
Notre Dame Journal of Formal Logic
Volume 55, Number 3, 2014

Many Normal Measures

Shimon Garti

Abstract We characterize the situation of having at least .2�/C-many normal
ultrafilters on a measurable cardinal �. We also show that if � is a compact car-
dinal, then � carries .2�/C-many �-complete ultrafilters, each of which extends
the club filter on �.

0 Introduction

The number of normal measures on large cardinals has been investigated extensively
in recent years. We know (by Kunen, in [7]) that it is consistent to have a measurable
cardinal which carries just one normal measure on it. The opposite direction is taken
by Kunen and Paris [9], who proved the consistency of having 22� -many normal
measures on a measurable cardinal �. Since then, many papers have dealt with all
the values in between (see [12] under some assumptions on the Mitchell order, Apter,
Cummings, and Hamkins [1] for having �C-many normal measures on the measur-
able cardinal � without further assumptions, Baldwin [2], and recently Friedman and
Magidor [3], which covers for the measurable cardinal � all the possibilities between
2 and �CC in a uniform manner). However, a measurable cardinal may carry just
one normal measure. On the other hand, if � is supercompact, then there are many
normal ultrafilters on it (see Magidor [10]).

We characterize, in this paper, the existence of many normal measures on a mea-
surable cardinal. By “many” we mean at least .2�/C, which is an upper bound if the
generalized continuum hypothesis holds.

The idea is pretty simple. By a basic result of Scott (from Keisler and Tarski
[6]), we have a canonical way to normalize a �-complete ultrafilter on �. If we start
with two distinct �-complete ultrafilters, we may get the same normal ultrafilter after
normalizing both of them. But if we have many different �-complete ultrafilters, and
some property of the function which represents � in the ultraproduct, then we will be
able to show that � carries many different normal ultrafilters.
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We indicate that these results apply to every measurable cardinal, but if one as-
sumes that � is compact, then many �-complete ultrafilters on � are available. More-
over, we can show that many of them include the club filter on �. This fact does not
suffice for normality, since we need an extra property on these ultrafilters, but it is
a meaningful step toward proving that there are many normal ultrafilters on every
compact cardinal �.

Some comments about notation. We shall use �; �; �; � for infinite cardinals, typ-
ically � D .2�/C. We use ˛; ˇ; ; ı; �; �; � for ordinals. D will be a filter, and U
will be an ultrafilter. For an uncountable regular cardinal � we denote the club filter
on � by D� . A filter is �-complete if it is closed under intersections of fewer than
�-many members from it. A filter is normal if it is closed under diagonal intersec-
tions of length �. We assume, from now on, that all the filters and ultrafilters are
nonprincipal. For a regular cardinal � and A;B � �, A and B are almost disjoint if
jA \ Bj < �.

If � is measurable and U is a �-complete ultrafilter on �, then we can form the
ultraproduct V�=U . Being well founded, there is a transitive model M which is
isomorphic to V�=U . We denote the elementary embedding of V into V�=U by | ,
so the picture is | W V ,! V�=U ŠM , and we shall not distinguish between V�=U
andM .

Recall that � is the first ordinal moved by | , and we call it the critical point. Deal-
ing with many ultrafilters, we denote the elementary embedding which U generates
by |U , and if ı D |U .�/, then we say that ı is the critical value of |U .

If U is a �-complete ultrafilter on �, then � 2 M and corresponds to an equiva-
lence class in V�=U . One can choose a representative for this class, that is, a function
f W � ! � such that Œf �U D �. We shall use the following.

Lemma 0.1 �-complete ultrafilters and the identity function.
Let � be a measurable cardinal; let U be a �-complete ultrafilter on �. Let

g W � ! � be the identity (i.e., g.˛/ D ˛ for every ˛ < �). We have the following:
(a) Œg�U � � in V�=U ;
(b) U is normal if and only if Œg�U D �.

For a regular cardinal �, A � P .�/ is almost disjoint if A;B 2 A) jA \ Bj < �.
We quote the following theorem from [8], to be used in Theorem 2.2 below. The
proof appears in [8, p. 48].

Theorem 0.2 If � � @0 and 2<� D �, then there is an almost disjoint family
A � P .�/ with jAj D 2� .

The paper contains two additional sections. In the first one we deal with measurable
cardinals, and we give a general characterization for having at least .2�/C-many
normal measures on the measurable cardinal �. In the second we deal with compact
cardinals, with the goal of showing the plausibility of having many normal measures
on every compact cardinal.

