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Modern Bayesian Asymptotics

Stephen G. Walker

Abstract. A survey of modern Bayesian asymptotics is given. Specific
attention is paid to the Hellinger consistency of posterior distributions and
the asymptotic study of Bayes factors.

Key words and phrases. Bayes factor, Bayes nonparametrics, consistency,
Hellinger distance.

1. INTRODUCTION consider priors which are supported by such densi-
ties. Examples of nonparametric priors include mix-
tures of Dirichlet processes (Lo, 1984), Pélya trees
(Kraft, 1964; Ferguson, 1974; Mauldin, Sudderth and
Williams, 1992; Lavine, 1992, 1994) and general-
ized exponential Gaussian process priors (Lenk, 1988,
1991).

It is prudent here to explain what Bayesian consis-
ncy entails. Lef2 be the set of all densities with re-
spect to the Lebesgue measure. A weak neighborhood
of the densityg is given by

a@={rea:|[or-[o5

The aim of this article is to present recent and
new results in Bayesian asymptotics relating to the
notion of consistency for density estimation involving
independent and identically distributed sampling. For
reasons of space | will restrict particular attention
to (i) conditions under which a sequence of posterior
distributions is consistent and (ii) the asymptotic study te
of the Bayes factor. A survey of other recent research
in Bayesian asymptotics will appear in the last section
of this article. As far as possible | will avoid technical
details which, while nontrivial, are not essential for the
understanding of Bayesian asymptotics.

For the first part (i), the aim is not to make a case
for consistency or argue that Bayesian consistency j=1,---,k},
is an obligatory requirement. Previous authors have ) )
made such arguments; see Diaconis and Freedmanvhere theg; are bounded and continuous functions.

(1986), Wasserman (1998) and Ghosal, Ghosh and>€€, for example, Ghosal, Ghosh and Ramamoorthi
Ramamoorthi (1999b), for example. Bayesian consis- (1999b). A strong neighborhood created by the met-
tency has become closely associated with BayesianfiC 4 between densitiegand f, d(f, g), is given by
nonparam_etri_cs, _reflecting the realistic assumption that A(9)={f €Q:d(f, g) <&}

the true distribution function can take any shape. On

the other hand, parametric Bayesian inference is basedVoW if I1, is the sequence of posterior distributions
on prior probability 1 being put on density functions Pased on a sample of sizefrom fp (with distribution

having a particular form. If the data suggests other- function Fp), the density function generating the obser-

wise, then what the Bayesian does next can be Openvations, then Bayesian consistency is concerned with
to serious criticism. See, fexample, Draper (1999).  conditions to be imposed on the priirfor which

The nonparametric Bayesian avoids such problems by I1,(As(fo)) = 0 a.s[Fol

putting prior probability 1 on all density functions. It

could also be all distribution functions, but through-
out we will assume all relevant unknowns are den-

<e&,

for all ¢ > 0. Here A€ represents the complement set
of A; thatis,A° = Q — A. We write

sities and, for simplicity, are densities with respect 4 R (HHTIS)
: M, (A) = 42—

to the Lebesgue measure. Consequently we will only [ R.(f)TI(dS)

—_— h

Sephen G. Walker is Professor, Department of Math- where 0

ematical Sciences, University of Bath, Bath BA2 7AY, R _ X, X,

UK (e-mail: s.g.walker @bath.ac.uk). n(f) 1]1 FXD)/folX0)

111



112 S. G. WALKER

and X1, X»2,... are the data. The inclusion of Ghosal, Ghosh and Ramamoorthi (1999b) and Ghosh

[T°; fo(X;) in both numerator and denominator has and Ramamoorthi (2003).

reasons which will become clear later on. We canterm Both the approaches of Barron, Schervish and

the two types of consistency weak and strong, respecWasserman (1999) and Ghosal, Ghosh and

tively. For strong consistency, the distance which turns Ramamoorthi (1999a) employ the Kullback—Leibler

out to be the most useful is the Hellinger distance, ~ Property forIl, which for the moment we can accept
12 as a fundamental property for establishing consistency,

aito={[7-ver]

though it is not a necessary condition. See Ghosal,
Ghosh and Ramamoorthi (1999b) for a counterexam-
1/2
~{2(2- [ v7%)]
and use will be made di(f, fo) = 3d(f. fo). Rea-

ple. It is also known that the Kullback—Leibler prop-
erty forIT is not sufficientin itself to prove consistency.

sons for the importance of the Hellinger distance will

also become clear later on.

