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Rule-Irredundancy and
the Sequent Calculus for Core Logic

Neil Tennant

Abstract We explore the consequences, for logical system-building, of taking
seriously (i) the aim of having irredundant rules of inference, and (ii) a prefer-
ence for proofs of stronger results over proofs of weaker ones. This leads one to
reconsider the structural rules of Reflexivity, Thinning, and Cut.

Reflexivity survives in the minimally necessary form ' W '. Proofs have to
get started.

Cut is subject to a Cut-elimination theorem, to the effect that one can always
make do without applications of Cut. So Cut is redundant, and should not be a
rule of the system.

Cut-elimination, however, in the context of the usual forms of logical rules,
requires the presence, in the system, of Thinning. But Thinning, it turns out, is
not really necessary. Provided only that one liberalizes the statement of certain
logical rules in an appropriate way, one can make do without Cut or Thinning.
From the methodological point of view of this study, the logical rules ought to be
framed in this newly liberalized form. These liberalized logical rules determine
the system of core logic.

Given any intuitionistic Gentzen proof of � W ', one can determine from it a
Core proof of some subsequent of � W '. Given any classical Gentzen proof of
� W ', one can determine from it a classical Core proof of some subsequent of
� W '. In both cases the Core proof is of a result at least as strong as that of the
Gentzen proof; and the only structural rule used is ' W '.

1 A Foundational Maxim

The foundationalist in mathematics has to furnish two important desiderata. One
of them is specific to the branch of mathematics under investigation (such as, say,
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arithmetic or geometry). The other one is invariant across, but adequate unto, all
such branches.

The first desideratum, for a given branch, is an effectively decidable set of “first
principles”, or axioms. Ideally these axioms are self-evident, or obvious, or other-
wise epistemologically grounded or secure. They may be cited without proof, in
proving other results that do stand in need of proof, in order to ensure that any ratio-
nal thinker can be convinced that these other results are true.

The second desideratum is a canon of deductive reasoning, whereby those less
self-evident or obvious results, or mathematical theorems, may be deduced from
those axioms. They are deduced as conclusions of proofs that are formed by means
of the primitive rules of inference of the deductive system chosen. Proofs render
their conclusions as grounded and secure as the axioms that serve as premises within
them. One and the same proof system serves all branches of mathematics, since their
respective languages all involve the same logical vocabulary.

The foundationalist’s project is ultimately one of adequate regimentation, or for-
malization, of the various branches of mathematical theorizing. One can treat each
branch sui generis; or one can seek a single, all-embracing system, such as set theory,
within which each branch can be reconstructed.

Whichever of these two approaches the foundationalist favors, there is one
methodological aim that is worth bearing in mind: one should always seek to do
more with less. This maxim of theoretical economy, or economy of thought, is as
apt for mathematics as it is for any other theoretical endeavor, including physics.
There is no need to explicate it here, since its applications in the course of these
investigations are intuitively compelling.

The aim of this study is to apply this simple maxim in pursuit of a “most econom-
ical possible” system of deductive proof—one that can be shown to be adequate for
the project of “naturally” regimenting or formalizing mathematical reasoning. Our
investigations will uncover a system of core proof. Core proofs serve to formalize,
in a natural fashion, the intuitively “good” informal deductions that one finds in or-
dinary mathematical discourse. These deductions establish arguments of the form
Axioms:Theorem. They show, convincingly, that if the Axioms are true, then the
Theorem is true also.

There is more, however, to being a good argument than being (barely) valid in
the usual semantic or model-theoretic sense. To be sure, a good argument must be
valid in this sense. But any proof establishing it must also do something more. It has
to establish a connection between the premises and the conclusion of the argument
in question. And therein lies the rub. The standard proof systems—for intuitionistic
and for classical logic—allow for such connections to be overlooked, attenuated,
obscured, or broken. Core logic, by contrast, keeps these connections always to the
fore. And in doing so, it never sacrifices any of the deductive power essential for the
formalization of mathematical reasoning.

2 Irredundant Sets of Axioms

The maxim of economy explains why mathematicians and logicians prefer irredun-
dant axiomatizations of theories to redundant ones. That is, they prefer to frame
theories by means of sets of axioms in which none follows logically from the rest.
An axiom that does follow logically from its companions is redundant; so too, then,
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is the axiom set in question. An irredundant set of axioms contains no redundant
axioms.

There is a simple explanation for this preference in theory formulation. One wants
each axiom to be making its own special contribution. It must be “doing some work”.
There is no point in listing a redundant axiom; for one might as well just prove it
from the rest. By dropping it from the list of axioms, one reduces the axiomatic basis
itself, thereby making it simpler and more efficient. One also makes the deductive
arguments (the proofs) of one’s theoretical conclusions stronger. This is an excellent
thing.

2.1 Strength of argument At the risk of appearing captious, we rehearse in detail
here some basic ideas that need to be borne in mind when one is dealing with logical
deducibility in general—as opposed to logical theoremhood—and seeking to find a
satisfactory formulation of the crucial requirement of transitivity of deduction. The
heterodox contribution of this study turns on a thorough appreciation, reconsidera-
tion, and possibly surprising application of the basic ideas to be set out here. Such
reconsideration seldom arises within a tradition of acquiescence with one particu-
lar, very entrenched, but possibly mistaken way of explicating the requirement of
transitivity of deduction.

Let � and � be two sets of sentences. Suppose that � logically implies every
sentence in � . Then we say that � is at least as strong as � . If, moreover, � is not
at least as strong as �—that is, if some sentence in � does not follow logically from
�—then we say that � is stronger than � .

If � is at least as strong as � , and vice versa, then we say that � has the same
logical strength as � .

