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The Sign Statistic, One-Way Layouts and
Mixture Models
R. T. Elmore, T. P. Hettmansperger and F. Xuan

Abstract. We consider the use of sign statistics in two different types of
one-way layouts. The first layout is for data collected to compare several
treatments. The second layout is for independent repeated measures on sev-
eral subjects. In the first case we discuss hypothesis testing and multiple com-
parisons. In the second case we fit mixture models. We then show how fitting
mixture models can be helpful in follow-up multiple comparisons in the first
case.

Key words and phrases: Binomial mixtures, cut-point models, EM algo-
rithm, Bayesian information criterion, Mood’s test.

1. INTRODUCTION

This article presents some statistical settings in
which the simple sign statistic is very useful. We pri-
marily discuss the one-way layout. First, we consider
the one-way layout in the context of comparing several
treatments and, second, we consider a special case of
mixture models in which we have repeated measures.
Before turning to the one-way layout we briefly review
the use of the sign statistic in a single sample of data.

Suppose we havem independent and identically dis-
tributed observations denoted byx1, . . . , xm. Define

S(t) =
m∑

i=1

I (xi ≤ t),(1)

whereI (A) is the indicator of the eventA, meaning
that I (A) = 1 if A occurs and 0 otherwise. Hence,
S(t) counts the number of observations out ofm that
are less than or equal tot ; S(t) is called the sign statis-
tic.

EXAMPLE 1 (Hypothesis testing with the sign test).
In the 1960s psychologists suspected that environment
affects the anatomy of the brain. The subjects for this
study were a genetically pure strain of rats. From each
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litter, one rat was selected at random for the treatment
group and one for the control group. Both groups got
exactly the same food and drink. Each animal in the
treatment group lived with 10 others in a large cage fur-
nished with toys which were changed daily. Animals
in the control group lived in isolation. After a month
the animals were killed and their cortex weights were
recorded. We wish to test the hypothesis that the treat-
ment group tended to have higher cortex weights. The
data are given in Table 1.

This is a paired-data design in which litter mates
determine the pairings. Letθ denote the population
median for the difference score distribution. Then we
wish to testH0 : θ = 0 versusH1 : θ > 0. We reject the
null hypothesis ifS(0), the number of differences less
than or equal to 0, is small. Under the null hypothe-
sis, S(0) has a binomial distribution with parameters
m = 11 andp = 0.5. SinceS(0) = 1, thep value for
the test isP(S(0) ≤ 1) = 0.0059 from the binomial ta-
ble. Hence, we conclude at reasonable significance lev-
els that environment positively impacts cortex weight.

The sign test and the corresponding point estimate
(the sample median) have relative efficiency with re-
spect to thet test and sample mean equal to 0.64 when
the underlying distribution is normal. However, if the
underlying distribution has heavy tails (such as Laplace
or double exponential distribution), then the efficiency
can be greater than 1 and the sign test is more efficient.
Because they are robust against outliers and gross er-
rors in the data, the sign test and the sample median
are excellent for exploratory and rough confirmatory
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TABLE 1
Cortex weights

Treatment 689 656 668 660 679 663 664 647 694 633 653
Control 657 623 652 654 658 646 600 640 605 635 642
T − C 32 33 16 6 21 17 64 7 89 −2 11

analyses. See Hettmansperger and McKean (1998) for
more discussion.

2. ONE-WAY LAYOUT: COMPARING
n TREATMENTS

In a basic nonparametric statistics course, the
Kruskal–Wallis rank test is introduced to test hypothe-
ses concerning the equality of several distributions. In
this section we discuss the corresponding test that can
be considered an extension of the sign test for one sam-
ple. Mood (1950) discussed this test and Minitab has a
command to implement it. The test appears in standard
texts as the median test for several samples. Of course,
it can also be used to compare two samples.

