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Nonparametric Survival Analysis
Michael G. Akritas

Abstract. Some classes of nonparametric procedures with randomly right-
censored data are presented. They include procedures for analysis of variance
and analysis of covariance designs with independent and dependent ordinal
(continuous and discrete) data.
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1. INTRODUCTION

Methods for the analysis of data on an event ob-
served over time and the study of factors associated
with the occurrence rates of this event fall under the
headingsurvival analysis. For example, in a study of
survival rates for cancer patients, the event of inter-
est may be death. Time to event data is different be-
cause it is often incomplete. Incompleteness due to the
fact that the time for which a subject was under ob-
servation is less than the time to the event of interest
is called (right) censoring. The focus here is censor-
ing and, in particular, the type of censoring calledran-
dom. For example, patients in a survival study may be
lost to followup (e.g., due to transfer to a nonpartici-
pating institution) or are admitted after the study began
(staggered entries). With censored data it is not obvious
how to estimate such standard quantities as the mean
and variance. Thus different methods need to be de-
veloped. The different approaches can be classified as
parametric, semiparametric, distribution-free and fully
nonparametric (NP).

The term “survival analysis” derives from the his-
torical development of the field. John Graunt’s 1662
bookNatural and Political Observations upon the Bill
of Mortality, which classified registered deaths by age,
period, gender and cause of death, suggested for the
first time that death be regarded as an event which
deserves systematic study. Some years later, Edmund
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Halley devised the first life table, very similar to those
still in use today in demographic and actuarial studies,
and Greenwood (1926) provided a variance formula for
the life table estimator. Broadening the term survival
analysis to include data on any event observed over
time, not just death or failure, came with the use of
such methods in clinical trials and the social sciences,
where events such as disease progression or metastasis
or first employment after formal education are also of
interest.

The seminal paper by Kaplan and Meier (1958)
marked a big breakthrough in survival analysis, espe-
cially from the NP point of view. It allowed the use
of descriptive statistics and fueled the development of
all existing NP approaches with censored data. In this
article we give a unified presentation of the fully NP
approach, concentrating on the analysis of factorial de-
signs. Starting with the well studied one-, two- and
k-sample problems, we present generalizations to mul-
tifactor designs as well as designs with continuous
covariates. Dependent data arising from repeated mea-
sures designs are also discussed. Thus, NP approaches
to regression problems, including regression curve es-
timation, which is based entirely on smoothing tech-
niques with no inferential component, and the area
of lack-of-fit testing are not included. A fairly com-
plete review (also for truncated data), which includes
semiparametric methods, can be found in Akritas and
LaValley (1997).

In what follows we use the following notation. For
any right-continuous functionA, denote the left-hand
limit of A at s by A−(s) = A(s−), denote the “jump”
at s by �A(s) = A(s) − A−(s) and denote the con-
tinuous component asAc(t) = A(t) − ∑

s≤t �A(s). If
A is nondecreasing, the inverse ofA is defined to be
A−1(t) = inf{s;A(s) ≥ t}.
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2. THE ONE-SAMPLE PROBLEM

2.1 Survival and Cumulative Hazard Functions

The survival function S and thecumulative hazard
function � that correspond to a distribution functionF

are defined, respectively, byS = 1− F and

�(t) =
∫ t

0

(
1− F−(s)

)−1
dF(s).(2.1)

Knowledge of� also implies knowledge ofF . In fact,
it is easy to verify that in the discrete case,S(t) =∏

s≤t (1 − ��(s)), and in the continuous case,S(t) =
exp(−�(t)). In the general case, the two formulas can
be combined as

S(t) = ∏
s≤t

(
1− ��(s)

)
exp(−�c(t)).(2.2)

The combined formula (2.2) is a consequence of
F(t) = ∫ t

0(1− F−(s)) d�(s), and another result stated
and proved as Proposition A.4.1 in Gill (1980).

