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Nonparametric Survival Analysis

Michael G. Akritas

Abstract. Some classes of nonparametric procedures with randomly right-
censored data are presented. They include procedures for analysis of variance
and analysis of covariance designs with independent and dependent ordinal
(continuous and discrete) data.
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1. INTRODUCTION Halley devised the first life table, very similar to those
_ still in use today in demographic and actuarial studies,
Methods for the analysis of data on an event 0b- g Greenwood (1926) provided a variance formula for
served over time and the study of factors associatedihg |ife taple estimator. Broadening the term survival
with the occurrence rates of this event fall under the analysis to include data on any event observed over
headingsurvival analysis. For example, in a study of e not just death or failure, came with the use of
survival rates for cancer patients, the event of inter- gych methods in clinical trials and the social sciences,
est may be death. Time to event data is different be-where events such as disease progression or metastasis

cause it is often incomplete. Incompleteness due to theor first employment after formal education are also of
fact that the time for which a subject was under ob- jnterest.

servation is less than the time to the event of interest The seminal paper by Kaplan and Meier (1958)
is called ¢ight) censoring. The focus here is censor- marked a big breakthrough in survival analysis, espe-
ing and, in particular, the type of censoring called- cially from the NP point of view. It allowed the use
dom. For example, patients in a survival study may be of descriptive statistics and fueled the development of
lost to followup (e.g., due to transfer to a nonpartici- all existing NP approaches with censored data. In this
pating institution) or are admitted after the study began article we give a unified presentation of the fully NP
(staggered entries). With censored data it is not obviousapproach, concentrating on the analysis of factorial de-
how to estimate such standard quantities as the meargigns. Starting with the well studied one-, two- and
and variance. Thus different methods need to be de-k-sample problems, we present generalizations to mul-
veloped. The different approaches can be classified adifactor designs as well as designs with continuous
parametric, semiparametric, distribution-free and fully covariates. Dependent data arising from repeated mea-
nonparametric (NP). sures de5|_gns are also d!scuss_ed. Thus, l\_IP approaches
The term “survival analysis” derives from the his- to regression problems, including regression curve es-

torical development of the field. John Graunt's 1662 timation, which is based entirely on smoothing tech-
bookNatural and Political Observations upon the Bill hiques with no inferential component, and the area

of Mortality, which classified registered deaths by age, of lack-of-fit testing are not included. A fairly com-

period, gender and cause of death, suggested for thgletg review @ISO for truncated data), W.hiCh ir.'CIUdeS
first tir,ne that death be regarded E,lS an event Whichsemlparametrlc methods, can be found in Akritas and

. avValley (1997).
deserves systematic study. Some years later, Edmuncl,T In what follows we use the following notation. For

any right-continuous functiod, denote the left-hand
Michael G. Akritas is Professor, Department of Sta- limit of A ats by A_(s) = A(s—), denote the “jump”
tistics, Pennsylvania State University, University Park, ats by AA(s) = A(s) — A_(s) and denote the con-
Pennsylvania 16802, USA (e-mail: mga@stat.psu.edu). tinuous component as.(t) = A(t) — Y <, AA(s). If
Heisalso affiliated with National Technical University A is nondecreasing, the inverse #fis defined to be
of Athens, Athens, Greece. A7) =inf{s; A(s) > 1).
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616 M. G. AKRITAS

2. THE ONE-SAMPLE PROBLEM 2.3 The Kaplan—Meier Estimator

2.1 Survival and Cumulative Hazard Functions The Kaplan-Meier estimator (Kaplan and Meier,
1958) was originally derived as an NP maximum likeli-
hood estimator of” and as a limit of the actuarial esti-
mator as the time axis is partitioned into fine intervals.

