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Nonparametric Approaches to the Analysis
of Crossover Studies

Mary E. Putt and Vernon M. Chinchilli

Abstract. We illustrate nonparametric, and particularly rank-based analy-
ses of crossover studies, designs in which each subject receives more than
one treatment over time. Principles involved in using the Wilcoxon rank sum
test in the simple two-period, two-treatment crossover are described through
theory and example. We then extend the ideas to two-treatment designs with
more than two periods and to three-treatment, three-period designs. When
more than one nonparametric approach is available, we consider the issue of
statistical power in choosing an appropriate test.
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1. INTRODUCTION The issue of carryover, the lingering effect of a treat-
i q di h ment from one period into the subsequent period(s),
Crossover trials are repeated measures studies WherGgan qominates consideration of crossover trials (e.g.,

subjects typically receive more than one treatment genpn, 2002; Freeman, 1989). In practice, washout pe-
over time (Vonesh and Chinchilli, 1997; Senn, 2002). riods are sometimes used to reduce or eliminate po-
For example, in the & 2 or AB : BA design, sub-  tential carryover effects. By lengthening the amount of
jects receive either treatment followed by B or B time that a subject is on study, a washout potentially
followed by A. Crossover trials are efficient since causes subject attrition and missing data (Correa and
estimated treatment effects are based, either wholly orBellavance, 2001). While some investigators have de-
in large part, on within-subject contrasts. This elim- veloped tests for the presence of carryover, as well as
inates, or reduces, the contribution of the between-other nuisance parameters, this article focuses on non-
subject component of the variance to the estimatedparametric tests for the treatment effect, and largely
treatment effect. Crossover trials are of interest whenignores carryover effects. This emphasis is based on
either financial resources or subject availability limits Our experience with clinical investigations where the
study size (e.g., Lagakos, 2003). With small Samp|es,analyt|c focus is rarely_ on nuisance parameters such
nonparametric approaches are appealing in principle®S carryover. We consider carryover in the study de-
because of the difficulties in verifying normality and SI9N SO as to eliminate or minimize its impact on the

) - - .. study conclusions (Chinchilli and Esinhart, 1996; Putt
because large-sample properties of parametric statlstlc§1 nd Ravina, 2002).

may not hold. Nonparametric approaches are also ap- . L

pro)[/)riate in larger Erossover stupd?es if the data appegr Rank-based tests use linear comt_)manons of ranl_<ed
outcomes, and are suitable for continuous data; if ties

honnormal. occur, the variance is adjusted (Koch, 1972; Hollander

- and Wolfe, 1999). Under the null hypothesis, the dis-
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Here we illustrate basic theory and practical appli- were ordinal, we anticipated that averaging over a week
cation of several rank-based and permutation methodswould yield data on a continuous scale.
in crossover studies. This review updates Tudor and
Koch (1994) who discuss nonparametric approaches
to or_dlnal and censored data, toplcs_ not covered here'sequenceéi —'1.2) on thekth treatmentk = A. B) in
Section 2 presents a nonparametric approach to the[helth period(l = 1, 2). Then
simplest crossover, the 2 2 design and extends the o
principles to two-treatment designs with more than (1) Yijki = ik + 15 +xkl/_l + €ijkis
two periods. Section 3 describes three-period de- .
signs. The examples we will present were analyzedwhere“" is the mean effect for thath tfeatme”ti”
using R v. 1.70 \yww.r-project.org). Datasets, pro- is the mean added effect of thien perIOd’)\'kl/—l IS
grams and comments on the software are available athe mean added carryover of titéh treatment ad-

Satistical model and approach. LetY;;; be the out-
come for thejth subject(j = 1,...,n;) from theith

http: //www.cceb.upenn.edu/main/people/putt.htrm ministered in the(/ — 1)st period into the'th period
(Aké = 0) ande;ji is a random error term. Subjects
2. THE 2 x 2 DESIGN are independent WitEZ(S[jkl) = 0,' Var(e;jx) = 0'2 and
The 2x 2 crossover design contains two treatment COV(Eijki: €ijirr) = po®, wherep is the correlation co-

sequences and two periods (Table 1). Subjects randoméTficient.

ized to sequence 1A(B) receive treatmenti in the For the 2x 2 study, Table 3 shows th(_e expecta_tion
first period followed byB in the second period:; in se- £() Of the ¥ for éach sequence/period combina-

quence 2 BA), subjects receive treatment B in the first 10N and the contrast for each subjeidf,, between out-
period followed byA in the second period. An optional comes for the first and second periods, that is,
washout period may be used. Y} = Yiji — Yijwo-

