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Algebraicity and Implicit Definability in Set Theory

Joel David Hamkins and Cole Leahy

Abstract We analyze the effect of replacing several natural uses of definabil-
ity in set theory by the weaker model-theoretic notion of algebraicity. We find,
for example, that the class of hereditarily ordinal algebraic sets is the same as
the class of hereditarily ordinal definable sets; that is, HOA D HOD. More-
over, we show that every (pointwise) algebraic model of ZF is actually pointwise
definable. Finally, we consider the implicitly constructible universe Imp—an al-
gebraic analogue of the constructible universe—which is obtained by iteratively
adding not only the sets that are definable over what has been built so far, but also
those that are algebraic (or, equivalently, implicitly definable) over the existing
structure. While we know that Imp can differ from L, the subtler properties of
this new inner model are just now coming to light. Many questions remain open.

1 Introduction

We aim here to analyze the effect of replacing several natural uses of definability
in set theory by the weaker model-theoretic notion of algebraicity and its compan-
ion concept of implicit definability. In place of the class HOD of hereditarily ordi-
nal definable sets, for example, we consider the class HOA of hereditarily ordinal-
algebraic sets. In place of the pointwise definable models of set theory, we examine
its (pointwise) algebraic models. And in place of Gödel’s constructible universe L,
obtained by iterating the definable power set operation, we introduce the implicitly
constructible universe Imp, obtained by iterating the algebraic or implicitly definable
power set operation. In each case we investigate how the change from definability to
algebraicity affects the nature of the resulting concept. We are especially intrigued
by Imp, a new inner model of ZF whose subtler properties are just now coming to
light. Open questions about Imp abound.

Before proceeding further, let us review the basic definability definitions. In the
model theory of first-order logic, an element a is definable (without parameters) in
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a structure M if it is the unique object in M satisfying some first-order property
' there, that is, if M � 'Œb� just in case b D a. More generally, an element a is
algebraic inM if it has a property ' exhibited by only finitely many objects inM , so
that ¹ b 2 M j M � 'Œb� º is a finite set containing a. For each class P � M we can
similarly define what it means for an element to be P -definable or P -algebraic by
allowing the formula ' to have parameters from P . Since each element of a structure
M for a language with equality is trivially M -definable, the notion of a P -definable
element is interesting only when the inclusion P � M is proper.

In the second-order context, a subset or classA � M n is said to be definable inM
(again without parameters, unless otherwise specified) ifA D ¹ Ea 2 M j M � 'ŒEa� º

for some first-order formula '. In other words, A is definable inM if it is the unique
class in M n such that hM;Ai � 8Ex Œ'.Ex/ $ A.Ex/�, where 8Ex Œ'.Ex/ $ A.Ex/� is
a first-order formula in the expanded language with a predicate symbol for A. Gen-
eralizing this condition, we say that a class A � M n is implicitly definable in M
if there is a first-order formula  .A/ in the expanded language, not necessarily of
the form 8Ex Œ'.Ex/ $ A.Ex/�, with the property that A is the unique class for which
hM;Ai �  .A/. While every (explicitly) definable class is thus also implicitly de-
finable, we will see below that the converse can fail. Generalizing even more, we
say that a class A � M n is algebraic in M if there is a first-order formula  .A/ in
the expanded language such that hM;Ai �  .A/ and there are only finitely many
B � M n for which hM;Bi �  .B/. Allowing parameters from a fixed class
P � M to appear in  yields the notions of P -definability, implicit P -definability,
and P -algebraicity in M . Simplifying terminology, we say that A is definable,
implicitly definable, or algebraic over (rather than in) M if it is M -definable, im-
plicitly M -definable, or M -algebraic in M , respectively. (Note that the notion of
M -definable class is not the same as the trivial notion of M -definable element.)
A natural generalization of these concepts arises by allowing second-order quanti-
fiers to appear in  . Thus we may speak of a class A as second-order definable,
implicitly second-order definable, or second-order algebraic. Further generalizations
are of course possible by allowing  to use resources from other strong logics.

