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A Note on Weakly Dedekind Finite Sets

Pimpen Vejjajiva and Supakun Panasawatwong

Abstract A set A is Dedekind infinite if there is a one-to-one function from !

into A. A set A is weakly Dedekind infinite if there is a function from A onto
!; otherwise A is weakly Dedekind finite. For a set M , let dfin�.M/ denote
the set of all weakly Dedekind finite subsets of M . In this paper, we prove, in
Zermelo–Fraenkel (ZF) set theory, that j dfin�.M/j < jP .M/j if dfin�.M/ is
Dedekind infinite, whereas jdfin�.M/j < jP .M/j cannot be proved from ZF for
an arbitraryM .

1 Introduction and Some Basic Notions

With the axiom of choice (AC), every set can be well ordered. As a result, the
cardinality of a set can be represented by an ordinal, and so any two cardinals are
comparable. Without AC, this is no longer so. In this paper we are interested in the
relation between some cardinals that can be proved from Zermelo–Fraenkel (ZF) set
theory. In order to be more specific, we need the following definitions. More details
of these terminologies can be found in Jech [7]. We first start by reviewing some
basic notation.

Throughout this paper, we use a; b; c; : : : ; A; B; C; : : : for sets, ˛; ˇ; 
; : : : for or-
dinals, and m;n;p;q; : : : for cardinals. We write A � B if there is a one-to-one
function from A onto B , A � B if there is a one-to-one function from A into B , and
A �� B if A D ; or there is a function from B onto A.

Since, in this paper, we shall work in ZF, all definitions given below are done in
ZF.

Two sets have the same size or the same cardinality if they are equinumerous,
that is, there is a bijection between them. We write jAj for the cardinality of A.
Then jAj D jBj $ A � B . Since, without AC, we cannot guarantee that a set is
equinumerous to some ordinal, the definition of the cardinality of a set is given as
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follows:
jAj D ¹B j B � A and B is of least rankº:

The number m is a cardinal number if m D jM j for some setM .
For cardinals m and n, we say that m is less than or equal to n, written m � n,

if there areM 2 m and N 2 n such thatM � N . We write m < n if m � n and
m ¤ n and write m �� n if there areM 2 m and N 2 n such thatM �� N . It is
easy to see that jM j � jN j ifM � N and jM j �� jN j ifM �� N .

Let 2jAj denote jP .A/j where P .A/ is the power set of A.
A set is finite if it is equinumerous to some natural number. Otherwise it is infinite.
The cardinality of an infinite well-ordered set is called an aleph. Thus an aleph

is the cardinality of some ordinal: @0 is j!j. It is easy to see that two alephs can be
compared and every nonempty class of alephs has a least element.

Without AC, there may be different kinds of infinity. The following are those
which will be used in this paper. More details about them can be found in Degen [1].

It is a consequence of AC that ! � M for all infinite sets M (see Howard and
Rubin [6, p. 87]). We call such an infinite set Dedekind infinite. Otherwise it is
Dedekind finite. We also cannot prove, in ZF, that ! �� M for all infinite sets M
(see [6, p. 87]). We call M weakly Dedekind infinite if ! �� M . Otherwise it is
weakly Dedekind finite. We can see that every finite set is weakly Dedekind finite
and, sinceM � N impliesM �� N for allM and N , every weakly Dedekind finite
set is Dedekind finite.

For a setM with cardinality m, fin.M/ denotes the set of all finite subsets ofM ,
and let fin.m/ D jfin.M/j, dfin�.M/ denotes the set of all weakly Dedekind finite
subsets ofM , and let dfin�.m/ D j dfin�.M/j.

It has been shown that ZF ` fin.m/ < 2m for all infinite m (see Halbeisen and
Shelah [3, Theorem 3]). Since fin.m/ � dfin�.m/, it is natural to wonder under
which circumstances one can replace fin.m/ in the statement by dfin�.m/. This
cannot always be done, since if X is weakly Dedekind finite, so are all of its subsets,
and therefore dfin�.X/ D P .X/. In this paper, we prove, in ZF, that dfin�.m/ < 2m

if dfin�.m/ is Dedekind infinite.
The following well-known theorem, whose proof can be found in any set theory

textbook—for example, in Enderton [2]—is needed for the proof of Theorem 2.4.

