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Modern Bayesian Asymptotics
Stephen G. Walker

Abstract. A survey of modern Bayesian asymptotics is given. Specific
attention is paid to the Hellinger consistency of posterior distributions and
the asymptotic study of Bayes factors.
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1. INTRODUCTION

The aim of this article is to present recent and
new results in Bayesian asymptotics relating to the
notion of consistency for density estimation involving
independent and identically distributed sampling. For
reasons of space I will restrict particular attention
to (i) conditions under which a sequence of posterior
distributions is consistent and (ii) the asymptotic study
of the Bayes factor. A survey of other recent research
in Bayesian asymptotics will appear in the last section
of this article. As far as possible I will avoid technical
details which, while nontrivial, are not essential for the
understanding of Bayesian asymptotics.

For the first part (i), the aim is not to make a case
for consistency or argue that Bayesian consistency
is an obligatory requirement. Previous authors have
made such arguments; see Diaconis and Freedman
(1986), Wasserman (1998) and Ghosal, Ghosh and
Ramamoorthi (1999b), for example. Bayesian consis-
tency has become closely associated with Bayesian
nonparametrics, reflecting the realistic assumption that
the true distribution function can take any shape. On
the other hand, parametric Bayesian inference is based
on prior probability 1 being put on density functions
having a particular form. If the data suggests other-
wise, then what the Bayesian does next can be open
to serious criticism. See, for example, Draper (1999).
The nonparametric Bayesian avoids such problems by
putting prior probability 1 on all density functions. It
could also be all distribution functions, but through-
out we will assume all relevant unknowns are den-
sities and, for simplicity, are densities with respect
to the Lebesgue measure. Consequently we will only
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consider priors which are supported by such densi-
ties. Examples of nonparametric priors include mix-
tures of Dirichlet processes (Lo, 1984), Pólya trees
(Kraft, 1964; Ferguson, 1974; Mauldin, Sudderth and
Williams, 1992; Lavine, 1992, 1994) and general-
ized exponential Gaussian process priors (Lenk, 1988,
1991).

It is prudent here to explain what Bayesian consis-
tency entails. Let� be the set of all densities with re-
spect to the Lebesgue measure. A weak neighborhood
of the densityg is given by

Aε(g) =
{
f ∈ � :

∣∣∣∣
∫

φjf −
∫

φjg

∣∣∣∣ < ε,

j = 1, . . . , k

}
,

where theφj are bounded and continuous functions.
See, for example, Ghosal, Ghosh and Ramamoorthi
(1999b). A strong neighborhood created by the met-
ric d between densitiesg andf , d(f, g), is given by

Aε(g) = {f ∈ � :d(f, g) < ε}.
Now, if �n is the sequence of posterior distributions
based on a sample of sizen from f0 (with distribution
functionF0), the density function generating the obser-
vations, then Bayesian consistency is concerned with
conditions to be imposed on the prior� for which

�n(A
c
ε(f0)) → 0 a.s.[F0]

for all ε > 0. HereAc represents the complement set
of A; that is,Ac = � − A. We write

�n(A) =
∫
A Rn(f )�(df )∫
Rn(f )�(df )

,

where

Rn(f ) =
n∏

i=1

f (Xi)/f0(Xi)
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and X1,X2, . . . are the data. The inclusion of∏n
i=1 f0(Xi) in both numerator and denominator has

reasons which will become clear later on. We can term
the two types of consistency weak and strong, respec-
tively. For strong consistency, the distance which turns
out to be the most useful is the Hellinger distance,

d(f, g) =
{∫ (√

f − √
g

)2
}1/2

=
{

2
(

1−
∫ √

fg

)}1/2

and use will be made ofh(f,f0) = 1
2d2(f, f0). Rea-

sons for the importance of the Hellinger distance will
also become clear later on.