Example. ‘We consider a clinical trial that compares £, .1y* has variance @2(1 — p). For treatment dif-
nasal steroids (treatmeni and placebo (treatme) Y (AB) o
on a measure of daytime sleepiness in patients who sufférenceup = — up the null hypothesis is,
fer from allergic rhinitis. The data in Table 2 are from . (AB) 1 _
the 2x 2 portion of a study design which combines a @ Hotpp™ = 3(ha =45 =0.
2 x 2 crossover and a parallel repeated measures studyJnderHo, E(Y}}) is identical for each subject. If carry-
Patients (five per sequence) were randomized to ei-over from the two treatments is identical, thHp tests
ther treatmentd or B and received self-administered whether the treatment means are identical. Moreover,
treatments twice daily for 8 weeks (Craig et al., 1998; if equality of treatments implies equality of carryover
Putt and Chinchilli, 2000). At week 8 each patient (i_e_,M(DAB) = 0impliesi, = Ap), then the test is valid
crossed over to the other treatment (without washout). under the null hypothesis. Our alternative is
Each patient maintained a daily diary rating several as- AB) 1
pects of daytime fatigue, including improved daytime Hitpp ™ =34 —2p) #0.
sleepiness (IDS) on a scale of 0 (worst) to 4 (best). ynder Hy, carryover effects in the same direction as
The average IDS over the final week in each 8-week the treatment effect (e.q., if4 > wg, thenis > Ap)

treatment period was used in the analysis. The datareduce the test's power (Ohrvik, 1998; Putt and Ravina,
for one patient with missing IDS for the second period 2002).
were omitted. In this study, we expect limited or null  For 3 nonparametric analysis the null hypothesis

carryover because of the lengthy period between meaay pe stated in terms of equality of cumulative dis-
surements periods. Note that although the daily recordsyipytion functions,Fy- (-)’s, of the Y, that is
ij ’ ’

ij?
TABLE 1 Ho: FYfi(') = FYZ*], “),

Treatment assignmentsin the 2 x 2 crossover . ) . .

and this leads to a more general interpretation of the

Sequence Period location parameters from (1) and (2). For example, we
may consider differences in median rather than mean

1 Washout 2 reat + effect
2(BA) B Optional A To construct the test, we poat’'s from both se-

quences, assign a rank to each observatian(Y;’),
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TABLE 2
Mean weekly |DS score by period and difference between periods for individual patients on the
AB and BA sequences

AB sequence B A sequence

Patient Period 1 Period 2 Difference Period 1 Period 2 Difference

1 2.00 129 071 400 400 000
2 183 0 183 0 086 —0.86
3 0 0 0 0 0 0

4 0.89 NA NA 114 214 —-1.00
5 3.00 300 0 0 229 —2.29

NoTE: Data from Putt and Chinchilli (2000). Reprinted with permission ofxwenal of the Amer-
ican Statistical Association.

and sum the ranks for the (arbitrary) first sequence, ence of each pair oY*'s from the two sequences is
that is,R1 = Z Dlj(Y*) (Koch, 1972; Tudor and  an unbiased estimate o(;ZA —up)— (g —Ag). The
Koch, 1994). In the absence of tied observations, theHL estimate is one half the median of all pairwise dif-

Wilcoxon rank sum W*) statistic is ferences of thé’;; 's, that is,
W — V12(Ry —ni(n1+n2+1)/2) ‘ (3) % - [Mediary, <, (Y1), — Y3,,)];

vmina(nitng+1) where j; and j» index the subjects in sequences
If observations are tied, the average of the poten-1 and 2, respectively. Similarly, an exact confidence
tial ranks of the tied observations is used in place interval can be obtained from the quantiles of the pair-
of the ranks, and the variance is adjusted (Hollanderwise differences (Hettmansperger, 1991).
and Wolfe, 1999). Under the null hypothesis in (2),

