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A Syntactic Approach to Unification
in Transitive Reflexive Modal Logics

Rosalie Iemhoff

Abstract This paper contains a proof-theoretic account of unification in transi-
tive reflexive modal logics, which means that the reasoning is syntactic and uses
as little semantics as possible. New proofs of theorems on unification types are
presented and these results are extended to negationless fragments. In particular,
a syntactic proof of Ghilardi’s result that S4 has finitary unification is provided.
In this approach the relation between classical valuations, projective unifiers, and
admissible rules is clarified.

1 Introduction

When restricted to propositional logic, unification theory is concerned with the prob-
lem whether a given formula can become derivable under a substitution. In general,
a unification problem asks for the unifier of a pair of terms, or collection of pairs
of terms, which in the context of a logic is a substitution under which two formulas
become equivalent in the logic. This, however, can be reformulated as the problem of
finding a substitution under which a formula becomes derivable. Such substitutions
are called the unifiers of a formula.

In classical propositional logic every consistent formula has a unifier, because
every satisfying valuation corresponds to a ground unifier that replaces the atoms
in the formula by > or ?. A substitution is a maximal unifier (mu) of a formula if
among the unifiers of the formula it is maximal in the following ordering:

� � � �def 9�.� DL ��/;

and it is a most general unifier (mgu) if it is also unique modulo D, which is the inter-
section of � and �. Here DL is the equivalence relation on substitutions associated
with the logic: � DL � if and only if �.p/ $ �.p/ is derivable for all atoms p. If
� � � , we say that � is less general than � .
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Mgus generate all unifiers of a formula, which is the reason that they play an
important role in unification theory. In classical propositional logic every unifiable
formula has an mgu, but this no longer holds for intermediate and modal logics, as
was first observed by Ghilardi [8], [9]. For modal logics, which will be the logics this
paper is concerned with, the formula �p _ �:p is an example of a formula that has
two unifiers such that neither one is less general than the other, namely, �0.p/ D >

and �1.p/ D ?. Thus this formula has no mgu. But, as Ghilardi showed in [9],
for many transitive modal logics, something almost as good holds: instead of unitary
unification these logics have finitary unification, which is defined as follows.

A complete set of unifiers for a formula is a set of unifiers such that every unifier
of the formula is less general than a unifier in the set. It is minimal if no two unifiers
in the set are comparable with respect to �. A logic has unification type

� unitary if every unifiable formula has an mgu,
� finitary if every unifiable formula has a finite complete set of mus,
� infinitary if every unifiable formula has a (in)finite complete set of mus,
� nullary if none of the above.

The classes are meant to be disjunct. For example, in a logic of unification type in-
finitary there exists at least one formula that has no finite complete set of mus. As
was mentioned above, classical logic has unitary unification type, and several tran-
sitive modal logics, including the well-known logics K4, S4, and GL, have finitary
unification. For example, in the example above ¹�0; �1º is a finite complete set of
mus for �p _ �:p in K4, S4, as well as GL.

In this paper we extend these results to the negationless fragment of S4. However,
our aim is not so much to extend Ghilardi’s results to this fragment, an extension
that is not terribly interesting and might have been obtained from existing work on
S4 anyway, but rather to give a proof-theoretic analysis of unification in transitive
modal logics.

Let us first describe how Ghilardi proves that S4 and several other modal logics
have finitary unification. In [9] it is shown that if A satisfies a certain semantical
property (the extension property), it has an mgu. Then it is proved that for every
formula A there exists a finite set of formulas with the extension property, forming
the projective approximation …A of A, such that every unifier of A is less general
than one of the mgus of the formulas in …A. These two theorems then establish the
finitary unification of S4.

Ghilardi uses semantics in the form of Kripke models to prove these theorems (in
fact, his results stem from a categorical approach to unification in logic; see [11]).
Our Theorems 1 and 3 and Lemma 8 can be viewed as proof-theoretic analogues
of these theorems. They provide a syntactic closure condition on formulas which is
sufficient for having an mgu. And they show that in S4 and its negationless fragment,
there is for every formula A a finite set of formulas that satisfy the closure condition
and such that every unifier of A is less general than one of the mgus of the formulas
in that set. Observe that this indeed proves that these logics have finitary unification
(see Corollary 2).

Besides providing a proof-theoretic treatment of unification, another aim is to
clarify the relation between unifiers and valuations. The mgus that play an important
role in unification in modal logic often are projective, where a unifier � of a formula
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A is called projective if A ` �.p/ $ p for all atoms p, that is, if A implies that the
substitution is the identity. The projective unifiers that Ghilardi introduced in [9] are
compositions of substitutions of the form

�I .p/ �def

´
A ^ p if p … I ,
A ! p if p 2 I ,

where I is a set of atoms. It is not difficult to see that �I is a projective unifier of A

in classical propositional logic whenever A is valid under the valuation

vI .p/ �def

´
0 if p … I ,
1 if p 2 I .