Let ' be a sentence. If� is at least as strong as � , then the argument (or sequent)
� W ' (� , ergo ') is said to be at least as strong as the argument � W '. And if �
is stronger than � , then the argument � W' is said to be stronger than the argument
� W '. Note the reversal in order. The weaker the set of premises, the stronger the
argument. An apt slogan might be that more is less—in the sense that the more
(logical strength) one has in the premises, the less (logical strength) one has in any
argument from those premises. Likewise, less is more—in the sense that the less
(logical strength) one has in the premises, the more (logical strength) one has in any
argument from those premises. Doing more with less, the reader will recall, is our
overarching theoretical maxim.

If � is a subset of �, then of course � logically implies every sentence in �;
whence � is at least as strong as � , and the argument � W ' is at least as strong as
� W '. If � logically implies all those members of � not in � , then � has the same
logical strength as �; otherwise, � is stronger than � .

Any irredundant set is stronger than each of its proper subsets. So if � is irre-
dundant and � is a proper subset of �, then the argument � W ' is stronger than the
argument � W'.

It is desirable, when stating an argument � W ', to have � irredundant. Mathe-
maticians and logicians will not knowingly state an argument � W ' with redundant
premises. Instead, they will discard premises in � found to follow from others in
�, until the residual subset of � that results is irredundant. They might arrive by
different routes at different irredundant subsets of the original set �; but those irre-
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dundant subsets of � will at least have the same logical strength since each of them
will logically imply all the members of any other.

We have seen that an argument can be strengthened by weakening its premises.
If the original set of premises is irredundant, then discarding any of those premises
will strengthen the argument. That is,

� irredundant
� � �

³
) � W' is stronger than � W'.

When a valid argument� W' has a satisfiable set� of premises, considerable interest
attaches to the question of whether there are any proper subsets � of � for which
� W ' is still valid. (Note that this question can arise even when � is irredundant.)
Most interesting among these proper subsets are the inclusion-minimal ones—those
proper subsets � of � whose every proper subset does not logically imply '. Such
proper subsets � of � (which will obviously themselves be irredundant) yield the
most ideal strengthenings � W' of the original argument � W'.

There is another way, however, to strengthen an argument, and that is to claim that
its premises cannot all be true:

� W? is stronger than � W'.
Note that when we say that an argument has been strengthened, we are not im-
plying that the new (stronger) argument is itself valid. One can strengthen an ar-
gument so much that it becomes invalid—for example, by discarding sufficiently
many premises, or by putting ? in place of the original conclusion when the original
premises form a satisfiable set.

In what follows we shall frequently suppress the absurdity constant “?” and just
leave an empty space to indicate that there is no sentence on the right of the colon.
In that case the sequent “� W ” in question can be understood as claiming that its
premise-set � is not satisfiable.

2.2 A good historical example of (almost) irredundant axiomatization Hilbert [5]
provided the first formal axiomatization of Euclid’s geometry, thereby fixing the
problem of certain logical lacunae in Euclid’s Elements, especially concerning con-
tinuity. Hilbert arranged his axioms in groups, each group concerning a particular
geometrical concept or tightly knit group of concepts. There were groups of axioms
governing

1. connection;
2. order;
3. parallelism;
4. congruence;
5. continuity.

Hilbert devoted Chapter II of his book to establishing the mutual independence of
his axioms. It was this arrangement of which Carnap [1] took advantage, in trying
to argue that the groups of axioms for congruence and parallelism had a different
epistemological status from the other groups.

3 Irredundant Sets of Rules

The basic rules of inference in a system of proof have a similar foundational role
as axioms. The same careful attention should be paid to the question of mutual
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independence, or possible redundancy within the overall project, of the rules of in-
ference that one chooses as basic for a deductive system. This holds not only for
natural-deduction rules such as the introduction and elimination rules for the logical
operators—and for their sequent-calculus equivalents called, respectively, the “right”
and “left” logical rules—but also for what are known, in the sequent-calculus setting,
as the structural rules. There are three of the latter: the rule of Reflexivity; the rule
of Thinning (also known as Dilution, or Weakening); and the rule of Cut.

Our task here is to inquire how the sequent rules—logical and structural—might
best be formulated in a mutually independent way, and whether, indeed, any of them
might turn out to be redundant within the overall project. We seek, that is, an irre-
dundant set of logical and structural rules, if such can be found. Each rule must be
stated in such a way that its own unique contribution is laid bare and is not confused
or conflated with anything extraneous that might be provided for by the other rules.

In our search for rule-independence we need to pay particular attention to the
logical rules in their relationship to the structural rules. The logical rules should be
so formulated as to be able to furnish proofs of all those results for which, intuitively,
no recourse need be had to structural rules. A simple example of such a result is
A;B W A^B . In natural deduction, this argument is so immediate and primitive that
its proof is a special case of the rule of ^-Introduction:

A B

A ^ B
:

One would therefore expect the corresponding sequent rule (for “^ on the right”) to
afford a similarly direct and immediate proof. Ideally, that proof would be

A W A B W B.W^/

A;B W A ^ B
:

For this proof to be available, however, one needs the general form of the rule (:^) to
be

� W A � W B.W^/

�;� W A ^ B
:

Gentzen’s own form of the rule (:^) in LJ, however, was1

� W A � W B.W^/

� W A ^ B
:

Thus Gentzen’s LJ-proof of the argument A;B W A ^ B resorts to two applications
of Thinning on the left:

A W A .TL/

A;B W A

B W B .TL/

A;B W B

A;B W A ^ B

:

It is intuitively clear that Gentzen missed the opportunity to state .W ^/ in a form that
would relieve one of such recurring, but unnecessary, recourse to the structural rule
of Thinning.