2 Ordinal Algebraicity

To begin our project, let us consider the class HOA of hereditarily ordinal algebraic
sets. In a strong second-order theory such as KM, which proves the existence of sat-
isfaction classes for first-order set-theoretic truth, we may stipulate explicitly that a
set a is ordinal algebraic if it is Ord-algebraic in V , that is, if for some first-order
formula ' and ordinal parameters Ę we have that '.a; Ę/ holds and there are only
finitely many b for which '.b; Ę/ holds. But because this definition invokes a truth
predicate for first-order formulas, we cannot formalize it in the theory GBC, which
does not prove the existence of such a predicate, or in ZFC, which by Tarski’s non-
definability theorem cannot consistently have such a predicate. Of course, the same
problem arises already with the notion of ordinal definability, which one would like
to characterize by saying that a set a is ordinal definable if for some first-order '
and ordinal parameters Ę we have that '.b; Ę/ holds just in case b D a. In that
case, the familiar solution is to stipulate instead that a set a is ordinal definable if
it is � -definable in some V� , that is, using ordinal parameters below � and referring
only to truth in the set V� . This condition can be formalized in ZFC, and, moreover
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(by the Lévy–Montague reflection theorem for first-order formulas), it is provably
equivalent in KM to the condition that a is Ord-definable in V .1 Similarly, in the
present context we will stipulate that a set a is ordinal algebraic if it is � -algebraic
in some V� . Again, this can be formalized in ZFC and is provably equivalent in
KM to the condition that a is Ord-algebraic in V . The point is that if a is one of
finitely many satisfying instances of '.�; Ę/ in V , then this fact will reflect to some
V� with � exceeding each of the parameters in Ę. Conversely, if a is � -algebraic in
V� via '.�; Ę/, then because V� is definable from parameter � , the object a will be
algebraic in V via '.�; Ę/V� . Thus the collection OA of ordinal algebraic sets is de-
finable as a class in V . Likewise, then, for the collection HOA of hereditarily ordinal
algebraic sets, that is, ordinal algebraic sets whose transitive closures contain only
ordinal algebraic sets.2

Theorem 1 The class of hereditarily ordinal algebraic sets is the same as the class
of hereditarily ordinal definable sets:

HOA D HOD:

Proof Clearly HOD � HOA. Conversely, we show by 2-induction that every
element of HOA is in HOD. Suppose that a 2 HOA and assume inductively that
every element of a is in HOD, so that a � HOD. Since a is ordinal algebraic, there
is an ordinal definable setA D ¹ a0; : : : ; an º containing it. We may assume that each
ai is a subset of HOD, by adding this condition to the definition of A. The definable
well-ordering of HOD in V gives rise to a definable bijection h W Ord ! HOD,
where h.ˇ/ is the ˇth element of HOD in that ordering. Thus subsets of HOD
are definably identified via h with sets of ordinals, and these in turn are definably
linearly ordered, giving rise to a definable linear order � on subsets of HOD. Namely,
b � c if and only if the HOD-least element of the symmetric difference of b and c
is in c, that is, if h.min.h�1b 4 h�1c// 2 c, where h�1x D ¹ˇ j h.ˇ/ 2 x º. Thus
A is a finite ordinal definable set with a definable linear order �. So each ai is
ordinal definable as the kth element of A with respect to �, for some k, using the
same parameters as the definition of A itself. In particular, a is ordinal definable as
desired.

Since the foregoing proof uses the hereditary nature of HOA, it does not seem to
show OA D OD, and for now this question remains open. Perhaps it is consistent
with ZFC that some ordinal algebraic set is not ordinal definable. Or perhaps alge-
braicity simply coincides with definability in models of set theory. We are unsure.3

3 Pointwise Algebraic Models

A second application of definability in set theory concerns pointwise definable mod-
els, that is, structures in which each element is definable without parameters. For
example, it is well known that the minimal transitive model of ZFC is pointwise
definable, if it exists. Moreover, every countable model of ZFC has a pointwise de-
finable extension by class forcing, and in fact every countable model of GBC has an
extension by means of class forcing in which each set and each class is definable.
Proofs of these facts and more appear in [4] by Hamkins, Linetsky, and Reitz, which
also gives references to earlier literature on the topic.