One could view Theorem 1 below as an analogue of this fact for modal logic.
At the end of the paper we apply these results to admissible rules, which are the

rules under which a logic is closed. Jeřábek proved in [19, Theorem 4.5] that the
modal rules Vı (definition in Section 6) form a basis for the admissible rules of
any extension of S4 in which they are admissible. In Theorem 4 we show that this
result can be obtained via syntactic methods as well and extend it to the negationless
fragment of S4.

The restriction in this paper to reflexive logics is, we think, not essential for a
proof-theoretic treatment of unification, but it seems to simplify the reasoning at
some points, and we therefore leave the general case (fragments of K4) for future
work.

Finally, let us briefly discuss other work on unification and admissible rules in
modal logic. We restrict ourselves to the results that are relevant for this paper, and
will therefore not discuss intermediate logics or multimodal logics. Rybakov [27]
was the first to prove the decidability of admissibility for various modal logics, in-
cluding S4. Chagrov [2] constructed a decidable modal logic in which the admissi-
bility problem is undecidable, and Wolter and Zakharyaschev [28] did the same for
the unification problem. As mentioned above, Ghilardi introduced the notion of pro-
jectivity for formulas and unifiers, proved that various modal and intermediate logics
have finitary unification, and showed that projective approximations can be found ef-
fectively (see [9]). The latter also holds for the irreducible projective approximations
from Iemhoff and Metcalfe [17] that we use in this paper. Ghilardi [10] also provided
an elegant algorithm for deciding admissibility of several modal logics. Jeřábek in
[19] gave a basis for the admissible rules of various modal logics, including S4. In
[20] he showed that the admissibility problem of S4 and various other logics is coN-
EXP-complete. Iemhoff and Metcalfe in [16] and [17], developed proof systems for
admissibility for K4, S4, and GL.

Dzik, in several papers, studied the lattice of transitive reflexive modal logics.
In [6] he showed that one can split the lattice in two parts in such a way that one
part, those logics that contain S4:2, contains all extensions of S4 that have unitary
unification, and that the other part contains all extensions of S4 that have finitary
unification. Dzik and Wojtylak showed in [7] that every logic containing S4 has
projective unification if and only if it contains S4:3, where a logic has projective
unification if every unifiable formula has a projective unifier. In the same paper they
also showed that among the extensions of S4:3, those that are extensions of S4:1 are
exactly those that are structurally complete.
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The above provides but a short description of some of the literature on unification
in modal logic. For further references, see Baader and Ghilardi [1].

The inspiration for this paper is the proof-theoretic approach to unification in
intuitionistic logic developed by Rozière in [26]. In Iemhoff and Rozière [18] we
have extended these results to intermediate logics.

2 The Logics

The logics we consider are normal transitive modal logics that contain S4, as well as
the negationless fragments of such logics, which means those fragments that do not
contain ? and : but do contain all other connectives. The results in this paper are
proved for the full logics, but the extension to the negationless fragments is straight-
forward: inspection of the proofs shows that only implication and conjunction are
explicitly used.

P D ¹p1; p2; : : : º is the set of propositional variables (also called atoms), and
p; q; r; s denote arbitrary elements of P . In the case that ? is part of the language,
p; q; r; s range over P [ ¹?º. A; B; C denote formulas. F .p1; : : : ; pn/ is the set of
formulas in which only atoms in ¹p1; : : : ; pnº occur. We use �; � to denote finite sets
of formulas. Sequents are expressions � ) �, thus pairs of finite sets of formulas.
In the case that ? and negation do not belong to the language, we require that � is
not empty. S ranges over sequents. A sequent is irreducible if it only contains atoms,
boxed atoms (�p for p an atom or ?), and ?. A formula is irreducible if it is of the
form I.S/ for an irreducible sequent S . S ; G ; H range over finite sets of sequents.

PG denotes the set of atoms that occur in G , and if ? is present and occurs in
G , PG also contains ?. nG is the minimal n for which all atoms in G are among
p1; : : : ; pn.

We need the following notation, where v stands for variable, b for box, i for
interior, a for assumption, and c for conclusion:

�v
�def ¹p j p 2 �º; �b

�def ¹�p j �p 2 �º; � i
�def ¹p j �p 2 �/º;

.� ) �/a
�def �; .� ) �/c

�def �;

Skl
�def .Sk/l k 2 ¹a; cº; l 2 ¹a; c; v; b; iº:

For example, Sab is the set of boxed atoms in the antecedent of S . Sequents are
interpreted as formulas in the usual way: I.S/ D .

V
Sa !

W
Sc/. For notational

convenience we sometimes write S for I.S/, for example in ` S , which thus should
be read as `

V
Sa !

