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Reverse Mathematics
and the Coloring Number of Graphs

Matthew Jura

Abstract We use methods of reverse mathematics to analyze the proof theo-
retic strength of a theorem involving the notion of coloring number. Classically,
the coloring number of a graph G D .V; E/ is the least cardinal � such that there
is a well-ordering of V for which below any vertex in V there are fewer than �

many vertices connected to it by E. We will study a theorem due to Komjáth and
Milner, stating that if a graph is the union of n forests, then the coloring number
of the graph is at most 2n. We focus on the case when n D 1.

1 Introduction

We assume the reader is familiar with the general program of reverse mathematics,
in which we study the proof-theoretic strength of theorems of ordinary, “essentially
countable” mathematics. For more on reverse mathematics, we refer the reader to
Simpson [6]; for background in computability theory, we refer the reader to Soare
[7]; for background in graph theory, see Diestel [1]. Within this paper, we will only
be working within the subsystems RCA0, WKL0, and ACA0.

We will use the following lemma from [6] extensively.

Lemma 1.1 (Simpson) The following are pairwise equivalent over RCA0:
1. ACA0;
2. For all one-to-one functions f W N ! N there exists a set X � N such that

.8n/Œn 2 X $ 9m.f .m/ D n/�; that is, X is the range of f .

First we clarify some of the notation used in this paper. Note that within RCA0,
every finite set can be encoded as a unique natural number and we denote the set of
all codes for finite subsets of A � N by FinA. Similarly, every finite sequence can
be encoded as a unique natural number, and we denote the set of all codes for finite
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sequences of elements of A � N by SeqA (sometimes written A<N). We identify
elements of SeqA with partial functions � W N ! A.

For � 2 SeqA, let j� j denote the length of � . For �; � 2 SeqA, write � � � to say
that � is an initial segment of � ; that is,

j� j � j� j ^
�
8i < j� j

��
�.i/ D �.i/

�
;

which we could also write as � D � � dom.�/.

Definition 1.2 Say that T � 2<N (or T � N<N) is a tree if

.8� 2 T /.8� 2 T /Œ� � � ! � 2 T �:

In words, the above is equivalent to saying that T is closed under initial segments.
A path in a tree T is a function f W N ! 2 such that .8n/Œf � n 2 T �.

We use ha; bi to denote the standard pairing of natural numbers a and b.
Now we turn to graph theory and formulate a few definitions within the base

theory RCA0.

Definition 1.3 (RCA0) A graph G is a pair .V; E/, where V is the set of vertices
and E is an irreflexive, symmetric binary relation on V . (Note that our graphs are
undirected.)

Definition 1.4 (RCA0) Let G D .V; E/ be a graph, and u; v 2 V , u ¤ v.
A path in the graph G is a nonempty sequence � 2 SeqV such that�

8i ¤ j < j� j
��

�.i/ ¤ �.j /
�

^
�
8i < j� j � 1

��
�.i/E�.i C 1/

�
:

The collection of all paths in G is given by

PathG WD ¹� 2 SeqV W � is a path in Gº:

The collection of all paths from u to v in G is given by

Pathu;v
G WD

®
� 2 PathG W �.0/ D u ^ �

�
j� j � 1

�
D v

¯
:

Definition 1.5 (RCA0) An acyclic graph is a graph F D .V; E/ such that

.8u; v 2 V /
�
j Pathu;v

F j < 2
�
:

A forest is an acyclic graph. A tree is a forest T D .V; E/ such that

.8u; v 2 V /ŒPathu;v
T ¤ ;�:

Notice that this definition of a tree is different from what we have already described.
Nevertheless, which definition of tree we intend should always be clear from the
context in which we are working.

Definition 1.6 Let G D .V; E/ be a graph. The component of G with represen-
tative vertex v is the subgraph of G that is induced by the set of vertices given by
¹u 2 V W Pathu;v

T ¤ ;º.

Therefore components are necessarily connected. Note that v is indeed in the com-
ponent with representative vertex v as we have defined it, since the path from v to
itself is contained in the set ¹u 2 V W Pathu;v

T ¤ ;º.

Definition 1.7 A graph G D .V; E/ has finitely many components if there is a
finite set X 2 FinV such that X contains exactly one vertex from each component.
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When we say “component of G” we mean a component of G with representative
vertex v for some v 2 V .

Proposition 1.8 (ACA0) Let G be a graph. Then a set of component representa-
tives for G exists.

Proposition 1.9 (RCA0) Let G be a graph with only finitely many components.
Then a set of component representatives for G exists.

Definition 1.10 (RCA0) Let T D .V; E/ be a tree. For all X 2 FinV and all
y 2 V n X we can form the set of all paths from the induced subgraph on X to the
vertex y

PathX;y
T WD

®
� 2 PathT W �.0/ 2 X ^ �

�
j� j � 1

�
D y

¯
:

Because T is a tree (and hence acyclic), for each x 2 X there is a unique path
from x to y. It follows that PathX;y

T is a finite set because X is a finite set. Let
n D min ¹j� j W � 2 PathX;y

T º. For any � 2 PathX;y
T with j� j D n, we have

.8i/Œ1 � i < j� j ! �.i/ … X�. We call such a � with j� j D n a path from X to
y. Since the induced subgraph on X need not be connected, there may be more than
one such path, so choose the one with the least code to define the function

P W FinV �V ! PathT

such that

P.X; y/ D

´
; if y 2 X

� if y 2 V n X; where � is a path from X to y with least code.

Notice that if the induced subgraph on X is connected, then there is a unique path
from X to y for any y 2 V n X . The existence of the function P in RCA0 will be
useful to us later.

2 Different Notions of Coloring Number

We begin this section with the classical definition of coloring number.

