theXt follows the CIR model.
Economic conditions vary over time. Thus, it is

reasonable to expect that the instantaneous return
and volatility depend on both time and price level
for a given state variable such as stock prices and
bond yields. This leads to a further generalization of
model (5) to allow the coefficients to depend on timet :

dXt = µ(Xt , t) dt + σ(Xt , t) dWt .(7)

Since only a trajectory of the process is observed
[see Figure 1(c)], there is not sufficient information
to estimate the bivariate functions in (7) without fur-
ther restrictions. [To consistently estimate the bivariate
volatility function σ(x, t), we need to have data that
eventually fill up a neighborhood of the point(t, x).]
A useful specification of model (7) is

dXt = {α0(t) + α1(t)Xt }dt + β0(t)X
β1(t)
t dWt .(8)

This is an extension of the CKLS model (6) by
allowing the coefficients to depend on time and was
introduced and studied by Fan et al. [48]. Model (8) in-
cludes many commonly used time-varying models for
the yields of bonds, introduced by Ho and Lee [75],
Hull and White [79], Black, Derman and Toy [21] and
Black and Karasinski [22], among others. The expe-
rience in [48] and other studies of the varying coeffi-
cient models [26, 31, 74, 76] shows that coefficient
functions in (8) cannot be estimated reliably due to
the collinearity effect in local estimation: localizing in
the time domain, the process{Xt } is nearly constant
and henceα0(t) andα1(t) andβ0(t) andβ1(t) cannot
easily be differentiated. This leads Fan et al. [48] to
introduce the semiparametric model

dXt = {α0(t) + α1Xt }dt + β0(t)X
β
t dWt(9)

to avoid the collinearity.

2.2 Some Probabilistic Aspects

The question when there exists a solution to the sto-
chastic differential equation (SDE) (7) arises naturally.
Such a program was first carried out by Itô [80, 81].
For SDE (7), there are two different meanings of solu-
tion: strong solution and weak solution. See Sections
5.2 and 5.3 of [84]. Basically, for a given initial con-
dition ξ , a strong solution requires thatXt is deter-
mined completely by the information up to timet . Un-
der Lipschitz and linear growth conditions on the drift
and diffusion functions, for everyξ that is independent
of {Ws}, there exists a strong solution of equation (7).
Such a solution is unique. See Theorem 2.9 of [84].

For the one-dimensional time-homogeneous diffu-
sion process (5), weaker conditions can be obtained for
the so-called weak solution. By an application of the
Itô formula to an appropriate transform of the process,
one can make the transformed process have zero drift.
Thus, we can consider without loss of generality that
the drift in (5) is zero. For such a model, Engelbert
and Schmidt [45] give a necessary and sufficient condi-
tion for the existence of the solution. The continuity of
σ suffices for the existence of the weak solution. See
Theorem 5.5.4 of [84], page 333, and Theorem 23.1
of [83].

We will use several times the Itô formula. For the
processXt in (7), for a sufficiently regular functionf
([84], page 153),

df (Xt , t) =
{
∂f (Xt , t)

∂t

+ 1

2

∂2f (Xt , t)

∂x2 σ 2(Xt , t)

}
dt(10)

+ ∂f (Xt , t)

∂x
dXt .

The formula can be understood as the second-order
Taylor expansion off (Xt+�, t + �) − f (Xt , t) by
noticing that(Xt+� − Xt)

2 is approximatelyσ 2(Xt ,

t)�.
The Markovian property plays an important role

in statistical inference. According to Theorem 5.4.20
of [84], the solutionXt to equation (5) is Markovian,
provided that the coefficient functionsµ and σ are
bounded on compact subsets. Letp�(y|x) be the tran-
sition density, the conditional density ofXt+� = y

given Xt = x. The transition density must satisfy the
forward and backward Kolmogorov equations ([84],
page 282).

Under the linear growth and Lipschitz conditions,
and additional conditions on the boundary behavior of
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the functionsµ andσ , the solution to equation (1) is
positive and ergodic. The invariant density is given by

f (x) = 2C0σ
−2(x)

(11)

·exp
(
−2

∫ x

.
µ(y)σ−2(y) dy

)
,

whereC0 is a normalizing constant and the lower limit
of the integral does not matter. If the initial distri-
bution is taken from the invariant density, then the
process{Xt } is stationary with the marginal densityf
and transition densityp�.

Stationarity plays an important role in time series
analysis and forecasting [50]. The structural invariabil-
ity allows us to forecast the future based on the his-
torical data. For example, the structural relation (e.g.,
the conditional distribution, conditional moments) be-
tweenXt andXt+� remains the same over timet . This
makes it possible to use historical data to estimate the
invariant quantities. Associated with stationarity is the
concept of mixing, which says that the data that are far
apart in time are nearly independent. We now describe
the conditions under which the solution to the SDE (1)
is geometrically mixing.

Let Ht be the operator defined by

(Htg)(x) = E
(
g(Xt)|X0 = x

)
, x ∈ R,(12)

wheref is a Borel measurable bounded function onR.
A stationary processXt is said to satisfy the condition
G2(s, α) of Rosenblatt [95] if there exists ans such
that

‖Hs‖2
2 = sup

{f : Ef (X)=0}
E(Hsf )2(X)

Ef 2(X)
≤ α2 < 1,

namely, the operator is contractive. As a consequence
of the semigroup (Hs+t = HsHt ) and contraction prop-
erties, the conditionG2 implies [16, 17] that for any
t ∈ [0,∞), ‖Ht‖2 ≤ αt/s−1. The latter implies, by the
Cauchy–Schwarz inequality, that

ρ(t) = sup
g1,g2

corr
(
g1(X0), g2(Xt)

) ≤ αt/s−1,(13)

that is, theρ-mixing coefficient decays exponentially
fast. Banon and Nguyen [18] show further that for
a stationary Markov process,ρ(t) → 0 is equivalent
to (13), namely,ρ-mixing and geometricρ-mixing are
equivalent.

2.3 Valuation of Contingent Claims

An important application of SDE is the pricing of fi-
nancial derivatives such as options and bonds. It forms
a beautiful modern asset pricing theory and provides
useful guidance in practice. Steele [105], Duffie [42]
and Hull [78] offer very nice introductions to the field.

The simplest financial derivative is the European call
option. A call option is the right to buy an asset at a
certain priceK (strike price) before or at expiration
time T . A put option gives the right to sell an asset
at a certain priceK (strike price) before or at expira-
tion. European options allow option holders to exercise
only at maturity while American options can be exer-
cised at any time before expiration. Most stock options
are American, while options on stock indices are Euro-
pean.