2. HELLINGER CONSISTENCY

sities which track the data too closely and are assigned
low prior mass; in fact it is assumed thhAt(Q2¢) <
exp(—nt) for somer > 0 eventually for all larges.

[,(A) <

This has been shown in the paper by Barron, Schervish
and Wasserman (1999).
For the second part (ii), Bayes factors have been

widely studied and used as a Bayesian model selection

Understanding Bayesian consistency is extremelycriterion._See,for example, Bernardo and _Smith (.1994)
rewarding. There are two themes. The first is the needfor a review. However, to date, asymptotic SFUdIeS of
0 hav in th t of the prior. For consisten the Bayes factorhgve been regtrlcted to situations when
10 ha efo € support ot the prior. For consiste CY one of the competing models is assumed to be correct.
itis t_he_ K_uI_Iback—LelbIer support which is important; This is not a relevant assumption made here.
thatis, it is important to have Section 2 is concerned with Hellinger consistency of

I f:dk (f, fo) <8} >0 posterior distributions, Seption 3'with the asymptotics

of Bayes factors and Section 4 with other current areas

for all § > 0. Here dg(f,g) = [glog(g/f). We of Bayesian asymptotic research. Proofs of theorems
will refer to this as the Kullback—Leibler property will appear in the Appendix.
for IT if it holds true. Since fy is unknown, this
Kullback—Leibler property can only be known to hold
if TI{f:dk(f.g) <38} >0foralls>0and all den- For Hellinger consistency, current ideas are based
sitiesg. In this case the prior must be nonparametric on splitting 2, the set of all densities, into disjoint
and some examples are given in Barron, Schervish ancsetss,, andQ¢. Here, is an increasing sequence of
Wasserman (1999). Alternatively, one could argue that nested sets, a sieve, such tkgt contains all the den-
with further conditions on the pridf, see below, con-
sistency holds for all trugp in the Kullback-Leibler
support of the prior.

The second theme is the one which causes allWith this, the posterior also assigns exponentially
the mathematical complexities and is concerned with small mass t®¢. Then, ifA = {f :h(f, fo) > €},
preventing densities which track the data too closely Tana. Ra(HTIES)
from dominating the posterior. This can be possible if = + I1,(2)).
the prior is supported by all densities. J Ra()TN(AS)

Summarizing the past very briefly, Schwartz’s (1965) The dgnomingtor of the first term on the right-hand side
result was that a prior which has the Kullback-Leibler ©f the inequality can be bounded below by expc)
property gives rise to a weakly consistent sequence of€ventually for any: > 0, if the prior has the Kullback—
posterior distributions. On the other hand, Diaconis and L€iPIer property. The task then is to establish an
Freedman (1986) demonstrated that a prior which puts€XPonential upper bound for the term
positive mass on all weak neighborhoodggtioes not / Ro(f)TI(AS).
necessarily give rise to a weakly consistent sequence AN,
of posteriors. Recent papers by Barron, Schervish andThis is the tough part, to find a suitable sieRg. For
Wasserman (1999) and Ghosal, Ghosh and Ramamoorexample, Wong and Shen (1995) provide an entropy
thi (1999a) provide sufficient conditions on a prior to condition ong2,, as being sufficient for
give rise to a Hellinger consistent sequence of posterior sup Ry(f)
distributions. Reviews are given in Wasserman (1998), feANQ, "