Definition 2.1 (Classical) The coloring number of a graph G, written Col.G/, is
the least cardinal � for which there is a well-ordering of the vertex set in which every
vertex is joined by an edge to fewer than � smaller vertices.

The reader is almost surely familiar with the notion of the chromatic number of
a graph G, denoted chr.G/, which is somewhat related to the coloring number of
G. (To find reverse mathematics results relating to theorems involving chromatic
number, we direct the reader to Gasarch and Hirst [3].) If there is a well-ordering
that witnesses coloring number � in a graph, then this well-ordering could actually
give us a proper coloring of the graph (using at most � colors) if we color greedily in
a certain way along the ordering (although this process will not give us the chromatic
number of the graph in general). For an example of a greedy algorithm that would
succeed, consider the following. Suppose we are given a well-ordering that witnesses
a certain coloring number. Then for a vertex v labeled by ˛ in the well-ordering, we
consider the set of colors of the neighbors of v that have label less than ˛ in the
well-ordering. We color v with the least color that is not in this set.

We do know that given a graph G, we have chr.G/ � Col.G/. To show that we
indeed have inequality, we give the easy example of G D K3;3. In this example,
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chr.G/ D 2 since G is a complete bipartite graph. On the other hand, we have
Col.G/ D 4, because no matter what ordering of the vertices of G that we choose,
one of the vertices, say v, must be greatest in that ordering. Then since G is complete
bipartite, v is connected to three other, necessarily lower vertices in that ordering.
Thus we have Col.G/ D 4. In fact, if we consider the example G D Kn;n, then it
is easy to see by an argument similar to the above that we still have chr.G/ D 2,
but Col.G/ D n C 1. So as we can see, the notion of coloring number, while
related to chromatic number, has a somewhat different flavor. Coloring number is a
very natural and interesting notion because it lends itself so well to set theory and
recursion. Many of the results having to do with coloring number are set-theoretic.
For example, consider the following.

Lemma 2.2 (Erdös, Hajnal) Let G D .V; E/ be a graph. If jV j D � and
Col.G/ D �, then there exists a well-ordering of V with the order type � witnessing
Col.G/ D �.

We restrict ourselves to work with only countable graphs. (So from now on, when
we say “infinite graph,” we really mean “countably infinite graph.”) Considering the
above lemma, we are particularly interested in well-orderings of the vertex set V that
have order type !. Of course, to get such a well-ordering of type ! for an arbitrary
G given that Col.G/ D � may require nontrivial axioms in the sense of reverse
mathematics, and it is not immediately clear which subsystem is actually necessary
for the lemma. We think this question is interesting, but we leave it open.

Now we give some definitions. (Note that we use the usual definition of linear
order as our RCA0 definition.)

Definition 2.3 (RCA0) Let G D .V; E/ be a graph, and let k 2 N, k � 1.
A k-order of V is a linear order �V of V such that for every x 2 V there are at most
k � 1 many y 2 V such that y �V x and E.x; y/ holds.

If G D .V; E/ is a graph, then the existence of a k-order which is a well-order on
V classically implies that Col.G/ � k. We now restate the classical definition of
coloring number for countably infinite graphs.

Definition 2.4 For k � 1, Col!.G/ � k if there is a k-order of V of type !.

In many ways the classical definitions of coloring number given above are unsatis-
factory in terms of reverse mathematics. For instance, how do we define (in RCA0)
what it means for a linear order of V to be of type !? This leads us to formulate a
few new definitions.

The following definition gives a strong way of saying that a linear order �V on
a set V has order type ! by specifying, for each element v 2 V , exactly how many
elements are below v in the order �V .

Definition 2.5 (RCA0) We say that a linear order �V of a set V D ¹v0; v1; v2; : : : º

has strong !-type if there is a bijection f W N ! V such that

i �N j ” f .i/ �V f .j /:

In other words, f explicitly gives the order �V , by specifying f .0/ D the first
element of V in the order �V ; : : : ; f .n/ D the element of V in the n C 1 position in
the ordering �V .
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The following definition gives a weaker way of saying that a linear order �V on
a set V has order type !. Under this definition, we cannot tell exactly how many
elements are below a given vertex v in the order �V , only that there is some finite
bound on the number of elements below v in the order �V .
Definition 2.6 (RCA0) We say that a linear order �V of a set V D ¹v0; v1; v2; : : : º

has weak !-type if
.8i/.9j /.8m �N j /Œvi �V vm�:

Here are some variations on the reverse mathematics definition of coloring number.
For the following, let G D .V; E/ be a graph, and k 2 N with k � 2.
Definition 2.7 ((Linear order coloring number) (RCA0)) We say that ColLO.G/ �

k if there is a k-order of V .
Definition 2.8 ((Strong ! coloring number) (RCA0)) For an infinite graph G we
say that ColS!.G/ � k if there is a k-order of V of strong !-type.
Definition 2.9 ((Weak ! coloring number) (RCA0)) For an infinite graph G we
say that ColW! .G/ � k if there is a k-order of V of weak !-type.
It is not hard to see we have the following string of classical implications:

ColS!.G/ � k ” ColW! .G/ � k H) ColLO.G/ � k:

The converse of the last implication above is false in general. Classically,
ColLO.G/ and Col.G/ are not the same. Consider the following to see this fact.
Lemma 2.10 ColLO.G/ � k if and only if ColLO.H/ � k for every finite sub-
graph H � G.
To show (classically) that ColLO.G/ � k does not imply ColW! .G/ � k, we direct
the reader to examples constructed by Erdös and Hajnal [2]. These examples were
originally used to show that the following result is sharp.
Theorem 2.11 (Erdös, Hajnal) If every finite subgraph of a graph G has coloring
number at most n .2 � n < !/, then the coloring number of G is at most 2n � 2.
That is, for each n � 2, Erdös and Hajnal constructed a graph G such that for every
finite subgraph H of G, Col.H/ D n, but Col.G/ > 2n � 3 (and so by the theorem
it must be the case that Col.G/ D 2n � 2).