The survival function S and thecumulative hazard
function A that correspond to a distribution functién

are defined, respectively, lfy=1— F and Because of the latter method of derivation, it is also
t . known as theroduct-limit (PL) estimator. The deriva-
(2.1) A(1) :/o (1—F-_(s)) ~dF(s). tion presented here exploits the connection between

' ' F and H, H1, which are directly estimable from the
Knowledge ofA also implies knowledge of . Infact,  data. Multiplying and dividing the integrand in (2.1)

it is easy to verify that in the discrete cas®y) = by 1— G_ gives

[I5<;,(1— AA(s)), and in the continuous casg(r) = . 1-G

exp(—A(2)). In the general case, the two formulas can A(t) = / - dF

be combined as (2.5) 0o (1-F)1-G-)
t1

(22 St = 1_[(1— AA(s)) exp(—Ac(1)). = /0 11 dHx,

S<t
_ _ where the second equality follows from the two rela-
The combined formula (2.2) is a consequence Of tisnships in (2.4). Since” can be obtained fromh

F(t)= Jo(1— F_(s))dA(s), and another result stated  hough (2.2), relationship (2.5) effectively solves the
and proved as Proposition A.4.1 in Gill (1980). system of equations (2.4) faf.

2.2 The Random Censoring Model REMARK 2.1. Note that the first equality in (2.5)
is valid only if 1 — G_(¢) > 0. This imposes a natural
limit on the range oft values for whichA (z) can be
estimated.

A censored data set consists mfindependent re-
alizations of the random vectaZ, A); thus to sub-
ject i there corresponds the random vect@r, A;)
fori =1,...,n. The variableZ; denotes the time for Let H,(1) = nIy" I(-00 < Z; < t) and
which subject is under observation. If at the end of Ay, (1) = n 1Y, I(—00 < Z; <1, A; = 1) be the
the observation period we have occurrence of the eventempirical estimators off and H;. Then, on the basis
of interest, Z; is called uncensored; otherwise it is  of (2.5), A can be estimated by
called censored. The variableA; takes the value 1 if

—~ ! 1 .
the observation on subjectis uncensored and takes (2.6) Ay (1) :/ T dHy,.
the value O if the observation is censored. The random 0 &= Hn-
censoring model uses a varialdlg, called thecensor- The estimator of the cumulative hazard in (2.6) is

ing variable, for the maximum time subjegtcan be  known as theNelson-Aalen estimator. The Nelson—
observed, and assumes ti@tis independent of the Aalen estimator and (2.2) yield the Kaplan—-Meier or

time to the event variable ;. Clearly, PL estimator
(23) Zi=YiAnGC, A=I1(Z=Y), Sn(t) = 1:[(1 — AAy(5))

sS=
wherea A b = min(a, b) for any two real numbers, » ~ (2.7) n—i \Ao
and/ (A) denotes the indicator function of the event = I1 (m> ;
The distribution functionF (1) = P(Y <1t) of Y is of i Zp=t

primary interest, while that of, G(1) = P(C <1), is whereA ;) is the A that corresponds to thi¢h ordered
considered to be an unknown nuisance parameter.  observationZ;. In case of ties, the formula is valid
Let H(t) = P(Z; <t) and Hi(t) = P(Z; <t, for any integer ranking of the tied observations. We set
A; =1). By the independence of andC, F, =1— §,. With uncensored datd;, reduces to the
empirical distribution function. Note that the definition
1-H@) =(1-F®)(1-G®). P . . N
of S, allows it to be strictly positive and constant to the
Hy(t) = /’(1 . G,(s)) dF(s). right of the Ia_st observed failure, which is the version
0 of the PL estimator suggested by Gill (1980). (Kaplan

(2.4)
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and Meier left the estimator undefined for Z, if all valuesgf,’ which satisfy
Ay = 0.) It can be shown that the PL estimator is bi- “ .0
ased upward; in particular (see Andersen, Borgan, Gill 18(S(p) —g(1—p) < Zaj2
and Keiding, 1993, page 259), |g/(5(§,9))|3GR($,9) -
0<ES,(t)—St) < F)(1— H(®))". whereg is a transformation, such as those mentioned

above. Usingeg(x) = x gives the confidence intervals
of Brookmeyer and Crowley (1982). This interval can
be read directly from the lower and upper pointwise
confidence limits for the survival distribution, just%;
can be read from the Kaplan—Meier curve. This graph-

In spite of this,S, (7) is consistent and asymptotically
normal, uniformly inz € [0, Z(,] (Gill, 1983). Its as-
ymptotic variance is estimated by the Greenwood for-
mula