W
Sc . Also expressions like “S is derivable” are short for

“I.S/ is derivable.” The following sets play an important role in what follows:

BG �def

[
¹Sab

j S 2 G º; †G
S �def

®
p

ˇ̌
G ` I.BS ) p/

¯
:

Sets of sequents are interpreted as conjunctions, and we sometimes use the noncalli-
graphic version of a letter to denote the corresponding boxed formula:

I.G / �def

^
S2G

I.S/; G �def �I.G /:

When we speak of the unifiability of G , we mean the unifiability of G. Note that
reflexivity implies that ` G ! I.G /.
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We assume that the logics are given by consequence relations. In the setting of
rules it is convenient to consider multi-conclusion finitary structural consequence
relations, which are relations ` between finite sets of formulas satisfying

reflexivity A ` A,
weakening if � ` �, then � 0; � ` �; �0,
transitivity if � ` �; A and � 0; A ` �0, then � 0; � ` �; �0,
structurality if � ` �, then �� ` �� for all substitutions � .

A finitary single-conclusion consequence relation is a relation between finite sets
of formulas and formulas satisfying the single-conclusion variants of the four prop-
erties above. Thus for single-conclusion consequence relations the conclusion of a
rule cannot be empty.

The theorems of (the logic given by) a consequence relation ` are those A for
which ; ` A, which we denote by ` A, holds. There are many consequence relations
that correspond to a single set of theorems. Here we do not require much of the
consequence relation, except that A `L �A holds for all A, and if

V
� ! A holds

in the logic, then � `L A holds for the consequence relation `L.
A (multi-conclusion) rule is an expression of the form �=�. It is derivable in a

logic given by the consequence relation `L if � `L A for some A 2 �, and admis-
sible, written � j� L�, if for all substitutions � , if �� consists of theorems of L, then
�� contains a theorem of L. Note that a logic has the modal disjunction property
(`L �A_�B implies `L A or `L B) if and only if ¹�p _�qº=¹p; qº is admissible.
Given a set of rules R, `L

R is the smallest finitary structural multi-conclusion con-
sequence relation that extends `L in which all rules in R are derivable. (For more on
consequence relations in this setting, see Iemhoff [14].)

3 Proof Sketch

Given a formula A and a subset I of the atoms in A, consider the valuation vI and
substitution �A

I given in the Introduction:

vI .p/ �def

´
1 if p 2 I ,
0 if p … I ,

�A
I .p/ �def

´
A ! p if p 2 I ,
A ^ p if p … I .

It is not difficult to see that if S consists of atoms, then for A D I.S/, if vI .A/ D 1,
then `L �A

I .A/. Also, A `L �A
I .B/ $ B for all B . Therefore, in case vI satisfies

A, �A
I is an mgu of A in L. For if `L �A, then as �A `L ��A

I .B/ $ �B , also
`L ��A

I .B/ $ �B . That is, � � �A
I .

Because the logics contain (the negationless fragment of) S4, the above argument
extends in the following way to irreducible sequents S : if vI .Sav[Sai ) Scv/ D 1,
then �

I.S/
I is an mgu of I.S/.

One of the key observations in the results below, Corollary 1, states that a set G

of irreducible sequents closed under the rules Vı is projective. The projective unifier
of the formula G, where G D �I.G /, is a composition of substitutions of the form
�G

I , for some I . The main part of the proof of Corollary 1 is to show that such a
composition is a unifier for the formula, because the argument above implies that if
so, it is a most general one.

The proof that a certain composition � D �n � � � �1 of substitutions of the form
�G

I is a unifier for G is based on the following simple observation. Writing � i for
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�n � � � �i , to prove `L �G, one has to show that `L �1Sa
1 ) �1Sc

1 for all S1 2 G .
For this it suffices to show that for some i2 � 1 and for all S2 2 G :

`L �1Sab
1 ) I.� i2S2/: (1)

This would namely imply that `L �1Sab
1 ) � i2I.G /; that is, `L �1Sab

1 ) � i2G.
And as the �j are such that `L G ! �i2�1 � � � �1G, an application of � i2 gives
`L � i2G ) �1G. Thus `L �1Sab

1 ) �1G, which implies `L �1Sab
1 ) �1S1, as

S1 2 G . And thus `L �1Sa
1 ) �1Sc

1 .
Repeating this argument shows that to prove (1) it suffices to show that for some

i3 � i2 and for all S3 2 G :

`L �1Sab
1 ; � i2Sab

2 ) I.� i3S3/: (2)

Continuing this argument, one sees that to prove `L �G it suffices to show
that for all possible sequences S1; : : : ; Sm of sequents from G and all numbers
1 � i2 � i3 � � � � � im there is a j � im such that for all S 2 G :

`L �1Sab
1 ; � i2Sab

2 ; : : : ; � imSab
im

) I.�j S/: (3)

Reasoning as above in the simpler case, one sees that if for S D ¹S1; : : : ; Si º,
I would be such that �j D �G

I and vI satisfies I.Sav [ Sai ) Scv [ .Sci \ †G
S

//,
then (3) holds. This explains the notion of strong satisfiability introduced below,
which requires that vI satisfies I.Sav[Sai ) Scv[.Sci \†G

S
// for all S 2 S � G .

