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Bounded Martin’s Maximum with an Asterisk

David Asperó and Ralf Schindler

Abstract We isolate natural strengthenings of Bounded Martin’s Maximum
which we call BMM� and A–BMM�;CC (where A is a universally Baire
set of reals), and we investigate their consequences. We also show that if
A–BMM�;CC holds true for every set of reals A in L.R/, then Woodin’s axiom
.�/ holds true. We conjecture that MMCC implies A–BMM�;CC for every A
which is universally Baire.

W. H. Woodin, P. Larson, I. Farah, and M. Magidor asked the second author
whether the method developed in [2] and [4] can be applied to show other…2 state-
ments which are discussed in [13]. In particular, they asked if the statements from
Definition 1.2 below can be shown from Bounded Martin’s Maximum, BMM, to-
gether with the precipitousness of NS!1 . This led the second author to the formula-
tion of the “maximality” principle BMM� (see Definition 1.9), which says that if a
†1 statement ' (with parameters from H!2 ) is “honestly consistent,” then ' holds
true in V .

A scenario for proving BMM� from BMM plus NS!1 is precipitous appears nat-
urally: one would have to show that if a †1 statement is “honestly consistent,” then
it can be forced by a stationary set preserving forcing. It has been conjectured (see,
e.g., Magidor [10, Conjecture 6.8]) that Martin’s MaximumCC implies Woodin’s ax-
iom .�/. Showing that every “honestly consistent” †1 statement can be forced by a
stationary set preserving forcing would verify this conjecture, but the present paper
has to leave this conjecture unanswered.

We are able to show, though, that a strengthening of BMM� implies .�/. This
strengthening allows NS!1 as well as universally Baire sets A as parameters and will
be written as A–BMM�;CC (see Definition 2.6). Our Theorem 2.7 says that in the
presence of large cardinals, .�/ follows from A–BMM�;CC for all sets of reals A
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in L.R/. We conjecture that MMCC implies A–BMM�;CC for every universally
Baire set A.

We assume that the reader has some familiarity with forcing axioms as well as
with Woodin’s Pmax. Classical texts on forcing axioms are Foreman, Magidor, and
Shelah [5] and Goldstern and Shelah [6] (see also [10]). The forcing Pmax was intro-
duced in [13] (see also Larson [9]).

Throughout this paper, we let NS D NS!1 denote the nonstationary ideal on !1.
The Bounded Proper Forcing Axiom, BPFA (see [6]), says that for every proper poset
P and every P-generic filter G over V ,�

.H!2/
V
I 2
�
�†1

�
.H!2/

V ŒG�
I 2
�
:

The formulation of Bounded Martin’s Maximum, BMM, results from that of BPFA
by replacing “proper” with “stationary set preserving.” Given a universally Baire set
A � R, A Bounded Martin’s MaximumCC (see [13, Definition 10.91]) says that for
every stationary set preserving poset P and every P-generic filter G over V ,�

.H!2/
V
I 2; .NS!1/

V ; A
�
�†1

�
.H!2/

V ŒG�
I 2; .NS!1/

V ŒG�; A�
�
;

where A� is V ŒG�’s version of A; that is, if the trees T and U witness that A is
jPjC-universally Baire with A D pŒT �, then A� D pŒT � \ V ŒG�.

A Pmax-condition is a countable transitive structure p D .M I 2; I; a/ such that
M is a model of a fragment of ZFC plus MA!1 , p ˆ “I is a normal uniform ideal
on !1,” a 2 P .!M1 / \ M is such that !M1 D !

LŒa;x�
1 for some x 2 R \ M ,

and p is generically iterable (see [13, Definition 3.5]). If p D .M I 2; I; a/ and
q D .N I 2; J; b/ are in Pmax, then q <Pmax p if and only if there is a generic iteration
of p which gives rise to an embedding

j Wp D .M I 2; I; a/!
�
M �I 2; I �; j.a/

�
such that j.a/ D b, ¹M �; j º 2 N , and J \ M � D I �. Woodin’s Axiom .�/

(see [13, Definition 5.1]) says that AD, the Axiom of Determinacy, holds in L.R/
and L.P .!1// is a Pmax-extension of L.R/; that is, there is some G which is Pmax-
generic over L.R/ and

L
�
P .!1/

�
D L.R/ŒG�:

1 Bounded Martin’s Maximum�

Let us start with some examples.