In the one-way layout we haven samples. In the
ith sample we havemi independent observations,
x1i , . . . , xmi,i for i = 1, . . . , n. We haveM = ∑

mi

total observations and we wish to testH0 :F1 =
· · · = Fn versus the alternative that they are not all
equal. Here is an example.

EXAMPLE 2 (Sulfur content of coal). A study was
carried out to ascertain the sulfur content of five major
coal seams in Texas. Core samples were taken at ran-
dom from each of the seams and analyzed. The data
consist of the percentage of sulfur per plug and are
given in Table 2. The research hypothesis is that the
seams differ in sulfur content.

TABLE 2
Sulfur content of coal

Seam

A B C D E

1.51 1.69 1.56 1.30 0.73
1.92 0.64 1.22 0.75 0.80
1.08 0.90 1.32 1.26 0.90
2.04 1.41 1.39 0.69 1.24
2.14 1.01 1.33 0.62 0.82
1.76 0.84 1.54 0.90 0.72
1.17 1.28 1.04 1.20 0.57

1.59 2.25 0.32 1.18
1.49 0.54

1.30

Let θ̂ denote the combined sample median for
the M = 42 total observations. Mood’s test is built
from Si(θ̂), the number of observations in theith
sample that are less than or equal toθ̂ = 1.21 for
i = 1, . . . ,5. The test statistic is

T = 4
n∑

i=1

1

mi

(
Si(θ̂) − mi

2

)2

,(2)

where the constants are introduced in the formula so
that, underH0, T is approximately distributed as chi
squared withn−1 degrees of freedom. See Appendix 1
for details about the asymptotic distribution. Since un-
derH0 all permutations of the data are equally likely, it
is possible to approximate the permutation distribution
of T by repeated sampling of the permutations. For the
data in Table 2,T = 12.33 and the approximatep value
is 0.015 from the chi squared table with 4 degrees of
freedom. Based on a sample of 50,000 permutations
of the data, the permutationp value is approximately
0.0127, close to the asymptotic approximation. Hence,
for significance levels greater than 1.5% we can reject
the null hypothesisH0 :F1 = · · · = F5 and claim that
there is a difference in sulfur content across the five
seams. This immediately raises the question of multi-
ple comparisons; since, we want to know which distri-
butions are different from the others.

We consider simple pairwise multiple comparisons.
SupposeαF is the assigned family error rate. Then
using the Bonferonni inequality, we distribute the er-
ror across the family ofn(n − 1)/2 pairwise com-
parisons and assign an individual comparison rate of
α = 2αF /n(n − 1). Since the vector ofn sign sta-
tistics is approximately multivariate normal, it can be
shown using the details in Appendix 1 that the differ-
ence in sign statistics is also approximately normally
distributed. We declare theith andj th treatments sig-
nificantly different atαF when

2|Si − Sj |√
1/mi + 1/mj

≥ zα/2,(3)

whereSi = m−1
i Si(θ̂ ) andzα/2 is the upperα/2 per-

centile from a standard normal table. In our exam-
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FIG. 1. Box plots and 95% confidence intervals for the coal data.

ple there are 10 pairwise comparisons. If we assign
αF = 0.10, then the individual pairwise comparisons
are conducted atα = 0.01 andz0.005 = 2.58. The only
two comparisons that are significant are C versus D
and C versus E. Hence, we do not have much power to
group the seams. Figure 1 shows the 95% confidence
intervals (shaded areas) and suggests that A and C are
different from D and E, while B cannot be separated
from any of the seams.

In the next section we consider analyzing the one-
way layout via a mixture model. We return to the coal
data later and see how fitting a mixture model to the
data may help group the seams.