Understanding Bayesian consistency is extremely
rewarding. There are two themes. The first is the need
to havef0 in the support of the prior. For consistency
it is the Kullback–Leibler support which is important;
that is, it is important to have

�{f :dK(f,f0) < δ} > 0

for all δ > 0. Here dK(f,g) = ∫
g log(g/f ). We

will refer to this as the Kullback–Leibler property
for � if it holds true. Sincef0 is unknown, this
Kullback–Leibler property can only be known to hold
if �{f :dK(f,g) < δ} > 0 for all δ > 0 and all den-
sitiesg. In this case the prior must be nonparametric
and some examples are given in Barron, Schervish and
Wasserman (1999). Alternatively, one could argue that
with further conditions on the prior�, see below, con-
sistency holds for all truef0 in the Kullback–Leibler
support of the prior.

The second theme is the one which causes all
the mathematical complexities and is concerned with
preventing densities which track the data too closely
from dominating the posterior. This can be possible if
the prior is supported by all densities.

Summarizing the past very briefly, Schwartz’s (1965)
result was that a prior which has the Kullback–Leibler
property gives rise to a weakly consistent sequence of
posterior distributions. On the other hand, Diaconis and
Freedman (1986) demonstrated that a prior which puts
positive mass on all weak neighborhoods off0 does not
necessarily give rise to a weakly consistent sequence
of posteriors. Recent papers by Barron, Schervish and
Wasserman (1999) and Ghosal, Ghosh and Ramamoor-
thi (1999a) provide sufficient conditions on a prior to
give rise to a Hellinger consistent sequence of posterior
distributions. Reviews are given in Wasserman (1998),

Ghosal, Ghosh and Ramamoorthi (1999b) and Ghosh
and Ramamoorthi (2003).

Both the approaches of Barron, Schervish and
Wasserman (1999) and Ghosal, Ghosh and
Ramamoorthi (1999a) employ the Kullback–Leibler
property for�, which for the moment we can accept
as a fundamental property for establishing consistency,
though it is not a necessary condition. See Ghosal,
Ghosh and Ramamoorthi (1999b) for a counterexam-
ple. It is also known that the Kullback–Leibler prop-
erty for� is not sufficient in itself to prove consistency.
This has been shown in the paper by Barron, Schervish
and Wasserman (1999).

For the second part (ii), Bayes factors have been
widely studied and used as a Bayesian model selection
criterion. See, for example, Bernardo and Smith (1994)
for a review. However, to date, asymptotic studies of
the Bayes factor have been restricted to situations when
one of the competing models is assumed to be correct.
This is not a relevant assumption made here.

Section 2 is concerned with Hellinger consistency of
posterior distributions, Section 3 with the asymptotics
of Bayes factors and Section 4 with other current areas
of Bayesian asymptotic research. Proofs of theorems
will appear in the Appendix.

2. HELLINGER CONSISTENCY

For Hellinger consistency, current ideas are based
on splitting �, the set of all densities, into disjoint
sets�n and�c

n. Here�n is an increasing sequence of
nested sets, a sieve, such that�c

n contains all the den-
sities which track the data too closely and are assigned
low prior mass; in fact it is assumed that�(�c

n) <

exp(−nτ) for someτ > 0 eventually for all largen.
With this, the posterior also assigns exponentially
small mass to�c

n. Then, ifA = {f :h(f,f0) > ε},

�n(A) ≤
∫
A∩�n

Rn(f )�(df )∫
Rn(f )�(df )

+ �n(�
c
n).

The denominator of the first term on the right-hand side
of the inequality can be bounded below by exp(−nc)

eventually for anyc > 0, if the prior has the Kullback–
Leibler property. The task then is to establish an
exponential upper bound for the term∫

A∩�n

Rn(f )�(df ).

This is the tough part, to find a suitable sieve�n. For
example, Wong and Shen (1995) provide an entropy
condition on�n as being sufficient for

sup
f ∈A∩�n

Rn(f )
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to be exponentially small. This does the job for
the Bayesian as the integral will also be bounded
appropriately.

Other ideas are to be found in Barron, Schervish
and Wasserman (1999) and Ghosal, Ghosh and
Ramamoorthi (1999a), the latter using the notion of a
uniformly consistent sequence of tests, based on origi-
nal work done by Barron (1988), and theL1-metric en-
tropy. The result of Ghosal, Ghosh and Ramamoorthi
(1999a) is more general than that of Barron, Schervish
and Wasserman (1999). In this section, the result of
Ghosal, Ghosh and Ramamoorthi (1999a) will be re-
discovered in a purely Bayesian way.