W* is asymptotically distributed0, 1), that is, nor- Results for the example. Four patients had no dif-

mal with mean 0 and variance 1. More formally, if ference in IDS between perieds, while the remaining
aSn1+n2—> 00, 1/ (1 + nz) — 8 ('0< 5<1). then’ five had better IDS on steroids compared to placebo
(Table 2). Accounting for ties, the observ@d* yields
wr 3 N(O 1) (Hettmansperger, 1991), where the no- 3 two-sided asymptotip value of 0.0407 and an ex-
tation 2 indicates convergence in distribution. With act p value of 0.0950. If the data contained no ties,
small sample sizes, exapt values are computed us- the smallest possiblg value for a two-sided test of
ing permutation. Under (2), sequence assignments arghese data would be 0.0159 (2 out of 126 possible
exchangeable among subjects. To compute the perpermutations). However, the ranks of the four patients
mutation distribution, consider aliy 4 n)!/n1! no! who show no difference between periods are set at the
assignments of subjects to the two sequences. Wemidrank of the four observations (5.5 here), yielding
recomputeR; for each assignment; for a two-sided 16 unique values of the test statistic. The exagtlue
test, the exacp value is twice the proportion of per- was the smallest value pOSSible for the observed data.
muted R, that are as large as or larger than the ob- Here, the power of the permutation test was restricted
servedR; (Hollander and Wolfe, 1999; Good, 2000). by the limited number of unique observations. Lastly
Finally, Hodges—Lehmann (HL) provides a robust the HL estimate indicated that steroids improved day-

estimate of the treatment effect. Note that the differ- time sleepiness by 0.6425 units with a 95% exact con-
fidence interval of (0.0, 1.794).

. TABLE 3 . Comparison with standard approach. For the 2x 2
Expectations for 2 x 2 crossover by period crossover, the power d¥* for data that are not nor-
mal may exceed that of the standard approach, the

Sequence Period 1 Period 2 Contrast (Yi*.) .

/ two-sampler test (7). Asymptotic theory suggests
WA:B pa+m up+ma+ia nSB +ry—m)—a the efficiency of W* relative to7T* in the vicinity of
(2)B:A up+m pa+m2+ip _,ﬁD Bty —m0) —ap the null hypothesis is 96% when the data are normally

distributed (Hettmansperger, 1991)%is robust in the
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TABLE 4
Componentsofthe AAB: BBA and AABB : BBAA designs needed for a nonparametric analysis

Sequence Contrast (Y*,) Expectation
ijk
AAB:BBA
AB

(1) AAB 352 i - Yijka MB )+%(ﬂ1+ﬂ2)—ﬂ3—lA

(2) BBA Same as sequence 1 —ul(DAB) + %(nl + 7o) — 3 — A
AABB:BBAA

AB
(1) AABB 3R Yiju — s Yija) “(DA; +3(X2ym — Ylam) — 5ha
(2) BBAA Same as sequence 1 S 100 AT TR S 7) B 79

sense that its level is conservative when the data are(l = 1, 2, 3). Within each Williams square, sequences
nonnormal (e.g., Everitt, 1979). Howevéy,* may be are chosen such that every treatment occurs in every
more efficient than7* under H,. For example, in a  period and precedes every other treatment twice. Our
mixture of normals with identical locations but differ- analysis initially assumes “complete” Williams squares,
ent variances (i.e., a contaminated normal), efficiency that is, equal numbers of subjects per sequénce- n

was 20% higher foW* even when the contamination fori=1,...,6).

was only 5%. Note, however, that if a permutation test  Aligned observations’, are based on subtracting

is used, the level and power 8f* andT* are identical an estimate of the period effect from eaGhy,, that is,

(Tudor and Koch, 1994). Y;;k = Yiju — an

Two-treatment multiperiod designs. Two-treatment
designs with more than two periods, for example, - > 1
the three-periodd AB : BBA or four-periodAABB : lth6 pe”‘jd' F.(?r exampIeY..:l may be the mears, -
BBAA, generally have higher efficiency thanthe 2~ 2i=12-j=1Yijki., the median for the'th Fier'Od or
design, although the potential for missing data in- the HL estimate, thatis, Mediag, ;<= 5(Yiju +
creases with the length of time each subject is on Yi'j’x1)- For data with a symmetric distribution, the es-
study (Carriere, 1994). Nonparametric analyses use thdimates have the same expectation, that is,
basic approach in Section 2 with components in Ta- T+ M., forl =1,
ble 4. For Table 4, we assumed null carryover from a T+ i+, forl> 1,
treatment into itself (e.g., carryover from the first to
the second period receiving). The null hypotheses
for two-period and three-period designs are identica
[equation 2]. For the four-period design, the null hy-
potheses iflo: 1y — g — 5(Aa —Ag) =0.