The payoff for a European call option is(XT −K)+,
whereXT is the price of the stock at expirationT .
When the stock rises above the strike priceK , one can
exercise the right and make a profit ofXT − K . How-
ever, when the stock falls belowK , one renders one’s
right and makes no profit. Similarly, a European put op-
tion has payoff(K − XT )+. See Figure 2. By creating
a portfolio with different maturities and different strike
prices, one can obtain all kinds of payoff functions. As
an example, suppose that a portfolio of options con-
sists of contracts of the S&P 500 index maturing in six
months: one call option with strike price $1,200, one
put option with strike price $1,050 and $40 cash, but
with short position (borrowing or−1 contract) on a call
option with strike price $1,150 and on a put option with
strike price $1,100. Figure 2(c) shows the payoff func-
tion of such a portfolio of options at the expirationT .
Clearly, such an investor bets the S&P 500 index will
be around $1,125 in six months and limits the risk ex-
posure on the investment (losing at most $10 if his/her
bet is wrong). Thus, the European call and put options
are fundamental options as far as the payoff function
at time T is concerned. There are many other exotic
options such as Asian options, look-back options and
barrier options, which have different payoff functions,
and the payoffs can be path dependent. See Chapter 18
of [78].

Suppose that the asset price follows the SDE (7) and
there is a riskless investment alternative such as a bond
which earns compounding rate of interestrt . Suppose
that the underlying asset pays no dividend. Letβt be
the value of the riskless bond at timet . Then, with an
initial investmentβ0,

βt = β0 exp
(∫ t

0
rs ds

)
,
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FIG. 2. (a)Payoff of a call option. (b)Payoff of a put option. (c)Payoff of a portfolio of four options with different strike prices and different
(long and short) positions.

thanks to the compounding of interest. Suppose that
a probability measureQ is equivalent to the original
probability measureP , namelyP(A) = 0 if and only if
Q(A) = 0. The measureQ is called an equivalent mar-
tingale measure for deflated price processes of given
securities if these processes are martingales with re-
spect toQ. An equivalent martingale measure is also
referred to as a “risk-neutral” measure if the deflater is
the bond price process. See Chapter 6 of [42].

When the markets are dynamically complete, the
price of the European option with payoff�(XT ) with
initial priceX0 = x0 is

P0 = exp
(
−

∫ T

0
rs ds

)
EQ(

�(XT )|X0 = x0
)
,(14)

whereQ is the equivalent martingale measure for the
deflated price processXt/βt . Namely, it is the dis-
counted value of the expected payoff in the risk neutral
world. The formula is derived by using the so-called
relative pricing approach, which values the price of the
option from given prices of a portfolio consisting of a
risk-free bond and a stock with the identical payoff as
the option at the expiration.

As an illustrative example, suppose that the price of
a stock follows the geometric Brownian motiondXt =
µXt dt + σXt dWt and that the risk-free rater is con-
stant. Then the deflated price processYt = exp(−rt)Xt

follows the SDE

dYt = (µ − r)Yt dt + σYt dWt .

The deflated price process is not a martingale as the
drift is not zero. The risk-neutral measure is the one

that makes the drift zero. To achieve this, we ap-
peal to the Girsanov theorem, which changes the drift
of a diffusion process without altering the diffusion
via a change of probability measure. Under the “risk-
neutral” probability measureQ, the processYt satisfies
dYt = σYt dWt , a martingale. Hence, the price process
Xt = exp(rt)Yt underQ follows

dXt = rXt dt + σXt dWt .(15)

Using exactly the same derivation, one can easily gen-
eralize the result to the price process (5). Under the
risk-neutral measure, the price process (5) follows

dXt = rXt dt + σ(Xt) dWt .(16)

The intuitive explanation of this is clear: all stocks un-
der the “risk-neutral” world are expected to earn the
same rate as the risk-free bond.

For the geometric Brownian motion, by an applica-
tion of the Itô formula (10) to (15), we have under the
“risk-neutral” measure

logXt − logX0 = (r − σ 2/2)t + σ 2Wt.(17)

Note that given the initial priceX0, the price fol-
lows a log-normal distribution. Evaluating the expec-
tation of (14) for the European call option with payoff
�(XT ) = (XT − K)+, one obtains the Black–Scholes
[23] option pricing formula

P0 = x0�(d1) − K exp(−rT )�(d2),(18)

whered1 = {log(x0/K)+ (r +σ 2/2)T }{σ√
T }−1 and

d2 = d1 − σ
√

T .
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2.4 Simulation of Stochastic Models

Simulation methods provide useful tools for the
valuation of financial derivatives and other financial
instruments when the analytical formula (14) is hard
to obtain. For example, if the price under the “risk-
neutral” measure is (16), the analytical formula for
pricing derivatives is usually not analytically tractable
and simulation methods offer viable alternatives (to-
gether with variance reduction techniques) to evaluate
it. They also provide useful tools for assessing perfor-
mance of statistical methods and statistical inferences.

The simplest method is perhaps the Euler scheme.
The SDE (7) is approximated as

Xt+� = Xt + µ(t,Xt)� + σ(t,Xt)�
1/2εt ,(19)

where{εt } is a sequence of independent random vari-
ables with the standard normal distribution. The time
unit is usually a year. Thus, the monthly, weekly and
daily data correspond, respectively, to� = 1/12,1/52
and 1/252 (there are approximately 252 trading days
per year). Given an initial value, one can recursively
apply (19) to obtain a sequence of simulated data
{Xj�, j = 1,2, . . .}. The approximation error can be
reduced if one uses a smaller step size�/M for a given
integer M to first obtain a more detailed sequence
{Xj�/M, j = 1,2, . . .} and then one takes the sub-
sequence{Xj�, j = 1,2, . . .}. For example, to simu-
late daily prices of a stock, one can simulate hourly
data first and then take the daily closing prices. Since
the step size�/M is smaller, the approximation (19)
is more accurate. However, the computational cost is
about a factor ofM higher.

The Euler scheme has convergence rate�1/2, which
is called strong order 0.5 approximation by Kloeden
et al. [87]. The higher-order approximations can be ob-
tained by the Itô–Taylor expansion (see [100],
page 242). In particular, a strong order-one approxi-
mation is given by

Xt+� = Xt + µ(t,Xt)� + σ(t,Xt)�
1/2εt

(20)
+ 1

2σ(t,Xt)σ
′
x(t,Xt)�{ε2

t − 1},
whereσ ′

x(t, x) is the partial derivative function with re-
spect tox. This method can be combined with a smaller
step size method in the last paragraph. For the time-
homogeneous model (1), an alternative form, without
evaluating the derivative function, is given in (3.14)
of [87].