The results of Ghosal, Ghosh and Ramamoorthi
(1999a) and others give no feel for when a prior is
going to give problems. To investigate exactly how a
prior would need to be for consistency not to hold, once
it had the Kullback–Leibler property, let us consider
some predictive densities; so, let us define

fn(x) =
∫

f (x)�n(df )

to be the predictive density and

fnA(x) =
∫

f (x)�nA(df )

to be the predictive density with posterior restricted to
the setA; that is, for�(A) > 0,

�nA(df ) = 1(f ∈ A)�n(df )∫
A �n(df )

.

Additionally, a prior� is said to have propertyQ if the
following holds:

• with F0 probability 1,h(fnA(ε), f0) > ε for all n and
for all ε > 0 whenA(ε) = {f :h(f,f0) > ε}.

The idea behind propertyQ is that the predictive
density based on a posterior restricted to the setA,
which does not include any density closer thanε to f0
in the Hellinger sense, can never itself get closer than
a distanceε to f0. This class of prior would seem
to include all reasonable ones; in fact it would be
disappointing to find a prior in regular use which did
not have propertyQ.

THEOREM 1. If � has the Kullback–Leibler prop-
erty and property Q, then �n is Hellinger consistent.

Although not required for what follows, the conclu-
sion of the theorem still holds if we replace propertyQ

with the following:

• with F0 probability 1, lim infn h(fnA(ε), f0) > ε for
all ε > 0.

Also, if we replaceA(ε) by the complement set of a
weak neighborhood off0, then propertyQ becomes
automatic as it is a property of all priors that for all
ε > 0 there exists aλε > 0 such thath(fnA(ε), f0) > λε

for all largen. This can then be used to prove the weak
consistency result of Schwartz (1965). See Walker
(2003) for further details.

To obtain the consistency result of Ghosal, Ghosh
and Ramamoorthi (1999a), first consider the set of
densitiesB(η) = {f :h(f,fB) < η}, where fB is a
fixed density andh(fB,f0) = δ > η. Then, due to the
convexity ofh,

h(fnB(η), fB) ≤
∫

h(f,fB)�nB(η)(df ) < η

and so, from the triangular inequality,

h(fnB(η), f0) ≥ h(fB,f0)−h(fnB(η), fB) > δ −η > 0

and so�n(B(η)) → 0 almost surely (reproduce the
proof to Theorem 1).

Now consider�N = ⋃N
j=1Bj (η), where theBj (η)⊂

{f :h(f,fj ) < η} are disjoint and the{fj } are a fixed
set of densities,h(fj , f0) ≥ δ and δ > η. So, from
the above,�n(�N) = ∑N

j=1�n(Bj (η)) → 0 almost
surely asn → ∞.

So, for anyN and any{Bj }Nj=1, for �n not to be
consistent, densities inA∗ = �c

N ∩ {f :h(f,f0) > ε}
must always average together to become close tof0 in
the Hellinger sense. That is,

lim inf
n

h(fnA∗, f0) = 0 a.s.

This seems highly unlikely and a prior which allows
this must be quite strange. I would suggest that, to
find such a prior, knowledge off0 would be essential.
See the example presented in Barron, Schervish and
Wasserman (1999) and also some of the examples
presented in Walker and Hjort (2001).

To get the result similar to that of Ghosal, Ghosh and
Ramamoorthi (1999a), consider now

�n = �Nn =
Nn⋃
j=1

Bj (η)

and assume that�(�c
n) < exp(−nτ) for someτ > 0

for all but finitely manyn. Also, let An = A ∩ �n,
whereA = {f :h(f,f0) > ε} andε > η. Now�n(A) ≤
�n(An) + �n(�

c
n) and �n(�

c
n) < exp(−nd) almost

surely for all largen and for anyd < τ . See Barron,
Schervish and Wasserman (1999), Lemma 5, for this
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result. Then

�n(An) =
Nn∑
j=1

�n

(
A ∩ Bj (η)

)

≤
Nn∑
j=1

√
�n(A ∩ Bj (η))

=
Nn∑
j=1

Jnj√∫
Rn(f )�(df )

,

where

Jnj =
√∫

A∩Bj (η)
Rn(f )�(df ).