1 Many Normal Measures on Measurable Cardinals

Let us start with the following lemma, which is due to Scott [6]. Originally, he used
it for showing that if � is an uncountable measurable cardinal (in the sense that �
carries a �-complete ultrafilter on it), then there is also a normal ultrafilter on �.
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Proposition 1.1 (Normalizing an ultrafilter) Suppose that � is an uncountable
measurable cardinal, and suppose that U is a �-complete ultrafilter on �. Assume
that f W � ! � satisfies Œf �U D �.

Set U � D ¹B � � W f �1.B/ 2 U º. Then U � is a normal ultrafilter on �.

Starting with two distinct ultrafilters U˛; Uˇ , we can normalize and get U �˛ ; U �ˇ . But
even if U˛ ¤ Uˇ it may happen that U �˛ D U �

ˇ
. This setting happens, for instance,

in LŒU � (see [7]). It is proved there that there exists a measurable cardinal � which
carries just one normal measure U�. Take two distinct �-complete ultrafilters U˛ and
Uˇ on �, and normalize them. As U� is the only normal measure on �, one must
conclude that U˛ ¤ Uˇ yet U �˛ D U �ˇ D U�.

Moreover, it is known that in the model LŒU � there are �C-many nonprincipal
�-complete ultrafilters on � (see Jech [4, Corollary 19.22]). It means that the Scott
process of normalizing projects all of them onto the same normal ultrafilter. The key
point which enables us to prove the converse is based on the following.

Definition 1.2 (Bounded functions) Let U be a �-complete ultrafilter on �, let
� � �; � � 1 be a (finite or infinite) cardinal, and let f W � ! �. Then,

(@) f is � -bounded if jf �1.ˇ/j < � for every ˇ < �;
(Æ) f is U -bounded if jf .A/ \ f .� n A/j < � for every A 2 U ;
(Ç) f is .U; U �/-bounded if f .A/\ f .� nA/ … U � for every A 2 U (U � is the

normalization of U according to Proposition 1.1);
(È) f is stationarily bounded if f �1.ˇ/ is not a stationary set for every ˇ < �.

We observe that parts .@/ and .Æ/ of the definition are incompatible, but part .Ç/
gives a weaker assumption on f than part .Æ/. For this, see Remark 1.4 below. We
shall use part .È/ in Section 2 when we deal with compact cardinals. The following
is the first characterization that we can prove.

Theorem 1.3 (Normal ultrafilters and U -boundedness) Let � be a measurable
cardinal, � D .2�/C.

The following conditions are equivalent:
(˛) � carries (at least) � -many normal ultrafilters;
(ˇ) � carries � -many �-complete ultrafilters (U˛ W ˛ < �), such that for every

˛ < � one can choose a U˛-bounded f˛ W � ! � with Œf˛�U˛ D �.
Moreover, one can replace the (strong) requirement of U˛-boundedness by the
(weaker) assumption of .U˛; U �˛ /-boundedness.

Proof .˛/ ) .ˇ/ is immediate, since every one-to-one function is U -bounded
(and the identity is one-to-one). We shall prove .ˇ/) .˛/. Let f˛ be a U˛-bounded
function such that Œf˛�U˛ D �, for every ˛ < � .

Since � D cf.�/ > 2� , there exists f W � ! � such that f D f˛ for � -many
(and without loss of generality, every) ˛ < � . Use Proposition 1.1 to normalize
each U˛ and to get a normal ultrafilter U �˛ for every ˛ < � . We claim now that
˛ < ˇ < � ) U �˛ ¤ U

�
ˇ
.

Recall that U˛ ¤ Uˇ and that being ultrafilters one can choose A 2 U˛ such that
� nA 2 Uˇ . Denote f .A/ by B0 and f .� nA/ by B1. The assumption on f˛ (which
equals f ) implies jB0\B1j < �. NowB0 2 U �˛ (since f �1.B0/ � A) andB1 2 U �ˇ
(since f �1.B1/ � � n A), but B1 … U �˛ (since B0 2 U �˛ and jB0 \ B1j < �). It
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means that U �˛ ¤ U �
ˇ
, and we are done. The same argument also gives the same

conclusion under the weaker assumption of .U˛; U �˛ /-boundedness, so the proof is
complete.