2.2 The Random Censoring Model

A censored data set consists ofn independent re-
alizations of the random vector(Z,�); thus to sub-
ject i there corresponds the random vector(Zi,�i)

for i = 1, . . . , n. The variableZi denotes the time for
which subjecti is under observation. If at the end of
the observation period we have occurrence of the event
of interest,Zi is called uncensored; otherwise it is
calledcensored. The variable�i takes the value 1 if
the observation on subjecti is uncensored and takes
the value 0 if the observation is censored. The random
censoring model uses a variableCi , called thecensor-
ing variable, for the maximum time subjecti can be
observed, and assumes thatCi is independent of the
time to the event variable Yi . Clearly,

Zi = Yi ∧ Ci, �i = I (Zi = Yi),(2.3)

wherea ∧ b = min(a, b) for any two real numbersa, b

andI (A) denotes the indicator function of the eventA.
The distribution functionF(t) = P(Y ≤ t) of Y is of
primary interest, while that ofC, G(t) = P(C ≤ t), is
considered to be an unknown nuisance parameter.

Let H(t) = P(Zi ≤ t) and H1(t) = P(Zi ≤ t,

�i = 1). By the independence ofY andC,

1− H(t) = (
1− F(t)

)(
1− G(t)

)
,

H1(t) =
∫ t

0

(
1− G−(s)

)
dF(s).

(2.4)

2.3 The Kaplan–Meier Estimator

The Kaplan–Meier estimator (Kaplan and Meier,
1958) was originally derived as an NP maximum likeli-
hood estimator ofF and as a limit of the actuarial esti-
mator as the time axis is partitioned into fine intervals.
Because of the latter method of derivation, it is also
known as theproduct-limit (PL) estimator. The deriva-
tion presented here exploits the connection between
F andH , H1, which are directly estimable from the
data. Multiplying and dividing the integrand in (2.1)
by 1− G− gives

�(t) =
∫ t

0

1− G−
(1− F−)(1− G−)

dF

=
∫ t

0

1

1− H−
dH1,

(2.5)

where the second equality follows from the two rela-
tionships in (2.4). SinceF can be obtained from�
through (2.2), relationship (2.5) effectively solves the
system of equations (2.4) forF .

REMARK 2.1. Note that the first equality in (2.5)
is valid only if 1− G−(t) > 0. This imposes a natural
limit on the range oft values for which�(t) can be
estimated.

Let Ĥn(t) = n−1 ∑n
i=1 I (−∞ < Zi ≤ t) and

Ĥ1n(t) = n−1 ∑n
i=1 I (−∞ < Zi ≤ t,�i = 1) be the

empirical estimators ofH andH1. Then, on the basis
of (2.5),� can be estimated by

�̂n(t) =
∫ t

0

1

1− Ĥn−
dĤ1n.(2.6)

The estimator of the cumulative hazard in (2.6) is
known as theNelson–Aalen estimator. The Nelson–
Aalen estimator and (2.2) yield the Kaplan–Meier or
PL estimator

Ŝn(t) = ∏
s≤t

(
1− ��̂n(s)

)

= ∏
i : Z(i)≤t

(
n − i

n − i + 1

)�(i)

,

(2.7)

where�(i) is the� that corresponds to theith ordered
observationZ(i). In case of ties, the formula is valid
for any integer ranking of the tied observations. We set
F̂n = 1 − Ŝn. With uncensored data,̂Fn reduces to the
empirical distribution function. Note that the definition
of Ŝn allows it to be strictly positive and constant to the
right of the last observed failure, which is the version
of the PL estimator suggested by Gill (1980). (Kaplan
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and Meier left the estimator undefined fort > Z(n) if
�(n) = 0.) It can be shown that the PL estimator is bi-
ased upward; in particular (see Andersen, Borgan, Gill
and Keiding, 1993, page 259),

0≤ EŜn(t) − S(t) ≤ F(t)
(
1− H(t)

)n
.

In spite of this,Ŝn(t) is consistent and asymptotically
normal, uniformly int ∈ [0,Z(n)] (Gill, 1983). Its as-
ymptotic variance is estimated by the Greenwood for-
mula

σ̂ 2
GR = Ŝ 2

n (t)
∑

Z(i)≤t

�(i)

(n − i)(n − i + 1)
.(2.8)

The standard asymptotic 100(1 − α)% confidence in-
terval forS(t) is

Ŝn(t) ± zα/2σ̂GR,(2.9)

wherezα/2 is the upperα/2 quantile of the standard
normal distribution. This interval is not completely
satisfactory because it can include values that fall
outside the interval[0,1]. This can be remedied by ap-
plying the asymptotic normal distribution to a trans-
formation of S(t) (Thomas and Grunkemeier, 1975).
Possible transformations includeg(x) = log(− logx),
g(x) = arcsin

√
x andg(x) = log(x/(1 − x)). For ex-

ample, the first of these transformations gives an as-
ymptotic 100(1− α)% confidence interval forS(t) of

Ŝn(t)exp
{±zα/2σ̂GR/[Ŝn(t) log Ŝn(t)]},(2.10)

which takes values in[0,1]. Borgan and Liestøl (1990)
indicated that such confidence intervals are quite satis-
factory for sample sizes as low as 25, even with 50%
censoring.