We need to get clear at the outset about the sense in which a given structural rule
can be “used in” or can “hold for” a system of proof. The matter is subtle and hardly
ever remarked on when sequent-calculus rules are stated. From now on, all sets�, � ,
and so forth are assumed to be finite. The reader is advised that we confine ourselves
throughout this study to single-conclusion sequents and sequent calculi involving
them. This holds even for the classical case. Famously, Gentzen classicized his
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sequent calculi by allowing multiple succedents within sequents. We do not allow
multiple succedents. Rather, we classicize our single-conclusion system by adopting
a suitably formulated rule of Dilemma (see p. 121), which involves only empty or
singleton succedents.

3.1 The intuitionistic sequent system for negation Let us take a “simplest possible”
sequent calculus, for a propositional language whose only logical operator is negation
(:). Recall that we are confining ourselves to single-conclusion sequents, that is,
sequents of the form� W ', where� is a (finite) set of sentences, and ' is a sentence,
or of the form� W , with empty succedent. What is “the” simplest single-conclusion
sequent calculus for this language?

A predictable answer is as follows. First, one has the rule of “initial sequents” or
“reflexivity”:

.R/ ' W ':

This rule .R/ allows one to get sequent proofs started. Reflexivity should not have
any “thinning” in it. It should be stated in the weakest form that still gets the job
done. That is why we eschew any statement of reflexivity such as

.RT / � W '; where ' 2 �:

Next, one has the rules for inferring : on the right, and on the left, of sequents:

.W :/
�; ' W

� W :'
.where ' is not in �/ .: W/

� W '

�;:' W
:

(The notation �; is short for � [ ¹ º. We shall also follow the convention that
when we write�; on the left of a premise-sequent, the sentence  is not in the set
�. Hereafter, we shall no longer state this explicitly.)

Using the rules just given, here is a sequent-proof of the result known as Double-
Negation Introduction:

' W '

';:' W

' W ::'

:

To help the reader follow the proof, one can annotate each step with the rule that is
being applied:

' W '
.:W/

';:' W
.W:/

' W ::'

:

But that is to omit mention of the application of the rule .R/ at the very outset. If we
are to treat all of our “proof-constitutive” rules on a par (the reason for which will
emerge below), then the rule .R/ should be stated as follows:

.R/ ' W '
:

This underscores the fact that the sequent ' W ' does not depend on any (other)
sequent for its own justification. Reflexivity is a zero-premise rule. (Thinning is a
one-premise rule; Cut is a two-premise rule.) The inference stroke placed over the
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“initial” sequent can also be annotated in our foregoing proof of Double-Negation
Introduction, in the same way that subsequent steps were annotated:

.R/

' W '
.:W/

';:' W
.W:/

' W ::'

:

This stratagem allows one to appreciate that .R/ is a rule of the system, essentially
involved in the construction of the proof just given. This is what we meant above by
“proof-constitutive” rules. Without the rule .R/, the proof just given would not exist
as a proof in the system. Indeed, no proofs would exist in the system; for the rule
.R/ corresponds to the (only) basis clause in the inductive definition of the notion of
sequent-proof (for this system).

This is a very important point, and we need to expand on it. The rigorous formal
definition of the notion of proof (for this system) defines the relational notion “… is
a proof of the sequent S”. The definition is as follows.

1. (Basis clause) Any sequent of the form ' W ' is a proof of the sequent ' W '.

2. (Inductive clause) If … is a proof of the sequent �; ' W , then …

� W :'
is a

proof of the sequent � W :'.

3. (Inductive clause) If … is a proof of the sequent � W ', then …

�;:' W
is a

proof of the sequent �;:' W .
4. (Closure clause) If … is a proof of a sequent S , then this can be shown by

appeal to clauses (1)–(3).
The Basis clause (1) corresponds to the rule .R/.
Inductive clause (2) corresponds to the Right-rule .W :/.
Inductive clause (3) corresponds to the Left-rule .: W/.
Each of these rules found application in our proof above of the Double-Negation In-
troduction result. Each of these rules is “proof-constitutive”, because it corresponds
to a clause in the inductive definition of proof.

Definition 1 � ` ' [resp., � ` ] means that there is a proof of the sequent
� W ' [resp., � W ].

This definition is of what we call the “exact” construal of deducibility. The set �
on the left must be the exact set of premises actually occurring on the left of the
conclusion-sequent of whatever proof is in question. This reading is to be distin-
guished from the usual, laxer one according to which � ` ' holds just in case there
is a proof of a sequent � W ', for some subset � of �.

Notice that the notion of proof that we have defined allows that any substitution in-
stance of a proof is a proof. If, for example, we substitute ::� for ' in our foregoing
proof of the sequent ' W ::', we obtain the proof

.R/

::� W ::� .:W/

::�;:::� W
.W:/

::� W ::::�

:
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Now substitute ' for � in the last proof. Putting our two little proofs alongside
one another:

.R/

' W '
.:W/

';:' W
.W:/

' W ::'

.R/

::' W ::'
.:W/

::';:::' W
.W:/

::' W ::::'

;

one is tempted by the thought that there ought, now, to be a proof of the sequent
' W ::::'. Two lots of Double-Negation Introduction ought to yield Quadruple-
Negation Introduction, should it not?