Now,

pr

{
Nn∑
j=1

Jnj > exp(−nd)

}
≤ exp(nd)

Nn∑
j=1

E(Jnj )

and E(Jnj ) ≤ (1 − (ε − η))n; see the proof of Theo-
rem 1 from the Appendix. So, to ensure�n(An) → 0
almost surely it is required thatNn < exp(nµ) for all
but finitely manyn, andµ < λ, whereλ = − log(1 −
(ε − η)). See Walker (2003) for further details. In fact,

E(Jnj ) ≤ (
1− (ε − η)

)n√
�(Bj (η)),

and this fact has been exploited in Walker (2004) to
find alternative sufficient conditions for consistency.
See also Section 4.5.

3. BAYES FACTORS

Here we study the asymptotic properties of

In =
∫

Rn(f )�(df ),

which is relevant for the study of Bayes factors. We
have already seen what happens toIn if � has the
Kullback–Leibler property. Namely,n−1 logIn → 0
almost surely. This is based onIn > exp(−nc) almost
surely for all largen and for all c > 0 and also that
In < exp(nc) for all largen and allc > 0. For the latter,
just consider pr{In > exp(nc)} < exp(−nc)E(In) =
exp(−nc).

Suppose now� has the property that�{f :dK(f,

f0) < c} > 0 only for, and for all,c > δ for some
δ ≥ 0. We will refer to this as the Kullback–Leibler
(δ) property for �. Then it is not difficult to show
(an obvious modification of Lemma 4 from Barron,
Schervish and Wasserman, 1999) that

lim inf
n

n−1 logIn ≥ −δ a.s.

We now introduce another “reasonable” property for
� similar to propertyQ. We say the prior has property
Q∗ if the following holds:

• lim infn dK(fnA(ε), f0) ≥ ε for all ε > 0 when
A(ε) = {f :dK(f,f0) > ε}.

As with propertyQ, it would be disappointing if a prior
in regular use did not possess propertyQ∗.

THEOREM 2. If � has property Q∗, the Kullback–
Leibler (δ) property and∑

n

n−2 Var{log(In/In−1)} < ∞,

then n−1 logIn → −δ almost surely.

An illustration of this theorem is given at the end
of this section. The condition

∑
n n−2 Var{log(In+1/

In)} < ∞ is a rather weak condition and holds, for
example, if supn Var{log(In+1/In)} < ∞.

We now have access to the asymptotic properties of
a Bayes factor for comparing two Bayesian models,
say �1 and �2. If �1 has the Kullback–Leibler
(δ1) property and�2 has the Kullback–Leibler (δ2)
property and assuming both satisfy propertyQ∗ and∑

n

n−2 Var{log(Ij n/Ij n−1)} < ∞,

whereIj n = ∫
Rn(f )�j (df ), then

n−1 logBn → δ2 − δ1

almost surely. HereBn = I1n/I2n is the Bayes factor,
and so asymptotically the Bayes factor prefers the
model with the smallestδ value. This motivates priors
which haveδ = 0 as a property, and the paper of
Barron, Schervish and Wasserman (1999) contains
examples of such (nonparametric) priors.

Here we provide a simple illustration of Theo-
rem 2. Consider the modelf (x; θ) = θ exp(−xθ)

with prior π(θ) = exp(−θ). Also assumef0(x) =
�(a)−1xa−1 exp(−x). Then

dK(fθ ) = − log�(a) + (a − 1)

∫
logx f0(x) dx

− a − logθ + aθ

and so is minimized whenθ = 1/a and hence

δ = − log�(a) + (a − 1)

∫
logx f0(x) dx

− a + loga + 1.

Note whena = 1 thenδ = 0. Now

In = n!exp(nSn)�(a)n

(1+ nSn)
1+n

∏n
i=1 Xa−1

i
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and so

n−1 logIn = n−1 logn! + Sn − (1+ 1/n) log(1+ nSn)

+ log�(a) − (a − 1)n−1
n∑

i=1

logXi.