The exact simulation method is available if one can
simulate the data from the transition density. Given the

current valueXt = x0, one drawsXt+� from the tran-
sition densityp�(·|x0). The initial condition can either
be fixed at a given value or be generated from the in-
variant density (11). In the latter case, the generated
sequence is stationary.

There are only a few processes where exact sim-
ulation is possible. For GBM, one can generate the
sequence from the explicit solution (17), where the
Brownian motion can be simulated from indepen-
dent Gaussian increments. The conditional density of
Vasicek’s model (3) is Gaussian with mean
α + (x0 − α)ρ and varianceσ 2

� = σ 2(1− ρ2)/(2κ) as
indicated by (4). GenerateX0 from the invariant den-
sity N(α,σ 2/(2κ)). With X0, generateX� from the
normal distribution with meanα+(X0−α)exp(−κ�)

and varianceσ 2
�. With X�, we generateX2� from

meanα + (X� − α)exp(−κ�) and varianceσ 2
�. Re-

peat this process until we obtain the desired length of
the process.

For the CIR model (2), provided thatq = 2κα/σ 2 −
1 ≥ 0 (a sufficient condition forXt ≥ 0), the transition
density is determined by the fact that givenXt = x0,
2cXt+� has a noncentralχ2 distribution with degrees
of freedom 2q + 2 and noncentrality parameter 2u,
wherec = 2κ/{σ 2(1−exp(−κ�))}, u = cx0 exp(k�).
The invariant density is the Gamma distribution with
shape parameterq + 1 and scale parameterσ 2/(2κ).

As an illustration, we consider the CIR model (7)
with parametersκ = 0.21459, α = 0.08571, σ =
0.07830 and� = 1/12. The model parameters are
taken from [30]. We simulated 1000 monthly data val-
ues using both the Euler scheme (19) and the strong
order-one approximation (20) with the same random
shocks. Figure 3 depicts one of their trajectories. The
difference is negligible. This is in line with the ob-
servations made by Stanton [104] that as long as data
are sampled monthly or more frequently, the errors in-
troduced by using the Euler approximation are very
small for stochastic dynamics that are similar to the
CIR model.

3. ESTIMATION OF RETURN AND VOLATILITY
FUNCTIONS

There is a large literature on the estimation of
the return and volatility functions. Early references
include [93] and [94]. Some studies are based on
continuously observed data while others are based on
discretely observed data. For the latter, some regard�

tending to zero while others regard� fixed. We briefly
introduce some of the ideas.
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FIG. 3. Simulated trajectories(multiplied by100)using the Euler approximation and the strong order-one approximation for a CIR model.
Top panel: solid curve corresponds to the Euler approximation and the dashed curve is based on the order-one approximation. Bottom panel:
the difference between the order-one scheme and the Euler scheme.

3.1 Methods of Estimation

We first outline several methods of estimation for
parametric models. The idea can be extended to non-
parametric models. Suppose that we have a sample
{Xi�, i = 0, . . . , n} from model (5). Then, the likeli-
hood function, under the stationary condition, is

logf (X0) +
n∑

i=1

logp�

(
Xi�|X(i−1)�

)
.(21)

If the functionsµ andσ are parameterized and the ex-
plicit form of the transition density is available, one can
apply the maximum likelihood method. However, the
explicit form of the transition density is not available
for many simple models such as the CLKS model (6).
Even for the CIR model (2), its maximum likelihood

estimator is very difficult to find, as the transition den-
sity involves the modified Bessel function of the first
kind.

One simple technique is to rely on the Euler ap-
proximation scheme (19). Then proceed as if the data
come from the Gaussian location and scale model. This
method works well when� is small, but can create
some biases when� is large. However, the bias can be
reduced by the following calibration idea, called indi-
rect inference by Gouriéroux et al. [61]. The idea works
as follows. Suppose that the functionsµ andσ have
been parameterized with unknown parametersθ . Use
the Euler approximation (19) and the maximum likeli-
hood method to obtain an estimateθ̂0. For each given
parameterθ aroundθ̂0, simulate data from (5) and ap-
ply the crude method to obtain an estimateθ̂1(θ) which
depends onθ . Since we simulated the data with the true
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parameterθ , the functionθ̂1(θ) tells us how to cali-
brate the estimate. See Figure 4. Calibrate the estimate
via θ̂−1

1 (θ̂0), which improves the bias of the estimate.
One drawback of this method is that it is intensive in
computation and the calibration cannot easily be done
when the dimensionality of parametersθ is high.

Another method for bias reduction is to approximate
the transition density in (21) by a higher order approx-
imation, and to then maximize the approximated like-
lihood function. Such a scheme has been introduced
by Aït-Sahalia [4, 5], who derives the expansion of
the transition density around a normal density function
using Hermite polynomials. The intuition behind such
an expansion is that the diffusion processXt+� − Xt

in (5) can be regarded as sum of many independent
increments with a very small step size and hence the
Edgeworth expansion can be obtained for the distribu-
tion of Xt+� − Xt givenXt . See also [43].

An “exact” approach is to use the method of moments.
If the processXt is stationary as in the interest-rate
models, the moment conditions can easily be derived
by observing

E

{
lim
�→0

�−1E[g(Xt+�) − g(Xt)|Xt ]
}

= lim
�→0

�−1E[g(Xt+�) − g(Xt)] = 0

for any functiong satisfying the regularity condition
that the limit and the expectation are exchangeable.

The right-hand side is the expectation ofdg(Xt). By
Itô’s formula (10), the above equation reduces to

E[g′(Xt)µ(Xt) + g′′(Xt)σ
2(Xt)/2] = 0.(22)

For example, ifg(x) = exp(−ax) for some given
a > 0, then

E exp(−aXt){µ(Xt) − aσ 2(Xt)/2} = 0.

This can produce an arbitrary number of equations by
choosing differenta’s. If the functionsµ andσ are pa-
rameterized, the number of moment conditions can be
more than the number of equations. One way to effi-
ciently use this is the generalized method of moments
introduced by Hansen [65], minimizing a quadratic
form of the discrepancies between the empirical and
the theoretical moments, a generalization of the clas-
sical method of moments which solves the moment
equations. The weighting matrix in the quadratic form
can be chosen to optimize the performance of the re-
sulting estimator. To improve the efficiency of the es-
timate, a large system of moments is needed. Thus,
the generalized method of moments needs a large sys-
tem of nonlinear equations which can be expensive in
computation. Further, the moment equations (22) use
only the marginal information of the process. Hence,
the procedure is not efficient. For example, in the
CKLS model (6),σ andκ are estimable via (22) only
throughσ 2/κ .