Notice that, together with Lemma 2.10, Theorem 2.11 proves that if ColLO.G/ �

n, then classically we have that Col!.G/ � 2n � 2 (where Col!.G/ denotes the
classical coloring number where we consider only well-orderings of V of type !).
So classically, linear order coloring number and omega coloring number are not
entirely different. At least they are either both finite or both infinite.

While it is evident classically that ColS!.G/ � n ” ColW! .G/ � n, we note
that the equivalence between strong and weak !-type linear orders requires nontrivial
axioms in the sense of reverse mathematics analysis, as illustrated by the following
theorem.
Theorem 2.12 (RCA0 C †0

2
Induction) The following are equivalent:

1. ACA0;
2. Every linear order of weak !-type has strong !-type.

We omit the proof of the above theorem, but note that †0
2 induction is indeed used in

our proof. It would be a nicer result if we could eliminate the need for †0
2 induction.
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3 Summary of Results

One of the main theorems we wish to study is the following. We first note for clarity
that classically, a graph G D .V; E/ is a union of n forests when we can write
E D E1 [ E2 [ � � � En such that each subgraph .V; Ei / of G is a forest.

Theorem 3.1 (Komjáth, Milner (ACA0)) If a graph G is a union of n < ! forests,
then Col.G/ � 2n.

Proof The proof given by Komjáth and Milner [4] can be carried out in ACA0.

Throughout this paper, we focus on the special case of when n D 1, that is, when G

is a forest. In this case the above theorem says that Col.G/ � 2 for every forest G.
Of course, it is classically much easier to prove this special case. Actually, when G

is a forest, this fact can be proved classically in a similar way that one could prove
that the chromatic number of a forest is at most 2. In Section 4 we will go through a
brief sketch of a proof of the case that G is a forest.

In Section 4 we show that if G is a countably infinite tree, then Theorem 3.1
can be proven in RCA0. In Section 5 we go on to show that Theorem 3.1 can also
be proven in RCA0 if G is a forest with finitely many components. In Section 6,
we show that if G is a forest (n D 1), then Theorem 3.1, using the linear order
coloring number, is equivalent to WKL0. Even better, for any k 2 ! with k � 2, the
statement, “ColLO.G/ � k for every forest G” is equivalent to WKL0. As a corollary,
we obtain the existence of a computable graph G such that no computable linear
ordering realizes ColLO.G/ � k for any k 2 !. In Section 7, we demonstrate that
for any k 2 ! with k � 2, the statement “for any forest G D .V; E/, ColS!.G/ � k”
is equivalent to ACA0. In Section 8, we turn our attention to the weak coloring
number, as we prove that the statement “for any forest G D .V; E/, ColW! .G/ � 2”
is equivalent to ACA0. It remains open whether we can replace the 2 with a k in
the previous result. In Section 9, we demonstrate that REC models the existence
of a graph G that has weak omega coloring number bounded by 2 and linear order
coloring number bounded by 2, but REC does not model that the strong omega
coloring number of G is bounded by any k 2 !.

4 Countably Infinite Trees

As we mentioned in the previous section, every forest classically has coloring number
at most 2. The proof of this fact is indeed quite simple. If G is a tree, then it is
connected, so in this case, the idea is to order the vertices of G by levels. That is,
pick a starting vertex v, and put it at the beginning of the ordering. Now let N1 denote
the set of neighbors of v. Let N2 denote the set of the neighbors of the neighbors of v

(not including v). Let Ni denote the set of all neighbors of the vertices in Ni�1 (not
including any vertices that were in any Nk with k < i �1). To order the vertices of G

by levels means order them by ¹vº < N1 < N2 < � � � , with the ordering within any
given Ni chosen arbitrarily. This kind of ordering will be a 2-order regardless of the
choice of the starting vertex v. (Since G is a tree and therefore has no cycles, there is
no danger of any vertex being connected to more than one vertex that is smaller than
it in the ordering we just described.) One could also interleave the vertices from ¹vº,
N1, N2; : : : to obtain a 2-order with (possibly) smaller order type.

It is slightly harder to show that Col.G/ � 2 if G is a forest. In this case, G

could very well be a countably infinite disjoint union of trees. Therefore, to obtain
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a 2-order of the vertices of G, we first need to choose a vertex representative from
each of the connected components of G. Now that we have chosen a set of vertex
representatives, we can order each of the connected components of G exactly the
same way as described above for a tree, with the role of v being played by the chosen
vertex representative. Once we have an ordering for each component, we can define
an ordering for all of G by either interleaving the orderings (giving an ordering of
smaller order type), or just lining them all up in a row. Of course, if one of the
vertices has infinitely many neighbors, then the order we obtain by simply lining up
the Ni ’s will have order type larger than !, but we can always appeal to Lemma 2.2
to get one with order type ! if our graph is countable.

The critical step in the proof that Col.G/ � 2 if G is a forest, was the choice of a
set of vertex representatives. The subsystem ACA0 is strong enough to prove this fact
in general, and in the restricted case of trees or a finite disjoint union of trees, RCA0

suffices. First we need a definition.

Definition 4.1 ((RCA0) (End Extension, Komjáth, Milner [4])) Suppose that
A � V is a finite subset of vertices from V , and let �A be a linear order of A. We
call a linear order �B on a finite set B � A an end extension of �A if �B�AD�A

and
.8a 2 A/.8b 2 B n A/Œa �B b�:

If A � V is finite and �A is a linear order on A, then we say that �A can be end
extended to an linear order �B of a finite B � A if �B is an end extension of �A.