Indeed it does. We have a proof of ' W ::'. This can be abbreviated as ' ` ::'.
We have also a proof of ::' W ::::'. This can likewise be abbreviated as
::' ` ::::'. Now that our achievements can be registered on a single line:

' ` ::' ::' ` ::::'I

the temptation of transitivity is overpowering.
Here is a proof that it is perfectly in order to give in to that temptation:

.R/

' W '
.:W/

';:' W
.W:/

' W ::'
.:W/

';:::' W
.W:/

' W ::::'

:

The existence of this proof justifies the claim

' ` ::::':

Our way of justifying this claim might have taken the reader by surprise. Surely, the
reader might say, one could just infer this sought result directly from the two proofs
that we already had? Could not one just finish off with a step of so-called Cut, thus?:

.R/

' W '
.:W/

';:' W
.W:/

' W ::'

.R/

::' W ::'
.:W/

::';:::' W
.W:/

::' W ::::'
(Cut)

' W ::::'

:

Note that the suggestion here is that the rule of Cut:

Cut
� W � � W  

� W  

or, more generally:

Cut
� W � �; � W  

�;� W  

should be taken as a proof-constitutive rule. That is, the foregoing construction that
“ends” with an application of Cut really is a proof of the formal system. For that
to be so, the inductive definition of proof that we provided above would have to
be expanded, with a new clause for proof-formation by application of Cut. The
expanded definition would read as follows.
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1. (Basis clause) Any sequent of the form ' W ' is a proof of the sequent ' W '.

2. (Inductive clause) If … is a proof of the sequent �; ' W , then …

� W :'
is a

proof of the sequent � W :'.

3. (Inductive clause) If … is a proof of the sequent � W ', then …

�;:' W
is a

proof of the sequent �;:' W .
4. (Inductive clause) If … is a proof of the sequent � W ', and † is a proof

of the sequent �; ' W  , then … †

�;� W  
is a proof of the sequent�;� W  .

5. (Closure clause) If … is a proof of a sequent S , then this can be shown by
appeal to clauses (1)–(4).

This is very different from saying the following:
If � ` ' and �; ' `  , then �;� `  ,

by way of “meta-comment” on the earlier proof system. For in this case the turnstile
` of (exact) deducibility is to be understood by reference to proofs in the earlier,
unexpanded system of proof that did not contain the proposed rule Cut.

The issue that needs to be addressed is this: is Cut to be construed as a rule
of the system, that is, as a proof-constitutive rule that actually finds application
within proofs? Or is it rather to be understood as a (true) statement about (exact)
deducibility-within-a-system, where the system in question does not contain it as a
constitutive rule? We can call these, respectively, the “object-” and “meta-” versions
of Cut, or, more succinctly, Object-Cut and Meta-Cut. We shall discuss them in
the reverse order.

4 Meta-CUT

With Meta-Cut, we need to distinguish what we shall call the “proof-based” inter-
pretation from any contrasting semantic one. Meta-Cut is the following statement
about (exact) deducibility that we encountered earlier:

Meta-Cut: If � ` ' and �; ' `  , then �;� `  .
Spelled out more fully, this says:

If there is a proof of the sequent � W ' and there is a proof of the sequent
�; ' W  , then then there is a proof of the sequent �;� W  .

It is important to realize what a bare guarantee this really is. For, suppose that we
have a proof, say…, of the sequent� W ', and a proof, say†, of the sequent �; ' W  .
The assurance is only that there is consequently some proof of the sequent�;� W  .
Call such a proof �. We are not told anything about the relationship between … and
†, on the one hand, and �, on the other. For all we know, the proofs … and †, as
formal objects, might have nothing at all to do with the proof �. In particular, there
is no guarantee, express or implied, that … and † might be subproofs of �.

For epistemological purposes, this version of Meta-Cut is rather unhelpful. Far
better would be a version (still of Meta-Cut rather than of Object-Cut) that would
assure us that the sought proof � (of the “target sequent” �;� W  ) can always be
effectively determined from the proofs… and †. Such a version of Meta-Cut would
be:

Given any proof… of the sequent� W ' and any proof† of the sequent �; ' W  ,
one can effectively determine a proof Œ…;†� of the sequent �;� W  .

The formalization of this version of Meta-Cut would read:
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There is an effective method Œ ; � such that for any proof … of the sequent � W '

and any proof † of the sequent �; ' W  , the object Œ…;†� is a proof of the
sequent �;� W  .

This does not imply that the proof Œ…;†� would have … and † as subproofs; all it
says is that Œ…;†� can be determined from … and † in some effective way. And this
process of determination need not involve containing… and † as subproofs. Rather,
it could involve, say, rearranging internal bits and pieces of … and of † in some
methodical way.

The problem, however, with this formulation of Meta-Cut is that its truth de-
pends very much on whether the system in question also contains Thinning as a
proof-constitutive rule. If the system does not contain Thinning, then one cannot
guarantee the existence of a Cut-free proof of the “target” sequent �;� W  . Here
is a simple example that makes this clear. Consider the two sequents

' W ' _  and :'; ' _  W  :

The first is proved by … below, and the second is proved (let us suppose) by †
below:2

…
' W '

' W ' _  
†

' W '

:'; ' W  W  
._W/

:'; ' _  W  

:

But what would be the object Œ…;†� that would prove the exact target sequent
:'; ' W  ? Without Thinning as a rule, the answer would have to be: none.

We would be well advised, therefore, to consider the prospect of being able al-
ways to prove, instead of the exact “target” sequent �;� W  , some subsequent
thereof. That is, Meta-Cut should be formulated in a less expansive, but still epis-
temologically adequate, way. In its present unrestricted formulation it appears to be
overreaching. We suggest the following more moderate, but still adequate, reformu-
lation:

Cut for Epistemic Gain:
There is an effective method Œ ; � such that for any proof … of the sequent � W '

and any proof † of the sequent �; ' W  , the object Œ…;†� is a proof of some
subsequent of the sequent �;� W  .