where Y...; is a function of the observations in the

(4) EY.., = {

where i, = £33 e and i, = $(ha + Ap + Ac).
| Note that carryover is not altered by the period in which
it occurs, or the treatment that occurs in the period re-
ceiving the carryover; for example, carryover frodn
into B is the same as carryover fror into C. Next
generate the within-subject contrast; i, k # k',
for the three possible treatment paits’ € KX for
In this section we illustrate an “aligned” rank-based X ={AB, AC, BC}, that s,
test for a three-treatment, three-period design. The prin- Diiw = Y% — V¥,
ciples extend to designs with more treatments. With LRKE Tajke T ke
more than two treatments, designs based on WilliamsEXpectations of these contrasts appear in Table 5 for
squares are recommended when period and carryovethe case of equal num_ber (_)fobservations per sequence.
effects are possible (Bellavance and Tardiff, 1995; Here we see that while allgr_lment removes period ef-
Ohrvik, 1998). Table 5 illustrates this type of de- f€cts, carryover effects remain.
sign for the sequence4BC : CAB : BCA : ACB : Now consider the null hypothesis
BAC : CBA. The model from equation (1) general- (5)  Ho:pa — 34 =g — $ip = pc — 3hc
izes with Y;;i; the outcome for thg'th subject(j =
1,...,n;) from theith sequencdi = 1,2,3,4,5,6)
on thekth treatment(k = A, B, C) in the [th period Hitpie — 3he # e — 3ap0 for somek #&'.

3. THREE-TREATMENT DESIGN

versus the alternative
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TABLE 5
Expectations of within-subject contrasts for complete Wiliams squares. Mean treatment

differences are denoted ug‘k/) where k and &’ index pairs of treatments

Sequence Avs. B Avs. C Bvs. C
ABC uSB 4G =) uS + (G —np) w4+ op —2p)
BCA (AB) — (=) (AC) +Gc—2p)  up O +G—1p)
CAB (AB) + (e = 1) E,AC) ~(=20) R )
CBA (AB’ +Op—ic) w3 —(G-ip) P A Vo)
ACB (AB) + G- 2o w8+ G—np) wEO 4 e —rp)
BAC (AB) — (= *p) “‘C) +Op—ra) O+ G-

Under the null hypothesis in (5) the distribution of con-

assigning subjects to sequences, recompugngnd

trasts for each of the three sets of treatment pairs, andcomparing the observe@ to its permutation distribu-

hence the distribution of thé;;;» considered as a

tion. If Q suggests a treatment effect, then the test of

whole, is centered around zero. The null hypothesis of interest becomes

equality of treatment and carryover effects,

Ho:pa=up=pc and ig=2»ip=Axc,

is a special case of (5), and one that may be more intu-

itive to consider.
To construct the test statistic we pool thé =

3Y°%_,n; =18 contrasts and assign a raRkD;;; 1)

(7) Ho: ™) = 10w — ) =0
and a test for the individual treatment contrasts uses
R, — R, N+1)@2N +1
(8) Qkk/:(kk kk)/\/( +)( +)
Nk

which has a limiting Normal(Ql) distribution under

to each of the pooled observations in the sample. Thethe null hypothesis in (7).

sample is split into two groups that correspond to
D; i positive or negative and, for each of the positive

While Q is most intuitive when observations are
aligned to remove period effects, the test remains valid

and negative groups, the sum of the ranks is computedf the observations are not aligned, as long as the

within each treatment pair, that is,

6 n
R =" I(Diju > O)R(Dijrx)
i=1j=1
and
6 n
R =Y > I(Dijur <O RDjjuxr),
i=1j=1

where I(-) is the indicator function. Under the null
hypothesis in (5), th&(D; 1) are symmetrically dis-

tributed around zero. The test statistic, referred to sub-

sequently as Ohrvik'®, is

12 (R, — Ry)?
6 o= >
BN+D@N+D) 2=, N
where N = Y% 1 n; = 6n and as beforek ={AB,

AC, BC}. Under Hy, E(Q) = 2 and, asymptotically,

if im y_ 00 Ny /N exists and is positivep has a chi-
squared distribution with 2 degrees of freedom. Alter-
natively, the exacp value is determined by randomly

Williams squares are complete and carryover is equal
among all treatments. Here, period effects balance; for
example, within thed versusB contrast,(A. — A,) is
balanced by- (i, + A.) aslong as.y = Ac.