Here we define a structure to be pointwise algebraic, or simply algebraic, if each
of its elements is algebraic in it. In some mathematical theories, this is not equivalent
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to pointwise definability. For instance, in the language of rings ¹ C; �; 0; 1 º, every
algebraic field extension of the rational field is algebraic in the sense just defined,
since each of its elements is one of finitely many solutions to a particular polynomial
equation over the integers, a property expressible in this language. But since such
fields can have nontrivial automorphisms—a major focus of Galois theory—they
can fail to be pointwise definable. Set theory is different.

Theorem 2 Every algebraic model of ZF is a pointwise definable model of
ZFC C V D HOD.

Proof If M � ZF is algebraic, then of course each of its elements is ordinal alge-
braic in the sense of M . By Theorem 1, it follows that each element of M is ordinal
definable in the sense of M , and so M � ZFC C V D HOD. But each ordinal
of M , being algebraic, belongs to a finite definable set of ordinals of M , a set that is
definably linearly ordered by the membership relation of M . So each ordinal of M
is in fact definable inM . SinceM satisfies V D HOD, this implies that every object
in M is definable, and so M is pointwise definable.

Corollary 3 An extension of ZF has an algebraic model if and only if it is consis-
tent with V D HOD.

Proof In light of Theorem 2, we need only prove the right-to-left direction. So
suppose T extends ZF and is consistent with V D HOD. Then some M � T

satisfies V D HOD. Since M thinks the universe is definably well ordered, it has
definable Skolem functions. Hence the N � M consisting of precisely the definable
elements ofM is closed under these Skolem functions and is therefore an elementary
substructure ofM . So every element ofN is definable inN by the same formula that
defines it in M . Therefore N � T is pointwise definable and hence algebraic.

Corollary 4 A complete extension of ZF has an algebraic model if and only if it
has, up to isomorphism, a unique model in which each ordinal is definable.

Proof By a result of Paris, a complete extension T of ZF proves V D HOD if and
only if it has, up to isomorphism, a unique model in which each ordinal is definable.4
In light of this, Corollary 3 yields the desired conclusion.

Although Theorem 2 shows that algebraicity and definability coincide in algebraic
models of set theory, let us reiterate that we do not know whether there can be a
model of ZF with an algebraic nondefinable element.

4 The Implicitly Constructible Universe

Finally, we consider the algebraic analogue of Gödel’s constructible universe. Gödel
builds his universe L by iterating the definable power set operation Pdef , where for
any structure M the definable power set Pdef.M/ consists of all classes A � M that
are definable over M . Similarly, we define the implicitly definable power set of M
to be the collection Pimp.M/ of all classes A � M that are implicitly definable over
M , and we define the algebraic power set of M to be the collection Palg.M/ of all
A � M that are algebraic over M .

Observation 5 The algebraic power set of a structureM is identical to its implic-
itly definable power set:

Palg.M/ D Pimp.M/:
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Proof Obviously a class A � M is algebraic over M if it is implicitly definable
over M . For the converse, suppose A � M is algebraic over M via '. Note that
each of the finitely many B ¤ A satisfying ' in M is distinguished from A by some
parameter a 2 M that is in A but not B or vice versa. Conjoining to ' assertions
about these parameters (either that a 2 A or a … A, as appropriate) produces a
formula  witnessing that A is implicitly definable over M .

Though algebraic classes are thus always implicitly definable, implicitly definable
classes need not be (explicitly) definable. For example, ifM is an !-standard model
of set theory, then its full satisfaction class SatM D ¹ hp'q; Eai j M � 'ŒEa� º is im-
plicitly definable in M as the unique class satisfying the familiar Tarskian recursive
truth conditions. But Tarski’s theorem on the nondefinability of truth shows precisely
that SatM cannot be defined inM , even with parameters. It is interesting to note that
this argument can fail when M is !-nonstandard, for satisfaction classes need not
be unique in such models, as shown in Krajewski [7]; see Hamkins and Yang [5] for
further results.