With censored data, sample quantiles are more com-
monly used as descriptive statistics than sample mo-
ments. This is because under right censoring there
is often incomplete information on the right tail of
the distribution. Thepth quantileF is ξp = F−1(p),
which is estimated bŷξp = F̂−1

n (p). The asymptotic
variance of̂ξp is estimated by

(1− p)2

f̂ 2(̂ξ (p))

∑
X(i)≤t

�(i)

(n − i)(n − i + 1)
,(2.11)

wheref̂ is an estimator of the density function. Con-
fidence intervals for quantiles that do not require esti-
mation of the density function are obtained by inverting
the sign test (Brookmeyer and Crowley, 1982). Adapt-
ing this idea to a transformed version of the PL estima-
tor, such a 100(1−α)% confidence interval consists of

all valuesξ0
p which satisfy

|g(Ŝ(ξ0
p) − g(1− p)|

|g′(Ŝ(ξ0
p))|σ̂GR(ξ0

p)
≤ zα/2,

whereg is a transformation, such as those mentioned
above. Usingg(x) = x gives the confidence intervals
of Brookmeyer and Crowley (1982). This interval can
be read directly from the lower and upper pointwise
confidence limits for the survival distribution, just asξ̂p

can be read from the Kaplan–Meier curve. This graph-
ical approach to confidence intervals for quantiles was
described by Lawless (1982).

COMMENT. Hall and Wellner (1980) constructed
confidence bands for the survival function. A bootstrap
version of these bands was given by Akritas (1986).
Confidence bands provide one of several methods for
model validation. For other approaches, see Akritas
(1988), Hjort (1990), Hollander and Peña (1992), Kim
(1993) and Li and Doss (1993).

3. TWO- AND k-SAMPLE PROBLEMS

Here we briefly describe the most commonly used
statistics for testing equality ofk treatments based
on independent randomly censored samples. These
statistics can be obtained by the heuristic arguments
of Mantel (1966), the weighted log-rank statistics of
Tarone and Ware (1977) and Gill’s (1980) general
classK of tests. In particular, Mantel (1966) consid-
ered the data as a series ofk × 2 tables at each of
the distinct failure times, applied the Mantel–Haenszel
test for contingency tables and combined the tables
as if they were independent. The resulting log-rank
test is based on the sum of the vectors of observed
minus expected frequencies for each of thek × 2 ta-
bles,LR = ∑L

�=1(D1� − E(D1�), . . . ,Dk� − E(Dk�)),

whereL is the total number of distinct failure times,
Di� is the number of failures from samplei at the�th
failure time andE(Di�) is its expected value under
the null hypothesis, conditionally on the risk sets from
each of the samples and on the total number of failures.
Evaluation ofE(Di�) and some algebra yield the form

LR =
k∑

i=1

(∫ ∞
0

K1i (s) d
(
�̂1(s) − �̂i(s)

)
, . . . ,

∫ ∞
0

Kki(s) d
(
�̂k(s) − �̂i(s)

))(3.1)

with Kij (s) = (Y1·(s)Yi·(s))/Y··(s), whereYi·(s) is the
number at risk from samplei at time s−, Y··(s) is
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the total number at risk at times− and �̂i is the
Nelson–Aalen estimator of the cumulative hazard func-
tion from samplei. Gill’s classK of statistics is (3.1)
with Kij (s) any bounded, nonnegative and predictable
function with the property thatYi·(s)Yj ·(s) = 0 im-
plies Kij (s) = 0. The commonly used weights are of
the form

Kij (s) = W(s)
Yi·(s)Yj ·(s)

Y··(s)
.(3.2)

Statistics based on (3.1) but withKij (s) in (3.2) are
called weighted log-rank statistics, sinceW(s) = 1
gives the log-rank statistic. In particular, the Gehan
weights areW(s) = Y··(s), the Peto–Prentice weights
areW(s) = Ŝ(s−) with Ŝ the PL estimator from the
combined sample and the Fleming–Harrington weights
areW(s) = Ŝ(s−)ρ , ρ ≥ 0.

