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Multivariate Nonparametric Tests

Hannu Oja and Ronald H. Randles

Abstract. Multivariate nonparametric statistical tests of hypotheses are de-
scribed for the one-sample location problem, the several-sample location
problem and the problem of testing independence between pairs of vectors.
These methods are based on affine-invariant spatial sign and spatial rank vec-
tors. They provide affine-invariant multivariate generalizations of the univari-
ate sign test, signed-rank test, Wilcoxon rank sum test, Kruskal-Wallis test,
and the Kendall and Spearman correlation tests. While the emphasis is on
tests of hypotheses, certain references to associated affine-equivariant esti-
mators are included. Pitman asymptotic efficiencies demonstrate the excel-
lent performance of these methods, particularly in heavy-tailed population
settings. Moreover, these methods are easy to compute for data in common
dimensions.

Key words and phrases: Affine invariance, spatial rank, spatial sign, Pitman
efficiency, robustness.

1. INTRODUCTION in nature. This paper examines a number of hypothesis

Modern data collection settings often involve col- testing problem settings for multivariate data.

lecting information on multiple attributes of each ob-
ject (person, animal) in the study. In health studies, 2. ONE-SAMPLE LOCATION PROBLEM

for example, each observation on a patient is actu-2.1 Hotelling’s 72 Test

ally a whole array of measurements which together .

describe the health status of the person at a particu- L8t X1, ..., X, be iid. fromF(x —#6), whereF (-
lar point in time. Thus we are naturally led to con- represents a continuoug-dimensional distribution
sider vector-valued observations in dealing with data ‘located” at the vector parametér= (6. ....6,)".
from these settings. There are special needs and conYVe Wish to test the hypotheses

cerns when dealing with multivariate data. If each com- Ho:0=0 vs. H,:0+0.

ponent of the vectors is only studied marginally, then
certain outliers, strongly influential points and useful Note that the zero vectd), is used without loss of gen-
relationships among variables may not be detected.erality, because to tesfy:0 = 0o vs. H, : 0 # 09, we
Thus a multivariate examination of the data is very ap- substitutex; — ¢ in place ofx; in the tests described
propriate and important. Describe each observation asbelow.

avectorx; = (xil,...,xip)T of dimensionp. The com- The classical parametric tedt{otelling's T2, re-
ponents;s, ..., x;, usually (but not always) represent jects Ho if

different types of measurements made on one experi- _ _
mental unit. In our discussions, we consider each com- 7?2 =nXT5 X >
ponent to be continuous (or at least fairly continuous)

np
n_

p Fp,n—p(a),

whereX = ave(X;} andS = ave{(X; — X)(X; — X)T}
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with mean vectof and variance—covariance matiix where A, is now the data driven transformation pro-
Hotelling's T2 test is alsasymptotically nonparamet-  posed by Tyler (1987)Tylers shape matrixV, is
ric in the sense that if the random samile . .., X, is the positive definite symmetrip x p matrix with
from any p-variate population with mean vectfrand traceV,) = p suchthat, foranyi, with ATA, = v,
finite second moments, then

paveS S} =1,.

The matrix A, is then calledTyler's transformation
and therefore the quantiles of the chi-squared distri- |t is remarkable that Tyler's transformation, as

2d 2
T = x,

bution give large sample cutoff values in honnormal well as the spatial signS;, i =1, ..., n, then depend

cases. _ _ on the data cloud only through directiofiX; || ~1X;,
Let A, be any nonsingulap x p matrix such that ; —1 5.

A{A;=S"1. The matrixA, may be an upper trian-  Tyler's transformationa, is thus the transforma-

gular matrix obtained from a Choleski factorization of tjion that makes thesign covariance matrixequal
_1 . . -1 . . .

§ or the symmetric square root mat = S~*<, o [1/p]I,, the variance—covariance matrix of a vec-

for example. Then tor that is uniformly distributed on the unijt sphere.

T2 =nYTY =n|Y|%, Since §; and —S; contribute identically to the sam-

ple covariance matrix, the Tyler transformation may be
viewed as an attempt to make the signs (directions) of
the transformed data pointsA, X;, i =1,...,n, ap-
pear as though they are uniformly distributed on the
unit p sphere.