This is the main result of [8], for the system of Core Logic, given by rules of natural
deduction. In that paper, Cut for Epistemic Gain was called Cut Elimination for
Core Proof, and was stated as follows:

There is an effective method Œ ; � that transforms any two core proofs

�

…

A

A;�

†

�

(where A … � and � may be empty)

into a core proof Œ… †� of � or of ? from (some subset of) � [ � .3

Core natural deductions are so defined as to be in normal form; and one of the
main features of such proofs is that all their major premises of eliminations “stand
proud”, with no proof-work above them. This feature affords a very simple and
direct translation between natural deductions and sequent proofs. Given any natural
deduction, one can find an “isomorphic” sequent proof of its result; and vice versa.
In the present paper we work with sequent systems, since the discussion focuses on
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whether we need the structural rules of Thinning and Cut. For the logical right-
and left-rules of the sequent system for Core Logic, see Section 9 below.

5 Object-CUT

The proof-theoretic tradition begun by Gentzen teaches us the perhaps surprising
lesson that Object-Cut need not be on any list of deductive rules; and therefore
should not be on any list of such rules that aspires to irredundancy. For it is the
aim of any proof-theorist who follows the example originally set by Gentzen [4] and
includes Cut as a proof-constitutive rule, to establish a metatheorem to the effect that
all applications of Cut can be eliminated from within proofs. Gentzen’s Hauptsatz,
or Cut-elimination theorem, states

there is an effective method  such that for every proof … of any sequent � W ',
the object .…/ is a Cut-free proof of � W '.

From the vantage point of this study, it is a thought-provoking irony, inviting one to
reexamine the fundamentals, that a logician of Gentzen’s caliber, who prized irredun-
dant sets of axioms for a formalized theory (see [3]), should have included in his list
of proof-constitutive rules one that he was then intent on establishing as unnecessary
for the logical purposes he had in mind.4

Concerning Gentzen’s own Cut-elimination theorem, some further remarks are
in order. First, Gentzen was able to state (and prove) his result in the form above
only because he had in his system, apart from Cut, the structural rule of Thinning.
For, note the following Gentzenian sequent proof, whose last step is an application
of Cut:

' W '

' W ' _  

' W '

:'; ' W
(TR)

:'; ' W   W  
._W/

:'; ' _  W  
(Cut)

';:' W  

:

Gentzen’s Cut-elimination procedure would not be able to deliver a Cut-free proof
� of the final sequent ';:' W  unless one could appeal to Thinning (on the right),
at the step marked (TR):

�

' W '

:'; ' W
(TR)

:'; ' W  

:

The same holds for a system that differs from Gentzen’s own, in that its rule ._ W/

allows one or both of its premise-sequents to be empty on the right. In such a system,
the proof from which the Cut needs to be eliminated is as follows:

' W '

' W ' _  

' W '

:'; ' W  W  
._W/

:'; ' _  W  
(Cut)

';:' W  

:

Note that this last proof, unlike the one in Gentzen’s system, contains no application
of Thinning at all; however, its reduct, upon Cut-elimination, has to be the same
proof � as above, and necessarily contains an application of Thinning, because of
the requirement that it should prove the exact sequent :'; ' W  .
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6 Thinning

There are two rules of Thinning. The rule (TR), which we have already seen in
action, is for thinning on the right, and the rule (TL) is for thinning on the left:5

(TR) � W

� W '
(TL)

� W '

�; W '

� W

�; W
; where  … �:

The idea is really very simple. Thinning allows one to “tack on” fresh sentences on
the left or on the right of any sequent proved thus far. Moreover, one tacks them on
one at a time, since repeated application of that permitted move would achieve the
effect of tacking on any finite set of sentences.

Thinning, obviously, can logically weaken the sequent proved. (That is, after all,
why the rule itself is sometimes called weakening.) Note that the rule (TR) is the
intuitionistic sequent-calculus analogue of Ex Falso Quodlibet in natural deduction.6
As such, it is anathema to the relevance logician—who regards it not only as coun-
terintuitive, but also as incorrect, and certainly not to be taken as a canon of formally
correct inference. The rule (TR), as we have seen, enables one to prove the First
Lewis Paradox

:'; ' W  

(by virtue of the proof � above). What is not often appreciated is that Thinning on
the left (in either of the two forms available) produces a result just as objectionable
from the relevance logician’s point of view, namely

:'; ' W : :

The two possible Cut-free proofs of this result are as follows:

' W '

:'; ' W
(TL)

:'; ';  W

:'; ' W : 

' W '
(TL)

'; W '

:'; ';  W

:'; ' W : 

:

So we see that Thinning is a fraught matter, for the logician who is concerned to
maintain an intuitive connection of relevance of premises to conclusions of good ar-
guments. As already remarked, preserving truth from its premises to its conclusion
is a necessary, but insufficient, condition for the proof of an argument to qualify,
intuitively, as a good proof. We wish to capture or distil what is essential to good
proofs of arguments. We ought, therefore, to frame the other rules of the sequent-
calculus—particularly the right- and left-rules for the logical operators—in such a
way that one will be able to do everything that one “ought” to be able to do with the
logical operators, should the system be one in which Thinning is not available as a
proof-constitutive rule.

This speaks in favor of a certain liberality in the framing of right- and left-rules.
One needs to find forms for these rules in which a certain range of highly desirable
results can be secured without any explicit appeal to a rule of Thinning. We shall
consider just two such results.

The first is disjunctive syllogism:

:A;A _ B W B:
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The second is the inference to the truth of a conditional from the falsity of its an-
tecedent:

:A W A ! B:

In due course we shall see that the former inference may be secured by liberalizing
the rule of ._ W/, while the latter may be secured by liberalizing the rule of .W!/.