Theorem 4.2 (RCA0) If G D .V; E/ is a countably infinite tree, then
ColS!.G/ � 2.

Proof Assume RCA0, and let G D .V; E/ be a tree. Furthermore suppose
that V D ¹v0; v1; v2; : : : º. We wish to define a sequence of finite subsets
V0 � V1 � V2 � : : : of V and a sequence of linear orders �0��1��2� � � �

on the finite sets of vertices V0; V1; V2; : : : , respectively, such that
1. Each Vi is finite, connected, and ¹v0; : : : ; vi º � Vi (so that V D

S
i2N Vi );

2. Each �i is a 2-order of Vi ;
3. �iC1 is an end extension of �i .

Stage 0: Define V0 D ¹v0º and v0 �0 v0.
Stage s C 1: Suppose that we have already defined Vs and �s . To get VsC1 and

�sC1, we do the following:
1. If vsC1 2 Vs , then let VsC1 D Vs and �sC1D�s;
2. If vsC1 … Vs , then consider the path P.Vs; vsC1/ from vsC1 to Vs (the func-

tion P was defined in Definition 1.10). Let � D P.Vs; vsC1/. Say that the
vertices in this path given by � are �.0/ D u0, �.1/ D u1; : : : ; �.k/ D uk .
Then, by definition of P , u0 2 Vs and ¹u1; u2; : : : ; ukº \ Vs D ;,
while E.ui ; uiC1/ holds for each i < k and uk D vsC1. Now define
VsC1 D Vs [ ¹u1; : : : ; ukº and extend �s to �sC1 by taking �sC1 to be an
end-extension of �s , where additionally,

u1 �sC1 u2 �sC1 � � � �sC1 uk D vsC1:

The fact that each Vs is finite, connected, and contains ¹v0; : : : ; vsº follows by
induction.
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Define � to be
S

s �s . The bijection f W N ! V that gives a 2-order of V of
strong !-type is determined in the following way: let f .0/ D v0. Now consider
the induction step in the above. Suppose that we have f for the set Vs , and that the
last number on which f has been defined is m � 1. If we are in the first case, we
do not extend the definition of f . If we are in the second case, we let f .m/ D u1,
f .m C 1/ D u2; : : : ; f .m C k � 2/ D uk�1, and f .m C k � 1/ D uk D vsC1.
So basically we are defining f along the path from Vs to vsC1 in increasing order
of the indices of the ui vertices. (This path exists because G is a tree, and therefore
connected.) We should also note that because G is a tree, G contains no cycles, so
there is never any danger that any of the vertices from u1; : : : ; uk will ever form a
cycle in G (which would prevent our function f from being a 2-order). Therefore,
the function f is a 2-order of V .

5 Forests with a Set of Component Representatives

Theorem 5.1 (RCA0) If G D .V; E/ is a forest and there exists a set of component
representatives for G, then ColS!.G/ � 2.
Proof Let X be a set of component representatives for G. Define the set

B WD
®
hx; vi 2 X � V W Pathx;v

G ¤ ;
¯

D
®
hx; vi 2 X � V W .9� 2 PathG/

�
�.0/ D x ^ �

�
j� j � 1

�
D v

�¯
D

®
hx; vi 2 X � V W .8y 2 X/�
y ¤ x ! :9� 2 PathG

�
�.0/ D y ^ �

�
j� j � 1

�
D v

��¯
:

Notice that we have found a form of B which is †0
1 and a form which is …0

1. Thus
B is �0

1, and so RCA0 proves it is a set.
Now we define

Ti WD
®
v 2 V W hxi ; vi 2 B

¯
:

Then each Ti is �0
1, and therefore exists in RCA0. Note that Ti gives us the compo-

nent of G with representative xi 2 X .
Now by Theorem 4.2, we have that ColS!.Ti / � 2 for each i . Fix orderings �Ti

which witness the previous statement. To define a strong ! 2-order of G, interleave
the orderings �Ti

of the component trees Ti . Since none of the vertices in Ti are
adjacent to any of the vertices in Tj when i ¤ j , it does not matter how we interleave
the orders. This can be done in RCA0.

As a special case of a more general result which we will prove later, we will see
that ACA0 suffices to show ColS!.G/ � 2, where G is a forest with infinitely many
components. Later, we will give a reversal to show that ACA0 is actually necessary
for that result.

6 Linear Order Coloring Number and WKL0

In this section we show the connection between linear order coloring number and the
subsystem WKL0, but first we state a couple lemmas.
Lemma 6.1 (RCA0) Every finite forest F has ColLO.F / � 2.
Proof Fix a finite forest F D .VF ; EF /. Suppose that VF D ¹v0; : : : ; vkº. To
define a 2-order on F , first let X D ¹x0; : : : ; xj º be a finite set of component repre-
sentatives, and proceed as in the proof of Theorem 5.1.
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The following lemma will be extremely useful to us in the proof of the theorem that
follows.

Lemma 6.2 (Lemma 2.2 from Schmerl [5]) Let 2 � n 2 !. Then the following
statement is provable from RCA0 C : WKL0: there are pairwise disjoint †0

1 subsets
A0; A1; : : : ; An�1 � N such that whenever f W N ! n is a function, there is x such
that x 2 Af .x/.

Theorem 6.3 (RCA0) The following are equivalent;
1. WKL0;
2. For any forest G D .V; E/, ColLO.G/ � 2.