Matrix functions in modern computer programming
languages have made Tyler's shape matrix and Tyler’'s
transformation surprisingly easy to compute. Its itera-
tive construction may begin witly = 7, and use an
iteration step that transforms from oneto the next
via

whereY; = A, X;, i =1,...,n. ThusT? is n times
the squared length of the averageean vectorof the
transformed data points

The transformatiom,, makes the transformed points
appear to have come from a population with variance—
covariance matrixe = I, because the matrif com-
puted on theY;’s is I. However, the fundamental
purpose of the transformatioA, is to give the test
statistic the following property: A test statistit(x1,
..., X,) fortestingHp : @ = O is said to beffine invari-
antif

1/2 oTyy1/2
T(DXq,...,DX,) =T (X1, ..., Xn) V < pV/TavES S JVTe

for every p x p nonsingular matrixD and for every ~ When [pave(S;S[} — I,|| is sufficiently small, stop
p-variate data Ssexi, ..., X,. In the current problem @and setV, = [p/tracgV)]V. Choose A, so that
72 is affine invariant. This property ensures that its per- A+ Ax = V,*. Here, the matrix norm|A|| =
formance is consistent over all possible choices of the vtracg AT A).

coordinate system. Having found the spatial signs described in (1), the
multivariate sign test then rejecks in favor of H, for

large values of
In one dimension, the sign of an observation is basi- 2 =T = =2
cally its direction ¢-1 or—1) from the origin. In higher @) Q" =npS S=np|S|*,
dimensions, in this spirit, thepatial sign functioris  which is simplynp times thesquared length of the av-

2.2 Multivariate Sign Test

defined as erage direction vector of the transformed data paints
IXI~1x, x#0, This test was developed by Randles (2000).
S(x) = 0 “—0 Appropriate cutoff values for conducting this test de-

) _ _ pend on the assumptions made about the underlying
where ||x|| is the L2 norm (Euclidean distance of gjstribution F(x — #). The underlying distribution is

from 0). The function value is thus just a direction gajq to beelliptically symmetridf its density takes the
(a point on the unip sphere) whenever=£ 0. form

To create an affine-invariant sign test, we apply the 1o —
spatial sign function to transformed data points. Define fx—0) =1z (x—0)" =7 (x - 0))

thespatial signsto be with symmetry centef and positive definite symmet-

D S =S(A.X;) fori=1,...,n, ric p x p scatter matrixX. The contours of these



600 H. OJA AND R. H. RANDLES

densities form concentric ellipses centered? afThe be a positive scalar and hengg = S(A,(X; — X)) =
multivariate normal and multivariatedistributions, for sign(X; — X ;), thatis,A, plays no role. If no ties exist,
example, are both members of this broad class. The test 5 41
statisticQ? is strictly distribution-freeover the class of R =~— [Ranl(x,-) — n—]
elliptically symmetric distributions (and a somewhat n 2
larger class). Thua-level cutoffs Q > g, ,(«) could where RankX;) denotes the usual univariate rank
be established based on the elliptical distribution class.of X; among X4, ..., X,,, ranking from smallest to
Potentially weaker assumptions abdug) include largest. Sincen + 1)/2 is the mean of Ranl;), we
symmetry (under whictX — # has the same distribu-  see thatR; is 2/n times the regular rank centered at its
tion as#® — X) or directional symmetry [under which mean.

(X—=0)/IX =8| has the same distribution &8 — In multivariate settings, the data based transforma-
X)/110 —X||]. Since symmetry implies directional sym-  tion A, is chosen to make the rank procedures affine
metry, the latter is a weaker assumption ab&yt). invariant. A natural choice aof . is the transformation
Under the assumption of directional symmetry,can- needed so that the ranks satisfy the property

ditional distribution-freep valueis found via

Es[1{05 = 0%)]. | _ .

o o _ This transformation then makes thank covariance
wheres is uniformly distributed over the"2p-dimen-  matrix equal to a scalar times the identity matrix, that
su;'z)n.al vectors with each componentd or —1 and is, avdR;R7} = [c2/p]l,, where c2 = ave(|[R; [2}.