FIG. 4. The idea of indirect inference. For each given trueθ , one obtains an estimate using the Euler approximation and the simulated
data. This gives a calibration curve as shown. Now for a given estimatêθ0 = 3 based on the Euler approximation and real data, one finds the
calibrated estimatêθ−1

1 (3) = 2.080.
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3.2 Time-Homogeneous Model

The Euler approximation can easily be used to
estimate the drift and diffusion nonparametrically.
Let Yi� = �−1(X(i+1)� − Xi�) and Zi� =
�−1(X(i+1)� − Xi�)2. Then

E(Yi�|Xi�) = µ(Xi�) + O(�)

and

E(Zi�|Xi�) = σ 2(Xi�) + O(�).

Thus,µ(·) and σ 2(·) can be approximately regarded
as the regression functions ofYi� and Zi� on Xi�,
respectively. Stanton [104] applies kernel regression
[102, 107] to estimate the return and volatility func-
tions. LetK(·) be a kernel function andh be a band-
width. Stanton’s estimators are given by

µ̂(x) =
∑n−1

i=0 Yi�Kh(Xi� − x)∑n−1
i=0 Kh(Xi� − x)

and

σ̂ 2(x) =
∑n−1

i=0 Zi�Kh(Xi� − x)∑n−1
i=0 Kh(Xi� − x)

,

whereKh(u) = h−1K(u/h) is a rescaled kernel. The
consistency and asymptotic normality of the estimator
are studied in [15]. Fan and Yao [49] apply the local
linear technique (Section 6.3 in [50]) to estimate the
return and volatility functions, under a slightly differ-
ent setup. The local linear estimator [46] is given by

µ̂(x) =
n−1∑
i=0

Kn(Xi� − x, x)Yi�,(23)

where

Kn(u, x) = Kh(u)
Sn,2(x) − uSn,1(x)

Sn,2(x)Sn,0(x) − Sn,1(x)2 ,(24)

with Sn,j (x) = ∑n−1
i=0 Kh(Xi� − x)(Xi� − x)j , is the

equivalent kernel induced by the local linear fit. In con-
trast to the kernel method, the local linear weights de-
pend on bothXi andx. In particular, they satisfy

n−1∑
i=1

Kn(Xi� − x, x) = 1

and

n−1∑
i=1

Kn(Xi� − x, x)(Xi� − x) = 0.

These are the key properties for the bias reduction of
the local linear method as demonstrated in [46]. Fur-
ther, Fan and Yao [49] use the squared residuals

�−1(X(i+1)� − Xi� − µ̂(Xi�)�
)2

rather thanZi� to estimate the volatility function. This
will further reduce the approximation errors in the
volatility estimation. They show further that the con-
ditional variance function can be estimated as well as
if the conditional mean function is known in advance.

Stanton [104] derives a higher-order approximation
scheme up to order three in an effort to reduce bi-
ases. He suggests that higher-order approximations
must outperform lower-order approximations. To ver-
ify such a claim, Fan and Zhang [53] derived the fol-
lowing orderk approximation scheme:

E(Y ∗
i�|Xi�) = µ(Xi�) + O(�k),

(25)
E(Z∗

i�|Xi�) = σ 2(Xi�) + O(�k),

where

Y ∗
i� = �−1

k∑
j=1

ak,j

{
X(i+j)� − Xi�

}

and

Z∗
i� = �−1

k∑
j=1

ak,j

{
X(i+j)� − Xi�

}2

and the coefficientsak,j = (−1)j+1(k
j

)/
j are chosen to

make the approximation error in (25) of order�k . For
example, the second approximation is

1.5(Xt+� − Xt) − 0.5(Xt+2� − Xt+�).

By using the independent increments of Brownian mo-
tion, its variance is 1.52 + 0.52 = 2.5 times as large as
that of the first-order difference. Indeed, Fan and Zhang
[53] show that while higher-order approximations give
better approximation errors, we have to pay a huge pre-
mium for variance inflation,

var(Y ∗
i�|Xi�) = σ 2(Xi�)V1(k)�−1{1+ O(�)},

var(Z∗
i�|Xi�) = 2σ 4(Xi�)V2(k){1+ O(�)},

where the variance inflation factorsV1(k) and V2(k)

are explicitly given by Fan and Zhang [53]. Table 1
shows some of the numerical results for the variance
inflation factor.

The above theoretical results have also been veri-
fied via empirical simulations in [53]. The problem is
no monopoly for nonparametric fitting—it is shared by
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TABLE 1
Variance inflation factors by using higher-order differences

Order k

1 2 3 4 5

V1(k) 1.00 2.50 4.83 9.25 18.95
V2(k) 1.00 3.00 8.00 21.66 61.50

the parametric methods. Therefore, the methods based
on higher-order differences should seldomly be used
unless the sampling interval is very wide (e.g., quar-
terly data). It remains open whether it is possible to
estimate nonparametrically the return and the volatility
functions without seriously inflating the variance with
other higher-order approximation schemes.

As an illustration, we take the yields of the two-year
Treasury notes depicted in Figure 1. Figure 5 presents
nonparametrically estimated volatility functions, based
on orderk = 1 andk = 2 approximations. The local
linear fit is employed with the Epanechnikov kernel
and bandwidthh = 0.35. It is evident that the order two
approximation has higher variance than the order one
approximation. In fact, the magnitude of variance in-
flation is in line with the theoretical result: the increase
of the standard deviation is

√
3 from order one to order

two approximation.
Various discretization schemes and estimation meth-

ods have been proposed for the case with high
frequency data over a long time horizon. More pre-
cisely, the studies are under the assumptions that
�n → 0 andn�n → ∞. See, for example, [12, 27,
39, 58, 59, 85, 109] and references therein. Arapis

FIG. 5. Nonparametric estimates of volatility based on order one and two differences. The bars represent two standard deviations above
and below the estimated volatility. Top panel: order one fit. Bottom panel: order two fit.
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and Gao [11] investigate the mean integrated square
error of several methods for estimating the drift and
diffusion and compare their performances. Aït-Sahalia
and Mykland [9, 10] study the effects of random and
discrete sampling when estimating continuous-time
diffusions. Bandi and Nguyen [14] investigate small
sample behavior of nonparametric diffusion estima-
tors. Thorough study of nonparametric estimation of
conditional variance functions can be found in [62, 69,
91, 99]. In particular, Section 8.7 of [50] gives var-
ious methods for estimating the conditional variance
function. Wang [108] studies the relationship between
diffusion and GARCH models.

3.3 Model Validation

Stanton [104] applies his kernel estimator to a Trea-
sury bill data set and observes a nonlinear return
function in his nonparametric estimate, particularly in
the region where the interest rate is high (over 14%,
say). This leads him to postulate the hypothesis that
the return functions of short-term rates are nonlin-
ear. Chapman and Pearson [30] study the finite sam-
ple properties of Stanton’s estimator. By applying his
procedure to the CIR model, they find that Stanton’s
procedure produces spurious nonlinearity, due to the
boundary effect and the mean reversion.