Let us make a somewhat more attractive example, where the structure M can be
!-nonstandard and the relevant implicitly definable class Amust be amenable toM ,
meaning that A \ a 2 M for each a 2 M . This is an improvement over the above
example, for SatM can fail to be amenable to M . (When SatM is amenable to M ,
it follows that Th.M/ is in M . But this fails, for example, in pointwise definable
models of set theory, as mentioned in [4].) For the modified argument, let N be any
model of ZFC, and let ˛n be the least †n-reflecting ordinal in N , that is, the least
ordinal such that .V˛n

/N �n N . Such an ˛n exists by the reflection theorem and is
definable in N using the definability of †n satisfaction. Let Mn D .V˛n

/N , and let
M D

S
nMn be the union of the progressively elementary chainM0 �0 M1 �1 � � �

of models. Since the union of a †n-elementary chain is a †n-elementary extension
of each component of the chain, we have Mn �n M and so M � N . Note that
A D ¹ h˛n; p'q; Eai j Ea 2 Mn; ' 2 †n; n 2 !;Mn � 'ŒEa� º is amenable to M . For
if a 2 M , then a 2 Mn for some n, whence A \ a does not contain any triples
h˛m; p'q; Eai for m � n, and consequently A \ a is constructible from a and the †n

satisfaction class of Mn together with the finitely many parameters ˛k for k < n,
all of which are in M . Furthermore, A is implicitly definable in M using a version
of the Tarskian satisfaction conditions. For any two truth predicates must agree that
each ˛n is least such that .V˛n

/M �n M , and the nonstandard formulas never get
a chance to appear in A, as we have defined Mn only for standard n even when N
(and hence M itself) is !-nonstandard. But A cannot be definable in M , even with
parameters, since from A we can define a truth predicate for M .

Having appreciated these facts, we introduce the algebraic analogue of L, the
implicitly constructible universe, hereby dubbed Imp and built as follows:

Imp0 D ;; Imp˛C1 D Pimp.Imp˛/;

Imp� D

[
˛<�

Imp˛; for limit �; Imp D

[
˛

Imp˛:

Theorem 6 Imp is an inner model of ZF with L � Imp � HOD.

Proof Clearly Imp is a transitive class containing all ordinals and closed under the
Gödel operations. Imp is almost universal as well, for each of its subsets is included
in some Imp˛ , each of which belongs to Imp. Any such class is an inner model of
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ZF.5 Since L is the least such inner model, we therefore have L � Imp. To see that
Imp � HOD, recall from Myhill and Scott [9] that HOD is identical to the class
obtained by transfinite iteration of the second-order definable power set operation.
(In other words, HOD is just the second-order constructible universe.) Since the
second-order definable power set of a structure M includes the implicitly definable
power set Pimp.M/, the inclusion Imp � HOD is immediate. One can also obtain
this inclusion by transfinite induction: if Imp˛ � HOD and A 2 Imp˛C1, then A is
implicitly definable over Imp˛ by a specific formula with parameters from Imp˛ , and
since these parameters and Imp˛ are ordinal definable, it follows that A is ordinal
definable as the unique subset of Imp˛ that is implicitly defined by that formula from
those parameters. That is, althoughA is only implicitly definable as a subset of Imp˛ ,
this fact serves as a first-order definition of A as an element of V .

We are unsure whether Imp must satisfy the axiom of choice. This is related to the
subtle issue of whether ImpImp

D Imp, that is, whether Imp can see that it is Imp.
If so, then Imp would know that ImpImp

� HOD and so would satisfy the statement
V D HOD, which implies the axiom of choice. In essence, if Imp can see that it
is Imp, then it can define a well-ordering of the universe: one set precedes another
when it appears earlier in the Imp hierarchy or at the same time but with a smaller
formula, or with the same formula but with earlier parameters.