The proof of Corollary 1 therefore consists of two parts: Lemma 8 stating that
closure under the rules Vı implies strong satisfiability and Theorem 1 stating that
strong satisfiability implies projectivity. The rest of the paper shows how to apply
Corollary 1 to prove that certain (fragments of) logics have finitary unification type
and Vı as a basis for admissibility.

4 Substitutions and Valuations

The discussion above serves as a background for the definitions given below. In this
and the next section we consider an arbitrary finite set G of irreducible sequents, and
corresponding boxed formula G D �I.G /. Without loss of generality, we assume
the set of atoms that occur in G to be PG D ¹p1; : : : ; pnG

º. Most definitions are rel-
ative to G , but for simplicity we do not always indicate this in our notation. Observe
that G derives �G and I.G / by transitivity and reflexivity.

We fix an arbitrary enumeration J1; : : : ; J2nG of all subsets of PG , and I ranges
over arbitrary subsets of PG . Valuations of the form vI have been defined at the
beginning of Section 3. We extend these to valuations for sequents S relative to a set
of sequents S � G : S is strongly satisfiable with respect to S if

QvI .S j S/ �def vI

�
Sav

[ Sai
) Scv

[ .Sci
\ †G

S /
�

D 1:

The empty sequent is interpreted as ? and thus has no satisfying valuation. The
valuations are extended to sets of sequents in the usual way: QvI .S 0 j S/ D 1 if and
only if QvI .S j S/ D 1 for all S 2 S 0. We write QvI .S/ for QvI .S j S/. G is strongly
satisfiable if for all S � G , there is an I such that QvI .S/ D 1.

� and � range over substitutions that assign propositional formulas in the language
of L to atoms, and � is the identity substitution. As usual, �� D ¹�A j A 2 �º and
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�S D .�Sa ) �Sc/. The substitutions that we consider have finite domains, where
dom.�/ denotes the domain of � . We use the following notation:

� $ � �def

^
p2dom.�/[dom.�/

�
�.p/ $ �.p/

�
:

Observe that � $ � is a propositional formula and that

` � $ � implies ` �A $ �A:

Given a set of atoms I , the substitutions �I , � , and �G are defined as

�I .p/ �def

´
G ! p if p 2 I ,
G ^ p if p … I ,

� �def �Jg
� � � �J1

; �G �def � jG jC1;

where g is short for 2nG . Thus �G is the composition of g.jG j C 1/ substitutions.
The i th substitution in �G (reading from right to left) is denoted by �i and for i < j ,
�j � � � �i is denoted by �j;i . We denote �g.jG jC1/;i D �g.jG jC1/ � � � �i by � i . For
example, �2 D �gC2 D � � � D �gjG jC2 D �J2

, �1 D �G , and �gC1 D � jG j. We
denote by Ii the set Jj such that �i D �Jj

. Thus i D kg C j for some k. For
valuations we define

vi �def vIi
:

The rest of this section contains technical lemmas that we will need later on.

Lemma 1 For all m and i < j : ` G ! �.� $ �i $ �j;i / and ` �j G ! � i G.

Proof Observe that ` G ! �G holds because the logic is transitive. The first
equivalence in the first statement immediately follows from this. The second equiva-
lence follows from the derivability of �.B $ C / ! .AŒB=p� $ AŒC=p�/ for any
atom p.

The first statement implies that ` G ! �j �1;i G, which implies ` �j G ! � i G.

Lemma 2 For all S 2 G for which .Scv \ I / or .Sav [ Sai /nI is not empty,
` �I S .

Proof We treat the case that Sai nI is not empty; say it contains the atom p. Thus
�p belongs to Sa and since the logic is reflexive, Sa implies p. p is under �I

replaced by G ^ p. Thus �I Sa implies G, and Lemma 1 and the fact that S 2 G

prove that it implies Sc , and �I Sc as well, which gives the result.

For numbers i1; : : : ; ij , sequents S1; : : : ; Sj , and formula A, we define

F.i1; : : : ; ij ; S1; : : : ; Sj ; A/ �def I.� i1Sab
1 ; � i2Sab

2 ; : : : ; � ij Sab
j ) A/: (4)

We write F.i1; : : : ; ij ; S1; : : : ; Sj ; S/ for F.i1; : : : ; ij ; S1; : : : ; Sj ; I.S// when con-
venient. Recall that g is short for 2nG .