(2.8) 8r=S21) . : AW : _ ical approach to confidence intervals for quantiles was
Zoz W=D —i+ 1) described by Lawless (1982).
The standard asymptotic 100— «)% confidence in- CoMMENT.  Hall and Wellner (1980) constructed
terval for S(¢) is confidence bands for the survival function. A bootstrap
N version of these bands was given by Akritas (1986).
(2.9) Sn(t) % 2a/20GR, Confidence bands provide one of several methods for

wherez,2 is the upper/2 quantile of the standard model va]idation. For other approach?s, see Akri.tas
normal distribution. This interval is not completely (1988), Hjort (1990), Hollander and Pefia (1992), Kim

satisfactory because it can include values that fall (1993) and Liand Doss (1993).
outside the intervdlO, 1]. This can be remedied by ap-
plying the asymptotic normal distribution to a trans- 3. TWO- AND k-SAMPLE PROBLEMS
formation of S(z) (Thomas and Grunkemeier, 1975).  Here we briefly describe the most commonly used
Possible transformations inclugéx) = log(—logx),  statistics for testing equality of treatments based
g(x) = arcsiny/x andg(x) = log(x/(1 — x)). Forex-  on independent randomly censored samples. These
ample, the first of these transformations gives an as-statistics can be obtained by the heuristic arguments
ymptotic 10Q@1 — )% confidence interval fo§(z) of of Mantel (1966), the weighted log-rank statistics of
S P 5 Tarone and Ware (1977) and Gill's (1980) general
(2.10) 51 (6) exp{tza/206R/ 15 (1) 10g S (D]}, classX of tests. In particular, Mantel (1966) consid-
which takes values ifD, 1]. Borgan and Liestal (1990) ered the data as a series lofx 2 tables at each of
indicated that such confidence intervals are quite satis-the distinct failure times, applied the Mantel-Haenszel
factory for sample sizes as low as 25, even with 50% test for contingency tables and combined the tables
censoring. as if they were independent. The resulting log-rank
With censored data, sample quantiles are more com-test is based on the sum of the vectors of observed
monly used as descriptive statistics than sample mo-minus expected frequencies for each of the 2 ta-
ments. This is because under right censoring therebles,LR:Zle(Dlg — E(Dy), ..., Dy — E(Dyy)),
is often incomplete information on the right tail of whereL is the total number of distinct failure times,
the distribution. Thepth quantileF is &, = F~1(p), D;, is the number of failures from sampleat the/th
which is estimated bfp = F-(p). The asymptotic  failure time andE(D;¢) is its expected value under

variance of?p is estimated by the null hypothesis, conditionally on the risk sets from
5 each of the samples and on the total number of failures.
(2.11) d-p) 3 Aw Evaluation ofE (D;¢) and some algebra yield the form

F2EMP) ot =D —i+1)’ A
n< 00 R R
where 7 is an estimator of the density function. Con- 3.0) LR= ;(/o Ki(9)d(Aa) = Ai(9), -
fidence intervals for quantiles that do not require esti- \~* ~
mation of the density function are obtained by inverting / Kii (s)d(Ax(s) — K,(s)))
the sign test (Brookmeyer and Crowley, 1982). Adapt- 0
ing this idea to a transformed version of the PL estima- with K;;(s) = (Y1.(s)Y;.(s))/Y..(s), whereY;.(s) is the
tor, such a 10 — «)% confidence interval consists of number at risk from samplé at time s—, Y..(s) is
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the total number at risk at time— and A; is the identical), it is impossible to do it in a completely
Nelson—Aalen estimator of the cumulative hazard func- NP way under the specialized hypotheses that are
tion from sample. Gill's class X of statistics is (3.1)  of interest in two-way designs (i.e., no main effects
with K;;(s) any bounded, nonnegative and predictable and no interaction). Thus, the analysis of factorial

function with the property that;.(s)Y;.(s) = 0 im- designs is commonly carried out under the assumption
plies K;;(s) = 0. The commonly used weights are of of proportional hazards (Cox, 1972). Though widely
the form used, proportional hazards methods perform inference
Y;.(8)Y;.(s) on parameters which lose their interpretation when the
(3.2) Kij(s) = W(S)W- proportional hazards assumption is violated. In this

section we describe test procedures for ANOVA and
analysis of covariance (ANCOVA) designs, developed
by Akritas and Brunner (1997) and by Du, Akritas and
Van Keilegom (2003), respectively, which use fully
nonparametric procedures. Codes that implement these
procedures are available from the aforementioned au-
thors.