But first, we need a word or two as to why these two inferences are to be secured,
especially when both of them have been challenged (and given up) by certain writers
in the tradition of “relevance” logic. It is not necessary here to give necessary and
sufficient conditions (more exigent than bare validity) for regarding an argument as
acceptable, and hence deserving of proof. It is sufficient, in fact, to give only suffi-
cient conditions (more exigent than bare validity) for so doing. Sufficient conditions
for the acceptability of any sequent

A1; : : : ; An W B

are these:
1. A1; : : : ; An W B is valid.
2. Deleting any Ai from A1; : : : ; An W B results in an invalid sequent.
3. Deleting B results in an invalid sequent; that is, A1; : : : ; An are jointly satis-

fiable.
4. A1; : : : ; An W B is not a proper, uniform substitution instance of a valid se-

quent; that is, for A1; : : : ; An W B to be valid, it needs every one of its dis-
played occurrences of logical operators, and it needs all its displayed repeti-
tions of nonlogical expressions.

Our methodological stance, with regard to potential reforms, is extremely hospitable.
Any sequent satisfying conditions (1)–(4) is surely one that we would wish to be able
to prove.

It is an easy exercise to check that our two chosen sequents, :A;A _ B W B and
:A W A ! B , satisfy conditions (1)–(4).

Moreover, we note that inferences of the form :A;A _ B W B crop up frequently
in mathematics, especially when dealing with orderings, for example. One wants to
be able to provide regimentations of inferences such as

x — y; x � y _ x > y W x > y:

We note also that according to the truth-table for !:

'  ' !  

T T T
T F F
F T T
F F T

the falsity of the antecedent ' suffices for the truth of the conditional ' !  . In
inferential terms, this means that the sequent :A W A ! B should have a proof.
Note that this consideration invokes only the “left-to-right”, row-by-row reading of
the truth table; so it is a constructive consideration. It does not invoke the strictly
classical assumption that the four rows together exhaust all the possibilities. Thus
the consideration in question falls short of “justifying” any strictly classical law such
as Excluded Middle (A _ :A), say, or Peirce’s Law (Œ.A ! B/ ! A� ! A).
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6.1 Liberalizing proof-by-cases To the first end (i.e., being able to prove disjunctive
syllogism), it is wise to finesse the statement of the usual sequent rule ._ W/, which
can be given in two halves as follows:7

�; ' W � �; W �

�; �; ' _  W �

�; ' W �; W

�;�; ' _  W
:

The common feature is that each of the premise-sequents is required to have the same
succedent (right-hand side)—that is, either both premise-sequents in any application
of the rule have the same sentence � on the right, or both have the empty succedent.
With this form of left-rule for _ (“proof by cases”), the proof of disjunctive syllogism
is as follows:

A W A

:A;A W (TR)
:A;A W B B W B

._W/

:A;A _ B W B

:

Note the need for Thinning on the right, occasioned by the conventional formulation
of the left-rule for _. A more liberal form of left-rule for _ would allow the succe-
dents of the two premise-sequents to differ. Thus, in addition to the two possibilities
given above, there would be a further two:

�; ' W � �; W

�;�; ' _  W �

�; ' W �; W �

�; �; ' _  W
:

The second of these two new possibilities affords the following ‘‘Thinning-free”
proof of disjunctive syllogism, which we saw earlier:

A W A

:A;A W B W B
._W/

:A;A _ B W B

:

6.2 Liberalizing conditional proof To the second end (i.e., being able to prove
:A W A ! B): the only other rule that needs some finessing, in the absence of
Thinning as a proof-constitutive rule, is the right-rule for ! (in natural-deduction
terms: the rule of conditional proof). The usual form of this rule in a sequent
calculus is as follows:

.W!/
� W  

� n ¹'º W ' !  
:

Two features of this form of the rule stand out. One is that it is required that the
consequent  of the conditional be the conclusion of the premise-sequent. The other
is that the antecedent ' of the conditional need not be in �. If ' is in �, then '
will not be among the sentences on the left of the conclusion-sequent. The natural-
deduction analogue of this is to say that ' will be discharged as an assumption when
the introduction rule for ! is applied. But even if ' is not in �, one can still apply
the rule, ending up with the same sentences on the left (i.e., the members of �). In
natural-deduction terms, this would be a case of so-called vacuous discharge of an
assumption: the assumption has not been used, so it is already absent on the left, just
as it would be after being “discharged”!
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The Gentzenian sequent-calculus furnishes the following proof:

A W A

:A;A W (TR)
:A;A W B

.W!/

:A W A ! B

:

But this contains a conspicuous (and unavoidable) application of Thinning, which
we are at pains to avoid (for reasons already discussed). So the question arises:
how might one reformulate the rules for ! so as to permit a proof of the sequent
:A W A ! B without having to resort to Thinning?

As with the rule ._ W/, the answer is very simple. One wants to be able to give the
following proof:

A W A

:A;A W
.W!/

:A W A ! B

:

So, all one need do is reformulate the rule .W!/ so as to permit this. One form that
does so is this:

.W!/new
�; ' W

� W ' !  
where ' … �:

The orthodox logician cannot object to this form of rule, since it is, after all, derivable
in the usual Gentzen systems, by appeal to Thinning:

�; ' W
(TR)

�; ' W  

� W ' !  

:

We have therefore, in effect, acquired a new ‘half’ of conditional proof, which we
did not have explicitly before. The basic idea, in natural-deduction terms, is that one
may infer a conditional ' !  and discharge its antecedent ' from one’s assump-
tions, when one has refuted ' (modulo the remaining undischarged assumptions). Of
course, we still retain the older, “other” half of the rule of conditional proof:

.W!/old
� W  

� n ¹'º W ' !  
:

So our liberalized rule .W!/ of conditional proof consists now of both .W!/old and
.W!/new.