COMMENTS. 1. Scheffé-type multiple compari-
sons were described by Akritas (1992).

2. For a two-sample test procedure, closer in spirit
to the NP procedures for analysis of variance (ANOVA;
though only for continuous data), see Pepe and Fleming
(1991).

3. Gehan’s test (even with its Tarone–Ware vari-
ance) is sensitive to different censoring patterns in the
two samples. Thus, one of the other tests is preferred
with small and moderate sample sizes (see Lawless,
1982, page 423, or Andersen et al., 1993, page 350).

4. Proc Lifetest in SAS performs the log-rank and
Gehan tests. Program 1L in BMDP gives the log-
rank, Gehan, Tarone–Ware and the Peto–Prentice tests.
S-Plus implements the family of tests from Fleming
and Harrington (1981) in the function surv.diff and
gives the log-rank test as the default.

4. NONPARAMETRIC METHODS: ANALYSIS OF
VARIANCE AND ANALYSIS OF COVARIANCE

4.1 Motivation

The aforementioned elegant approach, based on
ideas of Mantel (1966), Tarone and Ware (1977)
and Gill (1980) for deriving test procedures for two
and k samples, does not extend to factorial designs.
Consider, for example, ana × b factorial design, so
there are a total ofk = ab populations determined
by all factor-level combinations. As before, letD(rc),�

denote the number of failures from group(r, c) at
the �th failure time from the combined samples. To
continue with Mantel’s heuristic argument, we need
to obtainE(D(rc),�). While this is possible under the
one-way hypothesis (i.e., allk = ab populations are

identical), it is impossible to do it in a completely
NP way under the specialized hypotheses that are
of interest in two-way designs (i.e., no main effects
and no interaction). Thus, the analysis of factorial
designs is commonly carried out under the assumption
of proportional hazards (Cox, 1972). Though widely
used, proportional hazards methods perform inference
on parameters which lose their interpretation when the
proportional hazards assumption is violated. In this
section we describe test procedures for ANOVA and
analysis of covariance (ANCOVA) designs, developed
by Akritas and Brunner (1997) and by Du, Akritas and
Van Keilegom (2003), respectively, which use fully
nonparametric procedures. Codes that implement these
procedures are available from the aforementioned au-
thors.

4.2 Nonparametric Models for ANOVA
and ANCOVA

We present the NP models for two-way ANOVA and
one-way ANCOVA as the simplest designs where all
features of NP modeling can be appreciated. To in-
clude all ordinal (continuous and discrete) data in the
formulation, all distribution functions (so also condi-
tional ones) are taken as the average of their left- and
right-continuous versions.

For the two-way ANOVA design, the time to the
event of interest is denoted byYijk , i = 1, . . . , I ,
j = 1, . . . , J , k = 1, . . . , nij . The observations fol-
low the random censoring model of Section 2.2; thus,
(Zijk,�ijk), whereZijk = Yijk ∧ Cijk , with Cijk be-
ing the censoring variable in cell(i, j), and �ijk =
I (Yijk = Zijk).

For the one-way ANCOVA design, the covariate and
time to the event of interest are denoted by(Xij , Yij ),
i = 1, . . . , I , j = 1, . . . , ni . Thus, i enumerates the
factor levels andj denotes the observations within
each factor level. The observations are(Xij ,Zij ,�ij ),
j = 1, . . . , ni , whereZij = min(Yij ,Cij ) and �ij =
I (Yij = Zij ), where the censoring variableCij is con-
ditionally independent ofYij givenXij .

The NP model for the two-way ANOVA design spec-
ifies only that

Yijk ∼ Fij(4.1)

for some distribution functionFij (Akritas and Arnold,
1994).

The NP model for the one-way ANCOVA design
specifies only

Yij |Xij = x ∼ Fix,(4.2)
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that is, that conditionally onXij = x, Yij has a dis-
tribution function that depends oni and x (Akritas,
Arnold and Du, 2000). Note that models (4.1) and (4.2)
do not specify how the response distribution changes
when the levels or covariate value changes. Thus they
are completely nonparametric (also nonlinear and non-
additive).

For the two-way ANOVA design setF i·(y) = J−1 ·∑
j Fij (y) andF ·j (y) = I−1 ∑

i Fij (y). For the one-
way ANCOVA design, choose a distribution
functionG(x) and let

F
G

i· (y) =
∫

Fix(y) dG(x),

F ·x(y) = 1

I

I∑
i=1

Fix(y).