Proof (1 ! 2) Assume WKL0. Let G D .V; E/ be a forest with V D ¹v0; v1;

v2; : : : º. Let T � !<! be the bounded tree defined by

� 2 T ”
�
8n < j� j

��
�.n/ � n C 1

�
:

Now define an ordering �� on FinV in the following way:
1. Let v0 �; v0;
2. Let ���k be the ordering of ¹v0; : : : ; vj� j; vj� jC1º which agrees with the or-

dering defined by �� on ¹v0; : : : ; vj� jº and inserts vj� jC1 into the kth position
in the ordering defined by �� .

For example, �h0i is the ordering given by v1 � v0, while �h1i is the ordering
given by v0 � v1. Also, �h0;1i is the ordering given by v1 � v0 with v2 placed into
the 1 position, obtaining v1 � v2 � v0.

Here is a property of �� , and a definition:
1. � � � H) �� � ¹v0; : : : ; vj� jº D�� ;
2. If g is an infinite path in T , then we define �g by

x �g y ” .9� 2 T /Œ� � g ^ x �� y�:

Property 1 is clear from the definition of �� . If g is an infinite path in T , then it
is a routine verification of the axioms to show that �g defines a linear order on V .

Now we define another tree S � T by

� 2 S ” the ordering �� on ¹v0; : : : ; vj� jº is a 2-order:

Formally, S is defined using †0
0 comprehension by

� 2 S ”
�
8n < j� j

��
:9i ¤ j < j� j

��
vi �� vn ^ vj �� vn ^ E.vi ; vn/ ^ E.vj ; vn/

�
:

Since T is a bounded tree, we must also have that S is a bounded tree. By
Lemma 6.1, S is infinite, and by WKL0, S has a path. Let g be such a path in S .
We verify that �g is a 2-order.

Suppose that g is not a 2-order. Then there are distinct i; j; k such that

.vi �g vk/ ^ .vj �g vk/ ^ E.vi ; vk/ ^ E.vj ; vk/:

Let � 2 S be such that � � g and .vi �g vk/ ^ .vj �g vk/. (That is, � is a witness
to both .vi �g vk/ and .vj �g vk/—we can use the single string � to witness both
inequalities.) Thus vi �� vk and vj �� vk , but this is a contradiction, as � 2 S

implies that �� is a 2-order on V .
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(2 ! 1) We work in RCA0. Assume that for any forest G D .V; E/,
ColLO.G/ � 2. In other words, we assume that for any forest G, there is a
2-order of G.

It is sufficient to prove the negation of the statement in Lemma 6.2. We will use
the formulation of the lemma for n D 3. That is, we will end up showing that for all
pairwise disjoint †0

1 subsets A0; A1; A2 � N, there is a function f W N ! 3 such
that for all x, x … Af .x/. Since we are working over RCA0, we cannot actually talk
about †0

1 sets as if they exist, because they might not. Talking about them as sets
in this context is really shorthand for talking about the corresponding collections of
numbers defined by †0

1 formulas.
Fix †0

1 formulas
.9s/

�
'i .x; s/

�
for 0 � i < 3;

which are disjoint. That is, for each 0 � i < 3, we have

.8x/
�
9s'i .x; s/ !

�
:9s'iC1.x; s/ ^ :9s'iC2.x; s/

��
:

(The addition in the subscripts for the formula above is done modulo 3.) The formulas
above correspond to pairwise disjoint †0

1 sets A0; A1; A2 � N, respectively, from
Lemma 6.2.

We define the graph G D .V; E/ in the following way. Let the set of vertices V

be defined by

V WD ¹ui
x W 0 � i < 3; x 2 Nº [ ¹ahx;si W x; s 2 Nº [ ¹bhx;si W x; s 2 Nº:

Let the edge relation E be defined in the following way. For 0 � i < 3, x; s 2 N:

E.ui
x ; ahx;si/ ^ E.ui

x ; bhx;si/ ^ E.uiC1
x ; ahx;si/ ^ E.uiC2

x ; bhx;si/

” 'i .x; s/ ^ .8t < s/
�
:'i .x; t/

�
;

where the addition i C1 and i C2 is modulo 3. We should note here (to be clear) that
if 'i .x; s/^.8t < s/Œ:'i .x; t/� does not hold, then we do not define any of the edges
from E.ui

x ; ahx;si/, E.ui
x ; bhx;si/, E.uiC1

x ; ahx;si/, or E.uiC2
x ; bhx;si/ in G. We see

that the edge relation E is definable in RCA0, as only bounded quantifiers were used
in its definition.

Figure 1 will aid the reader in seeing exactly what the edge connections look like
in the graph G.

We can also see that if �V witnesses ColLO.G/ � 2 and .9s/Œ'i .x; s/� holds,
then

ui
x ¤ max ¹u0

x ; u1
x ; u2

xº;

where the maximum is taken relative to �V . For suppose that �V witnesses
ColLO.G/ � 2 and .9s/Œ'i .x; s/� holds, but ui

x D max ¹u0
x ; u1

x ; u2
xº, where the

maximum is taken relative to �V (and the addition is modulo 3). Then since
.9s/Œ'i .x; s/� holds, we have edges E.ui

x ; ahx;si/, E.ui
x ; bhx;si/, E.uiC1

x ; ahx;si/,
and E.uiC2

x ; bhx;si/ in G as we have defined it. Then since ui
x D max ¹u0

x ; u1
x ; u2

xº,
without loss of generality assume that �V satisfies uiC1 �V uiC2

x �V ui
x . Now

if both ahx;si and bhx;si are below ui
x in �V , then, as ui

x is larger than both ahx;si

and bhx;si in �V and connected to them both, the linear order �V only witnesses
ColLO.G/ � 3. So suppose that ahx;si is above ui

x and bhx;si is below ui
x in �V .