Statistics based on (3.1) but witki;; (s) in (3.2) are
called weighted log-rank statistics, sinceW (s) = 1
gives the log-rank statistic. In particular, the Gehan
weights areW (s) = Y..(s), the Peto—Prentice weights
are W(s) = S(s—) with S the PL estimator from the
combined sample and the Fleming—Harrington weights
areW(s) = S(s—)?, p > 0.

COMMENTS. 1. Scheffé-type multiple compari-
sons were described by Akritas (1992).

2. For a two-sample test procedure, closer in spirit We present the NP models for two-way ANOVA and
to the NP procedures for analysis of variance (ANOVA; one-way ANCOVA as the simplest designs where all
though only for continuous data), see Pepe and Flemingfeatures of NP modeling can be appreciated. To in-
(1991). clude all ordinal (continuous and discrete) data in the

3. Gehan's test (even with its Tarone—Ware vari- formulation, all distribution functions (so also condi-
ance) is sensitive to different censoring patterns in thetional ones) are taken as the average of their left- and
two samples. Thus, one of the other tests is preferredright-continuous versions.
with small and moderate sample sizes (see Lawless, For the two-way ANOVA design, the time to the
1982, page 423, or Andersen et al., 1993, page 350). event of interest is denoted by x, i = 1,...,1,

4. Proc Lifetest in SAS performs the log-rank and j =1,...,J, k = 1,...,n;;. The observations fol-
Gehan tests. Program 1L in BMDP gives the log- low the random censoring model of Section 2.2; thus,
rank, Gehan, Tarone-Ware and the Peto—Prentice testS.Z; x, A;jx), whereZ;jx = Y;jx A Cijk, With C;jx be-
S-Plus implements the family of tests from Fleming ing the censoring variable in cefl, j), and Ajjk =
and Harrington (1981) in the function surv.diff and 7(Y;jx = Z; ).

4.2 Nonparametric Models for ANOVA
and ANCOVA

gives the log-rank test as the default. For the one-way ANCOVA design, the covariate and
time to the event of interest are denoted(By;, ¥;;),
4. NONPARAMETRIC METHODS: ANALYSIS OF i=1...,1, j=1,...,n;. Thus,i enumerates the
VARIANCE AND ANALYSIS OF COVARIANCE factor levels andj denotes the observations within
4.1 Motivation each factor level. The observations akg;, Z;;, A;;),

) j:l,...,ni, WhereZijzmin(Yij,Cij) and A,‘j =

The aforementioned elegant approach, based ony (v;; = Z;;), where the censoring variab@®; is con-
ideas of Mantel (1966), Tarone and Ware (1977) gitionally independent o ,j given X;;.
and Gill (1980) for deriving test procedures for two  The NP model for the two-way ANOVA design spec-
and k samples, does not extend to factorial designs. ifies only that
Consider, for example, an x b factorial design, so
there are a total ok = ab populations determined (4.1) Yiji ~ Fij
by all factor-level combinations. As before, 1B, ¢
denote the number of failures from group ¢) at
the ¢th failure time from the combined samples. To
continue with Mantel’s heuristic argument, we need
to obtain E(D(¢),¢). While this is possible under the
one-way hypothesis (i.e., all = ab populations are (4.2) YiilXij =x~ Fiy,

for some distribution functiott;; (Akritas and Arnold,
1994).

The NP model for the one-way ANCOVA design
specifies only
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that is, that conditionally orX;; = x, ¥;; has a dis- whereM =F., A, =F;.— M, Bj=F.; — M and
tribution function that depends onand x (Akritas, Cij = F;j — F,. — F.; + M. The quantitiesA;, B;
Arnold and Du, 2000). Note that models (4.1) and (4.2) andC;; are, respectively, the NP main row, main col-
do not specify how the response distribution changesumn and interaction effects. The decompositiorFof
when the levels or covariate value changes. Thus they(Akritas, Arnold and Du, 2000) is
:(rj%i(ii?/r:)pletely nonparametric (also nonlinear and non-(45y F;,(y) = MG(y)+AiG(y)+BxG(y)+Ci()}c(y)’