MODERN BAYESIAN ASYMPTOTICS 113

to be exponentially small. This does the job for Also, if we replaceA(e) by the complement set of a
the Bayesian as the integral will also be bounded weak neighborhood ofj, then propertyQ becomes
appropriately. automatic as it is a property of all priors that for all
Other ideas are to be found in Barron, Schervish ¢ > 0 there exists &, > 0 such thati(f,a(), fo) > e
and Wasserman (1999) and Ghosal, Ghosh andfor all largen. This can then be used to prove the weak
Ramamoorthi (1999a), the latter using the notion of a consistency result of Schwartz (1965). See Walker
uniformly consistent sequence of tests, based on origi—(2003) for further details.
nal work done by Barron (1988), and the-metric en- To obtain the consistency result of Ghosal, Ghosh

tropy. The result of Ghosal, Ghosh and Ramamoorthi 3ng Ramamoorthi (1999a), first consider the set of
(1999a) is more general than that of Barron, SCherV'ShdensitiesB(n) — {(f:h(f, f5) < n}, where fg is a

and Wasserman (1999). In this section, the result of ;
Ghosal, Ghosh and Ramamoorthi (1999a) will be re- fixed density and:(/5. fo)
discovered in a purely Bayesian way.

The results of Ghosal, Ghosh and Ramamoorthi
(1999a) and others give no feel for when a prior is
going to give problems. To investigate exactly how a
prior would need to be for consistency not to hold, once

it had the Kullback—Leibler property, let us consider x(f, g, fo) > h(fs. fo) — h(fapw), f8) >8—n>0
some predictive densities; so, let us define

folo) = / FOOTL(f)

=48 > n. Then, due to the
convexity of#,

h(fupo. f5) < / h(f, f5) sy df) <n

and so, from the triangular inequality,

and soIl, (B(n)) — 0 almost surely (reproduce the
proof to Theorem 1).
o , Now considef2y = yzl B;(n), where theB; (1) C
to be the predictive density and {f:h(f, f;) < n} are disjoint and théf;} are a fixed
_ t of densitiesi(f;, fo) > § and$§ > 5. So, from
@ = [ FEOMa@n se j
Jus / na(df the aboveI1,(Qy) = Z?’Zl M, (B;j(1n) — 0 almost
to be the predictive density with posterior restricted to surely as: — oo.
the setA; that is, forIT(A) > 0, So, for anyN and any{B{,-}?’zl, for I1,, not to be
1(f € AT, (df) consistent, densities iIA* = QY N {f:h(f, fo) > €}
L L.df must always average together to become closg ia

. . . . ) the Hellinger sense. That is,
Additionally, a priorIT is said to have propertg if the
following holds:

[T, (df) =

Iimninfh(an*, foo=0 as.

e With Fg probability 1,h(fua(). fo) > ¢ foralln and

forall e > 0 whenA () = (£ - h(f. fo) > £}, This seems highly unlikely and a prior which allows

this must be quite strange. | would suggest that, to

The idea behind property) is that the predictive
density based on a posterior restricted to the &et
which does not include any density closer thao fj

find such a prior, knowledge ofy would be essential.
See the example presented in Barron, Schervish and
Wasserman (1999) and also some of the examples

in the Hellinger sense, can never itself get closer thanpresented in Walker and Hjort (2001).

a distances to fp. This class of prior would seem

To get the result similar to that of Ghosal, Ghosh and

to include all reasonable ones; in fact it would be Ramamoorthi (1999a), consider now

disappointing to find a prior in regular use which did

not have property).

THEOREM 1. If IT hasthe Kullback—Leibler prop-
erty and property Q, then IT,, is Hellinger consistent.

Although not required for what follows, the conclu-

sion of the theorem still holds if we replace propefty
with the following:

e with Fp probability 1, liminf, 2(f,a(), fo) > ¢ for
alle > 0.