Then ahx;si is above both ui
x and uiC1

x , while at the same time being connected
to both. The resulting linear order similarly does not witness coloring number at
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Figure 1 The edge connections in G for fixed 0 � i < 3, x; s 2 N.

most 2. Supposing that ahx;si is below ui
x and bhx;si is above ui

x in �V yields another
linear order not witnessing coloring number 2. By the same argument above, we
certainly cannot have both ahx;si and bhx;si be above ui

x in �V , as it would yield
a similar result (from both the case for ahx;si and bhx;si). Since there is no other
possibility, we have a contradiction, and therefore if �V witnesses ColLO.G/ � 2

and .9s/Œ'i .x; s/� holds, then ui
x ¤ max ¹u0

x ; u1
x ; u2

xº.
Now we define the function f W N ! 3 by f .x/ D j , where u

j
x D max¹u0

x ; u1
x ;

u2
xº, and the maximum is taken relative to �V . By hypothesis, the graph G we

have constructed satisfies ColLO.G/ � 2. Let �V witness this fact. Then we
cannot have .9s/Œ'f .x/.x; s/�, since u

f .x/
x D max ¹u0

x ; u1
x ; u2

xº by definition, and
.9s/Œ'f .x/.x; s/� holding would imply that u

f .x/
x ¤ max ¹u0

x ; u1
x ; u2

xº, as shown
above. Therefore we have that :.9s/Œ'f .x/.x; s/�, and therefore that means (in the
terminology of Lemma 6.2) that for all x 2 N, x … Af .x/, and we are done.

In light of the following theorem, we observe that the previous theorem is superflu-
ous, albeit useful not only to the extent that it essentially already contains a proof of
the forward direction, but also because it illustrates the simplest case of the reversal,
giving us a better understanding of the general case.

Theorem 6.4 For any k 2 ! such that k � 2, RCA0 proves that the following are
equivalent:

1. WKL0;
2. for any forest G D .V; E/, ColLO.G/ � k.

Proof .1 ! 2/ As noted above, by Theorem 6.3, we have in WKL0 that for any
forest G D .V; E/, ColLO.G/ � 2. Thus it is clear that for any forest G D .V; E/,
ColLO.G/ � k also holds in WKL0 for k � 2.

.2 ! 1/ By Schmerl’s lemma it suffices to show that for all pairwise disjoint †0
1

subsets A0; A1; : : : ; Ak2�k � N, there is a function f W N ! k2 � k C 1 such that
.8x/Œx … Af .x/�. Again, the collections above we call sets do not necessarily exist
as sets in RCA0.
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Fix disjoint †0
1 formulas

.9s/
�
'i .x; s/

�
for 0 � i < k2

� k C 1:

That is, for each 0 � i < k2 � k C 1, we have

.8x/
h
.9s/'i .x; s/ !

^
0�`<k2�kC1;`¤i

:.9s/'`.x; s/
i
:

The formulas above correspond to pairwise disjoint †0
1 sets A0; A1; : : : ;

Ak2�k � N, respectively, from Lemma 6.2.
We define the graph G D .V; E/ in the following way. Let the set of vertices V

be defined by

V WD ¹ui
x W 0 � i < k2

� k C 1; x 2 Nº [

[
0�i<k

¹ai
hx;si

W x; s 2 Nº:

Let the edge relation E be defined in the following way. For 0 � i < k2 � k C 1,
x; s 2 N: ^

0�`�k

E.ui
x ; a`

hx;si
/ ^

^
0�j <k

� iC.j C1/.k�1/^
`DiCj.k�1/C1

E.u`
x ; a

j

hx;si
/
�

” 'i .x; s/ ^ .8t < s/
�
:'i .x; t/

�
;

where all of the addition and multiplication is done modulo k2 � k C 1. We see that
the edge relation E is definable in RCA0, as only bounded quantifiers were used in
its definition.

Figure 2 will aid the reader in seeing exactly what the edge connections look like
in the graph G for k D 3, for instance. It might also be helpful at this point to
notice how we obtain the term k2 � k C 1. This term comes from the fact that our
“unsprung” gadget has k sets of k � 1 vertices, plus one central vertex, and therefore
has a total of k.k � 1/ C 1 D k2 � k C 1 total vertices.

We can see that if �V witnesses ColLO.G/ � k and .9s/Œ'i .x; s/� holds, then

ui
x ¤ max ¹uj

x W 0 � j < k2
� k C 1º;

where the maximum is taken relative to �V .
Now we define the function f W N ! k2 � k C 1 by

f .x/ D i; where ui
x D max ¹uj

x W 0 � j < k2
� k C 1º;

and the maximum is taken in the order �V . Then, since

ui
x ¤ max ¹uj

x W 0 � j < k2
� k C 1º;

and .9s/Œ'i .x; s/� holding corresponds to (in the sense of Lemma 6.2) x entering (or
already being in) the †0

1 set Ai at stage s, we see that, for all x 2 N, x … Af .x/ (by
an argument similar to that of the proof in Theorem 6.3), and we are done.

Corollary 6.5 For any k 2 !, there is a computable forest G D .V; E/ such that
no computable linear ordering realizes ColLO.G/ � k.

Corollary 6.6 For any computable forest G D .V; E/, there is a linear ordering
of low Turing degree that realizes ColLO.G/ � 2.

We can actually do slightly better than these corollaries to show the following.
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Figure 2 The edge connections in G in the case k D 3 for fixed 0 � i < 7, x; s 2 N,
where any addition is modulo 7.

Theorem 6.7 There is a computable forest G D .V; E/ such that no computable
linear ordering realizes ColLO.G/ � k for any k 2 !. We say the computable linear
order coloring number of G is !.