Q5 is the value of the test statistic for the data set The ranks of the transformed points thus behave as
81X1, ..., 8,X,. SinceA, does notdepend onthe signs though they are spherically distributed in the unit
of theX;’s itis sufficent to replace eac® with §;S; in p sphere. The iterative construction is as in the case of

i 2 . :
the computation of;. _ Tyler's shape matrix: One can again start with= 1,,
Finally note that, for large sample sizes, a cutoff can gnq yse an iteration step

be obtained by using the fact that when the underlying

distribution is directionally symmetric anfy holds, V <« #T
then aveR; R;}

024 2. where theR; are calculated from th& ~1/2X;. In the
o _ fp _ o end,V, = [p/tracgV)]V and the transformatiod
A multivariate median estimating a directional cen- s given by A7 A, = V1. Unfortunately, there is no

ter of the population and corresponding to the sign test proof of the convergence of the algorithm so far, but in
based onQ? in the Hodges-Lehmann sense was de- practice it seems always to converge.

veloped by Hettmansperger and Randles (2002). This The centered ranks are clearly invariant under loca-
median is called thé&ransformation—retransformation o shifts and aviR;} = 0. The rank<R; lie in the unit
spatial median The tranformation—retransformation p sphere; the direction dR; roughly points outward
technique was described by Chakraborty, Chaudhurifrom the center (spatial median) of the data cloud and
and Oja (1998), for example. its length (in a sense) tells how far away this point is

2.3 Multivariate Rank Methods from the center.
With univariate data, the Wilcoxon signed-rank test

Multivariate ranks are constructed using the signs of giagistic is essentially the sign test statistic applied to
transformed differences the Walsh sums (or averages)+ x; for i < j. Like-
Sj=S(A:Xi — X)), i j=1....n, wise, amultivariate one—sample S|g_ned—rank test sta-
tistic can be constructed using the signs of transformed
again with a data based transformatiép. This leads  \walsh sums (or averages), that is,

to the concept of aentered rank

R = ave;{S;;)

paveR;R!} = avelR] R;}1,.

v2avegR,RT V12,

2_ 1P
4ct
with the property aviR;} = 0. To see that this is an where the average is ovérj = 1,...,n. Here the

extension of the univariate centered rank, consider uni-transformationA, is chosen to be the rank transfor-
variate data. With univariate datd, can be takento  mation andcf is the scalar described above. If, for

@ U | ave{S(Ax (X + X ))}]%,
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example X1, ..., X, is a random sample from an el- 2.5 Example
liptically symmetric distribution with symmetry center

: Merchant et al. (1975) studied changes in pulmonary
0 =0, then again

function of 12 workers after 6 hours of cotton dust ex-

d posure. We examine the three-dimensional data pro-
p duced by differences in forced vital capacity, forced

and approximate cutoffs can be obtained as quantileseXp'ratorY volume an d closing capaplty. '_Fhe_ con-
. o cern in this problem is whether there is indication of

of the chi-squared distribution. pulmonary change. Thus we seek to test whether the

The multivariate one-sample affine equivariant i, eq_dimensional population is locatedatr not. An-
Hodges—-Lehmann estimaig obtained as the trans- alyzing their data yieldg'2 = 8.5265 with ap value=

formed—retransformed (spatial) median of pairwise 0.166 (F), 02 = 5.8345 with ap value= 0.120 (x2)
averages, that is, the value @fwhich would make 5,412 — 4.8169 with ap value= 0.186 (x2).

U? =0 whenU? is computed replacing eacy with 3

X;— @ fori=1,...,n. For the noninvariant versions 3. SEVERAL-SAMPLES LOCATION PROBLEM

of the spatial tests and related estimators which do not
utilize the auxiliary transformatiod ,, see Métténen
and Oja (1995). Let

3.1 Classical Multivariate Analysis of Variance

2.4 Efficiencies X1y ooy XN XN L oo XNps o3 XN 415 - -0 XNV,

be ¢ independent random samples with sample sizes
ni,...,ne, from p-variate distributionsfF(x — 61),
F(x—02),..., F(x—6,) located atp-variate centers
01, 0-,...,0., respectively. HereV;, =nq + --- +n;

and N. = N. Write alsoNg = 0. We wish to test the
null hypothesis of no treatment difference, that is,

The Pitman asymptotic efficiencies of the multivari-
ate sign test and multivariate signed-rank test relative to
Hotelling’s 72 when the underlying population is mul-
tivariater were derived by Métténen, Oja and Tienari
(1997). Some efficiencies are displayed in Table 1. We
see that as the dimensignincreases and as the dis-
tribution gets heavier tailedif gets smaller), the per- Ho:01=02=---=0. vs. H,:6;’snotall equal.
formance ofQ? and U2 improves relative td'?. The Note that undetHo, X1, ..., Xy is a random sample
sign test and the signed-rank test are clearly better tharfrom a common multivariate distribution. The classical
T2 in heavy-tailed cases. For high dimensions and very multivariate analysis of variance (MANOVA) test sta-
heavy tails, the sign test is the more efficient test. Note tistic, Hotelling's trace statisticis constructed as fol-
thatd f = +oo is the multivariate normal. The efficien- lows. First calculate the global mean vec¥oand the
cies in this table also represent ratios of the asymp-within samples covariance matrix Then Hotelling’s
totic variances of the transformation—retransformation trace statistic is
spatial median to the sample mean vector (sign test s - S
columns) and the Hodges—Lehmann estimator to the r*= Z”i Yl
sample mean vector (signed-rank test columns). i=1