Can we apply a formal statistics test to
Stanton’s hypothesis? The null hypothesis can sim-
ply be formulated: the drift is of a linear form as
in model (6). What is the alternative hypothesis? For
such a problem our alternative model is usually vague.
Hence, it is natural to assume that the drift is a nonlin-
ear smooth function. This becomes a testing problem
with a parametric null hypothesis versus a nonpara-
metric alternative hypothesis. There is a large body
of literature on this. The basic idea is to compute a
discrepancy measure between the parametric estimates
and nonparametric estimates and to reject the paramet-
ric hypothesis when the discrepancy is large. See, for
example, the book by Hart [73].

In an effort to derive a generally applicable principle,
Fan et al. [54] propose the generalized likelihood ra-
tio (GLR) tests for parametric-versus-nonparametric or
nonparametric-versus-parametric hypotheses. The ba-
sic idea is to replace the maximum likelihood under
a nonparametric hypothesis (which usually does not
exist) by the likelihood under good nonparametric es-
timates. Section 9.3 of [50] gives details on the im-
plementation of the GLR tests, including estimating
P -values, bias reduction and bandwidth selection. The
method has been successfully employed by Fan and

Zhang [53] for checking whether the return and volatil-
ity functions possess certain parametric forms.

Another viable approach of model validation is
to base it on the transition density. One can check
whether the nonparametrically estimated transition
density is significantly different from the parametri-
cally estimated one. Section 4.3 provides some addi-
tional details. Another approach, proposed by Hong
and Li [77], uses the fact that under the null hypothesis
the random variables{Zi} are a sequence of i.i.d. uni-
form random variables whereZi = P(Xi�|X(i−1)�, θ)

and P(y|x, θ) is the transition distribution function.
They propose to detect the departure from the null
hypothesis by comparing the kernel-estimated bivari-
ate density of{(Zi,Zi+1)} with that of the uniform
distribution on the unit square. The transition-density-
based approaches appear more elegant as they check
simultaneously the forms of drift and diffusion. How-
ever, the transition density does often not admit an
analytic form and the tests can be computationally in-
tensive.

3.4 Fixed Sampling Interval

For practical analysis of financial data, it is hard to
determine whether the sampling interval tends to zero.
The key determination is whether the approximation
errors for small “�” are negligible. It is ideal when a
method is applicable whether or not “�” is small. This
kind of method is possible, as demonstrated below.

The simplest problem to illustrate the idea is the ker-
nel density estimation of the invariant density of the
stationary process{Xt }. For the given sample{Xt�},
the kernel density estimate for the invariant density is

f̂ (x) = n−1
n∑

i=1

Kh(Xi� − x),(26)

based on the discrete data{Xi�, i = 1, . . . , n}. This
method is valid for all�. It gives a consistent estimate
of f as long as the time horizon is long:n� → ∞.
We will refer to this kind of nonparametric method as
state-domain smoothing, as the procedure localizes in
the state variableXt . Various properties, including con-
sistency and asymptotic normality, of the kernel esti-
mator (26) are studied by Bandi [13] and Bandi and
Phillips [15]. Bandi [13] also uses the estimator (26),
which is the same as the local time of the process
spending at a pointx except for a scaling constant, as a
descriptive tool for potentially nonstationary diffusion
processes.

Why can the state-domain smoothing methods be
employed as if the data were independent? This is due
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to the fact that localizing in the state domain weakens
the correlation structure and that nonparametric esti-
mates use essentially only local data. Hence many re-
sults on nonparametric estimators for independent data
continue to hold for dependent data as long as their
mixing coefficients decay sufficiently fast. As men-
tioned at the end of Section 2.2, geometric mixing and
mixing are equivalent for time-homogeneous diffusion
processes. Hence, the mixing coefficients decay usu-
ally sufficiently fast for theoretical investigation.

The localizing and whitening can be understood
graphically in Figure 6. Figure 6(a) shows that there is
very strong serial correlation of the yields of the two-
year Treasury notes. However, this correlation is signif-
icantly weakened for the local data in the neighborhood
8%± 0.2%. In fact, as detailed in Figure 6(b), the in-

dices of the data that fall in the local window are quite
far apart. This in turn implies the weak dependence
for the data in the local window, that is, “whitening
by windowing.” See Section 5.4 of [50] and Hart [72]
for further details. The effect of dependence structure
on kernel density estimation was thoroughly studied by
Claeskens and Hall [35].

The diffusion function can also be consistently esti-
mated when� is fixed. In pricing the derivatives of in-
terest rates, Aït-Sahalia [2] assumesµ(x) = k(α − x).
Using the kernel density estimator̂f and estimatedκ
and α from a least-squares method, he applied (11)
to estimateσ(·) : σ̂ 2(x) = 2

∫ x
0 µ̂(u)f̂ (u) du/f̂ (x). He

further established the asymptotic normality of such an
estimator. Gao and King [56] propose tests of diffusion
models based on the discrepancy between the paramet-

FIG. 6. (a) Lag 1 scatterplot of the two-year Treasury note data. (b) Lag 1 scatterplot of those data falling in the neighborhood
8%± 0.2%—the points are represented by the times of the observed data. The numbers in the scatterplot show the indices of the data
falling in the neighborhood. (c) Kernel density estimate of the invariant density.
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ric and nonparametric estimates of the invariant den-
sity.

The Aït-Sahalia method [2] easily illustrates that the
volatility function can be consistently estimated for
fixed �. However, we do not expect that it is effi-
cient. Indeed, we use only the marginal information of
the data. As shown in (21), almost all information is
contained in the transition densityp�(·|·). The tran-
sition density can be estimated as in Section 4.2 be-
low whether� is small or large. Since the transition
density and drift and volatility are in one-to-one cor-
respondence for the diffusion process (5), the drift and
diffusion functions can be consistently estimated via
inverting the relationship between the transition den-
sity and the drift and diffusion functions.

There is no simple formula for expressing the drift
and diffusion in terms of the transition density. The in-
version is frequently carried out via a spectral analysis
of the operatorH� = exp(�L), where the infinitesimal
operatorL is defined as

Lg(x) = σ 2(x)

2
g′′(x) + µ(x)g′(x).