(4.3)

If Xij are a random sample,G can be taken as their
overall distribution function. Thus, if the covariate has
the same distribution in all groups,F

G

i· (y) is the mar-
ginal distribution function ofYij . The hypotheses of
interest in model (4.1) or (4.2) follow:

1. TheF i·(y) do not depend oni or F
G

i· do not depend
on i (no main effect).

2. TheF ·j (y) do not depend onj or F ·x(y) do not
depend onx (no main effect).

3. TheFij (y) = F i·(y)+Kj(y) or Fix(y) = F
G

i· (y)+
Kx(y) (no interaction).

4. The termFij (y) is independent ofi or Fix(y) is
independent ofi (no simple effect).

5. The termFij (y) is independent ofj or Fix(y) is
independent ofx (no simple effect).

For the ANCOVA setting, the first hypothesis is sen-
sible even when the model is not additive (i.e., un-
equal slopes in the classical case), while the third
and fourth hypotheses correspond to those for paral-
lelism and equality of regression curves. An important
advantage of the nonparametric hypotheses and test
procedures is that they are unchanged by monotone
transformations in the response. In the classical model,
such transformations are often necessary to linearize
the expectation and/or equalize the variances.

The above hypotheses can also be described in terms
of corresponding NP effects being zero. These NP ef-
fects are defined from decompositions ofFij andFix .
The decomposition ofFij (Akritas and Arnold, 1994)
is

Fij (y) = M(y) + Ai(y) + Bj(y) + Cij (y),(4.4)

whereM = F ··, Ai = F i· − M , Bj = F ·j − M and
Cij = Fij − F i· − F ·j + M . The quantitiesAi , Bj

andCij are, respectively, the NP main row, main col-
umn and interaction effects. The decomposition ofFix

(Akritas, Arnold and Du, 2000) is

Fix(y) = MG(y)+AG
i (y)+BG

x (y)+CG
ix(y),(4.5)

whereMG(y) = I−1 ∑I
i=1

∫
Fix(y) dG(x), AG

i (y) =
F

G

i· (y) − M(y), BG
x (y) = F ·x(y) − MG(y) and

CG
ix(y) = Fix(y) − MG(y) − AG

i (y) − BG
x (y) are, re-

spectively, the NP main factor, main covariate, and in-
teraction effects.

It can be shown that the NP hypotheses imply, but
are not implied by, their parametric counterparts. For
example, the NP hypothesis of no interaction is equiv-
alent to the statement that the mean of any monotone
transformation of the response can be decomposed in
an additive fashion. This strong form of additivity cap-
tures thesubstantive meaning of no interaction be-
tween factors as a scientist might think of it.

4.3 Test Procedures for ANOVA

Because the NP test procedures for ANOVA are
not generalizations of the common test procedures
for k samples, some comments on the latter are in
order. The statistics (3.1) and (3.2) differ from the
typical rank statistics with uncensored data in two crit-
ical ways. First they are written in terms of contrasts
in the estimated cumulative hazard functions instead
of the empirical distribution functionŝFi . Second the
integrands used in the comparisons�̂1 − �̂i are dif-
ferent. Nevertheless, when specialized to uncensored
data, the relationshipYi·(t) = ∫

[t,∞) dNi·(s), where
Ni·(s) = niF̂i(s), implies that a weighted (by sam-
ple size) contrast of (3.1), with the weights in (3.2),
gives comparisons between the distributions functions
that use the same integrand in each comparison (see
Andersen et al., 1993, Section 3.3). This property, how-
ever, does not generally hold with censored data. Since
we seek weight functions that result in meaningful
expressions when the components of (3.1) are reex-
pressed as integrals in Kaplan–Meier estimators, most
of the commonly used weights fork samples are not
included in our formulation.