where
TABLE 1 S
Asymptotic efficiencies of the multivariate sign test and the Yi= ”_z ] Z Yo i=L....c
signed-rank test relative to Hotellir‘u;:;T2 under p-variate j=Ni-1+1
t distributions withv degrees of freedom for are the samplewise mean vectors of the transformed
selected values gf andv data pointsY; = A, (X; — X), with transformationd

satisfying AT A, = S~1. The T2 test statistic is a

weighted sum of squared lengths of transformed dis-
p v=3 v=6 v=o00 v=3 v=6 v=00 tances of the sample averages from the grand average
162 088 064 190 116 o095 Itthus measures the variability among the locations of

Dimension Sign test Signed-rank test

1 )

2 200 108 078 195 119 o0.97 the samples. If second moments exist, then under the
4 225 122 088 202 121 098 null hypothesis,

10 242 131 095 209 122 0.99

2d 2
T —)Xp(c_l).
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Note that this is true also if the within covariance ma-  The p value of aconditionally distribution-free per-
trix is replaced by the regular combined sample covari- mutation tesbased ori/? is obtained via
ance matrix. 2 2
Clearly the MANOVA statistic has the following EylI{U, = U],
desired affine invariance property: A test statistic wherey = (y1,..., yn) is uniformly distributed over

T (X1, ..y XNys -5 XNo_q41, - - - » Xn,) for testing Hp: the N! permutations of(1,...,N) and U}? is the
01 =---=40.is said to baffine invariantif value of the test statistic for the permuted sample
Xy1s -, Xy Note that theA , used to define thR;’s
T(DX1+d, ..., DXy, +d; -y is invariant under permutations, so it is sufficient just to
DXy, 4144, ..., Dxy, +d) replace each spatial rafi with R, fori =1,..., N
—T(x ot X ) when computmgj}% using (4)._ _ _
Loves AN 00 ANeat Lo -0 AN The several-samples multivariate sign tests—exten-

for every xq,...,Xy, d a (p x 1) vector andD a sions of the univariate Mood test—could be defined as
(p x p) nonsingular matrix. This affine invariance well. See Mottonen and Oja (1995) for noninvariant
property ensures that the testing procedure is indepenyersions. The Pitman asymptotic relative efficiencies
dent of the choice of the coordinate system and behavedARE) of the several-samples multivariate spatial rank
consistently under different covariance structures. This test relative to the classical MANOVA? statistic are
property is attained because of the transformatign the same as the efficiencies of the multivariate signed-

rank test relative to HoteIIing’Q"z; see Table 1.

3.2 Several-Samples Rank Test
3.3 An Example

In the several-samples location problem, again con-
sider the combined sampia, ..., X . Form the signs
of transformed differences

Applying the methods of this section to the male
Egyptian skull data found in Hand et al. (1994,
page 299), we find that for these five samples of 30 ob-
S;=S(A:(X; —X})), i,j=1...,N, servations in dimension 472 = 52643 andU? =

, . 61189, which both yield tiny values when compared
which lead to spatial centered ranks of each observa- ) , chi-squareddf i 16) di{)tribution. P

tion within the combined sample:
R =ave{S;}. i=1,....N. 4. TESTING FOR INDEPENDENCE

The data based transformatian is chosen to make 41 The Problem and Classical Test

the rank test affine invariant. It is determined by re- It is often of interest to explore potential relation-
quiring, as before, that the ranks satisfy the prop- ships among subsets of multiple measurements. Some
erty paveR;R”} = aveRTR;}1,,. The scalarc? = measurements may represent attributes of psychologi-
ave{RiT R;} depends on the data cloud. cal characteristics, while others represent attributes of
Multivariate  extensions of the two-sample physical characteristics. It may be of interest to de-
Wilcoxon—Mann-Whitney test and the several-sample termine whether there is a relationship between the
Kruskal-Wallis test are then obtained as follows. The psychological and the physical characteristics. This re-

several-samples spatial rank test statissic quires a test of independence between pairs of vectors,
. where the vectors potentially have different measure-
» B : ) : _
(4) U2 — > Zni”RiHZ» mezgtr sc?zl)eTs and dimensions. Accordingly, )K:Zf
ki1 X;7 , X7 ) fori=1,...,n denote a random sam-