Unfortunately, we do not know whether ImpImp
D Imp must hold. To highlight

a difficulty, note that one might aim to prove ImpImp
D Imp by showing inductively

that it is true in a level-by-level manner, that is, by proving ImpImp
˛ D Imp˛ for

each ˛. Of course, if this identity holds at ˛, then Imp˛C1 � ImpImp
˛C1, because

any A 2 Imp˛C1 will be implicitly definable over ImpImp
˛ and contained in Imp,

and so it will be in ImpImp
˛C1. But the problem for the converse is that perhaps some

B � ImpImp
˛ , belonging not to Imp˛ but still belonging to some later stage Impˇ , will

be implicitly definable over Imp˛ in the sense of Imp but not in the sense of V . This
will happen, for example, if V ¤ Imp and every formula witnessing in Imp that B
is implicitly definable over Imp˛ is satisfied in V also by some set other than B . So
we seem not to be able to argue that ImpImp

˛C1 � Imp˛C1, and the inductive method
of showing ImpImp

D Imp therefore appears to break down.
Putting that aside for the moment, let us examine the relationship between Imp

and L. Observe first that for any countable structureM , the statement that A � M is
implicitly definable over M is a …1

1 assertion in the codes for A and M . Shoenfield
absoluteness therefore ensures that Imp˛ is absolute from V to L for ˛ < !L

1 , and so
Imp!L

1
D .Imp!1

/L D L!L
1

. Meanwhile, the Imp˛ hierarchy grows faster than the
L˛ hierarchy. For as noted above, the satisfaction class ¹ hp'q; Eai j Imp˛ � 'ŒEa� º

is implicitly, but not explicitly, definable over Imp˛ . Furthermore, the satisfaction
class for hyperarithmetic truth is in Pimp.Imp!/ D Imp!C1 but does not appear in L
until stage !CK

1 . The satisfaction relation for L�;� logic over Imp˛ , using formulas
in Imp˛ , is likewise implicitly definable in Imp˛ . One naturally wonders whether the
L˛ hierarchy ever catches up to the Imp˛ hierarchy, in the sense that each Imp˛ is
contained in some Lˇ . The following theorem shows that this is not necessary.

Theorem 7 It is relatively consistent with ZFC that Imp ¤ L.
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Proof Let T be a Souslin tree in L with the unique branch property, a strong
notion of rigidity described in Fuchs and Hamkins [2]. Forcing over L with T yields
a model LŒb� containing exactly one cofinal branch b through T . Since T 2 L,
there is an ˛ with T 2 ImpLŒb�

˛ . And in ImpLŒb�
˛ the formula “X is a cofinal branch

through T ” is satisfied uniquely by b. So b 2 ImpLŒb�
˛C1. But b … L. So LŒb� thinks

Imp ¤ L.

Corollary 8 Imp is not absolute to forcing extensions.

A careful inspection of the proof of Theorem 7 shows that a copy of T becomes de-
finable in ImpLŒb�

!1
, and so in fact b 2 ImpLŒb�

!1C1. Moreover, the branch b is implicitly
definable overL inside any universe in which b is isolated in T . In general, we would
like to know what else is contained in Pimp.L/. For example, is 0], considered as a
set of natural numbers, implicitly definable over L? Can any nonconstructible real
be implicitly definable over L?

Refining the notion of implicit constructibility captured by Imp, we define the
class gImp, the generic implicitly constructible universe, to consist of those sets a
that belong to ImpV ŒG� for every set-forcing extension V ŒG� of the universe. This
class is first-order definable in V . One can compare gImp with the generic HOD
class gHOD, an inner model of ZFC defined in Fuchs, Hamkins, and Reitz [3]. Since
the proof of Theorem 6 works in each forcing extension, we note that gImp � gHOD.

Theorem 9 In any set-forcing extension LŒG� of L, there is a further extension
LŒG�ŒH� with gImpLŒG�ŒH�

D ImpLŒG�ŒH�
D L.

Proof Let LŒG�ŒH� be the forcing extension obtained by absorbing the G forcing
into a large collapse Coll.!; �/ forcing that is almost homogeneous. Since L is the
HOD of LŒG�ŒH�, it follows that gImpLŒG�ŒH�

D ImpLŒG�ŒH�
D L as well.