It has the property

Lg(x) = lim
�→0

�−1[E{g(Xt+�)|Xt = x} − g(x)]
by Itô’s formula (10). The operatorH� is the transition
operator in that [see also (12)]

H�g(x) = E{g(X�)|X0 = x}.
The works of Hansen and Scheinkman [66], Hansen,
Scheinkman and Touzi [67] and Kessler and Sørensen
[86] consist of the following idea. The first step is to es-
timate the transition operatorH� from the data. From
the transition operator, one can identify the infinitesi-
mal operatorL and hence the functionsµ(·) andσ(·).
More precisely, letλ1 be the largest negative eigen-
value of the operatorL with eigenfunctionξ1(x). Then
Lξ1 = λ1ξ1, or equivalently,σ 2ξ ′′

1 + 2µξ ′
1 = 2λ1ξ1.

This gives one equation ofµ andσ . Another equation
can be obtained via (11):(σ 2f )′ − 2µf = 0. Solving
these two equations we obtain

σ 2(x) = 2λ1

∫ x

0
ξ1(y)f (y) dy/[f (x)ξ1(x)]

and another explicit expression forµ(x). Using semi-
group theory ([44], Theorem IV.3.7),ξ1 is also an
eigenfunction ofH� with eigenvalue exp(�λ1). Hence,
the proposal is to estimate the invariant densityf and
the transition densityp�(y|x), which implies the val-
ues ofλ1 andξ1. Gobet [58] derives the optimal rate

of convergence for such a scheme, using a wavelet ba-
sis. In particular, [58] shows that for fixed�, the op-
timal rates of convergence forµ andσ are of orders
O(n−s/(2s+5)) andO(n−s/(2s+3)), respectively, where
s is the degree of smoothness ofµ andσ .

3.5 Time-Dependent Model

The time-dependent model (8) was introduced to ac-
commodate the possibility of economic changes over
time. The coefficient functions in (8) are assumed to
be slowly time-varying and smooth. Nonparametric
techniques can be applied to estimate these coefficient
functions. The basic idea is to localizing in time, re-
sulting in a time-domain smoothing.

We first estimate the coefficient functionsα0(t)

andα1(t). For each given timet0, approximate the co-
efficient functions locally by constants,α(t) ≈ a and
β(t) = b for t in a neighborhood oft0. Using the Euler
approximation (19), we run a local regression: Mini-
mize

n−1∑
i=0

(Yi� − a − bXi�)2Kh(i� − t0)(27)

with respect toa and b. This results in an estimate
α̂0(t0) = â and α̂1(t0) = b̂, where â and b̂ are the
minimizers of the local regression (27). Fan et al. [48]
suggest using a one-sided kernel such asK(u) = (1−
u2)I (−1 < u < 0) so that only the historical data in
the time interval(t0 − h, t0) are used in the above local
regression. This facilitates forecasting and bandwidth
selection. Our experience shows that there are no sig-
nificant differences between nonparametric fitting with
one-sided and two-sided kernels. We opt for local con-
stant approximations instead of local linear approxi-
mations in (27), since the local linear fit can create
artificial albeit insignificant linear trends when the un-
derlying functionsα0(t) and α1(t) are indeed time-
independent. To appreciate this, for constant functions
α1 andα2 a large bandwidth will be chosen to reduce
the variance in the estimation. This is in essence fitting
a global linear regression by (27). If the local linear ap-
proximations are used, since no variable selection pro-
cedures have been incorporated in the local fitting (27),
the slopes of the local linear approximations will not be
estimated as zero and hence artificial linear trends will
be created for the estimated coefficients.

The coefficient functions in the volatility can be es-
timated by the local approximated likelihood method.
Let

Êt = �−1/2{Xt+� − Xt − (
α̂0(t) + α̂1(t)Xt

)
�

}
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be the normalized residuals. Then

Êt ≈ β0(t)X
β1(t)
t εt .(28)

The conditional log-likelihood of̂Et givenXt can eas-
ily be obtained by the approximation (28). Using lo-
cal constant approximations and incorporating the ker-
nel weight, we obtain the local approximated likeli-
hood at each time point and estimates of the functions
β0(·) and β1(·) at that time point. This type of local
approximated-likelihood method is related to the gen-
eralized method of moments of Hansen [65] and the
ideas of Florens-Zmirou [55] and Genon-Catalot and
Jacod [57].

Since the coefficient functions in both return and
volatility functions are estimated using only historical
data, their bandwidths can be selected based on a form
of the average prediction error. See Fan et al. [48] for
details. The local least-squares regression can also be
applied to estimate the coefficient functionsβ0(t) and
β1(t) via the transformed model [see (28)]

log(Ê2
t ) ≈ 2 logβ0(t) + β1(t) log(X2

t ) + log(ε2
t ),

but we do not continue in this direction since the lo-
cal least-squares estimate is known to be inefficient in
the likelihood context and the exponentiation of an es-
timated coefficient function of logβ0(t) is unstable.

The question arises naturally if the coefficients in
the model (8) are really time-varying. This amounts,
for example, to testingH0 :β0(t) = β0 andβ1(t) = β1.

Based on the GLR technique, Fan et al. [48] proposed
a formal test for this kind of problem.

The coefficient functions in the semiparametric
model (9) can also be estimated by using the profile
approximated-likelihood method. For each givenβ1,
one can easily estimateβ0(·) via the approxima-
tion (28), resulting in an estimatêβ0(·;β1). Regarding
the nonparametric functionβ0(·) as being parameter-
ized byβ̂0(·;β1), model (28) withβ1(t) ≡ β1 becomes
a “synthesized” parametric model with unknownβ1.
The parameterβ1 can be estimated by the maximum
(approximated) likelihood method. Note thatβ1 is es-
timated by using all the data points, whilêβ0(t) =
β̂0(t; β̂1) is obtained by using only the local data
points. See [48] for details.

For other nonparametric methods of estimating vola-
tility in time inhomogeneous models, see Härdle,
Herwartz and Spokoiny [68] and Mercurio and
Spokoiny [89]. Their methods are based on model (8)
with α1(t) = β1(t) = 0.

3.6 State-Domain Versus Time-Domain Smoothing

So far, we have introduced both state- and time-
domain smoothing. The former relies on the structural
invariability implied by the stationarity assumption and
depends predominantly on the (remote) historical data.
The latter uses the continuity of underlying parame-
ters and concentrates basically on the recent data. This
is illustrated in Figure 7 using the yields of the three-
month Treasury bills from January 8, 1954 to July 16,

FIG. 7. Illustration of time- and state-domain smoothing using the yields of three-month Treasury bills. The state-domain smoothing is
localized in the horizontal bars, while the time-domain smoothing is concentrated in the vertical bars.
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2004 sampled at weekly frequency. On December 28,
1990, the interest rate was about 6.48%. To estimate
the drift and diffusion aroundx = 6.48, the state-
domain smoothing focuses on the dynamics where in-
terest rates are around 6.48%, the horizontal bar with
interest rates falling in 6.48%± 0.25%. The estimated
volatility is basically the sample standard deviation of
the differences{Xi� − X(i−1)�} within this horizon-
tal bar. On the other hand, the time-domain smoothing
focuses predominantly on the recent history, say one
year, as illustrated in the figure. The time-domain esti-
mate of volatility is basically a sample standard devia-
tion within the vertical bar.