Hartogs’s theorem For every cardinal m, there exists a least aleph, denoted by
@.m/, such that @.m/ — m.

2 The Main Theorems

Throughout this section, we shall work in ZF.

Lemma 2.1 For all infinite ordinals ˛, fin.˛/ � ˛. In fact, the bijection is
canonical; that is, there is a class function that to each infinite ˛ assigns a bijec-
tion ˛ � fin.˛/.

Proof See [3, Corollary 3].

The proof of [3, Theorem 3] actually gives a canonical way of assigning to eachM ,
each infinite ˛, and each injection of ˛ into fin.M/ a partition… ofM with ˛ � ….
We begin by observing that this proof can be easily modified to show the following.



A Note on Weakly Dedekind Finite Sets 415

Theorem 2.2 For all ordinals ˛ and all sets M , if ! � ˛ � dfin�.M/, then
˛ � … for some partition… ofM .

This follows from the argument of [3, Theorem 3], by noting that an infinite strictly
decreasing sequence of sets,

dfin�.M/ 3 Dx;�0
� Dx;�1

� � � � ;

immediately gives a surjection verifying ! �� Dx;�0
. For the benefit of the reader,

we include the details.

Proof Assume ! � ˛ � dfin�.M/. Then there is a one-to-one-˛ sequence
hm0; m1; m2; : : : ; mˇ ; : : :i˛ of sets in dfin�.M/. Define an equivalence relation �
onM by x � y , 8ˇ < ˛ .x 2 mˇ $ y 2 mˇ /. For any x 2M and 0 < � < ˛,
defineDx;� by

Dx;� D

´
M if x … mˇ for all ˇ < �;T
�<�¹m� j x 2 m�º otherwise,

and define g WM ! P .˛/ by g.x/ D ¹� < ˛ j x 2 m� andDx;� ª m�º.
It is easy to see that if x � y, then g.x/ D g.y/. The converse also holds

since if x œ y and ˇ is the least ordinal such that x 2 mˇ but y … mˇ , then
y 2 Dy;ˇ D Dx;ˇ , soDx;ˇ ª mˇ , and thus ˇ 2 g.x/ but ˇ … g.y/. Hence there is
a one-to-one correspondence between ¹Œx�� j x 2M º and ¹g.x/ j x 2M º.

Suppose for a contradiction that g.x/ is infinite for some x 2 M . Note that for
all �1; �2 2 g.x/ such that �1 < �2, Dx;�2

� Dx;�1
because Dx;�2

� m�1
and

Dx;�2
� Dx;�1

ª m�1
. Since g.x/ is an infinite set of ordinals, there is a one-to-

one-! sequence h�0; �1; �2; : : :i! of sets in g.x/, where �0 < �1 < �2 < � � � .
Then we have m�0

� Dx;�1
� Dx;�2

� � � � . Define f W m�0
! ! by

f .y/ D

´
n if y 2 Dx;�nC1

�Dx;�nC2
for some n 2 !;

0 otherwise.

Then f is a surjection, so @0 �� jm�0
j, which contradicts m�0

2 dfin�.M/.
Hence ¹g.x/ j x 2 M º � fin.˛/. Since, by Lemma 2.1, fin.˛/ � ˛,

¹g.x/ j x 2 M º � 
 for some 
 � ˛. Since ¹Œx�� j x 2 m�º � ¹g.x/ j x 2 m�º, it
remains to show that ˛ � 
 . Note first that 
 is infinite, since each set mˇ is union
of �-classes, and there are ˛ � ! such sets.

Let � W ¹g.x/ j x 2 M º ! 
 be a bijection. Suppose for a contradiction that
¹�.g.x// j x 2 m�º is infinite for some � < ˛. Since ¹Œx�� j x 2 m�º � ¹�.g.x// j
x 2 m�º, which is an infinite set of ordinals, ! � ¹Œx�� j x 2 m�º, so there is a
one-to-one-! sequence hŒx0��; Œx1��; Œx2��; : : :i! . Define a function f 0 W m� ! !

by

f 0.x/ D

´
n if x 2 Œxn��;
0 otherwise.