3. ONE-WAY LAYOUT: MIXTURE MODELS

Recall that the one-way layout hasn sets of mea-
surements. In this section we begin by assuming that
the number of measurements in each set ism. Later we
consider the case when there are different numbers of
measurements in the sets. In the previous section, the
sets of measurements came fromn treatments. In this
section, then sets come fromn subjects. Hence, we
consider data that come from an experiment in which
we havem measurements on each ofn subjects. We
assume that the measurements within a subject are in-
dependent and identically distributed. If we letF ∗

i rep-
resent the distribution associated with theith subject,
then as in the case of multiple comparisons, we wish to
reduceF ∗

1 , . . . ,F ∗
n to a smaller set, say,F1, . . . ,FK ,

whereK < n, and group the subjects into homoge-
neous groups. That is, we wish to categorizeF ∗

i as
Fk for somek in 1, . . . ,K . This shortly leads us to a
mixture model. We do not wish to assume any distri-
butional form forF ∗

i . We first set the context with an
example.

EXAMPLE 3 (Rod and frame task). Subjects are
seated in a darkened room without visual cues. The

subjects are presented with a luminous frame that con-
tains a luminous rod tilted from the vertical. The task
is to adjust the rod to a vertical position. Psychologi-
cal theory suggests that there are two types of subjects:
field-independent subjects who can, without much er-
ror, adjust the rod to the vertical and field-dependent
subjects who tend to make large errors. The measure-
ment is the absolute error from the vertical. The data
consist of 83 sets of eight measurements. The 83 sub-
jects were college students. Hence,n = 83 andm = 8.

This is quite different from the one-way layout dis-
cussed in the previous section since now we have a
very large number forn and a small number form. The
original data set can be downloaded fromhttp://www.
blackwellpublishing.com/rss/Volumes/Bv62p4.htm and
was analyzed by Hettmansperger and Thomas (2000).
Thus, we expect to reduce the complete set of dis-
tribution functionsF ∗

1 , . . . ,F ∗
83 to perhaps two or so

primary components and group the subjects into field-
independent and field-dependent groups.

In general, since we do not know the underlying dis-
tributions, we transform the data on each subject. Letc

be a cut point in the data, and for theith subject com-
puteSi(c) = ∑

j I (xji ≤ c), the number of measure-
ments on theith subject that are less than or equal toc.

In the previous section we tookc to be the combined
sample median. In the rod and frame example we take
c = 6◦. If the rod is within 6◦ of vertical, the subject is
considered to have mastered the task.

If we know that theith subject is associated with,
say F1, then, conditioned on this knowledge, we de-
duce thatSi(c) is binomially distributed with parame-
tersm andF1(c), the probability that a measurement
on theith subject will be less than or equal toc. We
can then write the binomial in the manner

P
(
Si(c) = s|F1

) =
(

m

s

)
F1(c)

s(1− F1(c)
)m−s

(4) = b(s;m,F1(c)),

whereb(s;m,p) is the binomial mass function with
parametersm and p. In fact, the ith subject could
come from any ofF1, . . . ,FK. Suppose thatλk is the
probability that a subject is associated withFk for
k = 1, . . . ,K. Then, for theith subject we have

P
(
Si(c) = s

) =
K∑

k=1

λkb(s;m,Fk(c)).(5)

This is called theK-component binomial mixture
model. It is important that the cut point be close to the
center of the data. For general data sets we often take
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the combined sample medianθ̂ . This induces some de-
pendence and the binomial mixture model is then only
approximate. Simulations have shown that the bino-
mial mixture still fits quite well; see Hettmansperger
and Thomas (2000) for more discussion. For more de-
tailed explanations of all aspects of mixture models,
see McLachlan and Peel (2000).

There are 2K − 1 parameters in model (5):F1(c),

. . . ,FK(c), λ1, . . . , λK−1, sinceλK is determined by
the others. The problem is to estimate the parameters
for a fixed K. We then varyK and study the value
of the (penalized) log-likelihood, choosing that value
of K that maximizes the (penalized) log-likelihood. We
use a penalty since the dimension of the model changes
with K. In this discussion we use the Bayesian infor-
mation criterion (BIC) of Schwarz (1978). We calcu-
late

BIC = −2 ln(likelihood) + d ln(n),(6)

whered is the number of parameters that must be es-
timated. Minimizing BIC is equivalent to maximizing
the (penalized) log-likelihood. See Appendix 2 for ad-
ditional comments on BIC.