For the two-way ANOVA design sef;.(y) = J 1. ﬂtg;ere MOy =171y, ] Fix(y)dG(x), AP (y) =
Y, Fij(y) andF.j(y) = "1 Y, Fij(y). For the one-  F;.(y) — M(y), BS(y) = Fx(y) — M%(y) and
way ANCOVA design, choose a distribution CZ(y) = Fiy(y) — MY(y) — A%(y) — B () are, re-

function G (x) and let spectively, the NP main factor, main covariate, and in-
G teraction effects.
F,.(y)= / Fix(y)dG(x), It can be shown that the NP hypotheses imply, but

are not implied by, their parametric counterparts. For
(4.3) I . . N .
— 1 example, the NP hypothesis of no interaction is equiv-
Fx(y)= 7 Z Fix(y). alent to the statement that the mean of any monotone
i=1 transformation of the response can be decomposed in
If X;; are a random sampl€; can be taken as their an additive fashion. This strong form of additivity cap-

overall distribution function. Thus, if the covariate has tures thesubstantive meaning of no interaction be-
the same distribution in all group?,f(y) is the mar-  tween factors as a scientist might think of it.
ginal distribution function ofY;;. The hypotheses of 4 3 Test Procedures for ANOVA

interest in model (4.1) or (4.2) follow:
Because the NP test procedures for ANOVA are

1. TheF,;.(y) do not depend onorff donotdepend not generalizations of the common test procedures

oni (no main effect). for k samples, some comments on the latter are in
2. The F.;(y) do not depend orj or F..(y) do not  order. The statistics (3.1) and (3.2) differ from the

depend onx (no main effect). typical rank statistics with uncensored data in two crit-
3. TheF;j(y) = Fi.(y)+ Kj(y) Of Fix () :ff(y)+ ical ways. First they are written in terms of contrasts

K. (y) (no interaction). in the estimated cumulative hazard functions instead

of the empirical distribution functions;. Second the
integrands used in the comparisafis — A; are dif-
ferent. Nevertheless, when specialized to uncensored
data, the relationshig;.(r) = f[t,oo) dN;.(s), where
N;.(s) = n;F;(s), implies that a weighted (by sam-

For the ANCOVA setting, the first hypothesis is sen- ple size) contrast of (3.1), with the weights in (3.2),
sible even when the model is not additive (i.e., un- gives comparisons between the distributions functions
equal slopes in the classical case), while the third that use the same integrand in each comparison (see
and fourth hypotheses correspond to those for paral-Andersen et al., 1993, Section 3.3). This property, how-
lelism and equality of regression curves. An important ever, does not generally hold with censored data. Since
advantage of the nonparametric hypotheses and testve seek weight functions that result in meaningful
procedures is that they are unchanged by monotoneexpressions when the components of (3.1) are reex-
transformations in the response. In the classical model,pressed as integrals in Kaplan—Meier estimators, most
such transformations are often necessary to linearizeof the commonly used weights fdr samples are not
the expectation and/or equalize the variances. included in our formulation.

The above hypotheses can also be described in terms A general theory of testing hypotheses in two-way
of corresponding NP effects being zero. These NP ef-and higher ANOVA designs is possible from the fact

4. The termF;;(y) is independent of or F;.(y) is
independent of (no simple effect).

5. The termF;;(y) is independent ofi or F;.(y) is
independent of (no simple effect).

fects are defined from decompositionsfof and F;,.  thatall hypotheses can be expresse@Bs= 0, where
The decomposition of;; (Akritas and Arnold, 1994) ~ C IS @ contrast matrix ané is the column vector of
is cell distribution functions. For a method to generate

an appropriate contrast matrix for each hypothesis, see
(4.4) Fij(y)=M(Q)+A;()+ B;j(y)+Cij(y), Akritas and Brunner (1997).
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The Kaplan—Meier estimator of the distribution and type in one-way, two-way and higher ANCOVA de-
survival functions from cell(i, j) are denoted by signsis possible from the observation that any of these
Fij and Sij, reSpeCtiver. As noted in Section 2.3, the hypotheses can be expressed{@sCﬁ_G = 0 for some
distribution function of the time to the event variable full-rank contrast matrixC. For reasons exp|ained in
cannot be estimated beyond the largest observation ingection 4.3, the comparison of distributions must ter-
the randomly censored Sample. This Implles that the minate at an appropriate poifit (see Du, Akritas and