Ny
Q=Qn, =B
j=1

and assume thdll (2) < exp(—nt) for somer > 0

for all but finitely manyn. Also, let A, = AN Q,,
whereA ={f:h(f, fo) > e} ande > n. NowII,(A) <

[T, (Ap) + I,(Q5) and I, () < exp(—nd) almost
surely for all largen and for anyd < t. See Barron,
Schervish and Wasserman (1999), Lemma 5, for this
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result. Then
Ny
IM,(An) = Z Hn(A N Bj(n))
j=1
Ny
<Y /(AN B;(n)
j=1
j=1+/J Ru(HTLAS)
where

Jj = \/ / oy B PTED,

Now,

Ny
pr{z Tnj > exp(—nd)}
j=1

and HJ,j) < (1 — (¢ — n))", see the proof of Theo-
rem 1 from the Appendix. So, to ensurg,(4,) — 0
almost surely it is required that, < exp(nu) for all
but finitely manyn, andu < A, wherex = —log(1 —

(¢ — n)). See Walker (2003) for further details. In fact,

E(J,j) < (1— (e —m)"JTL(B; (),

and this fact has been exploited in Walker (2004) to
find alternative sufficient conditions for consistency.
See also Section 4.5.

Ny
<expind) Y E(Jyj)

j=1

3. BAYES FACTORS

Here we study the asymptotic properties of

I = / Ry (HTIES),

which is relevant for the study of Bayes factors. We
have already seen what happensljoif IT has the
Kullback—Leibler property. Namelyz—tlogZ, — 0
almost surely. This is based dp > exp(—nc) almost
surely for all largen and for allc > 0 and also that
I, < exp(nc) for all largen and allc > 0. For the latter,
just consider pil, > expnc)} < exp(—nc)E(l,) =
exp(—nc).

Suppose nowl has the property thdil{f :dk (f,
fo) < ¢} > 0 only for, and for all,c > § for some
8 > 0. We will refer to this as the Kullback—Leibler
(8) property forI1. Then it is not difficult to show
(an obvious modification of Lemma 4 from Barron,
Schervish and Wasserman, 1999) that

Iimninfn‘llog I,>-8 as.

S. G. WALKER

We now introduce another “reasonable” property for
IT similar to propertyQ. We say the prior has property
Q* if the following holds:

o liminf, dx (fra), fo) = ¢ for all ¢ > 0 when
A(e) ={f1dk (f, fo) > ¢}.

As with propertyQ, it would be disappointing if a prior
in regular use did not possess propapty.

THEOREM 2. If IT has property Q*, the Kullback—
Leibler (8) property and

> n~2Var{log(l,/1,—1)} < oo,

thenn—tlog 1, — —8 almost surely.

An illustration of this theorem is given at the end
of this section. The conditio",, n~2Var{log(,;1/

I,)} < oo is a rather weak condition and holds, for
example, if supVar{log(7,+1/1,)} < co.

We now have access to the asymptotic properties of
a Bayes factor for comparing two Bayesian models,
say I1; and ITo. If T3 has the Kullback-Leibler
(61) property andIl, has the Kullback—Leiblersf)
property and assuming both satisfy propepty and

> n~2Var{log(Z;»/1;u-1)} < 00,

wherel;, = [ R,(/)I1;(df), then
n~tlogB, — 8 — 81

almost surely. Her®,, = I1,,/I», is the Bayes factor,
and so asymptotically the Bayes factor prefers the
model with the smallest value. This motivates priors
which haveé = 0 as a property, and the paper of
Barron, Schervish and Wasserman (1999) contains
examples of such (nonparametric) priors.

Here we provide a simple illustration of Theo-
rem 2. Consider the modef(x;0) = 6 exp(—x0)
with prior 7 (0) = exp(—6). Also assumefp(x) =
I'(a)"1x?Llexp(—x). Then

dk(fa) =~10gT (@) + (@~ 1) [ logx fo(x)dx
—a—1ogé + ab
and so is minimized whetr= 1/a and hence
8§ =—logl'(a)+ (a — 1) / logx fo(x)dx

—a+loga + 1.
Note wheru = 1 thens = 0. Now
. nlexpnS,)I'(a)"
T @4 nS)¥r T, Xt
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and so 4.2 Rates of Convergence