Open questions about Imp abound. Can ImpImp differ from Imp? Does Imp satisfy
the axiom of choice? Can Imp have measurable cardinals? Must 0] be in Imp when
it exists?6 Which large cardinals are absolute to Imp? Does Imp have fine structure?
Should we hope for any condensation-like principle? Can CH or GCH fail in Imp?
Can reals be added at uncountable construction stages of Imp? Can we separate Imp
from HOD? How much can we control Imp by forcing? Can we put arbitrary sets into
the Imp of a suitable forcing extension? What can be said about the universe Imp.R/
of sets implicitly constructible relative to R and, more generally, about Imp.X/ for
other sets X? Here we hope at least to have aroused interest in these questions.

Notes

1. See Theorem 12.14 and equation 13.26 of Jech [6] on reflection and ordinal definability,
respectively.

2. Nevertheless, there are some metamathematical subtleties to this approach. In the case
of definability, suppose a modelM believes that a is defined in VM

�
by a formula '.�; Ę/.

If ' has standard length, then, since � 7! VM
�

is definable in M , we can see externally

that a is OrdM -definable in M as the unique object satisfying the formula '.�; Ę/V
M
�

with parameters Ę and � . In fact, a remains OrdM -definable in M even when ' is a
nonstandard formula of M , for a is the unique object thought by M to satisfy, in VM

�
,
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the formula coded by the ordinal p'q with parameters coded by the ordinal p Ęq. Thus
OD, as defined in M by our official definition, coincides with the class of objects in M
that really are OrdM -definable in M .

For algebraicity, however, there is a wrench in the works of the analogous absolute-
ness argument: although each object that is externally OrdM -algebraic in M is also
internally ordinal algebraic inM , it is conceivable that an !-nonstandard modelM may
regard an object a as ordinal algebraic even when it is not really OrdM -algebraic in M .
This could happen if nwere a nonstandard integer andM regarded a as ordinal algebraic
due to its membership in a set ¹ b j VM

�
� '.b; Ę/ º of “finite” size n. In short, the more

expansive concept of finiteness inside an !-nonstandard modelM may lead it to a more
generous concept of algebraicity. Of course, since we do not yet know whether alge-
braicity differs from definability in any model of set theory, we cannot now confirm this
possibility by presenting a particular !-nonstandard modelM for which ODM contains
sets that are not really OrdM -algebraic in M .

3. See the previous note for a related discussion.

4. See Enayat [1, Theorem 3.6] for a proof.

5. See [6, Theorem 13.9] for a definition of almost universality and a proof that any almost
universal transitive class containing all ordinals and closed under the Gödel operations
is a model of ZF.

6. An affirmative answer arose in conversation with Menachem Magidor and Gunter Fuchs,
and we hope that Imp will subsume further large cardinal features. We anticipate a future
article on the implicitly constructible universe.

References

[1] Enayat, A., “Models of set theory with definable ordinals,” Archive for Mathemati-
cal Logic, vol. 44 (2005), pp. 363–85. Zbl 1068.03032. MR 2140616. DOI 10.1007/
s00153-004-0256-9. 438

[2] Fuchs, G., and J. D. Hamkins, “Degrees of rigidity for Souslin trees,” Journal of Sym-
bolic Logic, vol. 74 (2009), pp. 423–54. Zbl 1179.03043. MR 2518565. DOI 10.2178/
jsl/1243948321. 437

[3] Fuchs, G., J. D. Hamkins, and J. Reitz, “Set-theoretic geology,” Annals of Pure
and Applied Logic, vol. 166 (2015), pp. 464–501. MR 3304634. DOI 10.1016/
j.apal.2014.11.004. 437

[4] Hamkins, J. D., D. Linetsky, and J. Reitz, “Pointwise definable models of set theory,”
Journal of Symbolic Logic, vol. 78 (2013), pp. 139–56. Zbl 1270.03101. MR 3087066.
DOI 10.2178/jsl.7801090. 433, 435