Remark 1.4 We defined (in Definition 1.2 above) the notions of � -boundedness
and U -boundedness. These notions are really distinct, as a representing function
might be � -bounded (even for � D 3) but not U -bounded (e.g., if there is an A 2 U
such that jAj D j�nAj D � and for every ˇ < � there exist unique ˛0 2 A; ˛1 2 �nA
so that f .˛0/ D f .˛1/ D ˇ). Similarly, a representing function might be U -
bounded but not �-bounded (e.g., if there is some A of cardinality �, A … U , and
f .A/ D ¹ˇº for some ˇ < �).

It means that parts .@/ and .Æ/ in Definition 1.2 are incompatible. Clearly, part
.Ç/ is weaker than .Æ/, as U � is nonprincipal and �-complete and hence contains no
set of size less than �.

Nevertheless, we have another characterization (similar to the previous one), based
on � -bounded functions.

Theorem 1.5 (Normal ultrafilters and � -boundedness) Let � be a measurable car-
dinal, let � D .2�/C, and let �˛ < � for every ˛ < � .

The following conditions are equivalent:
(˛) � carries (at least) � -many normal ultrafilters;
(ˇ) � carries � -many �-complete ultrafilters (U˛ W ˛ < �), such that for every

˛ < � one can choose a �C˛ -bounded f˛ W � ! � with Œf˛�U˛ D �.

Proof Since � D cf.�/ > �, the correspondence ˛ 7! �˛ yields an unbounded
subset T � � and some � < � so that ˛ 2 T ) �˛ � � , so without loss of
generality �˛ � � for every ˛ < � . As in Theorem 1.3, we need only the direction
of .ˇ/) .˛/. Fix, for a while, an ordinal ˛ < � . Denote f �1˛ .ˇ/ by Aˇ , for every
ˇ < �. Enumerate the members of Aˇ by ¹aˇ W  < �º, for each ˇ < � (if jAˇ j < �
use repetitions, and if Aˇ D ; ignore it). For every  < � , set C D ¹a

ˇ
 W ˇ < �º.

It follows that � D
S
¹C W  < �º, � 2 U˛ , and U˛ is �-complete, so there is

an ordinal  < � such that C 2 U˛ . By the construction, f˛ � C is one-to-one.
Our purpose is to show that there exists a one-to-one function on � (not just on C )
h˛ 2 Œf˛�U˛ .

Decompose C into two sets, say, C D C

0 [ C


1 , such that C 0 \ C


1 D ;

and jC 0 j D jC

1 j D �. Without loss of generality, C 0 2 U˛ and C 1 … U˛ .

Let B D � n ¹f˛.�/ W � 2 C 0 º. Notice that jBj D � since f˛ � C 1 � B , and f˛ is
one-to-one on C 1 .

Choose a one-to-one map g˛ W .� n C / [ C 1 ! B , and define h˛ D f˛ �
C

0 [ g˛ . It follows that h˛ is a one-to-one function from � into �, and h˛ 2 Œf˛�U˛ ,

so Œh˛�U˛ D �.
Repeat this process for every ˛ < � , and use the fact that � D cf.�/ > 2� to

get a fixed one-to-one function h and � -many ultrafilters with h as their representing
function of �. Since h is one-to-one, we have h.A/\ h.� nA/ D ; for every A � �.
Hence h is U˛-bounded for every ˛ < � . Now employ Theorem 1.3 to conclude that
there are (at least) � -many normal ultrafilters on �.

Remark 1.6 The above theorems focus on the case of � D .2�/C, but � can be
replaced, verbatim, by any � � cf.�/ � � .
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2 Compact Cardinals and the Club Filter

Suppose that � is a compact cardinal. An old open problem (which appears in [4]
and in Kanamori [5]) is whether � carries more than one normal measure. Let us try
to explain the background behind this problem.

By a fundamental paper of Magidor [11], the first compact cardinal has an identity
crisis. Magidor proved that on one hand it is consistent that the first compact cardinal
is also the first measurable cardinal. On the other hand, it is consistent that the first
compact cardinal is the first supercompact cardinal. So from this point of view, the
compact cardinal is flexible. But we can judge the compact cardinals from a different
point of view.