Provided thatm ≥ 2K − 1, the mixture model is
identifiable and there is a unique mixture model rep-
resentation. Ifm is smaller than 2K − 1, there may
be many different mixture model representations. This
puts a limit on the number of components that we can
fit to a given data set.

We use an expectation–maximization (EM) algo-
rithm (Dempster, Laird and Rubin, 1977) to fit the
binomial mixture model and compute the parameter
estimates using maximum likelihood. In addition to the
estimates, we also get a set of posterior probabilities for
each subject. These are the probabilities that the sub-
ject comes from the various component distributions.
By using the posterior probabilities as weights in an
empirical c.d.f., we can use all of the data to estimate
the component c.d.f.’s,F1, . . . ,FK. The estimator of
the component c.d.f. is a weighted version of the sign
statistic (1) in which the weights are based on the pos-
terior probabilities. See Appendix 3 for a description
of an EM algorithm for binomial mixtures and Appen-
dix 4 for estimates of the component c.d.f.’s.

We provide R/S-Plus functions for binomial mix-
ture model estimation at the websitehttp://www.stat.
psu.edu/˜tph/StatScience/. We note that it is possible
to use several cut points; however, this results in a
multinomial mixture rather than a binomial mixture.
Estimation ofλ1, . . . , λK and the component c.d.f.’s
is more efficient in this case. The R/S-Plus functions

mentioned above can also be used to fit a multino-
mial mixture. See Cruz-Medina, Hettmansperger and
Thomas (2004) and Elmore (2003) for additional infor-
mation regarding multinomial mixtures in this setting.
We illustrate these ideas on the rod and frame data.

EXAMPLE 4 (Rod and frame continued from Ex-
ample 3). The 83 subjects provideS1(6), . . . , S83(6),
which are integers ranging from 0 to 8. As a prelimi-
nary check we computeT = 295 from (2) and refer it
to a chi squared distribution with 82 degrees of free-
dom. The resultingp value is 0.000 and we easily re-
ject F ∗

1 = · · · = F ∗
83. Hence, we fit binomial mixture

models withm = 8 and unknown probabilities of suc-
cess. Sincem = 8, we can identify up toK = 4 compo-
nents. We next compute the BIC from (6) for various
values ofK. The values forK = 2,3,4 are 404, 366
and 375. The minimum occurs atK = 3 and so we fit
a three-component model to the data. We report in Ta-
ble 3 the proportionsλ1, λ2 andλ3 along withFk(6),

the binomial probability of getting the rod to the verti-
cal position (success) fork = 1,2,3. In Table 4 we give
the observed frequencies ofSi(6) for i = 1, . . . ,83.
In addition, we provide the posterior probabilities for
each of the possible values 0,1, . . . ,8 along with their
respective classification. This classification is related
to the “soft” clustering described by Hastie, Tibshirani
and Friedman (2001).

First consider Table 3. We have seen from BIC that
the 83 subjects can be grouped into three components.
The first component, which accounts for 52% of the
population, has a success probability of about 0.52.
This suggests that the subjects associated with this
component are guessing when they try to make the
rod vertical, since they have roughly a 50–50 chance
of getting it correct. The second component subjects
are even worse. They virtually never get it correct. The
third component consists of subjects who know exactly
how to do the task. Hence, the mixture model consists
of two degenerate binomial components and a proper
component. We summarize by saying that about 31%
of the population know precisely how to do the task