Definition 1.1 Let B � !1. We say that B is amenably closed if and only if for
allD � !1, ifD \ � 2 LŒB� for all � < !1, thenD 2 LŒB�.

By Baumgartner [1], “B is amenably closed” may be formulated in the presence of
BPFA in a †1 fashion as follows.

Let B � !1 be amenably closed. The set of all cofinal branches through the tree
T D <!1!1 \ LŒB� is then contained in LŒB� and has cardinality @1 in V since,
under BPFA, !V2 is inaccessible (in fact, †2-reflecting) in every inner model of the
form LŒX� for X � !1 (see [6]). If BPFA holds true, then T is weakly special; that
is, there is a function f WT ! ! such that for all s, t , t 0 2 T , if f .s/ D f .t/ D f .t 0/,
s � t , and s � t 0, then t � t 0 or t 0 � t (see [1]). For each cofinal branch b through
T there is then some s 2 T such that

b D
®
t 2 T W 9t 0 � s

�
t � t 0 ^ f .t 0/ D f .s/

�¯
:
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We then have that under BPFA a given B � !1 is amenably closed if and
only if there is some ˛ < !2 and some f W<!1!1 \ J!1 ŒB� ! ! witnessing that
<!1!1 \ J!1 ŒB� is weakly special and such that for all s 2 T ,®

t 2 T W 9t 0 � s
�
t � t 0 ^ f .t 0/ D f .s/

�¯
2 J˛ŒB�:

Definition 1.2 We will be concerned with the following two statements.
(1) Let S � !1 be stationary and costationary. There is then some x 2 R

and some G which is Col.!;< !V1 /-generic over LŒx� such that LŒx; S� D
LŒx;G� (see [13, Theorem 5.74(5)]).

(2) Let A � !1. There is then some amenably closed B � !1 with A 2 LŒB�
(see [13, Theorem 6.108 (5)]).

It is not hard to see that, for example, if BPFA holds true, then both .1/ and .2/ may
be formulated as…H!2

2 sentences. For .2/, this uses the remark after Definition 1.1.
The following observation is very easy.

Lemma 1.3 If (1) holds, then R is closed under ]’s, and ı12 D !2.

Proof Let z � !. In order to show that z] exists it suffices to see that every
X 2 P .!1/ \ LŒz� either contains a club or is disjoint from a club, as then the club
filter on !1, restricted to LŒz�, is an LŒz�-ultrafilter. Suppose that S 0 2 P .!1/\LŒz�

is stationary and costationary in V . Then S D .S 0 n !/ [ z is also stationary and
costationary. By (1), there is some x 2 R and some G which is Col.!;< !1/-
generic over LŒx� with LŒx; S� D LŒx;G�. But LŒx; S� D LŒx; z�, so that there
is some NG which is Col.!;< !1/-generic over LŒx; z� with LŒx;G� D LŒx; z; NG�.
But then LŒx; z� D LŒx; S� D LŒx;G� D LŒx; z; NG�, which contradicts the fact that
every real z 2 LŒx;G� is in LŒx;G � ˛� for some ˛ < !1.

To see that ı12 D !2, let ˇ < !2, and let A � !1 be such that ˇ < .!V1 /
CLŒA�.

Let S 0 � !1 be stationary and costationary, and let

S D ¹! � ˛W˛ 2 S 0º [ ¹! � ˛ C 1W˛ 2 Aº:

Then S is again stationary and costationary, and if x 2 R and G Col.!;< !1/-
generic over LŒx� are such that LŒx; S� D LŒx;G�, then

.!V1 /
CLŒx�

D .!V1 /
CLŒx;G�

D .!V1 /
CLŒx;S�

� .!V1 /
CLŒA� > ˇ;

so that ˇ < ı12.