This is a fast-moving area of current research. The
idea is to find bounds foil,(AS), where 4, is a
shrinking neighborhood offs. Two recent articles
written on this subject are by Ghosal, Ghosh and van
der Vaart (2000) and Shen and Wasserman (2001). At
Here S, =n~1Y" , X;. Now S, — a almost surely the moment the story for rates of convergence is mixed.
andn—logn! —log(1+n) — —1 and so:—1log 1, — According to Shen and Wasserman (2001), “Although
& almost surely. it is too early to draw general conclusions, it appears

It is not possible usually to writd, and s in the that the choice of prior in an infinite dimensional
nonparametric cases. However, simulation studies carP"oPlem is more difficult if one wants to achieve good
demonstrate convergence and have been undertaken iffites.

nYlogl, =n"tlogn! + S, — (14 1/n)log(1 + nS,)

+logl'(@) — (@ —Hn~ 1) logX;.
i=1

Walker, Damien and Lenk (2004). 4.3 Nonparametric and Semiparametric
Regression Models
4. OTHER BAYESIAN ASYMPTOTICS The most visible successes for Bayesian asymptotics

and consistency have been with independent and iden-
tically distributed data. Few semiparametric regression
There does not as yet appear to be a refined set ofmodels have been studied. Exceptions to this are the
conditions for the Hellinger consistency of the predic- binary regression model considered by Diaconis and
tive density f, = [ fI1,(df) [i.e., h(f,, fo) — O al- Freedman (1993, 1995)(&;) = n(&;), wheren is the
most surely]. It is merely stated in the literature (see, Unknown function to be estimated. With the prior fpr
e.g., Barron, Schervish and Wasserman, 1999), thatconsidered by Diaconis and Freedman, consistency is

the Hellinger consistency dfl,, implies the Hellinger e rule, thougfyo = 5 needs special attention.
consistency of f,. The proof, taken from Barron Diaconis and Freedman (1998) also studied a normal
n- 1 1]

. : ) regression model, as did Shen and Wasserman (2001).
Schervish and Wasserman (1999), is as follows: The model of Shen and Wasserman (2001) is given by

4.1 Predictive Densities

hfas S0 = [ BCF foTLES) Xi =n(&) +e.
where the; are independent uniform random variables
= /A(e) h(f, fo)I1n(df) from [0, 1] and theg; are independent and identically
distributed as standard normal.
+/ h(f, foIl,df), A semiparametric regression model was recently
Ae)* considered by Shen (2002). The model assumes
ande(s)h(f, foll,(df) < II,,(A(e)), which goes to X; =0& + () + &,

zero almost surely, and alg’g(s)c h(f, fo)ll,(df) <e.
Sincee is arbitrary it must be thak( f,,, fo) — 0 al-
most surely.

The Kullback—-Leibler property foll is, however,
tantalizingly close to being able to establish the
Hellinger consistency off,. It is shown in Walker 4.4 Priors on Distribution Functions
(2003) that if IT has the Kullback—Leibler property,
theni(fV, fo) — 0 almost surely, where

where now{;, ¢;) are independently uniformly distrib-
uted over{0, 1]2. Shen regards as a (nonparametric)
nuisance parameter and studies the asymptotic mar-
ginal posterior distribution of .

The most well-known prior on distribution functions
is the Dirichlet process (Ferguson, 1973). This is a
N special case of both the neutral priors of Doksum