Such a computable forest is constructed by satisfying requirements
Rhe;ki W that 'e is not a k-order of V;

where '0; '1; '2; : : : is an effective enumeration of all partial computable functions.
The construction is a straightforward diagonalization. We can even improve this
result to the following.

Theorem 6.8 There is a computable forest G D .V; E/ such that any linear or-
dering realizing the fact that ColLO.G/ is finite must have PA degree.

7 Strong ! Coloring Number and ACA0

Theorem 7.1 (RCA0) For each k 2 N, k � 2, the following are equivalent:
1. ACA0;
2. For any forest G D .V; E/, ColS!.G/ � k.

Proof (1 ! 2) Assume ACA0, and let G D .V; E/ be a forest, that is, a disjoint
union of infinitely many trees. By Proposition 1.8, we can form a set of component
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Figure 3 Edge connections in G for k D 3 if f .0/ D 3, f .1/ D 1, but 0 and 2 are
not in the range of f .

representatives of G. Now by Theorem 5.1, we have ColS!.G/ � 2, and we are done
with this direction.

(2 ! 1) Fix a one-to-one function f W N ! N. Also fix k 2 N with k � 2. We
build a forest G D .V; E/ in RCA0. Let

V WD ¹ai
n W n 2 N; 0 � i < kº [ ¹cn W n 2 Nº:

The only edge relations that hold are E.cn; ai
f .n/

/ for 0 � i < k and n 2 N. Note
that this is equivalent to making connections E.cf �1.m/; ai

m/ for 0 � i < k and
n 2 N, where f .n/ D m. This ends the construction.

Figure 3 illustrates an example of what the edge connections in G will be if, for
instance, k D 3 and f .0/ D 3, f .1/ D 1, but 0 and 2 are not in the range of f .

Note that if m never appears in the range of f , then we will never connect any of
the vertices from ¹ai

m W 0 � i < kº to any of the vertices from ¹cn W n 2 Nº (also
note that none of the a’s are connected by an edge).

Let g W N ! V be a bijection witnessing that ColS!.G/ � k for the graph G we
just constructed. Thus g defines a k-order �V on the vertex set V , where

g.0/ �V g.1/ �V g.2/ �V � � � :

By the construction and the above argument,

m 2 ran.f / ” .9c 2 V /
h ^

0�i<k

E.c; ai
m/

i
” .9c 2 V /

�
E.c; a0

m/
�
:

We claim that
.9c 2 V /

�
E.c; a0

m/
�

”
�
9j � max

®
g�1.a`

m/ W 0 � ` < k
¯��

E
�
g.j /; a0

m

��
and therefore

m 2 ran.f / ”
�
9j � max

®
g�1.a`

m/ W 0 � ` < k
¯��

E
�
g.j /; a0

m

��
:

The last of this string can be checked in RCA0 due to the bounded quantifier.
To show the forward direction of the claim, suppose that .9c 2 V /ŒE.c; a0

m/�,
but :.9j � max ¹g�1.a`

m/ W 0 � ` < kº/ŒE.g.j /; a0
m/�. Fix j such that g.j / D c.

Then since j > max ¹g�1.a`
m/ W 0 � ` < kº, we have a`

m <V c for 0 � ` < k.
However, if E.c; a0

m/ holds, then E.c; a`
m/ holds for all 0 � ` < k, contradicting

that �V is a k-order.
Conversely, suppose that :.9c 2 V /ŒE.c; a0

m/�. Then :.9j 2 N/ŒE.g.j /; a0
m/�

and hence :.9j � max ¹g�1.a`
m/ W 0 � ` < kº/ŒE.g.j /; a0

m/�, completing the
proof of the claim and the theorem.
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8 Weak ! Coloring Number

Theorem 8.1 (RCA0) The following are equivalent:
1. ACA0;
2. For any forest G D .V; E/, ColW! .G/ � 2.

Proof (1 ! 2) This direction follows from Theorem 7.1 since ColS!.G/ � 2

implies ColW! .G/ � 2 over RCA0.
(2 ! 1) Suppose that for any forest G D .V; E/, ColW! .G/ � 2. Fix a one-to-one

function f W N ! N. We wish to show that the range of f exists.
We construct a forest G D .V; E/ as follows. The vertex set is

V WD
®
ae

n W e 2 N^.8m < n/
�
f .m/ ¤ e

�¯
[

®
be

n W e 2 N^.8m < n/
�
f .m/ ¤ e

�¯
:

The edge relation is given by

E.ae
n; ae

nC1/ ^ E.be
n; be

nC1/ ” :.9m � n/
�
f .m/ D e

�
;

and
E.ae

n; be
n/ ” f .n/ D e:

This ends the construction of G.
Now fix a 2-order �V witnessing ColW! .G/ � 2. We claim that

e … ran.f / ” .9k/Œae
k <V ae

kC1 ^ be
k <V be

kC1�:

Notice that this suffices to get the range of f , since we also have

e … ran.f / ” .8m/
�
f .m/ ¤ e

�
;

which is a …0
1 condition, and thus there is a �0

1 way to define the range of f . Hence
by �0

1 comprehension, the range of f exists.
For the forward direction of the claim, assume that e … ran.f /. Notice V contains

every element from ¹ae
n W n 2 Nº and ¹be

n W n 2 Nº. If .8k/Œae
kC1

<V ae
k
�, then

every ae
k

for k � 1 is below ae
0 in the ordering �V , which contradicts the fact that

�V is a weak !-type order. Thus :.8k/Œae
kC1

<V ae
k
�. Thus we can fix k 2 N such

that ae
k

<V ae
kC1

.
Now, we also have ae

`
<V ae

`C1
for all ` � k. For if ` > k were least such

that ae
`

>V ae
`C1

, then we would have E.ae
`C1

; ae
`
/ ^ E.ae

`
; ae

`�1
/ with ae

`
>V ae

`�1

(whether e is in the range of f or not) and ae
`

>V ae
`C1

, contradicting the fact that
�V is a 2-order.