TABLE 3
Parameter estimates for the rod and frame data

First component Second component Third component

λ̂k 0.52 0.17 0.31
F̂k(6) 0.52 0.01 0.94
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TABLE 4
Count data and posterior probabilities for the rod and frame data; ξk denotes the

posterior probability of being in the kth component given the observed count

0 1 2 3 4 5 6 7 8

Frequency 13 2 5 6 13 13 4 11 16
Rel. freq. 0.16 0.02 0.06 0.07 0.16 0.16 0.05 0.13 0.19
ξ1 0.01 0.54 0.99 1.00 1.00 0.98 0.76 0.17 0.01
ξ2 0.99 0.46 0.01 0.00 0.00 0.00 0.00 0.00 0.00
ξ3 0.00 0.00 0.00 0.00 0.00 0.02 0.24 0.83 0.99
Classification 2 1 1 1 1 1 1 3 3

and we call these subjects field independent. The re-
maining 69% are field dependent and become confused
by the tilt of the frame. The field-dependent population
breaks into two further subgroups: one that never gets
it correct and one that guesses.

In Table 4 we show the data and the posterior proba-
bilities for assignment to components. For example, if
a subject scores four correct out of eight trials, then we
estimate that there is roughly a 100% chance that he or
she came from the first component in which subjects
guess. So far, the analysis is descriptive. We recom-
mend the parametric bootstrap (Efron and Tibshirani,
1993) based on the estimated binomial mixture to esti-
mate standard errors. We do not pursue standard errors
further in this article.

We can also analyze the original absolute error data.
We wish to estimate the three-component c.d.f.’s. Note
that if we assume that a subject comes from, sayF1,

then lettingX denote the absolute error measurement,
we estimateP1(X ≤ x) = F1(x) by n−1 ∑

j I (xj1 ≤
x) = n−1S1(x). However, we do not know from which
component a randomly chosen subject is drawn. We

FIG. 2. The estimated c.d.f.’s and their respective mixing propor-
tions for the rod and frame data.

estimate theP1(X ≤ x) by a weighted average of
S1(x), . . . , Sn(x), where the weights come from the
posterior probabilities computed with the EM algo-
rithm. See Appendix 4 for the formula and a discus-
sion. In Figure 2 we show the estimates of the three
component distributions. Note that one distribution has
almost all of the distribution below 6 degrees, one is al-
most completely above 6 degrees and the guessers are
more spread out.

We also compute the means and standard deviations
from the estimated component c.d.f.’s. They are given
in Table 5.

We now wish to return to the coal seam data and con-
sider how mixture models can help us identify the pos-
sible different distributions underlying the data. Recall
that we rejected the null hypothesis thatF1 = · · · = F5.

EXAMPLE 5 (Sulfur content of coal continued from
Example 2). Now the five coal seams are the sub-
jects. There are different numbers of observations per
subject, but that does not present any additional diffi-
culties in the EM algorithm; see Appendix 3 for a dis-
cussion of the algorithm. Since we have decided that
there are subgroups, the question is how many. Fig-
ure 1 along with the multiple comparisons suggest that
seams A and C are different from D and E, while B
cannot be separated from either of the two groupings.
We condition our analysis on the combined sample me-
dian 1.21 and useS1(1.21), . . . , S5(1.21), the essential
ingredients for Mood’s test statistic (2). Our goal is to

TABLE 5
Estimated means and standard deviations for the rod and

frame components

First component Second component Third component
(guessers) (poor) (excellent)

µ̂k 7.29 19.05 2.80
σ̂k 5.34 6.83 2.27
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TABLE 6
Mixture model analysis for sulfur content; ξk denotes the posterior
probability of being in the kth component given the observed count

Seam

A B C D E

mi 7 8 9 8 10
Si(1.21) 2 4 1 6 8
ξ1 0.11 0.76 0.00 1.00 1.00
ξ2 0.89 0.24 1.00 0.00 0.00
Classification 2 1 2 1 1

identify the underlying distributions, display the distri-
butions and assign the seams to the distributions. We
first compute BIC (6) for the two-, three- and four-
component models. We find values of 25.16, 28.37 and
31.59. This suggests that we have two groups and a
two-component mixture underlying the combined data.
In Table 6 we provide the posterior probabilities for the
five seams.