For a given time series, it is hard to say which esti-
mate is better. This depends on the underlying stochas-
tic processes and also on the time when the forecast is
made. If the underlying process is continuous and sta-
tionary, such as model (5), both methods are applica-
ble. For example, standing at December 28, 1990, one
can forecast the volatility by using the sample standard
deviation in either the horizontal bar or the vertical bar.
However, the estimated precision depends on the lo-
cal data. Since the sample variance is basically linear
in the squared differences{Z2

i�}, the standard errors of
both estimates can be assessed and used to guide the
forecasting.

For stationary diffusion processes, it is possible to
integrate both the time-domain and state-domain esti-
mates. Note that the historical data (with interest rates
in 6.48%± 0.25%) are far apart in time from the data
used in the time-domain smoothing (vertical bar), ex-
cept the last segment, which can be ignored in the state-
domain fitting. The next-to-last segment with interest
rates in 6.48%± 0.25% is May 11 to July 20, 1988,
123 weeks prior to the last segment. Hence, these two
estimates are nearly independent. The integrated esti-
mate is a linear combination of these two nearly in-
dependent estimates. The weights can easily be cho-
sen to minimize the variance of the integrated estima-
tor, by using the assessed standard errors of the state-
and time-domain estimators. The optimal weights are
proportional to the variances of the two estimators,
which depend on timet . This forms a dynamically inte-
grated predictor for volatility estimation, as the optimal
weights change over time.

3.7 Continuously Observed Data

At the theoretical level, one may also examine the
problem of estimating the drift and diffusion functions
assuming the whole process is observable up to timeT .

Let us assume again that the observed process{Xt } fol-
lows the SDE (5). In this caseσ 2(Xt) is the derivative
of the quadratic variation process ofXt and hence is
known up to timeT . By (11), estimating the drift func-
tion µ(x) is equivalent to estimating the invariant den-
sity f . In fact,

µ(x) = [σ 2(x)f (x)]′/[2f (x)].(29)

The invariant densityf can easily be estimated by
kernel density estimation. When� → 0, the summa-
tion in (26) converges to

f̂ (x) = T −1
∫ T

0
Kh(Xt − x)dt.(30)

This forms a kernel density estimate of the invari-
ant density based on the continuously observed data.
Thus, an estimator forµ(x) can be obtained by
substituting f̂ (x) into (29). Such an approach has
been employed by Kutoyants [88] and Dalalyan and
Kutoyants [40, 41]. They established the sharp asymp-
totic minimax risk for estimating the invariant density
f and its derivative as well as the drift functionµ. In
particular, the functionsf , f ′ andµ can be estimated
with ratesT −1/2, T −2s/(2s+1) andT −2s/(2s+1), respec-
tively, wheres is the degree of smoothness ofµ. These
are the optimal rates of convergence.

An alternative approach is to estimate the drift func-
tion directly from (23). By letting� → 0, one can
easily obtain a local linear regression estimator for con-
tinuously observed data, which admits a similar form
to (23) and (30). This is the approach that Spokoiny
[103] used. He showed that this estimator attains the
optimal rate of convergence and established further a
data-driven bandwidth such that the local linear esti-
mator attains adaptive minimax rates.

4. ESTIMATION OF STATE PRICE DENSITIES AND
TRANSITION DENSITIES

The state price density (SPD) is the probability den-
sity of the value of an asset under the risk-neutral
world (14) (see [38]) or equivalent martingale mea-
sure [71]. It is directly related to the pricing of financial
derivatives. It is the transition density ofXT givenX0
under the equivalent martingaleQ. The SPD does not
depend on the payoff function and hence it can be used
to evaluate other illiquid derivatives, once it is esti-
mated from more liquid derivatives. On the other hand,
the transition density characterizes the probability law
of a Markovian process and hence is useful for validat-
ing Markovian properties and parametric models.
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4.1 Estimation of the State Price Density

For some specific models, the state price density can
be formed explicitly. For example, for the GBM (1)
with a constant risk-free rater , according to (17), the
SPD is log-normal with mean logx0 + (r − σ 2)/(2T )

and varianceσ 2.
Assume that the SPDf ∗ exists. Then the European

call option can be expressed as

C = exp
(
−

∫ T

0
rs ds

)∫ ∞
K

(x − K)f ∗(x) dx.

See (14) (we have changed the notation fromP0 to C

to emphasize the price of the European call option).
Hence,

f ∗(K) = exp
(∫ T

0
rs ds

)
∂2C

∂K2 .(31)

This was observed by Breeden and Litzenberger [25].
Thus, the state price density can be estimated from the
European call options with different strike prices. With
the estimated state price density, one can price new or
less liquid securities such as over-the-counter deriva-
tives or nontraded options using formula (14).

In general, the price of a European call option de-
pends on the current stock priceS, the strike priceK ,
the time to maturityT , the risk-free interest rater and
dividend yield rateδ. It can be written asC(S,K,T ,

r, δ). The exact form ofC, in general, is hard to de-
termine unless we assume the Black–Scholes model.
Based on historical data{(Ci, Si,Ki, Ti, ri, δi), i =
1, . . . , n}, where Ci is the ith traded-option price
with associated characteristics(Si,Ki, Ti, ri, δi), Aït-
Sahalia and Lo [7] fit the nonparametric regression

Ci = C(Si,Ki, Ti, ri, δi) + εi

to obtain an estimate of the functionC and hence the
SPDf ∗.

Due to the curse of dimensionality, the five-dimen-
sional nonparametric function cannot be estimated well
with practical range of sample sizes. Aït-Sahalia and
Lo [7] realized that and proposed a few dimensionality
reduction methods. First, by assuming that the option
price depends only on the futures priceF = S exp((r −
δ)T ), namely,

C(S,K,T , r, δ) = C(F,K,T , r)

(the Black–Scholes formula satisfies such an assump-
tion), they reduced the dimensionality from five to four.
By assuming further that the option-pricing function is
homogeneous of degree one inF andK , namely,

C(S,K,T , r, δ) = KC(F/K,T , r),

they reduced the dimensionality to three. Aït-Sahalia
and Lo [7] imposed a semiparametric form on the pric-
ing formula,

C(S,K,T , r, δ) = CBS
(
F,K,T , r, σ (F,K,T )

)
,

whereCBS(F,K,T , r, σ ) is the Black–Scholes pricing
formula given in (18) andσ(F,K,T ) is the implied
volatility, computed by inverting the Black–Scholes
formula. Thus, the problem becomes one of nonpara-
metrically estimating the implied volatility function
σ(F,K,T ). This is estimated by using a nonparamet-
ric regression technique from historical data, namely,

σi = σ(Fi,Ki, Ti) + εi,

whereσi is the implied volatility ofCi , by inverting
the Black–Scholes formula. By assuming further that
σ(F,K,T ) = σ(F/K,T ), the dimensionality is re-
duced to two. This is one of the options in [4].