Note that we are not “smuggling in” any kind of Thinning when stating these
rules for !. For direct inspection reveals that these rules are perfectly in order. They
can be seen to be valid on the basis of both the meanings of the logical operators
involved, and the pattern of repetition of occurrences of extralogical expressions.
The rules capture, succinctly, the intuitively compelling and “primitive” moves that
any competent deductive reasoner would be happy to make. Certainly, anyone who is
not happy with .W!/new would be hard put to explain why they are nevertheless happy
to accept the truth table for ! as directly encapsulating the latter’s own, proprietary,
contribution to the truth conditions of sentences in which it occurs.
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7 Thinning-Elimination

We now address the question: if one can prove a Cut-elimination theorem for sequent
calculus, then surely one should also be able to prove a Thinning-elimination theo-
rem (at least of a suitably related kind)? Indeed, given Cut-elimination as already
secured, it would be enough to prove the eliminability of Thinnings from arbitrary
Cut-free proofs. Of course, one could not hope to prove such a theorem in the fol-
lowing form, which is a straightforward adaptation of the Cut-elimination theorem:

there is an effective method  such that for every Cut-free proof … of any se-
quent � W ', the object .…/ is a Cut-free, Thinning-free proof of the exact
same sequent � W ',

for this is immediately counterexemplified by the now familiar little proof �:

' W '

:'; ' W
(TR)

:'; ' W  

:

What this little proof clearly suggests, however, is that one might be able to state
and prove a corrected Thinning-elimination result in the following more subtle, and
epistemologically arresting, form:8

there is an effective method  such that for every Cut-free proof … of any se-
quent � W ', the object .…/ is a Cut-free, Thinning-free proof of some subse-
quent of the sequent � W '.

(For, note that � is a Cut-free proof of the sequent :'; ' W  , and the Cut-free,
Thinning-free proof

' W '

:'; ' W

proves a subsequent, namely :'; ' W , of the sequent :'; ' W  .)
And indeed one can state and prove such a result. The Thinning-elimination

result just stated was formulated and proved in [7].9

8 Taking Stock

We are interpreting � ` ' as meaning that there is a formal sequent-proof of
the sequent � W ' (exactly as stated—so that all of the premises in � are used
in arguing for the conclusion '). We have ruled out incorporating Object-Cut
as a proof-constitutive rule of a system of sequent-proof, because, as the ensuing
Cut-elimination theorem always shows, it is a redundant rule. We have stressed the
importance of formulating right- and left-logical rules for the logical operators in
a manner that enables them to achieve their desired deductive effects all by them-
selves. One should not have to rely on the ancillary services rendered in Gentzen’s
sequent systems by the rule of Thinning. We have seen the desirability of being
able to eliminate from proofs not just Cuts, but also Thinnings. But, to achieve
this end, we have found it necessary to reformulate the result so that it claims only
the availability of a proof, of the sought kind, of some subsequent of the original
“target” sequent.

The logician should always prefer a stronger result to a weaker one. Thus a proof
system made up only of (suitably formulated) right- and left-logical rules, but not
containing either Cut or Thinning, proves to be perfectly adequate for the logician’s
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purposes. We have no methodological need for the structural rules of Cut or Thin-
ning. The resulting system of “logical rules only” we call core logic. The right- and
left-logical rules of core logic have had every trace of Cut or Thinning expunged
from them. They form a truly irredundant set of deductive rules.

Our single-conclusion sequent system of core logic, which lacks the two rules
Cut and Thinning, is still perfectly adequate for the foundational demands of (in-
tuitionistic) mathematics and of theory testing in the natural sciences. Likewise, the
“classicization” of core logic is still perfectly adequate for the foundational demands
of classical mathematics (and, a fortiori, of theory testing in the natural sciences).
The classical extension of the sequent system for core logic, which also lacks the
two rules Cut and Thinning, is obtained by appending the rule of classical dilemma
(still in single-conclusion form, hence with � at most a singleton):

Dilemma: �; ' W � �;:' W �

�;� W �

�;' W  �;:' W

�;� W  
:

It is no objection to refusing to have (Object-)Cut as a rule in the proof system that
it would frequently render formal proof of the target sequent unfeasible (because of
exponential blowup on “eliminating Cuts”).10 That is to succumb to the fantasy that
mathematicians are in the business of giving formal proofs. Of course our deductive
progress will always be piecemeal and stepwise. All we ever need is the assurance
that there exists a formal proof of (some subsequent of) the target sequent and that we
have an effective method that would, in principle, deliver it. This we can do, without
Object-Cut.

Meanwhile, our formal systems (intuitionistic or classical) of Cut-free, Thin-
ning-free deductive reasoning suffice to regiment the reasoning that mathematicians
actually undertake, as they effect their logical transitions from their axioms to their
lemmas, from their axioms and lemmas to their theorems, and from their (axioms
and) theorems to their corollaries. Their actual passages of reasoning are faith-
fully represented by Cut-free, Thinning-free proofs. And their overall deductive
progress—the belief that their theorems (and their corollaries) really do follow, ulti-
mately, from their axioms—is underwritten by the principle above, which has been
established as a metatheorem, called Cut for epistemic gain.11

9 Sequent Calculus for Core Logic

We use �;� for (possibly empty) sets of sentences. Sequents are of the form � W � ,
where � has at most one member. Instead of ¹'º we shall write ' when there
can be no confusion. Instead of � [ � we shall write �;� . Whenever we write
�; '1; : : : ; 'n W � .n � 1/ in a premise-sequent, it is to be understood that 'i … �

(1 � i � n). Instead of writing ; on the right side of a colon, we simply leave a
blank space.