Example. Milk production was compared in 18
cows randomized to three diets\,( roughage; B,
limited grain; C, full grain) (Bellavance and Tardiff,
1995). During the experiment, milk production de-
creased by roughly one-third from around 1650 units
(pounds per 6 weeks) in period 1 to just under 1200
units in period 3, with all three location estimates
yielding similar results (Table 6). The left-hand col-
umn of Figure 1 shows contrasts for observations with-
out alignment (top) and for those aligned with the HL
estimate of the period effect (lower). For each contrast,
aligning the observations reduces the spread around the
median. For these data, alignment reduced the number
of positive observations and decreased the amount of
overlap among the ranks for the positive and negative
observations (middle and right columns of Figure 1).
The plot suggests that the test statistics should have
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Mean milk production by-l;)AeErBi;Ed ?pounds er 6 week) and Alter native nonparametric approaches. Alternative-
Ohrvik's Q for different methods of aligning the observations Iy’_ c_Jbservatlons may be doubly allgngd within each
Williams square (Bellavance and Tardiff, 1995). Un-
Period like Ohrvik’s 0, where the rankings are made for ob-

Q';?.Z‘;Ee”‘ 7 5 3 " servations pooled across blocks, the Bellavance and

Q (p value) Tardiff (BT) approach uses rankings made within indi-
None NA NA NA 7.56 (0.023) vidual blocks and subsequently pooled across blocks to
Mean 1655 1435 1180  26.040.0001)  form the test statistic. For the milk production data, the
Median 1648 1332 1192  24.0%(0.0001)

asymptoticp value of the test for the hypothesis in (5)
is 0.065, suggesting that for this example, BT has sub-
stantially lower power than Ohrvik'® [equation (6)].
_ _ Senn’s (2002) approach in the three-treatment, three-
greater power when the observations are aligned. Ta-|yeriod design pools tests for differences between pairs
ble 6 confirms thatQ is largest when the statistic is  f treatments. Sequences are paired by matching the
aligned using the mean or the HL estimate, slightly neriods in which the treatment pairs occur; for ex-
smaller for the median and dramatically smaller for the ample, for theAB contrast we form three sequence
statistic based on unaligned ranks. Note that these datfbairs (ABC with BAC), (ACB, BCA) and (CAB,
dISplay substantial differences in outcome by periOd. CBA), or Strata1 Considering On'y periods that con-
The performance of the aligned and unaligned statis-tain the A and B treatments. This essentially leaves
tics may be more similar when period effects are small. 3 series of 2« 2 crossovers. Within each stratum, we
constructW* as described in Section 2 and pool re-
Since the overall test statistic was (highly) signifi- sults. Under the assumption of null carryover, this test
cant, we examined individual contrasts (Table 7). Testsis valid. However, for our example the value for the
based on different methods of alignment gave similar test of theA B contrast was 0.0943, suggesting that the
results withp values that are much smaller than the method may sometimes have substantially lower power
test using the unaligned observations. Finally, the HL than Ohrvik'sQ.
estimates of differences in milk production using the
observations aligned with HL werel65 (AB), —273
(AC) and—107 (BC) pounds per 6 week interval.

Hodges-Lehmann 1648 1416 1182  26.440(0001)

Comparison with standard approaches. The stan-
dard alternative is an analysis of variance decompo-
sition for the parameters of interest (Bellavance and

Contrasts: Not Aligned Positive Ranks Negative Ranks
(o]
Q QL Qg
‘O_ © o
7] T -1 o g n g —— g I
= =3 :
o | o |
o - S 7 . o
S - - _i_ ¢ © - _:_ T _—:—— e~ T T T
AB AC BC AB AC BC AB AC BC
Contrasts: HL Aligned Positive Ranks Negative Ranks
o
o g Qg [ B
‘O_ © o
T o | o _|
O < ~
(= —T— — —
= o o |
1T F o s N
8 1 =—| 1
2 | | © T | | © | T
AB AC BC AB AC BC AB AC BC

FiG. 1. Boxplots showing effect of not aligning (top row) and aligning using HL (bottom row):observations on the contrasts (left-hand
side panel)and the ranks of the positive (middle paneland the negative (right-hand side panetontrasts.
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TABLE 7 vs. 32%). Because of this we hesitate to recommend