[5] Hamkins, J. D., and R. Yang, “Satisfaction is not absolute,” preprint, arXiv:1312.0670v1
[math.LO]. 435

[6] Jech, T., Set Theory, 3rd millennium ed., Springer, Berlin, 2003. MR 1940513. 437, 438
[7] Krajewski, S., “Mutually inconsistent satisfaction classes,” Bulletin of the Polish Acad-

emy of Sciences, Series Science, Mathematics, Astronomy, Physics, vol. 22 (1974),
pp. 983–87. MR 1492987. DOI 10.1007/978-3-662-22400-7. 435

[8] Leahy, C., “Pointwise algebraic models of set theory,” MathOverflow question, 2011,
http://mathoverflow.net/questions/71537. 439

[9] Myhill, J., and D. Scott, “Ordinal definability,” pp. 271–78 in Axiomatic Set Theory
(Los Angeles, 1967), edited by D. Scott, vol. 13 of Proceedings of Symposia in Pure

http://www.emis.de/cgi-bin/MATH-item?1068.03032
http://www.ams.org/mathscinet-getitem?mr=2140616
http://dx.doi.org/10.1007/s00153-004-0256-9
http://dx.doi.org/10.1007/s00153-004-0256-9
http://www.emis.de/cgi-bin/MATH-item?1179.03043
http://www.ams.org/mathscinet-getitem?mr=2518565
http://dx.doi.org/10.2178/jsl/1243948321
http://dx.doi.org/10.2178/jsl/1243948321
http://www.ams.org/mathscinet-getitem?mr=3304634
http://dx.doi.org/10.1016/j.apal.2014.11.004
http://dx.doi.org/10.1016/j.apal.2014.11.004
http://www.emis.de/cgi-bin/MATH-item?1270.03101
http://www.ams.org/mathscinet-getitem?mr=3087066
http://dx.doi.org/10.2178/jsl.7801090
http://arxiv.org/abs/arXiv:1312.0670v1
http://www.ams.org/mathscinet-getitem?mr=1940513
http://www.ams.org/mathscinet-getitem?mr=1492987
http://dx.doi.org/10.1007/978-3-662-22400-7
http://mathoverflow.net/questions/71537


Algebraicity and Implicit Definability in Set Theory 439

Mathematics, American Mathematical Society, Providence, 1971. Zbl 0226.02048.
MR 0281603. 436

Acknowledgments

This project began when the first author responded to a question posed by the sec-
ond author on the website MathOverflow [8]. The first author’s research has been
supported in part by National Science Foundation program grant DMS-0800762, by
Simons Foundation grant 209252, by Professional Staff Congress-City University of
New York (PSC-CUNY) grant 66563-00 44, and by CUNY Collaborative Incen-
tive Award program grant 80209-06 20. The authors thank Leo Harrington for an
insightful conversation with the first author during math tea at the National Uni-
versity of Singapore in July of 2011. Commentary on this paper can be made at
http://jdh.hamkins.org/algebraicity-and-implicit-definability.

Hamkins
Departments of Mathematics, Philosophy, and Computer Science
The Graduate Center of the City University of New York
New York, New York 10016
USA
and
Department of Mathematics
The College of Staten Island of the City University of New York
Staten Island, New York 10314
USA
jhamkins@gc.cuny.edu
http://jdh.hamkins.org

Leahy
Department of Linguistics and Philosophy
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
USA
cleahy@mit.edu
http://cel.mit.edu

http://www.emis.de/cgi-bin/MATH-item?0226.02048
http://www.ams.org/mathscinet-getitem?mr=0281603
http://jdh.hamkins.org/algebraicity-and-implicit-definability
mailto:jhamkins@gc.cuny.edu
http://jdh.hamkins.org
mailto:cleahy@mit.edu
http://cel.mit.edu

	1 Introduction
	2 Ordinal Algebraicity
	3 Pointwise Algebraic Models
	4 The Implicitly Constructible Universe
	Notes
	References
	Acknowledgments
	Author's addresses