Consistent with the multiple comparisons and Fig-
ure 1, A and C are grouped and D and E are grouped. In
addition, B is assigned to the group with D and E on the
basis of the posterior probability. Using the posterior
probabilities from the EM algorithm as weights, we
can estimate the component distributions as discussed
earlier. The component c.d.f. estimate is described in
Appendix 4. Finally, using the estimator for the com-
ponent distributions, we can plot the two components;
see Figure 3. We also compute the means and standard
deviations of the two components in Figure 3. These
are given in Table 7. Note that the component distribu-
tions for sulfur content have roughly the same standard

FIG. 3. The estimated c.d.f.’s. and their respective mixing pro-
portions for the coal data.

TABLE 7
Estimated mixing proportions, means and standard

deviations for the components in the coal data

First component Second component

λ̂k 0.57 0.43
µ̂k 0.98 1.50
σ̂k 0.36 0.38

deviation and means separated by roughly 0.5% of sul-
fur content.

Thus we have a more complete followup analysis.
We do not advocate mixture models as a replacement
for multiple comparisons, only as a supplement which
provides additional insight.

APPENDIX 1: ASYMPTOTIC DISTRIBUTION FOR
SIGN STATISTICS

In this appendix we sketch the derivations for the as-
ymptotic distributions that underlie formulas (2) and (3)
in Section 2. See Section 2 for notation. We assume
that F1 = F2 = · · · = Fn = F , say, thatF is continu-
ous and the density functionf (θ) > 0, whereθ is the
true median of the common c.d.f. Furthermore, we as-
sume thatM = ∑n

i=1 mi andM → ∞ in such a way
thatmi/M → πi , where 0< πi < 1 for i = 1,2, . . . , n.
Let

T̂i = 2√
mi

(
Si(θ̂) − mi

2

)

= 2√
mi

(
Si(θ) − mi

2

)

+ 2f (θ)
√

mi(θ̂ − θ) + op(1),

whereop(1) are terms that converge to zero in prob-
ability. This expansion was given by Hettmansperger
and McKean (1998, Section 1.5.2). LetTi = 2/

√
mi ·

(Si(θ) − mi/2). Then

T̂i = Ti + 2f (θ)
√

mi(θ̂ − θ) + op(1).(7)

Furthermore, from the definition of the medianθ̂ and
applying the expansion again, we have

op(1) = 2√
M

[
n∑

i=1

mi∑
j=1

I (xji ≤ θ̂ ) − M

2

]

= 2√
M

[
n∑

i=1

mi∑
j=1

I (xji ≤ θ) − M

2

]

+ √
M2f (θ)(θ̂ − θ) + op(1).
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Hence

2f (θ)
√

M(θ̂ − θ)

= −
n∑

k=1

√
mk

M

2√
mk

(
Sk(θ) − mk

2

)
+ op(1)

= −
n∑

k=1

√
πkTk + op(1).

(8)

Substitute (8) into (7) and we have

T̂i = Ti − √
πi

n∑
k=1

√
πkTk + op(1).(9)

Let T = (T1, T2, . . . , Tn)
T . Then by the central limit

theorem,

T
D−→ Z ∼ MVN(0, I ),

where MVN(0, I ) means a multivariate normal distri-
bution with mean vector0 and covariance matrix the
n × n identity matrixI . Let

A =




1− π1 −√
π1π2 · · · −√

π1πn−1 −√
π1πn

−√
π2π1 1− π2 · · · −√

π2πn−1 −√
π2πn

...
. . . · · · . . .

...

−√
πnπ1 −√

πnπ2 · · · −√
πnπn−1 1− πn




.

Then

T̂ = AT + op(1)
D−→ AZ ∼ MVN(0,AAT ).

However, AAT = A2 = A, idempotent, with rank
n − 1. Hence from (2),

T = T̂T T̂
D−→ ZT AZ ∼ χ2(n − 1).