The state price densityf ∗ is nonnegative and hence
the functionC should be convex in the strike priceK .
Aït-Sahalia and Duarte [6] propose to estimate the op-
tion price under the convexity constraint using a local
linear estimator. See also [70] for a related approach.

4.2 Estimation of Transition Densities

The transition density of a Markov process charac-
terizes the law of the process, except the initial distrib-
ution. It provides useful tools for checking whether or
not such a process follows a certain SDE and for statis-
tical estimation and inference. It is the state price den-
sity of the price process under the risk neutral world. If
such a process were observable, the state price density
would be estimated using the methods to be introduced.

Assume that we have a sample{Xi�, i = 0, . . . , n}
from model (5). The “double-kernel” method of Fan,
Yao and Tong [51] is to observe that

E
{
Wh2(Xi� − y)|X(i−1)� = x

} ≈ p�(y|x)
(32)

ash2 → 0,

for a kernel functionW . Thus, the transition density
p�(y|x) can be regarded approximately as the non-
parametric regression function of the response variable
Wh2(Xi� − y) onX(i−1)�. An application of the local
linear estimator (23) yields

p̂�(y|x) =
n∑

i=1

Kn

(
X(i−1)� − x, x

)
(33)

· Wh2(Xi� − y),
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where the equivalent kernelKn(u, x) was defined
in (24). Fan, Yao and Tong [51] establish the asymp-
totic normality of such an estimator under stationar-
ity and ρ-mixing conditions [necessarily decaying at
geometric rate for SDE (5)], which gives explicitly
the asymptotic bias and variance of the estimator. See
also Section 6.5 of [50]. The cross-validation idea of
Rudemo [98] and Bowman [24] can be extended to
select bandwidths for estimating conditional densities.
See [52, 63].

The transition distribution can be estimated by in-
tegrating the estimator (33) overy. By lettingh2 → 0,
the estimator is the regression of the indicatorI (Xi� <

y) on X(i−1)�. Alternative estimators can be obtained
by an application of the local logistic regression and
adjusted Nadaraya–Watson method of Hall et al. [64].

Early references on the estimation of the transition
distributions and densities include [96, 97] and [95].

4.3 Inferences Based on Transition Densities

With the estimated transition density, one can now
verify whether parametric models such as (1)–(3), (6)
are consistent with the observed data. Letp�,θ (y|x)

be the transition density under a parametric diffusion
model. For example, for the CIR model (2), the pa-
rameterθ = (κ,α,σ ). As in (21), ignoring the initial
valueX0, the parameterθ can be estimated by maxi-
mizing

�(p�,θ ) =
n∑

i=1

logp�,θ

(
Xi�|X(i−1)�

)
.

Let θ̂ be the maximum likelihood estimator. By the
spirit of the GLR of Fan et al. [54], the GLR test for
the null hypothesisH0 :p�(y|x) = p�,θ (y|x) is

GLR= �(p̂�) − �(p
�,θ̂

),

where p̂ is a nonparametric estimate of the transi-
tion density. Since the transition density cannot be es-
timated well over the region where data are sparse
(usually at boundaries of the process), we need to
truncate the nonparametric (and simultaneously para-
metric) evaluation of the likelihood at appropriate in-
tervals.

In addition to employing the GLR test, one can also
compare directly the difference between the paramet-
ric and nonparametric fits, resulting in test statistics
such as‖p̂� − p

�,θ̂
‖2 and‖P̂� − P

�,θ̂
‖2 for an ap-

propriate norm‖ · ‖, whereP̂� andP
�,θ̂

are the esti-
mates of the cumulative transition distributions under
respectively the parametric and nonparametric models.

The transition density-based methods depend on two
bandwidths and are harder to implement. Indeed, their
null distributions are harder to determine than those
based on the transition distribution methods. In com-
parison with the invariant density-based approach of
Arapis and Gao [11], it is consistent against a much
larger family of alternatives.

One can also use the transition density to test
whether an observed series is Markovian (from per-
sonal communication with Yacine Aït-Sahalia). For ex-
ample, if a process{Xi�} is Markovian, then

p2�(y|x) =
∫ +∞
−∞

p�(y|z)p�(z|x)dz.

Thus, one can use the distance betweenp̂2�(y|x) and∫ +∞
−∞ p̂�(y|z)p̂�(z|x)dz as a test statistic.
The transition density can also be used for parameter

estimation. One possible approach is to find the para-
meter which minimizes the distance‖P̂� − P�,θ‖. In
this case, the bandwidth should be chosen to optimize
the performance for estimatingθ . The approach is ap-
plicable whether or not� → 0.

5. CONCLUDING REMARKS

Enormous efforts in financial econometrics have
been made in modeling the dynamics of stock prices
and bond yields. There are directly related to pricing
derivative securities, proprietary trading and portfo-
lio management. Various parametric models have been
proposed to facilitate mathematical derivations. They
have risks that misspecifications of models lead to er-
roneous pricing and hedging strategies. Nonparamet-
ric models provide a powerful and flexible treatment.
They aim at reducing modeling biases by increasing
somewhat the variances of resulting estimators. They
provide an elegant method for validating or suggesting
a family of parametric models.

The versatility of nonparametric techniques in fi-
nancial econometrics has been demonstrated in this
paper. They are applicable to various aspects of dif-
fusion models: drift, diffusion, transition densities and
even state price densities. They allow us to examine
whether the stochastic dynamics for stocks and bonds
are time varying and whether famous parametric mod-
els are consistent with empirical financial data. They
permit us to price illiquid or nontraded derivatives from
liquid derivatives.

The applications of nonparametric techniques in fi-
nancial econometrics are far wider than what has been
presented. There are several areas where nonparamet-
ric methods have played a pivotal role. One example
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is to test various versions of capital asset pricing mod-
els (CAPM) and their related stochastic discount mod-
els [36]. See, for example, the research manuscript
by Chen and Ludvigson [34] in this direction. An-
other important class of models are stochastic volatil-
ity models [19, 101], where nonparametric methods
can be also applied. The nonparametric techniques
have been prominently featured in the RiskMetrics of
J. P. Morgan. It can be employed to forecast the risks
of portfolios. See, for example, [8, 32, 33, 47, 82] for
related nonparametric techniques on risk management.
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