A general theory of testing hypotheses in two-way
and higher ANOVA designs is possible from the fact
that all hypotheses can be expressed asCF = 0, where
C is a contrast matrix andF is the column vector of
cell distribution functions. For a method to generate
an appropriate contrast matrix for each hypothesis, see
Akritas and Brunner (1997).
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The Kaplan–Meier estimator of the distribution and
survival functions from cell(i, j) are denoted by
F̂ij and Ŝij , respectively. As noted in Section 2.3, the
distribution function of the time to the event variable
cannot be estimated beyond the largest observation in
the randomly censored sample. This implies that the
comparison of distributions cannot be extended be-
yond the minimum of these maximum values from
each sample. LetF = (F11, . . . ,F1b, . . . ,Fab)

′ and
F̂ = (F̂11, . . . , F̂1b, . . . , F̂ab)

′ denote the vector of dis-
tribution functions and the vector of Kaplan–Meier
estimators from each factor-level combination. In view
of the preceding discussion, the test statistic for
H0 : CF = 0 is based on

C
∫ T

0
ŜH dF̂,(4.6)

whereT = T11 ∧ · · · ∧ Tab, with Tij being the largest
observation from cell(i, j), and Ĥ = 1 − ŜH is the
empirical distribution function of the censored and un-
censored observation from all cells. Of course, (4.6)
tests onlyH ∗

0 : CF(t) = 0, t ≤ τ , τ being the limit ofT .
Let Nrc·(t) = ∑nrc

k=1 I (Xrck ≤ t,�rck = 1), Yrc·(t) =∑nrc

k=1 I (Xrck ≥ t) and ĥrc(s) = Ŝ 2
rc(s−)[ŜH (s) −

Ŝrc(s)
−1 ∫

(s,T ] ŜH dF̂rc]2I (s ≤ T )nrcYrc·(s)−1, and
define

σ̂ 2
rc(t) =

∫ t

0
ĥrc(s)

(
1− �Nrc·(s) − 1

Yrc·(s) − 1

)
dNrc·(s)
Yrc·(s)

.

Let V̂ be theab ×ab diagonal matrix with diagonal el-
ements(n/nrc)σ̂

2
rc(T ) and letC be anyν ×ab full row

rank contrast matrix (ν < ab). Then, underH ∗
0 given

above,

N

(
C

∫ T

0
ŜH dF̂

)′
(CV̂C′)−1

(
C

∫ T

0
ŜH dF̂

)
L−→ χ2

ν

in distribution,

whereχ2
ν denotes the central chi-squared distribution

with ν degrees of freedom.

4.4 Test Procedures for ANCOVA

For ANCOVA, we only discuss testing the first type
of hypothesis given below (4.3). This includes also
testing for covariate adjusted main effects and interac-
tions between factors in higher way ANCOVA designs
with one covariate.

To describe the test statistics, setF
G

· = (F
G

1· , . . . ,
F

G

I ·)′ and let F̂
G

· = (F̂
G

1· , . . . , F̂
G

I ·)′ be the NP es-
timator of it described in Remark 4.1. A general
theory of testing hypotheses of the aforementioned

type in one-way, two-way and higher ANCOVA de-
signs is possible from the observation that any of these

hypotheses can be expressed asH0 : CF
G

· = 0 for some
full-rank contrast matrixC. For reasons explained in
Section 4.3, the comparison of distributions must ter-
minate at an appropriate pointT (see Du, Akritas and
Van Keilegom, 2003). Thus, the test statistic for such a
hypothesis is based on

T̂ G
C = C

∫ T

0
F̂

G

· dĤ ,(4.7)

where Ĥ is the empirical distribution function of

all Yij . Of course, (4.7) tests onlyH ∗
0 : CF

G

· (t) = 0,

t ≤ τ , τ being the limit ofT .
Let V̂G denote the estimate of the asymptotic covari-

ance matrix of
∫ T
0 F̂

G

· dĤ given in Du, Akritas and Van
Keilegom (2003). Then in the aforementioned paper it
was shown that under suitable smoothness assumptions
and underH ∗

0 given above,

N(T̂ G
C )′(CV̂GC′)−1T̂ G

C → χ2
ν in distribution,

whereν denotes the rank ofC.

REMARK 4.1. An NP estimator ofF
G

i· is F̂
G

i· (y) =∫
F̂ix(y) dĜ(x), whereĜ is the empirical distribution

function of all Xij and F̂ix(y) is Beran’s (1981) NP
kernel estimator ofFix(y) (cf. Du, Akritas and Van
Keilegom, 2003).

5. NONPARAMETRIC METHODS:
REPEATED MEASURES

With dependent data, the most common NP pro-
cedures pertain to matched pairs and the multivari-
ate two-sample problem. See Woolson and O’Gorman
(1992) and Wei and Lachin (1984). For the reasons
given in Section 4.1, extension of such methods to gen-
eral classes of repeated measures designs requires the
use of the fully NP models and hypotheses.