_ : @D ) :
whereR; for i =1, ..., c are samplewise mean vec- ple of vector pairs, wher¥;™ andX;” are continuous

tors of the spatial centered ranks as defined above. The/ectors of dimensionp andq, respectively. We seek
conditions under which the limiting null distribution to test

of U2 is the chi-squared distribution with(c — 1) de- Ho:X'P andX? are independent vs.
grees of freedom are still to be settled. (The statisti-
cal properties ofA, are unknown.) Under these mild
assumptions, the test statistic is thasymptotically In the multinormal case, Wilks (1935) derived the
distribution-free. likelihood ratio criterion for detecting deviations from

H, : they are dependent.
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the hypothesis of independence. The Wilks test statisticwhere Rankx ") is the usual univariate rank of"”’

can be expressed as amongX(“) . XW for v =1, 2. Kendall’s tau and
nj2 Dy @7 Spearman’s rho are correlations between signs of the
Ve =detavelY; 7Y ), pairwise differences and centered ranks, respectively.
where (as before)((”) A(v)(x(v) X©) p=12 A multlvarlqte e>_<tenS|on of (Ilgendalls(lgau(i)s cre-
andi =1, ..., n, with partitioned sample mean vectors at?d by forming sign vectors;;” = S(A"(X;
X, sample covariance matric68” and transforma- X( ), where the transformatlom( Y is chosen so
tions A such thatA§”)TA§”) — (S®)"Lforv=1,2. thatpave{S(l)S(l) } = 1,. This is the transformation
An asymptotically equivalent test can be based on thestudied by Terr (1987) but computed on differences
statistic x® Xgl). The corresponding shape matri% for
W =npq| ave{YEl)YEZ)T}HZ. which ATA, = v1 Wlas introduced by Diumbgen
(1998). Note that thé( )’s are invariant under loca-

The statisticW is seen to beipg times the sum of tion shifts. Similarly,q- d|men5|onal sign vector§(2)
squares of covariances between elements of the trans- Ax®
formed Xf ) with elements of the transformemfz) are formed based on differences amofig X", ...,

vectors. UndetHp, the limiting distribution ofW is a APX{? with a similar transformationt .
chi-squared distribution witlyg degrees of freedom. A multivariate version of the test based on Kendall's
Muirhead (1982) examined the effect of the group of tau Uses
tra_msformations{x — DX + d} on this problem. Here 2 npq | av e{s(l)S(Z) }”
dis anyp + ¢ vector and (20;((1)6)((2))2
D = (l;l Ig ) with data dependent constam,(é) and C)(Cz) described
2

below. Here the scalar multiple is chosen so that when
isany(p+¢q) x (p+q) nonsingular matrix of the form  the marginal distributions oXl.(") are elliptically sym-
above withp x p matrix D1 andg x g matrix D. metric,v = 1, 2, and whenHj is true, the limiting dis-
The Wilks test is invariant under this group of trans- tribution of 72 is a chi-squared distribution witlpg
formations. Thus its value does not depend on the cho-degrees of freedom.

sen marginal coordinate systems and its performance The multivariate extension of Spearman’s rho uses
is consistent under dlfferent variance—covariance struc-centered rank VectoR( D based on differences among
tures of eltherX ) or X ) This characteristic gener-

the first componentA(l)x(l) el A)(Cl)xﬁ,l) transformed
ally improves |ts power and control aflevels.

by AL chosen so that
4.2 Rank Tests of Independence

T T
. o . . avgRVRP" | —avgRY RP Y/
To motivate multivariate nonparametric tests of in- paveR R | 4R i
dependence, recall first the popular univariate={ With analogous descriptions of tiedimensional rank

q = 1) nonparametric tests due to Kendall (1938) and yectorsrR'?, a multivariate version of the test based on
Spearman (1904). Kendall's tau is a scalar multiple of Spearman s rho uses

avefsignX;¥ — x\") sign(x{? — x'?)} p2= — P9 gRVRD |2
(D22

or

1) (2 with

ave{ Si(j ) Si(j ) }

and Spearman’s rho is a scalar multiple of

ave{ <Ran|<(Xfl)) ngr >(RanI(X(2)) ngrl)}

or

()% = avgRY' R®}
and
(c?)? = avgR? R?)}.