Test statistics with p values in parentheses for testing BT, despite its performance under the null hypothesis.
individual contrasts

Comments. In agricultural or laboratory studies,
Qpi (p value)

Alignment Williams square designs are feasible to complete. In
method AB AC BC clinical research, patient-related issues (e.g., recruit-
None 149(0.1349  2.81(0.0099 1.08(0.2812 mer_lt, attrition, early-_s_topping rules) make it difficqlt _to
Median 293(0.0033 4.76(<0.000)  2.19(0.0286 achieve complete Williams squares. If the design is im-
Mean 299(0.0029 5.05(<0.000)  2.16(0.0306 balanced in the sense that some sequences have more
HL 2.99(0.0022 5.08(<0.000)  2.20(0.0273 patients than others or individuals have missing data,

then the procedures described above are not strictly
appropriate. For examplé,..; is not necessarily unbi-
Tardiff, 1995). This approach is based on variance ra- ased for the period effects shown in (4). An alternative
tios that have anF distribution if the data are nor- in this case is to use @-statistic such as
mally distributed and the covariance structure of the _ 1
repeated measures within individuals is exchangeable. Y= m
Under more general covariance structures a modified =1
F test (mF) is needed to maintain valid Type | error
rates (Bellavance, Tardif and Stephens, 1996; Correa ' Z "'Z(Yljlkl + Yojur + -+ 4 Yejki)
and Bellavance, 2001). =t Je=1

Under a normal shift model, the relative efficiency (or a more robust generalized statistic) to align the
of Ohrvik's Q to its corresponding parametric test observations (Putt and Chinchilli, 2000). Thekg,
is asymptotically equivalent to that of the Wilcoxon have expectation shown in (4), and if carryover is as-
signed-rank test to the pairedtest (Ohrvik, 1998).  sumed null, then the tests in (6) and (8) are valid. How-
The loss in efficiency of Ohrvik'sQ relative to the  ever, in the presence of carryover effects Ohrvig's
parametric test when the data are normal is thus mi-(6) andQy (8) test hypotheses that are somewhat dif-
nor. Correa and Bellavance (2001) carried out simula- ferent from those shown in (5) and (7). For example,
tion studies of Ohrvik'sQ, mF and BT under three €t nmin = min; n; andn; = n; — nmin and supose that
covariance structures using multivariate normal and M(DAB) is of interest. The distribution of the sample of
gamma distributions. The covariance matrices included D;; 4 p’s has expectation
an exchangeable structure, as originally specified by

ni ne

- . .. ) 1 6 n;

Ohrvik (1998), as Wel! as sphencﬂy_and an unstruc EAB _ . Z Z E(D;jag)
tured form. Under multivariate normality and for carry- il 4o

over effects equal to 50% of treatment effects, Ohrvik’s _

0 had valid Type | error rates and power that was — E)AB) _ _2tmin(h4 — Ap)
similar to or higher than M. Under the multivariate (6nmin + 321 1})
gamma, both Ohrvik’'® and m¥ were somewhat anti- (Wk1 — Aako + Agks + Acks)

conservative (empirical Type | error rates of up to 6.9% - Fa—

for Ohrvik's Q and up to 8.3% for i for a nomi- (6rmin + 2_i=17)

nal Type | error rate of 5%). However, Ohrvik@ had  for k1 = n} — n3 + nf — nf, ko =n} +n3, ka=nj +

substantially higher power than fn We expect that  ng, ka = n3 —nj+n3%. We would not necessarily expect

if the permutation distribution were used, the nominal the distribution of signed ranks to be centered around

and empirical Type | error rates would be more similar zero, even ifu$'® = 14 — A3 = 0. However, if the

for Ohrvik's Q. sample size is large, and the degree of imbalance is
Of all three tests, BT was the only one to maintain small, for exampIeE?zln?‘ <« Bnmin, the distribution

strictly valid Type | error rates under both the mul- will be asymptotically centered around zero.

tivariate normal and the multivariate gamma distribu-  Senn (2002) argues that the simple carryover model

tions. Unlike Ohrvik'sQ, the power of this test is not used here is unrealistic in clinical studies and, in par-

altered by carryover. However, for reasonable carry- ticular, that the treatment in the period in which the

over levels (e.g., 50% of the treatment effect), BT had carryover occurs should be considered in the model.

substantially lower power than Ohrvik@ (e.g., 76% For example, consider a trial testing a placebo and two
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