As noted above, a measurable cardinal may carry just one normal measure. A su-
percompact cardinal carries many normal measures (see [10]). The problem of how
many normal measures exist on a compact cardinal can be viewed as another as-
pect of the identity crisis. Most of the papers which decrease the number of normal
measures on a measurable cardinal, mentioned in the introduction, make use of the
universe LŒU � (when U is a normal ultrafilter on �). This includes the pivotal result
of Kunen (which gives the consistency of having just one normal measure on a mea-
surable cardinal). We know that there are no compact cardinals in LŒU � (see Vopěnka
and Hrbáček [14]). Yet it is an open problem whether every compact cardinal carries
at least two normal measures.

The first claim below shows that ifU is a �-complete ultrafilter which extendsD� ,
then a simple property of the representing function of � in the ultraproduct suffices
for implying the normality of U . This claim does not assume compactness. The
main theorem of this section is that many ultrafilters extending D� are available for
every compact cardinal.

Claim 2.1 (Stationary boundedness and normality) Suppose that � is an uncount-
able measurable cardinal, and suppose that U is a �-complete ultrafilter on � so that
U � D� . Assume that there is a stationarily bounded function f W � ! � so that
Œf �U D �. Then U is normal.

Moreover, if we call ˇ a good ordinal when f �1.ˇ/ is not stationary, then the
conclusion holds when there is some ˇ� < � so that ˇ 2 Œˇ�; �/ ) ˇ is a good
ordinal and Œf �U D �.

Proof Let g be the identity function on �. Define S0 D ¹˛ < � W f .˛/ � g.˛/º

and S1 D ¹˛ < � W f .˛/ < g.˛/º. If S1 2 U , then S1 is stationary (since U � D�).
By Fodor’s lemma there exists a stationary subset S � S1 such that f is constant
on S , contrary to the assumptions of the claim.

Hence S1 … U , so S0 2 U . It follows that g �U f . On the other hand, Œf �U D �
and Œg�U � � (due to Lemma 0.1(a)), so f �U g. Together, f �U g, and by
Lemma 0.1(b) we infer that U is normal.

For the additional part of the claim, suppose that there is just one bad ordinal ˇ.
It means that f �1.ˇ/ is stationary, but notice that this set does not belong to U
(otherwise, Œf �U D ˇ). Hence there is h 2 Œf �U such that h coincides with f on
�nf �1.ˇ/, and h � f �1.ˇ/ is one-to-one. Since h � �nf �1.ˇ/ � f � �nf �1.ˇ/
we get a stationarily bounded function. By the �-completeness of U , this process can
be carried out for fewer than �-many bad ordinals, so we are done.
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Recall that a family C of subsets of � is �-independent if given disjoint subcollections
C0; C1 � C each of size less than �,

T
¹x W x 2 C0º \

T
¹� n x W x 2 C1º ¤ ;.

It is known that if � is inaccessible, then there exists a �-independent family of size
2� (the proof goes back to Hausdorff; see [8, p. 288]; in order to get �-independence
one has to replace ! there by �).

A �-independent family on � of size 2� yields 22� -many distinct filters. In-
deed, let C be such a family. Let f be a function from C into ¹0; 1º. Set
F D ¹x W x 2 C ; f .x/ D 0º [ ¹� n x W x 2 C ; f .x/ D 1º. Insofar as C is
�-independent, F is a base for a �-complete filter. Clearly, f ¤ g create two
distinct filters. Inasmuch as there are 22� -many functions from C into ¹0; 1º, we
have 22� -many distinct �-complete filters.

One of the defining properties of compact cardinals is the extension property of
�-complete filters into �-complete ultrafilters. Basically, one can create 22� -many
�-complete ultrafilters on a compact cardinal in the traditional way. Namely, first
create a �-independent family of size 2� , which yields 22� -many different �-complete
filters. Extending each filter into a �-complete ultrafilter gives the desired result.

It is not clear if the above method can be employed in order to create many �-
complete ultrafilters on a compact cardinal �, each of which extends the club fil-
terD� . Nonetheless, the following theorem suggests a way to define such ultrafilters.

Theorem 2.2 (Many club ultrafilters on a compact cardinal) Suppose that � is a
compact cardinal, and let � be .2�/C. Then there exist � -many distinct ultrafilters
(U˛ W ˛ < �) such thatD� � U˛ for every ˛ < � .