Again we get a contradiction from the fact that f 0 is a surjection but m� is weakly
Dedekind finite.

Define h W ˛ ! fin.
/ by h.�/ D ¹�.g.x// j x 2 m�º. Since � is an injection and
all m�’s are distinct, h is an injection. Thus ˛ � fin.
/ � 
 . Hence ˛ D 
 , and so
¹Œx�� j x 2 M º is the partition, as desired. Finally, since the bijections ˛ � fin.˛/
and 
 � fin.
/ are canonical, so is the bijection ¹Œx�� j x 2M º ! ˛.
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Corollary 2.3 For all cardinals m, if @0 � dfin�.m/, then 2@0 � 2m.

Proof Assume ! � dfin�.M/ and m D jM j. By Theorem 2.2, there exists a
partition … of M such that ! � …. Let f W ! ! … be a bijection. Define a
function F W P .!/! P .M/ by F.x/ D

S
f Œx�. Since f is an injection, so is F .

Hence P .!/ � P .M/, that is, 2@0 � 2m.

Theorem 2.4 The following are equivalent:
1. @0 �� m,
2. 2@0 � 2m,
3. dfin�.m/ < 2m.

Proof (1 , 2) By Herrlich [5, Lemma 4.11], @0 �� m $ @0 � 2m and by
Halbeisen and Shelah [4, Fact 8.1], @0 � 2m $ 2@0 � 2m. This equivalence is due
to Kuratowski (see Tarski [8, pp. 94–95]).

Let m D jM j.
(3) 1) If dfin�.m/ < 2m, then there exists a set X such that ! �� X �M and

hence @0 �� m.
(1 ) 3) This follows closely to the proof of [3, Theorem 3]. It is clear that

dfin�.m/ � 2m. Suppose @0 �� m and dfin�.m/ D 2m. We will get a contradiction
to Hartogs’s theorem by constructing a one-to-one-˛ sequence of sets in dfin�.M/

for any ˛.
Let B W dfin�.M/ ! P .M/ be a bijection. Let m0 D B�1.M/, and for any

k 2 !, let mkC1 D B�1.mk/. Since M … dfin�.M/ and B is an injection, the
sequence hm0; m1; m2; : : :i is a one-to-one-! sequence of sets in dfin�.M/.

Assume that there exists a one-to-one-˛ sequence hm0; m1; m2; : : : ; mˇ ; : : :i˛
of sets in dfin�.M/. We will construct an m˛ by Cantor’s diagonal proof that
X � P .X/ for any X , as follows.

Since ˛ � dfin�.M/, by Theorem 2.2, there is a partition … of M such that
… � ˛ � ¹m� j � < ˛º.

Let H W ¹m� j � < ˛º ! … be a bijection. Define h W M ! ¹m� j � < ˛º by
h.x/ D m� if x 2 H.m�/. Let F D B ı h, so F W M ! P .M/ and, as in the
usual proof of Cantor’s theorem, M˛ WD ¹x 2 M j x … F.x/º … ran.F /. Note
that h is a surjection and so B.m�/ 2 ran.F / for all � < ˛. Let m˛ D B�1.M˛/.
Then m˛ … ¹m� j � < ˛º. Hence we have a one-to-one .˛ C 1/-sequence of sets in
dfin�.M/. Thus the proof is complete.

Since @0 �� m for all infinite m is a consequence of AC which is not provable in
ZF, Theorem 2.4 tells us that dfin�.m/ < 2m cannot be proved from ZF for an arbi-
trary m. A condition that makes the statement provable from ZF is that dfin�.m/ is
Dedekind infinite. This is Corollary 2.5, which immediately follows by Corollary 2.3
and Theorem 2.4.

Corollary 2.5 For all cardinals m, if @0 � dfin�.m/, then dfin�.m/ < 2m.
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