The asymptotic distribution for the multiple compar-
isons (3) also follows from the limiting multivariate
normal distribution ofT̂.

APPENDIX 2: BAYESIAN
INFORMATION CRITERION

Employing finite mixture model methodology as a
multiple comparisons diagnostic requires choosing the
number of components that the mixture model con-
tains. As we mentioned in Section 3, we use a penal-
ized likelihood approach to this problem, namely, the
Bayesian information criterion. See Schwarz (1978)
for the seminal article of the BIC and McLachlan and
Peel (2000) for a discussion of the BIC, as well as other
penalized likelihood approaches applied to finite mix-
ture models.

Let �K denote the parameter vector associated with
the K-component mixture model given in (10) and
let l(�K) be the log-likelihood of a sample from this
model. The BIC for this situation is given by

BICK = −2l(�̂K) + d lnn,

where d is the dimension of the parameter space
and�̂K represents the maximum likelihood estimator
(MLE) of �K . Choose the value ofK which minimizes
BIC.

Our motivation for using a penalized form of the
likelihood is due to the following reason. Notice that
the parameter space�K for theK-component mixture
model is a subset of�K+1, the parameter space for
the(K + 1)-component mixture model. Therefore, the
value of the likelihood at the MLE will not decrease as
we increase the number of components in the mixture.
The penalty term is designed to penalize the likelihood
based on the complexity of the model. In the case of
BIC, the penalty is primarily due to the dimension of
the parameter space.

APPENDIX 3: EXPECTATION–MAXIMIZATION FOR
BINOMIAL MIXTURES

Let S1, S2, . . . , Sn be a sample of observations from
theK-component binomial mixture distribution of the
form

P(Si = si) =
K∑

k=1

λkb(si;mi,pk),(10)

where
∑K

k=1 λk = 1 andb(si;mi,pk) is the binomial
mass function withmi trials and probability of suc-
cesspk . We describe an expectation–maximization al-
gorithm for finding maximum likelihood estimators
of the parameters in (10):λ = (λ1, . . . , λK−1) and
p = (p1, . . . , pK). The standard reference on EM al-
gorithms is Dempster, Laird and Rubin (1977); how-
ever, a more comprehensive account was given by
McLachlan and Krishnan (1997).

An EM algorithm formulates the problem as a
missing-data problem and then iterates between an ex-
pectation (E) step and a maximization (M) step until
convergence is attained. These steps are outlined be-
low for this problem.

A.3.1 Complete-Data Formulation

The missing data are defined as the multinomial
indicator vectors of component membership,Z1,Z2,

. . . ,Zn, whereZi = (Zi1, . . . ,ZiK)T . If the observa-
tion Si is actually from thekth component, then the
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vector Zi has a 1 in thekth position and 0’s else-
where. For example, if the first observation is from
the third component, thenZ1 = (0,0,1,0, . . . ,0)T .
The complete-data distribution (i.e., joint distribution
of Si andZi) can be written as

fc(si, zi) =
K∏

k=1

[λkb(si;mi,pk)]zik(11)

with complete-data log-likelihood

lc(�) = ln
n∏

i=1

fc(si, zi)

(12)

=
n∑

i=1

K∑
k=1

zik[lnλk + lnb(si;mi,pk)],

where� = (λ,p)T . Since theZi are unknown, we can-
not maximize (11) directly. Instead, we replacelc(�)

by its conditional expectation in the E step below.
We then maximize the conditional expectation in the
M step. McLachlan and Peel (2000) showed that this
iterative process leads to a sequence of estimates that
does not decrease the original likelihood.

A.3.2 E Step

The (r + 1)st E step of the algorithm requires tak-
ing the conditional expectation oflc(�) given the ob-
served data and the current value of the parameter, say
�(r). In this case, the conditional expectation of (12)
reduces to taking the expectation ofZik givensi . Note
that Zik given si is a Bernoulli random variable with
conditional probability of success given by

Ẑ
(r)
ik = E�(r) (Zik|si )

= P�(r)[Zik = 1|si](13)

= λ
(r)
k b(si;mi,p

(r)
k )∑K

k=1 λ
(r)
k b(si;mi,p

(r)
k )

from Bayes’ theorem. Notice that̂Z(r)
ik is the posterior

probability that theith sample member belongs to the
kth component, givensi and�(r), at the(r + 1)st iter-
ation of the algorithm.