Here Sn = n−1 ∑n
i=1 Xi . Now Sn → a almost surely

andn−1 logn!− log(1+n) → −1 and son−1 logIn →
−δ almost surely.

It is not possible usually to writeIn and δ in the
nonparametric cases. However, simulation studies can
demonstrate convergence and have been undertaken in
Walker, Damien and Lenk (2004).

4. OTHER BAYESIAN ASYMPTOTICS

4.1 Predictive Densities

There does not as yet appear to be a refined set of
conditions for the Hellinger consistency of the predic-
tive densityfn = ∫

f�n(df ) [i.e., h(fn, f0) → 0 al-
most surely]. It is merely stated in the literature (see,
e.g., Barron, Schervish and Wasserman, 1999), that
the Hellinger consistency of�n implies the Hellinger
consistency offn. The proof, taken from Barron,
Schervish and Wasserman (1999), is as follows:

h(fn, f0) ≤
∫

h(f,f0)�n(df )

≤
∫
A(ε)

h(f,f0)�n(df )

+
∫
A(ε)c

h(f,f0)�n(df ),

and
∫
A(ε) h(f,f0)�n(df ) < �n(A(ε)), which goes to

zero almost surely, and also
∫
A(ε)c h(f,f0)�n(df ) < ε.

Sinceε is arbitrary it must be thath(fn, f0) → 0 al-
most surely.

The Kullback–Leibler property for� is, however,
tantalizingly close to being able to establish the
Hellinger consistency offn. It is shown in Walker
(2003) that if � has the Kullback–Leibler property,
thenh(f N ,f0) → 0 almost surely, where

f N = N−1
N∑

n=1

fn.

Again, it is evident that iff N is Hellinger consistent,
and yetfn is not, then� should be somewhat strange.

4.2 Rates of Convergence

This is a fast-moving area of current research. The
idea is to find bounds for�n(A

c
n), where An is a

shrinking neighborhood off0. Two recent articles
written on this subject are by Ghosal, Ghosh and van
der Vaart (2000) and Shen and Wasserman (2001). At
the moment the story for rates of convergence is mixed.
According to Shen and Wasserman (2001), “Although
it is too early to draw general conclusions, it appears
that the choice of prior in an infinite dimensional
problem is more difficult if one wants to achieve good
rates.”

4.3 Nonparametric and Semiparametric
Regression Models

The most visible successes for Bayesian asymptotics
and consistency have been with independent and iden-
tically distributed data. Few semiparametric regression
models have been studied. Exceptions to this are the
binary regression model considered by Diaconis and
Freedman (1993, 1995), E(Xi) = η(ξi), whereη is the
unknown function to be estimated. With the prior forη

considered by Diaconis and Freedman, consistency is
the rule, thoughη0 ≡ 1

2 needs special attention.
Diaconis and Freedman (1998) also studied a normal

regression model, as did Shen and Wasserman (2001).
The model of Shen and Wasserman (2001) is given by

Xi = η(ξi) + εi,

where theξi are independent uniform random variables
from [0,1] and theεi are independent and identically
distributed as standard normal.

A semiparametric regression model was recently
considered by Shen (2002). The model assumes

Xi = θξi + η(ζi) + εi,

where now(ξi, ζi) are independently uniformly distrib-
uted over[0,1]2. Shen regardsη as a (nonparametric)
nuisance parameter and studies the asymptotic mar-
ginal posterior distribution ofθ .

4.4 Priors on Distribution Functions

The most well-known prior on distribution functions
is the Dirichlet process (Ferguson, 1973). This is a
special case of both the neutral priors of Doksum
(1974) and Pólya trees (Kraft, 1964; Ferguson, 1974).
Pólya trees aretailfree. A prior is tailfree with respect
to a nested sequence of partitionsCk = {Bε; ε ∈
{0,1}k}, that is,Bε splits intoBε0 andBε1, if F(B0),
F(B00|B0), F(B10|B1), . . . are all independent. Here
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F(B) is the random mass allocated to the setB for a
random distributionF chosen from the prior. For Pólya
trees,F(Bε0|Bε) are beta distributions. It is known
(see, e.g., Ghosal, Ghosh and Ramamoorthi, 1999b)
that tailfree priors give rise to a weakly consistent
sequence of posterior distributions.