Lemma 3 For all S D ¹S1; : : : ; Sj º � G and 1 � i1; : : : ; ij < h � g.jG j C 1/,
if Qvh.S/ D 1, then ` F.i1; : : : ; ij ; S1; : : : ; Sj ; I.�hS/ ^ I.�hS// for all S 2 S .
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Proof Suppose Qvh.S/ D 1, and consider S 2 S . If .Scv \ Ih/ or .Sav [ Sai /nIh

is not empty, the previous lemma implies that �hS and thus �hS is derivable, which
implies what has to be shown. The case remains that �p 2 Sc for some p 2 †G

S
\Ih.

Since G ` I.BS ) p/, BS D ¹Sab
1 ; : : : ; Sab

j º, and p is under �h replaced by
G ! p, it follows that ` I.� i1Sab

1 ; : : : ; � ij Sab
j ) �hp/ by Lemma 1. Hence

` I.�1Sab
1 ; : : : ; �j Sab

j ) �hS/. Writing �k for �h;ik , one readily sees that also
` I.�1Sab

1 ; : : : ; �j Sab
j ) �hp/. Thus ` I.� i1Sab

1 ; : : : ; � ij Sab
j ) ��hp/ and

` I.�1Sab
1 ; : : : ; �j Sab

j ) ��hp/ as well. As �p 2 Sc , ` I.�1Sab
1 ; : : : ; �j Sab

j )

��hS/. An application of �hC1 gives ` F.i1; : : : ; ij ; S1; : : : ; Sj ; �hS/.

5 Unifiers

In this section we show that strong satisfiability implies projectivity. The proof of
this fact is syntactic and does not use models. The definitions below are relative to
G , but we do not indicate this in our notation. Substitutions � and �i have been
defined in the previous section. For the intuition behind the notions defined below
we refer the reader to Section 3.

A sequence of m numbers followed by m sequents i1; : : : ; im; S1; : : : ; Sm is ap-
propriate if m � jG j,

1 D i1 � g < i2 � 2g � � � � < im � mg;

and the sequents are distinct and belong to G . It is G-sufficient if for all num-
bers j such that mg < j � .m C 1/g and Qvj .¹S1; : : : ; Smº/ D 1, the formula
F.i1; : : : ; im; S1; : : : ; Sm; �j G/ is derivable, where F is defined in (4).

Lemma 4 If G is strongly satisfiable, then for any number k � 0 and every ap-
propriate sequence i1; : : : ; im; S1; : : : ; Sm there exists a natural number h such that
kg < h � .k C 1/g and Qvh.¹S1; : : : ; Smº/ D 1.

Proof As G is strongly satisfiable, there is a 1 � j � g such that Qvj .¹S1; : : : ; Smº/

equals 1. Since vj D vkgCj , the lemma follows.

Lemma 5 If G is strongly satisfiable, then for all m � jG j: if all appropriate
sequences of length 2m are G-sufficient, then so are all appropriate sequences of
length 2m � 2.

Proof Consider an appropriate i1; : : : ; im�1; S1; : : : ; Sm�1, and let j be such that
.m � 1/g < j � mg and Qvj .¹S1; : : : ; Sm�1º/ D 1. It suffices to show that for all
S 2 G :

` F.i1; : : : ; im�1; S1; : : : ; Sm�1; �j S/: (5)
If S 2 ¹S1; : : : ; Sm�1º, then (5) follows from Lemma 3. If, on the other
hand, S … ¹S1; : : : ; Sm�1º, then i1; : : : ; im�1; j; S1; : : : ; Sm�1; S is an appro-
priate sequence of length 2m. By Lemma 4, there exists a number h such that
mg < h � .m C 1/g and Qvh.¹S1; : : : ; Sm�1; Sº/ D 1. Therefore, by G-sufficiency,

` F.i1; : : : ; im�1; j; S1; : : : ; Sm�1; S; �hG/:

Since ` �hG ! �j G and S 2 G , this implies that
` F.i1; : : : ; im�1; j; S1; : : : ; Sm�1; S; �j S/:

Hence ` F.i1; : : : ; im�1; S1; : : : ; Sm�1; �j S/, which is what we had to show.
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Lemma 6 If S 2 G and 1; S is G-sufficient, then ` �S .

Proof By Lemma 4, there exists a 1 � i � g such that Qvi .¹Sº/ D 1.
Therefore `

V
�1Sa ! � i G. Since ` � i G ! �1G by Lemma 1, this gives

`
V

�1Sa ! �1G. As S 2 G , ` �1S follows; that is, ` �GS .

Lemma 7 Every appropriate sequence of length 2jG j is G-sufficient.