Again the scalar multiple is chosen so that the limiting
ave{ RV R, null distribution ofp? is a chi-squared distribution with
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pq degrees of freedom, under the same conditions de-are relative to the classical parametric test with test sta-
scribed forr2. The statistica? andp? were proposed tistic W. Again we observe the superiority of the spa-
by Taskinen, Oja and Randles (2005). tial sign and rank based methods, particularly in higher
The statistict? (p?) is seen to be a scalar multi- dimensions and with heavier tailed populations.
ple of the sum of squares of covariances between ele- Applying these methods to the head length and head
ments of the sign-transformed differenOég) x(l) breadth measurements on both first and second born
(rank-transformedX ") and elements of the corre-  SONS in 25 families (see Hand et al., 1994, page 85),
sponding sign-transformed dlfferencéém X we test whether there is correlation among these paired

. J bivariate measurements. The tests yi#ld= 75.872
_ @ 2 2 y ,
(rank-transformedX;~’). The statisticsr“ and p“ are 72 = 66.678 andp? = 26.914. Thep values are very

e?(;sy;r(: C%rgﬁg;et:]%rr:?/tear n ?Zgi?;ngg:lsensﬁr;sn':rhls small for all three tests based on comparison to a chi-
property yp ; ma squaredd f = 4) distribution.
ditional p values can be generated via

E I{r}>7%)] and E,[I{p5 > p?}, 5. FINAL REMARKS
wherey = (y1, ..., y») is uniformly distributed over This paper describes only one possible approach to
then! permutations of the integer4, 2, ..., n) and creating multivariate analogues to common univariate
tests of hypotheses. Additional analogues based on al-
2= ave{S(l)S)(/lZ;j} : ternative principles include the following. First, the

Y PROREN . S :
(2cy ( ) ( ))2 so-called interdirection counts introduced by Randles

p2 = npq H ave{R(l)R<2)T}|| (19_89) can be used to cpnstruct r_lonparametric tests
Y (1) <2> )2 which are often asymptotically equivalent to the tests
discussed here. Second, methods based on marginal
signs and ranks were described by Puri and Sen (1971).
'Other methods, based on distances measured via vol-
umes of simplices, were described by Oja (1999) and

A multivariate analogue to the univariate Blomqvist
(1950) quadrant test was developed by Taskinen
Kankainen and Oja (2003).

4.3 Efficiencies and an Example the references contained therein. Optimal signed-rank
) testing procedures based on interdirections and (uni-
Using the model variate) ranks of the lengths of the residual vectors
XD 1-A)I, AM; z@ were developed by Hallin and Paindaveine (2002).
(X(Z)) = ( AMlT (1— A)Iq> <Z(2)) Also different depth functions (Liu, Parelius and Singh,

1999; Zuo and Serfling, 2000) provide center-outward

whereZ® and Z® are independent, Pitman AREs orderings or rankings of data points which can be used

were developed by Taskinen, Oja and Randles (2005).in test constructions.

Here M1 denotes an arbitraryp x g matrix with The authors wish to thank Seija Sirkia for her help

|M1]|? > 0. Some AREs for contaminated nornZat’ in the implementation of the methods; the R func-

are shown in Table 2, wherep = ¢ and tions used in the calculation can be found on her web-
Z® ~ (0.9)N(0, I) + (0.1)N (O, cI). The efficiencies site:http://www.maths.jyu.fi/ssirkia/signrank/signrank.

html.
TABLE 2
Asymptotic efficiencies of the multivariate analogues to
Spearmats rho and Kendalk tau tests at different contaminated REFERENCES
normal distributions for = 0.1 and for selected values ofand BLOMQVIST, N. (1950). On a measure of dependence between two
selected dimensions= ¢ random variablesAnn. Math. Statist21 593-600.
CHAKRABORTY, B., CHAUDHURI, P. and QA, H. (1998). Op-
Dimension Kendall and Spearman erating transformation retransformation on spatial median and
p=q c=1 c=3 c=6 angle testStatist. Sinica 767-784. - o
DUMBGEN, L. (1998). On Tyler'sM -functional of scatter in high
2 0.93 1.17 1.92 dimensionAnn. Inst. Statist. Matb0 471-491.
5 0.96 1.23 2.05 HALLIN, M. and RINDAVEINE, D. (2002). Optimal tests for
10 0.98 1.26 211 multivariate location based on interdirections and pseudo-

Mahalanobis rankAnn. Statist30 1103-1133.
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