Neutral priors are not tailfree and do not admit densi-
ties and so other techniques to demonstrate consistency
are required for these priors. Such work has been done
by Kim and Lee (2001). They use the Hjort (1990) pa-
rameterization of neutral to the right processes,

A(t) =
∫ t

0

dF (s)

1− F(s−)
,

where F is a neutral to the right process, and find
sufficient conditions for whichA given the data,
written asAn, converges weakly toA0 in D[0, τ ].
This is achieved by finding sufficient conditions un-
der which E(An(t)) → A0(t) for all t ∈ [0, τ ] and
Var(An(t)) → 0 for all t ∈ [0, τ ].
4.5 Further Developments

A different approach to Hellinger consistency has
recently been found by Walker (2004). The Kullback–
Leibler property for the prior is retained. The further
condition requires the separability of the space of
densities with respect to the Hellinger metric. Let
{Bj } be disjoint subsets of Hellinger balls around the
densities{fj } and� = ⋃

j Bj . If∑
j

√
�(Bj ) < ∞,

then�n is Hellinger consistent. The proof is elemen-
tary and the condition is often straightforward to use
when applied to particular priors.

4.6 Discussion

As is evident from the difficulties in understanding
and dealing with consistency issues of posteriors as-
sociated with independent and identically distributed
data and the type of models discussed in Section 4.3,
obtaining general Bayesian consistency theorems for
semi-parametric and nonparametric regression models
is going to be very hard. Rates of convergence are also
going to be challenging.

With respect to the Hellinger consistency of poste-
rior distributions, it can be regarded that the Kullback–
Leibler property for the prior is practically suffi-
cient, provided a sensible prior is being used (with
property Q). As for Bayes factors, a prior with the
Kullback–Leibler property will beat all other models.

The fact that this is an asymptotic result is not relevant
in this case. A decision maker would if allowed com-
pute a Bayes factor with as large a dataset as possible.
So if he or she knew that, for large datasets, a particu-
lar model would always come out on top, then surely
he or she would select this model. This motivates the
use of priors with the Kullback–Leibler property. See
Walker, Damien and Lenk (2004) for further discussion
and examples of this point.

APPENDIX

PROOF OFTHEOREM 1. The proof is not compli-
cated at all. LetA = A(ε) = {f :h(f,f0) > ε}. A key
identity is given by∫

A
Rn+1(f )�(df ) = fnA(Xn+1)

f0(Xn+1)

∫
A

Rn(f )�(df ).

We then define

Jn =
√∫

A
Rn(f )�(df ),

so that

E(Jn+1|Fn) = Jn

∫ √
f0 fnA

= Jn{1− h(fnA,f0)} ≤ Jn(1− ε),

whereFn = σ(X1, . . . ,Xn). The numerator for�n(A)

is J 2
n and the above givesJn < exp(−nd) almost surely

for all large n and for all d < − log(1 − ε). The
denominator of�n(A) is In = ∫

Rn(f )�(df ), which
with the Kullback–Leibler property is bounded below
by exp(−nc) almost surely for all largen and for all
c > 0. Then pickc < d . �

PROOF OF THEOREM 2. The key to the proof is
the martingale sequence

SN =
N∑

n=1

{log(In/In−1) + dK(fn−1, f0)},

which is a martingale by virtue of E{log(In/In−1)|
Fn−1} = −dK(fn−1, f0). For such martingales it is
known that if∑

n

n−2 Var{log(In/In−1)} < ∞,

thenSN/N → 0 almost surely. Therefore,

N−1 logIN + N−1
N∑

n=1

dK(fn−1, f0) → 0
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almost surely. With propertyQ∗ for � it follows that

lim inf
N

N−1
N∑

n=1

dK(fn−1, f0) ≥ δ

almost surely and hence lim supN N−1 logIN ≤ −δ

almost surely With the Kullback–Leibler (δ) property
for � we have lim infN N−1 logIN ≥ −δ almost surely
and hence

N−1 logIN → −δ a.s. �
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