comparison of distributions cannot be extended be-van Keilegom, 2003). Thus, the test statistic for such a
yond the minimum of these maximum values from hypothesis is based on

gach Asample.ALeF :A(Fll,...,Flh,...,Fa;,)’ and I o
F=(Fi1,..., Fip,..., Fy)' denote the vector of dis- 4.7) fCG — Cf F. dH,
tribution functions and the vector of Kaplan—Meier 0

estimators from eaCh.faCtor.'Ievel Combination..ln.VieW where ﬁ is the empirica| distribution function of
of .tfg:(le: Erg(_:eglng ddlscussmn, the test statistic for all v;;. Of course, (4.7) tests onlﬁg:Cf_G(t) —0,
Ho:CF =0ls based on t <7, 7 being the limit of .

Let VY denote the estimate of the asymptotic covari-

=G

ance matrix of/OT F. dH givenin Du, Akritas and Van
whereT = T11 A - -- A Ty, With T;; being the largest Keilegom (2003). Then in the aforementioned paper it
observation from celli, j), and H = 1 — Sy is the was shown that under suitable smoothness assumptions
empirical distribution function of the censored and un- &nd undety given above,
censored observation from all ce!ls. of course, (4.6) N(Tg)/(CVGC/)‘lch - sz in distribution
tests onlyH; : CF(t) =0, < , r being the limit of7T".
Let Npe.(t) = 3370 I Xpek <1, Aok = 1), Yeeu(t) = wherev denotes the rank oZ.

Ryre ™ _ <2 _ < _ _ ~G
§k=1fgxrck =1 f”‘i hre(s) = Sfe(s )[ffj(s) REMARK 4.1, An NP estimator of i F;. (y) =
Sre@) ™ [ SHAFr) (s < TingeYre ()™, and [ (3)dG(x), whereG is the empirical distribution

T P o~
(4.6) c / S, dF.
0

define function of all X;; and F;,(y) is Beran’s (1981) NP
326(0 =/tﬁrc(s)(l— ANy..(s) — 1) dNrc.(s)' ker_nel estimator ofF;, (y) (cf. Du, Akritas and Van
4 0 Yie(s) =1 ) Yre(s) Keilegom, 2003).
LetV be theab x ab diagonal matrix with diagonal el- 5 NONPARAMETRIC METHODS:
ements(n/n,.)52.(T) and letC be anyv x ab full row REPEATED MEASURES
rank contrast matrixy( < ab). Then, underH; given _
above, With dependent data, the most common NP pro-

cedures pertain to matched pairs and the multivari-
TN\ T\ g ,
N(C/ Sy dF) (CVC) 1((;/ Sy dF) =5 x2 ate two-sample problem. See Woolson and O’Gorman
0 0 (1992) and Wei and Lachin (1984). For the reasons
in distribution given in Section 4.1, extension of such methods to gen-
eral classes of repeated measures designs requires the
use of the fully NP models and hypotheses.
The models we describe are calledrginal NP re-
4.4 Test Procedures for ANCOVA peated measures models because the covariance struc-
ture of the repeated measurements is left unspecified.
In this formulation, factors whose levels are crossed
with the subjects are callemblumn factors; those fac-
tors with subjects nested within their levels are called
. . row factors. In the diabetic retinopathy study (see be-
with one co_vanate. . _? —G low), type of diabetes is the row factor, while treatment
_ZO descrlbe:tge tesithtanstﬁsG, sl = (Fp...., is the column factor. However, gender could have been
F;) and letF, = (F,.,...,F;.) be the NP es- an additional row factor, while medication such as eye
timator of it described in Remark 4.1. A general drops could have been an additional column factor. The
theory of testing hypotheses of the aforementionedterms MM(x; y) denote a design witlk row factors

where x2 denotes the central chi-squared distribution
with v degrees of freedom.