The models we describe are calledmarginal NP re-
peated measures models because the covariance struc-
ture of the repeated measurements is left unspecified.
In this formulation, factors whose levels are crossed
with the subjects are calledcolumn factors; those fac-
tors with subjects nested within their levels are called
row factors. In the diabetic retinopathy study (see be-
low), type of diabetes is the row factor, while treatment
is the column factor. However, gender could have been
an additional row factor, while medication such as eye
drops could have been an additional column factor. The
termsMM(x;y) denote a design withx row factors
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andy column factors. We present the formulation for
anMM(1;1) design withr andc levels of the row and
column factors, respectively. By imposing structure on
the subscriptsi andj , the above model formulation in-
cludes anyMM(x;y) design.

The independent random vectorsYik = (Yi1k, . . . ,

Yick)
′ represent thec observations of thekth sub-

ject nested under theith level of the row factor. Let
also Cik = (Ci1k, . . . ,Cick)

′ be independent random
vectors that represent the censoring variables. Vector
Yik is assumed to be independent ofCik. The observed
quantities are

Zik = (Zi1k, . . . ,Zick)
′ and

�ik = (�i1k, . . . ,�ick)
′,

(5.1)

i = 1, . . . , r andk = 1, . . . , ni , whereZijk = min(Yijk,

Cijk) and�ijk = I (Zijk = Yijk) for j = 1, . . . , c. The
marginal NP mixed model specifies only that

Yijk ∼ Fij and Cijk ∼ Gij ,

i = 1, . . . , r, j = 1, . . . , c,

for some distributions functionsFij and Gij , which
are not assumed continuous. The NP hypotheses are

defined through a decomposition of theFij as in
Section 4.2. Thus, all hypotheses of interest can be
expressed asCF = 0, where C is a contrast ma-
trix and F = (F11, . . . ,F1c, . . . ,Fr1, . . . ,Frc)

′. Let
F̂ = (F̂11, . . . , F̂1c, . . . , F̂r1, . . . , F̂rc)

′, whereF̂ij is the
Kaplan–Meier estimator from the data in cell(i, j).
The statistic for testingCF = 0 is still based on (4.6),
but due to dependence, its asymptotic covariance ma-
trix is different from that given in Section 4.3. For de-
tails, see O’Gorman and Akritas (2001).

EXAMPLE 1 (Diabetic retinopathy study). This
study considers the effectiveness of laser photocoag-
ulation in delaying the onset of blindness in patients
with diabetic retinopathy. One eye of each patient was
randomly chosen for treatment, while the other re-
ceived no treatment. This is anMM(1,1) design where
the column factor (factorB) is treatment and the row
factor (factorA) is type of diabetes ( juvenile or adult
onset). The response variable is the time until visual
acuity in an eye is less than 5/200. There are 114 juve-
nile and 83 adult onset patients, and 61% of the obser-
vations are censored.

Figure 1 presents the estimated NP main effects for
type of diabetes and treatment, and the estimated NP

FIG. 1. Plots of estimated NP effects for Example 1.
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interaction effect. The extensive crossing and the ab-
solute magnitude of the estimated NP type of dia-
betes effects in the left plot of Figure 1 indicate that
the NP type of diabetes main effect is not signifi-
cant. The middle plot of Figure 1 indicates significant
treatment effect. In particular,̂F ·1(t) >F̂ ·2(t) means
that the average estimated probability that the response
variable is less thant is greater for the no treatment
group. Finally, the right plot also indicates significant
interaction effects.

The test procedures givep values 0.961, less than
0.001 and 0.003 for type of diabetes, treatment and in-
teraction, respectively, which agree with the plots of
the NP effects.

It is interesting to compare the above analysis with
the NP multivariate two-sample approach of Wei and
Lachin (1984), who tested equality of the two multi-
variate distributionsF1(t1, t2) andF1(t1, t2) that corre-
spond to juvenile and adult groups, respectively. Note
that this null hypothesis implies our NP hypothesis of
no simple effect for type of diabetes (no main effect
and no interaction with treatment). Lin (1994) pointed
out that the Wei and Lachin (1984) statistic can be cal-
culated with SAS PROC PHREG and a macro from
the SAS web page. This gives ap value of 0.0175.
Note, however, that the multivariate two-sample ap-
proach cannot be used to test for no treatment effect.
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