Proof Let jG j D m, consider an appropriate sequence i1; : : : ; im; S1; : : : ; Sm, and
let j be such that mg < j � .m C 1/g and Qvj .¹S1; : : : ; Smº/ D 1. Because
m D jG j and the Si are distinct, ¹S1; : : : ; Smº D G . Therefore by Lemma 3,
` F.i1; : : : ; im; S1; : : : ; Sm; �j S/ for all S 2 G . This implies that the sequence
is G-sufficient.

Theorem 1 If G is strongly satisfiable, then ` �GG.

Proof By Lemma 7, every appropriate sequence of length 2jG j is G-sufficient. By
repeated application of Lemma 5, it follows that 1; S is G-sufficient for every S 2 G .
This implies ` �GS by Lemma 6. Hence ` �GG.

6 Rules and Satisfiability

In the following, we use �; �A � A ) � as an abbreviation for the se-
quence of two sequents .�; �A; A ) �/; .� ) A; �A; �/, and the expression
�¹A1; : : : ; Anº � ¹A1; : : : ; Anº for �A1 � A1; : : : ; �An � An. Furthermore,
resolution proofs are sequent derivations in which every sequent contains only
atoms, and every inference is a cut.

Jeřábek in [19] showed that the following rule is a basis for the admissible rules
of S4, and obtained similar results for other modal logics:

¹�� � � ) ��º

¹�� ) p j p 2 �º
Vı:

We provide another proof of this fact and extend it to the negationless fragment of
S4. We prove it by showing that closure under Vı is a sufficient condition for strong
satisfiability. A set of irreducible sequents G is closed under Vı if for all instances of
Vı with irreducible hypothesis �� � � ) � that only contains atoms that belong
to PG , if G derives every (formula corresponding to a) sequent in �� � � ) �,
then there is a p 2 � such that G derives �� ) p.

Lemma 8 If G is a consistent set of irreducible sequents closed under Vı, then G

is strongly satisfiable.

Proof Arguing by contraposition, suppose that for some S � G , QvI .S/ D 0 for
all I . Thus there exists a resolution proof from the set of sequents®

Sav
[ Sai

) Scv
[ .Sci

\ †G
S /

ˇ̌
S 2 S

¯
that ends in the empty sequent. For clarity we denote, in this proof, the sequents in
the resolution proof by C and call them clauses. We can assume that no atom in a
clause belongs both to the antecedent and the succedent. We are going to associate
with every clause C in the refutation a sequent SC derivable from G such that

Sav
C [ Sai

C � C a; Scv
C [ .Sci

C \ †G
S / � C v:



242 Rosalie Iemhoff

The antecedent of such a sequent can contain atoms, boxed atoms, and formulas
of the form p � �p, and the succedent consists of atoms and boxed atoms only.
For the initial clauses C , SC is the sequent to which C corresponds. For a cut on
clauses C1 and C2 with corresponding sequents S1 and S2, there are the following
four possibilities. Let C be the clause resulting from the cut. First, if p 2 Scv

1 and
p 2 Sav

2 , then SC is the result of applying a cut to the sequents S1 and S2 with cut
formula p. Second, if p 2 Sci

1 and p 2 Sai
2 , then SC is the result of applying a cut

to the sequents S1 and S2 with cut formula �p. Third, if �p 2 Sc
1 and p 2 Sa

2 , then
because of reflexivity, G derives S 0

1 D .Sa
1 ) p; Sc

1 n¹�pº/, and SC is the result of
a cut on S 0

1 and S2 with cut formula p. In the remaining fourth case, p 2 Sc
1 and

�p 2 Sa
2 , we put

SC D Sa
2 n¹�pº [ Sa

1 [ ¹�p � pº ) Sc
1 n¹pº [ Sc

2 :

Note that SC is derivable from G if S1 and S2 are. Also note that for all �p � p

that occur in SC , �p 2 BG .
Now S; is of the form �� � � ) ��, for which � \ †G

S
is empty. If � is

empty, then G derives all sequents in �� � � ), which would make G inconsistent.
Therefore � is not empty. As G is closed under Vı, there exists a p 2 � such that G

derives .�� ) p/. Hence p 2 � \ †G
S

, contradicting � \ †G
S

D ;.

Combining the previous lemma with Theorem 1 gives a necessary condition for pro-
jectivity.

Corollary 1 If G is a consistent set of irreducible sequents closed under Vı, then
G is projective.

Theorem 2 If Vı is admissible in L and G is a consistent set of irreducible se-
quents, then G is closed under Vı if and only if G is projective if and only if �G is a
unifier of G if and only if G is strongly satisfiable.

Proof We prove the first equivalence. The direction from left to right is Corol-
lary 1. For the other direction, let � be a projective unifier of G, and suppose that
G derives .�� � � ) ��/, meaning the conjunction of all the sequents of the
sequence .�� � � ) ��/. Thus �.�� � � ) ��/ is derivable in L. Hence so
is �.�� ) p/ for some p in �. Therefore G derives .�� ) p/.