For ANCOVA, we only discuss testing the first type
of hypothesis given below (4.3). This includes also
testing for covariate adjusted main effects and interac-
tions between factors in higher way ANCOVA designs
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andy column factors. We present the formulation for defined through a decomposition of thg; as in
anMM(1; 1) design withr andc levels of the row and  Section 4.2. Thus, all hypotheses of interest can be
column factors, respectively. By imposing structure on expressed aF = 0, where C is a contrast ma-

the subscripts andj, the above model formulation in-  trix and F = (Fi1,..., Fic,..., Fr1,..., Fr)'. Let

cludes anyMM (x; y) design. F=(Fi1,..., Fic,..., Fr1, ..., F,0)', whereF;; is the
The independent random vectors, = (Yiw, ..., Kaplan—Meier estimator from the data in céll j).

Y;et) represent thec observations of thecth sub- The statistic for testin@F = 0 is still based on (4.6),

ject nested under thah level of the row factor. Let  but due to dependence, its asymptotic covariance ma-
also Cjx = (Ciw, ..., Cict)' be independent random  trix is different from that given in Section 4.3. For de-

vectors that represent the censoring variables. Vectortails, see O’Gorman and Akritas (2001).

Yix is assumed to be independent®f. The observed EXAMPLE 1 (Diabetic retinopathy study). This

quantities are study considers the effectiveness of laser photocoag-
Zit = (Zitk, ..., Zir)  and ulation in delaying the onset of blindness in patients

(5.1) with diabetic retinopathy. One eye of each patient was
Aik = (Aitks - Ajer)', randomly chosen for treatment, while the other re-

i=1,....randk =1,...,n;, wherez;; = min(¥;j, ceived no treatment. This is_ AnM (1, 1) design where
Cizo) and A jx = I (Zije = Yiji) for j=1,....c. The the column factor (factoB) is treatment and the row
marginal NP mixed model specifies only that factor (factorA) is type of diabetes (juvenile or adult
onset). The response variable is the time until visual
Yijk ~ Fij and Cijx ~ Gij, acuity in an eye is less thann200. There are 114 juve-
nile and 83 adult onset patients, and 61% of the obser-
vations are censored.
for some distributions functiong;; and G;;, which Figure 1 presents the estimated NP main effects for
are not assumed continuous. The NP hypotheses aré¢ype of diabetes and treatment, and the estimated NP

i=1....rj=1...,c,

—— Juvenile onset —— Laser Treatment - —— Juvenile-Laser or Adult-No
------ Adult onset ----==- No Treatment [k -----Juvenile-No or Adult-Laser

0.1
[+h]
a1

0.0
oe

0.0

Estimated Nonparametric Main Effect for Type of Diabetes
Estimated Nonparametric Interaction Effect

Estimated Nonparametric Main Effect for Treatment

0.1
0.1
Q.

0 20 40 60 0 20 40 60 0 20 40 60

Survival Time (in months) Survival Time (in months) Survival Time (in months)

Fic. 1. Plotsof estimated NP effects for Example 1.
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interaction effect. The extensive crossing and the ab-AnDERSEN P. K., BORGAN, @., GiLL, R. and KEIDING, N.

solute magnitude of the estimated NP type of dia-
betes effects in the left plot of Figure 1 indicate that
the NP type of diabetes main effect is not signifi-
cant. The middle plot of Figure 1 indicates significant

treatment effect. In particulaf.1(t) > F.2(f) means

that the average estimated probability that the response

variable is less tham is greater for the no treatment
group. Finally, the right plot also indicates significant
interaction effects.

The test procedures give values 0961, less than
0.001 and 0.003 for type of diabetes, treatment and in-
teraction, respectively, which agree with the plots of
the NP effects.

It is interesting to compare the above analysis with
the NP multivariate two-sample approach of Wei and
Lachin (1984), who tested equality of the two multi-
variate distributiond; (11, r2) and F1(t1, t») that corre-
spond to juvenile and adult groups, respectively. Note
that this null hypothesis implies our NP hypothesis of
no simple effect for type of diabetes (no main effect
and no interaction with treatment). Lin (1994) pointed
out that the Wei and Lachin (1984) statistic can be cal-
culated with SAS PROC PHREG and a macro from
the SAS web page. This givesavalue of 0.0175.
Note, however, that the multivariate two-sample ap-
proach cannot be used to test for no treatment effect.
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