Proof We shall prove that for every ordinal ı < .2�/C there is an ultrafilter Uı so
that D� � Uı and |Uı .�/ > ı. By induction on � this yields the desired collection
of ultrafilters. Let us start with a disjoint partition of � into �-many stationary sets,
say, hS˛ W ˛ < �i. We employ here the celebrated theorem of Solovay from [13]. In
fact, Solovay proves much more. He shows that every stationary subset of � can be
partitioned into �-many disjoint stationary subsets.

Let htˇ W ˇ < �i be an enumeration of Œ��<� in such a way that each tˇ appears
stationarily many times. (One can use the sequence hS˛ W ˛ < �i to scatter the
members of Œ��<� on these stationary sets.) Finally, choose an almost disjoint family
A D ¹A W  < 2

�º in Œ��� . Such a family exists, due to Theorem 0.2, upon noticing
that � is compact; hence 2<� D �.

For every  < 2� we choose a function f W A ! � n ¹0º such that
ˇ < � ) jf �1 .ˇ/j D �. For each A 2 A we define a function gA W � ! � as
follows. For every ˛ < � we check if t˛ \ A is a singleton ¹xº. If so, then we set
gA .˛/ D f .x/. In all other cases we define gA .˛/ D 0.

Set G D ¹gA W  < 2�º. It is easily verified that A ¤ B ) gA ¤ gB .
Indeed, assume A;B 2 A and A ¤ B . By the fact that A;B are almost disjoint, we
can choose some x 2 � such that x 2 A but x … B . Set t D ¹xº; so t 2 Œ��<� .
Pick an ordinal ˛ < � so that t D t˛ D ¹xº. It follows that t˛ \ A D ¹xº, hence
gA.˛/ D f .x/ (where  is the index of A in the enumeration of A). Recall that the
range of f is � n ¹0º, and conclude that gA.˛/ > 0.

On the other hand, t˛ \B D ;, as x … B . In particular, t˛ \B is not a singleton.
By the definition of gB we have gB.˛/ D 0. Consequently, gB.˛/ ¤ gA.˛/, so the
functions gB and gA are not the same; that is, gA ¤ gB .
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By the above paragraphs, jGj D 2� . Let hg" W " � ıi be an enumeration of G.
We emphasize that the enumeration is taken along the ordinal ı C 1 (whose cardi-
nality is 2�), as we shall need this in the sequel. For every pair ˛ < ˇ � ı we
define

X˛;ˇ D
®
� < � W g˛.�/ < gˇ .�/

¯
:

Notice that X˛;ˇ includes a stationary subset of � for every ˛ < ˇ � ı. Indeed,
the functions g˛; gˇ correspond to some A;B 2 A. Choose any x 2 B n A (recall
that A is a collection of almost disjoint sets), and we know that ¹xº 2 Œ��<� . By
the enumeration of Œ��<� there is a stationary S � � so that � 2 S ) t� D ¹xº.
Consequently, � 2 S ) g˛.�/ D 0 < f".x/ D gˇ .�/ (where B D A" in the
enumeration of A), so S � X˛;ˇ .

Moreover, G is endowed with the following property. If G0 � G; jG0j < � and
0 < �A < � for every gA 2 G0, then there exists a stationary set S � � such that
gA.�/ D �A for every gA 2 G0 and every � 2 S .

To prove this, choose a member xA 2 A for every gA 2 G0 such that
gB 2 G0 ^ gB ¤ gA ) xA … B and fA.xA/ D �A (where unless other-
wise specified, A D AA in the enumeration of G). Let us try to justify the existence
of such xA’s. The cardinality of the set

S
¹B \ A W gB 2 G

0 ^ gB ¤ gAº is less
than � (as it results as a union of less than �-many sets, each of size fewer than �,
and � is regular).

Since �A > 0, the set f �1A .�A/ is of size � and included in A. So choose xA 2 A
such that xA …

S
¹B \A W gB 2 G

0 ^ gB ¤ gAº and xA 2 f �1A .�A/. It follows that
fA.xA/ D �A and xA … B whenever B ¤ A and gB 2 G0.

With the xA’s at hand, set s D ¹xA W gA 2 G0º. Clearly, s 2 Œ��<� , so there exists
a stationary set S such that � 2 S ) s D t� . It follows that s \ A D ¹xAº for every
gA 2 G

0. Now take any ordinal � 2 S and any A 2 A such that gA 2 G0. We have
t� \ A D s \ A D ¹xAº; hence gA.�/ D fA.xA/ D �A, and we are done.