7 Unification Types

In this section we use the previous results to show that in S4 and its negationless
fragment, as well as in all their extensions, admissibility of Vı implies finitary unifi-
cation. For S4 and its extensions this was first shown by Jeřábek in [19] by semantic
means. The use of projective formulas in this setting goes back to Ghilardi [9]. In
our approach, which is also based on this key idea, we use a method developed in
[17] and [16] that first reduces a formula to a set of irreducible sequents and then to
sets of irreducible sequents closed under Vı. From the previous paragraph we know
that thus the formulas corresponding to the last sets are projective. This then will
prove the finitary unification of the logics, as we will see below.

Recall that an irreducible formula is a formula of the form I.S/, where S is ir-
reducible, and that F .p1; : : : ; pn/ is the set of formulas in which only atoms in
¹p1; : : : ; pnº occur.
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Lemma 9 For every n and every set of formulas � � F .p1; : : : ; pn/, there exists
a finite set of irreducible formulas … such that for every � � F .p1; : : : ; pn/:

1. �� j� � if and only if �…j� �,
2. �� `Vı

� if and only if �… `Vı

�,
3. � `

V
�… for some � that is the identity on F .p1; : : : ; pn/.

Proof It is easier to consider � and … as sets of the form ¹I.S/ j S 2 Hº for
some set of sequents H . We start for � with H D ¹. ) A/ j A 2 �º. We follow
the method of proof of a similar lemma in Cintula and Metcalfe [4, Lemma 3.2].
The length of a formula is the number of symbols occurring in it. Let ml.H / be the
multiset of the lengths of the formulas in the sequents in H . We prove the lemma
by induction on ml.H /, using the multiset ordering. At every step we construct a
new set of sequents H 0 such that (1) and (2) hold and ml.H 0/ < ml.H /, until H 0 is
irreducible. This will prove the lemma by taking ¹I.S/ j S 2 H 0º for ….

If ml.H / � 1, H consists of irreducible sequents, and we can take H for H 0.
Therefore suppose that ml.H / > 1, and consider a formula A in a sequent S 2 H

that has length greater than 1. Thus A is not an atom or a boxed atom. If A D .B^C /

and A 2 Sa, we replace S by .San¹Aº; B; C ) Sc/, and if A 2 Sc , we replace S

by .Sa ) Scn¹Aº; B/ and .Sa ) Scn¹Aº; C /; similarly if A is a disjunction or an
implication. For H 0 being the result of applying this replacement, (1) and (2) clearly
hold.

Suppose A D �B . If A 2 Sc , we choose a fresh atom p different from
p1; : : : ; pn and replace S by S1 D .Sa ) Scn¹Aº; �p/ and S2 D .p ) B/. If
A 2 Sa, S is replaced by S1 D .San¹Aº; �p ) Sc/ and S2 D .B ) p/. In
both cases call the result H 0 and note that we have �I.S1/ ^ �I.S2/ ` �I.S/ and
therefore �I.H 0/ ` �I.H /. Note that there is a substitution � that is the identity
on p1; : : : ; pn such that I.H / ` I.�H 0/; namely, all such substitutions for which
�.p/ D B . This implies (3).

The direction from left to right of (1) and (2) holds as �I.H 0/ ` �I.H /. For
the other direction of (1), consider a unifier � of �I.H /. This can be extended to a
unifier � 0 of �S1 and �S2 by putting � 0.p/ D B . Thus ` � 0C for some C 2 �.
As � equals � 0 on �, ` �C follows, proving that �I.H /j� �. To prove the direction
from right to left of (2), assume that �I.H 0/ `Vı

�. For the substitution � defined
in the previous paragraph, �I.�H 0/ `Vı

� holds by structurality and the fact that �

is the identity on �. As I.H / ` I.�H 0/ and the logic is reflexive, �I.H / `Vı

�

follows.

The following lemma has essentially been proved in [17].

Lemma 10 For every set of irreducible formulas … there exist sets of irreducible
formulas …1; : : : ; …m such that the

V
…i are projective and for all i :^

…i `

^
… `

Vı

¹…1; : : : ; …mº:

Proof As in the previous proof, it is easier to consider … and …i as sets of the form
¹I.S/ j S 2 Hº for some set of sequents H , starting with H D ¹. ) A/ j A 2 …º

for …. Define the following (rewrite) relation on finite sets of finite sets of irreducible
sequents in LH , where X and Y range over such sets:

X [
®
G [¹�� � � ) ��º

¯
7! X [

®
G [¹�� � � ) ��; �� ) pº j p 2 �

¯
:



244 Rosalie Iemhoff

Slightly ambiguous, we also use 7! for the transitive closure of this relation. A set
of sequents G is in 7!-normal form if there is no H � G such that G 7! H . As the
number of atoms in H is finite and all sequents involved are irreducible and contain
no atoms than those in H , there are H1; : : : ; Hn such that ¹Hº 7! ¹H1; : : : ; Hnº

and the Hi are in 7!-normal form. Observe that the latter means that the Hi are
closed under Vı, and thus that I.Hi / is projective by Corollary 1.