The case for be
k

is analogous to the case for the ae
k
. Therefore the forward direction

of the claim holds.
Conversely, assume that .9k/Œae

k
<V ae

kC1
^ be

k
<V be

kC1
�. For a contradiction,

suppose that e 2 ran.f /. So we can let n be such that f .n/ D e. Notice we must
have n � k C 1, for otherwise ae

kC1
and be

kC1
would not be defined as vertices in V .

Then, using the fact that ae
`

<V ae
`C1

and be
`

<V be
`C1

for all ` � k (by an
argument that is analogous to the forward direction), we have

.ae
n�1 <V ae

n/ ^ .be
n�1 <V be

n/ ^ E.ae
n�1; ae

n/ ^ E.be
n�1; be

n/ ^ E.ae
n; be

n/:

We have two cases: either ae
n <V be

n or be
n <V ae

n. Either case violates the fact
that �V is a 2-order. Hence e … ran.f /, and we have proven the claim. Thus the
theorem follows.
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An interesting open question involves the classification of Theorem 8.1 for values of
k � 2. In other words, can we get a reversal from the statement, “for any k 2 N,
k � 2, and any forest G D .V; E/, ColW! .G/ � k” to one of the major subsys-
tems? At the very least, we already know that this statement is provable in ACA0, by
Theorem 8.1. It would appear as though the method of proof used for Theorem 8.1,
however, does not translate into a reversal to ACA0 for any case when k > 2.

9 Separating Computable Strong and Weak ! Coloring Number

Theorem 9.1 There is a computable forest G D .V; E/ such that

REC ˆ ColW! .G/ � 2; but REC 6ˆ ColS!.G/ � k for any k 2 !:

That is, REC ˆ ColS!.G/ D !.

Proof The construction essentially employs the idea of the proof of Theorem 7.1
for each instance of k in the statement of that theorem. We define a graph
G D .V; E/. First we place as vertices all of the even numbers in increasing
order

a0 < a1 < a2 < a3 < a4 < � � � :

We want to satisfy the infinitely many requirements

Rhe;ki W 'e does not witness ColS!.G/ � k:

Formally, the requirement Rhe;ki is that (assuming 'e is a bijection from N onto V )
there is an nk 2 V and `0; : : : ; `k�1 2 V such that E.nk ; `i / holds for all 0 � i < k

and '�1
e .nk/ > '�1

e .`i / for 0 � i < k.
We claim that if all of the requirements are satisfied, then no computable well-

ordering realizes ColS!.G/ � k, for any k 2 N. Suppose that there were such a
computable strong !-type k-order. Then it must be a computable bijection 'e for
some e < !. Since, for each k < !, Rhe;ki is satisfied, we have that there is an
nk 2 V and `0; : : : ; `k�1 2 V such that E.nk ; `i / holds for all 0 � i < k and
'�1

e .nk/ > '�1
e .`i / for 0 � i < k. Thus 'e fails to be a k-order of V for all k,

which is exactly what we want.
Fix a well-ordering of the requirements Rhe;ki given by

Rhe0;k0i < Rhe1;k1i < Rhe2;k2i < � � � ;

and say that Rhei ;ki i has higher priority than Rhej ;kj i if and only if hei ; ki i <

hej ; kj i.
To ensure that a single requirement Rhe;ki is satisfied, do the following to con-

struct the forest G D .V; E/. Assign the first k many even numbers ai0 ; ai1 ; : : : ;

aik�1
, which have so far not been assigned to any requirement, to the highest priority

requirement without an assignment. Wait for ai0 ; ai1 ; : : : ; aik�1
to enter the range of

'e . If we wait forever, then Rhe;ki is satisfied trivially, since in that case 'e fails to
be a bijection. Suppose that

'e.`0/ D ai0 ; 'e.`1/ D ai1 ; : : : ; 'e.`k�1/ D aik�1
:

Next, we wait for a stage s by which 'e has converged on all numbers in N which
are �N max ¹`0; : : : ; `k�1º. If 'e fails to converge on any of these numbers, then
Rhe;ki is satisfied for all k, as 'e is not total, and therefore not a bijection. Once we
have found this stage s, let che;ki be the least odd number greater than s and greater
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than all numbers in the range of 'e on the domain N � max ¹`0; : : : ; `k�1º. Thus if
'e.m/ D che;ki, then m is greater than each of `0; : : : ; `k�1.

Put che;ki into V , and make the edge connections
V

0�j <k E.che;ki; aij /. With
these edge connections, if 'e is a bijection and 'e.m/ D che;ki, then there are
`0; : : : ; `k�1 such that E.che;ki; `j / and 'e.`j / < 'e.m/ for each 0 � i < k.
Therefore 'e is not a k-order.

Notice that the vertex set V that we have defined for our graph G D .V; E/ is
computable, as V contains all the even numbers, and if an odd number c is in V ,
then we will know by stage c of the construction.

We can define a computable 2-order that has weak !-type in the following way.
Let Ahe;ki be the set of even numbers assigned to the requirement Rhe;ki. Define the
weak !-type 2-order �V by

Ahe0;k0i �V Ahe1;k1i �V Ahe2;k2i �V � � �

(what essentially amounts to the natural ordering on the even numbers) with the
addition of placing the odd number che;ki as an immediate predecessor to Ahe;ki (that
is, if we ever put the odd number che;ki into V ).
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