A.3.3 M Step

The M step is so named because we are performing
a maximization at this stage of the problem. We begin

by defining the objective function

Q
(
�;�(r))

(14)

=
n∑

i=1

K∑
k=1

Ẑ
(r)
ik [lnλk + lnb(si;mi,pk)].

The(r + 1)st iteration of the M step requires the max-
imization of Q(�;�(r)) to obtain updated estimates
of the parameter vector�(r+1). Upon differentiating
and simplifying the resulting expressions, we have
λ

(r+1)
k = ∑

i Ẑ
(r)
ik /n. In other words, each observation

contributes its respective posterior probability of being
in thekth component to the estimate of the probability
of membership in this component. In addition, it can
be shown that the updated parameter estimates of the
binomial probabilities for allk are given by

p
(r+1)
k =

∑n
i=1 Ẑ

(r)
ik Si∑n

i=1 Ẑ
(r)
ik mi

.

A.3.4 Convergence and Starting Values

For the examples given in this paper, we use a rela-
tive difference stopping criterion to assess convergence
of an EM algorithm. This is based on the absolute rel-
ative difference between parameter estimates at suc-
cessive iterations of the algorithm. If we letD be the
dimension of the parameter vector�, then we suggest
stopping the algorithm when

|�(k)
d − �

(k+1)
d |

�
(k)
d

< ε(15)

for d = 1,2, . . . ,D, given some small, prespecified
value of ε (e.g.,ε = 10e−6). This stopping rule was
discussed by Schafer (1997).

We close this section by noting that this algorithm
should converge to at least a local maximum, not nec-
essarily a global maximum. Therefore, we recommend
starting the algorithm at several random initial values
�(0) to increase the chance that a global maximum is
indeed found; see McLachlan and Peel (2000).

APPENDIX 4: EMPIRICAL COMPOUND
DISTRIBUTION FUNCTION

As a result of fitting an EM algorithm to a mixture
model, the posterior probabilities of being in thekth
component (k = 1,2, . . . ,K) are given for each obser-
vation. This leads to an empirical cumulative distribu-
tion function-like estimator in the setting described in
Section 3. That is, suppose we are given a sample of
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sign statisticsS1, S2, . . . , Sn. If we regard these obser-
vations as arising from a finite mixture model and fit
an EM algorithm, then we can estimate thekth distrib-
ution function using

F̂k(x) =
∑n

i=1
∑mi

j=1 Ẑ
(∞)
ik I (xji ≤ x)∑n

i=1 Ẑ
(∞)
ik mi

(16)

=
∑n

i=1 Ẑ
(∞)
ik Si(x)∑n

i=1 Ẑ
(∞)
ik mi

for x ∈ R, whereẐ
(∞)
ik represents the posterior proba-

bility (at convergence of the algorithm) of being in the
kth component given that we observedSi .

We can use the function defined in (16) to estimate
the mean and the standard deviation of thekth com-
ponent exactly as one might use the usual empirical
c.d.f. That is, the mean and standard deviation of the
kth component are estimated using

µ̂k =
n∑

i=1

mi∑
j=1

wikxji,

σ̂ 2
k =

n∑
i=1

mi∑
j=1

wikx
2
ji −

(
n∑

i=1

mi∑
j=1

wikxji

)2

,

respectively, wherewik = Ẑ
(∞)
ik /

∑n
i=1 Ẑ

(r)
ik mi . More

generally, theqth moment of thekth distribution can
be estimated using

Êq =
n∑

i=1

mi∑
j=1

wikx
q
ji .
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