VNt Z fo. (1974) and Polya trees (Kraft, 1964; Ferguson, 1974).
el Pdlya trees areailfree. A prior is tailfree with respect
to a nested sequence of partitioid = {B;; ¢ €
Again, it is evident that iffV is Hellinger consistent, {0, 1}¥}, that is, B, splits into B.o and B, 1, if F(Bo),
and yetf;, is not, thenlT should be somewhat strange. F (Bgo|Bo), F(B1o|B1), ... are all independent. Here
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F(B) is the random mass allocated to the Befor a The fact that this is an asymptotic result is not relevant
random distributionr” chosen from the prior. For Pélya in this case. A decision maker would if allowed com-
trees, F(B:o|B;) are beta distributions. It is known pute a Bayes factor with as large a dataset as possible.
(see, e.g., Ghosal, Ghosh and Ramamoorthi, 1999b)So if he or she knew that, for large datasets, a particu-
that tailfree priors give rise to a weakly consistent lar model would always come out on top, then surely
sequence of posterior distributions. he or she would select this model. This motivates the
Neutral priors are not tailfree and do not admit densi- uyse of priors with the Kullback—Leibler property. See

ties and so other techniques to demonstrate consistencyyalker, Damien and Lenk (2004) for further discussion
are required for these priors. Such work has been doneand examples of this point.

by Kim and Lee (2001). They use the Hjort (1990) pa-
rameterization of neutral to the right processes, APPENDIX

t ﬂ PROOF OFTHEOREM 1. The proof is not compli-
0 1-F(s—) cated at all. Leth = A(e) = { £ :h(f, fo) > ¢}. A key
where F is a neutral to the right process, and find identity is given by
sufficient conditions for whichA given the data,
written as A,,, converges weakly toig in D[O, z]. / Ry+1(HIS) =
This is achieved by finding sufficient conditions un- 74
der which EA, (1)) — Ag() for all r € [0, 7] and We then define
Var(A,(t)) — Oforallr € [0, 7].

4.5 Further Developments Jn = \//A R, (HTLAES),
A different approach to Hellinger consistency has

recently been found by Walker (2004). The Kullback—

Leibler property for the prior is retained. The further E(ps1lF) = Jn/\/m
condition requires the separability of the space of

A(t) =

JnaXnt1)

Ry (H)HTI(S).
Jo(Xn+1) /A (men

so that

densities with respect to the Hellinger metric. Let = Ju {1l —h(fua, fo)} < Ju(1—¢),
{B;} be disjoint subsets of Hellinger balls around the
densities( f;} and = ; B;. If yvhezre}‘n =0 (X1,..., Xn). The numerator fofl, (A)
‘ is J and the above gives, < exp(—nd) almost surely
Z /TI(B}) < oo, for all large n and for alld < —log(1 — ¢). The
j denominator ofi1,(A) is I, = [ R,(f)T1(df), which

with the Kullback-Leibler property is bounded below
by exp(—nc) almost surely for all large: and for all
c¢>0.Thenpickce <d. O

thenII, is Hellinger consistent. The proof is elemen-
tary and the condition is often straightforward to use
when applied to particular priors.

PROOF OFTHEOREM 2. The key to the proof is
the martingale sequence

4.6 Discussion

As is evident from the difficulties in understanding
and dealing with consistency issues of posteriors as- N
sociated with independent and identically distributed Sy = D_{10gUn/In-1) + dk (fa-1, f)},
data and the type of models discussed in Section 4.3, n=1
obtaining general Bayesian consistency theorems forwhich is a martingale by virtue of {9(/,/1,-1)|
semi-parametric and nonparametric regression modelsf;,—1} = —dg (fu-1, fo). For such martingales it is
is going to be very hard. Rates of convergence are alsoknown that if
going to be challenging. D)
With respect to the Hellinger consistency of poste- >_n " Var{log(l,/I-1)} < 0,
rior distributions, it can be regarded that the Kullback— "
Leibler property for the prior is practically suffi- thenSy/N — 0 almost surely. Therefore,
cient, provided a sensible prior is being used (with

N
property Q). As for Bayes factors, a prior with the Nlloglv - N 13 d B 0
Kullback-Leibler property will beat all other models. 9w ;::1 K (fn-1, fo)
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almost surely. With propert@* for IT it follows that

N
liminf N1 Zldx(fn_l, fo) =6
n=

almost surely and hence limsygvtlogly < —$§
almost surely With the Kullback—Leible8) property
for IT we have liminfy N~1log Iy > —3 almost surely
and hence

N llogly > -8 as. O
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