The sequent rules for any logical operator @ are of two kinds: those for introduc-
ing a dominant occurrence of @ on the right of the colon of the sequent and those
for introducing it on the left. Right-rules, denoted (:@), correspond to Introduction
rules, denoted (@-I), in natural deduction. Left-rules, denoted (@:), correspond to
Elimination rules, denoted (@-E), in natural deduction.
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(W :)
�; ' W

� W :'

(: W) � W '

�;:' W

(W ^) �1 W '1 �2 W '2

�1; �2 W '1^'2

(^ W) �; ' W�

�; '^ W�

�; W�

�; '^ W�

�; ';  W�

�; '^ W�

(W _) � W'

� W'_ 

� W 

� W'_ 

(_ W) �1; '1 W� �2; '2 W�

�1; �2; '1_'2 W�

�1; '1 W �2; '2 W

�1; �2; '1_'2 W 

�1; '1 W �2; '2 W 

�1; �2; '1_'2 W 

(W!) �; ' W

� W '! 

� W  

� n ¹'º W '! 

(!W)
�1 W'1 �2; '2 W�

�1; �2; '1 !'2 W�

(W 9)
� W x

t

� W9x 

(9 W)
�; x

a W�

�; 9x W�
where the conclusion sequent has no occurrences of a

(W 8)
� W 

� W8x a
x

where a occurs in  but in no member of �

(8 W)
�; x

t1
; : : : ;  x

tn
W�

�;8x W�
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(WD)
; W t D t

(DW)
� W'

�; tDu W 
where 't

u D  t
u

Notes

1. See [4], Part I, p. 192, under ‘Schemata für Logische-Zeichen-Schlußfiguren,’ figure
UES (short for ‘Und-Zeichen-Einführung im Sukzedens’).

2. We shall see presently that there is a perfectly good formulation of Right- and Left-
sequent rules in which † counts as a proof. The proof-system in question does not
contain either Cut or Thinning as proof-constitutive rules, and has slightly liberalized
formulations of proof-by-cases and conditional proof. Details will emerge in due course.

3. The corresponding result for Classical Core Logic is proved in [9].

4. Certainly, (Object-)Cut was a great help to Gentzen in proving to the satisfaction of his
contemporaries that his sequent calculus was equivalent to their less natural but more
familiar systems of predicate logic, whose completeness had already been established.
But, for the purposes of a direct completeness proof for the sequent calculus itself, one
needs only Meta-Cut, not Object-Cut. To be sure, there were other reasons Gentzen
had, stemming from his earliest paper [3] (which did not treat of any logical operators)
for “carrying Cut along” into his later sequent treatment, in [4], for the first time, of
all the usual logical operators. Despite the interesting explanation offered by [2] of the
“synthetic” role played by Cut in [3], a counterargument could be mounted for the view
that a rule of “Cut” that allows for the excision only of atomic sentences is very differ-
ent from one that allows for the excision of logically compound ones. In the “atomic”
setting, what looks like a Cut-sentence A within a proof constructed by the rules of an
atomic sequent calculus does not correspond to any unwanted maximal occurrence of A
in the natural-deduction version of that sequent proof. In the natural-deduction setting,
the two proof-trees would simply be grafted together, root A of the first proof-tree onto
leaf A of the second proof-tree, to produce a new proof-tree with A now a grafting-point
within it, and without any violation of normality. This does not happen when A, by con-
trast, is logically compound. Those who view the appearance of Object-Cut within the
full sequent calculus as a harmless and understandable (let alone: necessitated) extrap-
olation from the earlier treatment of the atomic sequent calculus seem to be in need of
more convincing reasons for condoning its appearance as Object-Cut, rather than being
content merely to secure the truth of Meta-Cut. (The reflections in this footnote are in
response to much-appreciated comments by an anonymous referee.)
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5. If we follow a convention to the effect that in a sequent written as� W � , the succedent �
is either empty or a singleton, then the rule (TL) can be written in the more unified form

(TL) � W �

�; W �
; where  … �:

6. Ex Falso Quodlibet has also been called the Absurdity Rule, for example in the classic
study [6], which awakened renewed interest in Genten’s systems of natural deduction. It
has also earned the moniker Explosion, among contemporary paraconsistent logicians.

7. If we follow the convention mentioned in footnote 5, then we can write the usual rule
._ W/ in the more unitary form

�; ' W � �; W �

�;�; ' _  W �
:

We shall follow the convention in question when stating the full set of sequent rules for
Core Logic in §9.

8. It is interesting to note that [3], which concerned itself solely with sequents composed
out of atomic sentences, established that any sequent-proof consisting of applications of
the structural rules of Reflexivity, Thinning and Cut could be turned into a normal
form that relegated all its Thinnings to a single application of Thinning at the end.
Thus the penultimate sequent in the proof would, as it were, be a potentially stronger
result than the concluding sequent at the very end, albeit within a proof containing,
higher up (nothing but) Cuts. Perhaps it was this latter feature that prevented Gentzen,
subsequently, from considering turning Cut-free proofs into Cut-free, Thinning-free
proofs of possibly stronger results. For further discussion of [3], see [10].

9. In that paper the rule in question was called Dilution rather than Thinning, and the result
in question was accordingly called the Dilution-Elimination Theorem.

10. We need scare quotes here because we have to remember that there are no actual Cuts
made within the formal proofs of Core Logic. Rather, we seek proofs of (possible
strengthenings of) the target sequent that would result from applying (to two proofs)
a rule of cut if only one had one!

11. The proof of this metatheorem is given in [8] for Core Logic, and in [9] for Classical
Core Logic.
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