Let …i D ¹I.S/ j S 2 Hi º. Thus
V

…i is projective. It is easy to see that they
satisfy the other properties in the lemma as well.

Combining the previous two lemmas gives the following theorem.

Theorem 3 For every n and every set of formulas � � F .p1; : : : ; pn/, there exist
sets of irreducible formulas …1; : : : ; …m such that all

V
…i are projective and for

every � � F .p1; : : : ; pn/:
1. �� `Vı

� if and only if �…i `Vı

� for all i ,
2. there exists a substitution � that is the identity on F .p1; : : : ; pn/ and such

that � `Vı

¹
V

�…1; : : : ;
V

�…mº.

Proof Given � , construct … and � as in Lemma 9 and then sets of irreducible
formulas …1; : : : ; …m as in Lemma 10. Using that the logics are reflexive and that
A ` �A for all A, it is easy to see that (1) holds. For (2), observe that by Lemma 10
and structurality we have �… `Vı

¹
V

�…1; : : : ;
V

�…mº. As � `
V

�…, (2) fol-
lows.

Corollary 2 If Vı is admissible in L, then every formula has a finite complete set
of unifiers in L.

Proof Given a formula A, let …1; : : : ; …n be as in Theorem 3, where � D ¹Aº,
and let � 0

i be the projective unifier of
V

…i . Let �i be equal to � 0
i on the atoms

in A and the identity everywhere else. We verify that ¹�1; : : : ; �nº is a complete
set of unifiers for A. Therefore suppose that `L �A. Then for � as in (2) of Theo-
rem 3, �� `Vı

¹��…1; : : : ; ��…mº. Thus `
V

��…i for at least one i � n by the
admissibility of Vı. Hence �� � � 0

i . Thus � � �i .

The previous corollary implies the following corollary, which for full S4 has been
proved by Ghilardi in [9, Theorem 3.5].

Corollary 3 The logic S4 and its negationless fragment have finitary unification.

8 Admissible Rules

This last section of the paper contains some applications of the previous results to
admissible rules. A set of rules R is a basis for the admissible rules of a logic L if

� j� L� , � `L
R�:

Thus intuitively, R is a basis if all admissible rules can derived from those in R.
In intermediate logics all consistent formulas are unifiable, but this is no longer

the case in modal logic. This leads to the notion of passive admissible rules, which
are admissible rules for which the hypothesis (

V
�) has no unifier. ?=A is a typical

example of such a rule, and .� � �� )/=A is another example in reflexive logics.
A logic is structurally complete if all single-conclusion admissible rules are deriv-

able, and almost structurally complete if all nonpassive single-conclusion admissible
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rules are derivable (see [7]). A logic is hereditarily (almost) structurally complete if
all its extensions, including the logic itself, are (almost) structurally complete.

Jeřábek has proved the following theorem for full S4 (see [19]). Using the tech-
niques in this paper, it can also be proved in the following way (similarly for the
negationless fragment).

Theorem 4 In any extension of S4 or its negationless fragment, the rules Vı form
a basis for the admissible rules once they are admissible.

Proof Assume that Vı is admissible, and consider � j� L�. Then by Theorem 3
there are …1; : : : ; …n such that

V
…i is projective and …i j� � for all i , and

�� `Vı

� if and only if �…i `Vı

� for all i . The projectivity of the … implies
that for all i there is an Ai 2 � such that

V
…i ` Ai , and therefore

V
�…i ` Ai .

Hence �…i ` �, and thereby �� `Vı

�. This proves that Vı is a basis for
admissibility.

Corollary 4 The set of rules Vı is a basis for the admissible rules of S4 as well as
for its negationless fragment.

Dzik and Wojtylak prove in [7] that any extension of S4 has projective unification
if and only if it contains S4:3, where S4:3 is the logic S4 extended by the principle
�.�A ! �B/ _ �.�B ! �A/. This implies that S4:3 is hereditarily almost
structurally complete. Here we provide another proof of the last result and extend it
to fragments.

Theorem 5 The logic S4:3 and its negationless fragment are hereditarily almost
structurally complete.

Proof Let L be an extension of S4 or its negationless fragment. The fact that S4:3
is complete with respect to transitive reflexive Kripke frames in which every two
nodes are compatible (xRy or yRx holds) is easily seen to imply that all nonpas-
sive instances of Vı are derivable in L. Theorem 4 now shows that all nonpassive
admissible rules are derivable.
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