Consequently, the intersection of fewer than �-many sets of the form X˛;ˇ in-
cludes a stationary set. To prove this, assume that F is a collection of � -many sets of
the form X˛;ˇ , for some � < �. Let Ford be the set of all ordinals mentioned in the
index of X˛;ˇ for some X˛;ˇ 2 F . Clearly, jFordj � � < �.

For every pair .˛; ˇ/ such that ˛ < ˇ and X˛;ˇ 2 F , choose �˛; �ˇ so that
0 < �˛ < �ˇ < �. To this end, enumerate the members of Ford in an increasing order,
and choose �ˇ > sup¹�˛ W ˛ < ˇº by induction, using the fact that � < � D cf.�/.

By the above considerations, we can choose x˛ for every ˛ 2 Ford such that
x˛ 2 A˛ (where A˛ is the set in A which corresponds to g˛), x˛ … Aˇ for every
ˇ 2 Fordn¹˛º, and f".˛/.x˛/ D �˛ (where ".˛/ is the index ofA˛ in the enumeration
of A). We denote the set ¹x˛ W ˛ 2 Fordº by s. Since s 2 Œ��<� , there exists a
stationary set S � � such that � 2 S ) t� D s. We claim that S � X˛;ˇ for every
X˛;ˇ 2 F .

For this, pick any ordinal � 2 S and any set X˛;ˇ 2 F . We have chosen
�˛ < �ˇ , and x˛ 2 A˛ n Aˇ as well as xˇ 2 Aˇ n A˛ , such that f".˛/.x˛/ D �˛
and f".ˇ/.xˇ / D �ˇ . (Again, ".˛/ is the index of A˛ and ".ˇ/ is the index of
Aˇ in the enumeration of A.) It means that gˇ .�/ D �ˇ . By the same token,
g˛.�/ D �˛ < �ˇ , so � 2 X˛;ˇ by its very definition. As � 2 S was arbitrary, we
conclude that S � X˛;ˇ , and as X˛;ˇ was arbitrary, we are done.
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It follows from the discussion above that the collection F D ¹X˛;ˇ W ˛ < ˇ � ıº
is a �-complete filter base. Moreover, F [ D� is still a �-complete filter base. Let
D be the filter generated by F [D� , and let Uı be any �-complete ultrafilter which
extendsD.

By the construction, ˛ < ˇ � ı ) X˛;ˇ 2 Uı , so the sequence hg˛ W ˛ � ıi
establishes an increasing sequence of functions according to <Uı . We conclude that
|Uı .�/ � ı C 1 as required.

Discussion 2.3 We call U a club ultrafilter if D� � U . Let .U˛ W ˛ < �/ be
a family of club ultrafilters on a compact cardinal �, stipulating � D .2�/C. Since
the number of functions from � into � is just 2� we may assume, without loss of
generality, that the representing function f˛ of � in V�=U˛ is the same f for every
˛ < � .

This means that f �1.ˇ/ is not a club set for every ˇ < �. Indeed, if f �1.ˇ/ is
a club for some ordinal ˇ < �, then f �1.ˇ/ 2 D� � U˛ (for every U˛). Choose
one of the U˛’s, and conclude that f represents the ordinal ˇ in V�=U˛ , which is
impossible as f represents � itself.

Moreover, for every stationary subset S � �, it suffices to find one ordinal ˛ < �
such that S 2 U˛ to conclude that S ¤ f �1.ˇ/ for every ˇ < �. The reason is just
the same. If S D f �1.ˇ/ for some ˇ < � and S 2 U˛ for some ˛, then f represents
ˇ in V�=U˛ , contrary to the choice of f .

So if we could catch all the stationary subsets of � (in the sense that for every
S there is some ˛ such that S 2 U˛), then we could infer that f is stationarily
bounded. As f represents � in U˛ for every ˛, this gives the conclusion that each
U˛ is a normal ultrafilter, by virtue of Claim 2.1.

In light of Discussion 2.3, Theorem 2.2 gives rise to the possibility that the existence
of � -many club ultrafilters (for � D .2�/C) is a sufficient condition for having � -
many normal ultrafilters on �, with no need to assume compactness. We conclude
with the following problem.

Question 2.4 Let � be a measurable cardinal, � D .2�/C.
Assume there are � -many club ultrafilters on �.
Does this imply that � carries � -many normal ultrafilters?
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