In particular, (1) by itself implies :CH, the negation of the Continuum Hypothesis.
On the other hand, in L, every subset of !1 is trivially amenably closed, so that (2)
holds in L and does not by itself imply :CH. The situation is a bit more tricky
under forcing axioms. As we said, under BPFA, !V2 is inaccessible in every inner
model of the form LŒB� for B � !1. Suppose that .2/ holds, and suppose that !V2
is inaccessible in every inner model of the form LŒB� for B � !1. If W � V

is an inner model of GCH, then we may pick some A 2 W , A � !1, such that
HC \ W D HC \ LŒA�. If A 2 LŒB�, where B � !1 is amenably closed, then
P .!1/ \W � LŒB�, so that .!V1 /CW < !2. In particular, we have the following.

Lemma 1.4 If (2) holds andH!2 is closed under #’s, then CH fails.

Whereas Lemma 1.3 shows that (1) by itself is a fairly strong principle, (2) is only
strong in the presence of, for example, a precipitous ideal on !1.
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Lemma 1.5 If (2) holds and there is a precipitous ideal on !1, then there is an
inner model with a Woodin cardinal.

Proof If there is a precipitous ideal on !1, then H!2 is closed under ]’s. Suppose
that Lemma 1.5 fails, and let K denote the core model below a Woodin cardinal. By
the remarks before the statement of Lemma 1.4, .!V1 /CK < !2. On the other hand,
by Claverie and Schindler [3, Theorem 0.3], if there is a precipitous ideal on !1, then
.!V1 /

CK D !2, a contradiction.

We are now about to propose our strengthening of BMM (Bounded Martin’s Maxi-
mum). Recall that BMM says that if A 2 H!2 , '.x/ is a †1 formula and P 2 V is a
poset which preserves stationary subsets of !1, then

V P
ˆ '.A/ H) V ˆ '.A/:

We might strengthen this statement by saying that if '.A/ is “consistent,” then '.A/
is true, where we might try to spell out “consistent” as in the following version of
BMM.

Let us write BMMo for the statement that if A 2 H!2 , if '.x/ is a †1 formula,
and if there is some transitive model A such that

(a) A 2 V Col.!;2@1 /,
(b) .H!2/V � A,
(c) if T � !V1 , T 2 V , and V ˆ T is stationary, then A ˆ T is stationary, and
(d) A ˆ ZFC� C '.A/,

then '.A/ is true in V .
If in (a) we demand that A be in V rather than just V Col.!;2@1 /, then the hypothesis

would already say that '.A/ is true in V . If we dropped (c), then a counterexample
would be given by '.A/ � “A is disjoint from a club” for some A � !1 which is
stationary in V but not in A.

Clearly, BMMo is a strengthening of BMM. By Schindler [11], BMMo thus im-
plies that V is closed under #’s. This may be used to show that BMMo is in fact
inconsistent. Let us consider the statement '.!1/ � “there is some x 2 R such that
!1 D !

LŒx�
1 .” Let V˛ be a model of a sufficiently rich finite fragment of ZFC. We

may force over V˛ by Jensen coding to add some G which is class generic over V˛
such that in V˛ŒG�, there is some real x with V˛ŒG� D J˛Œx�. As Jensen coding pre-
serves stationary subsets of !1 (see [11]), Shoenfield absoluteness yields that there
is some A with (a), (b), (c), and (d) for A D !1 and '.!1/ � “there is some x 2 R
such that !1 D !

LŒx�
1 .” Then BMMo would imply that in V there is a real x such

that !1 D !LŒx�1 , which contradicts the existence of x#.
The problem with BMMo is that it ignores that the model A has to be “as closed

as” V . For BMM this is automatic, as every set generic extension of V is “as closed
as” V . We need to make this requirement explicit if we aim to arrive at a consistent
weakening of BMMo that strengthens BMM. We will spell out the necessary closure
of A in terms of universally Baire sets of reals, basically as in [13].

We call a function F WR ! R universally Baire if and only if its graph
F D ¹.x; F.x//W x 2 Rº is a universally Baire subset of R2. Let U WR ! R
be universally Baire, as being witnessed by the class-sized trees T and U with
F D pŒT � and V P ˆ pŒU � D !! n pŒT � for all P 2 V . Then if P 2 V is any poset
and if G is P-generic over V , FG denotes the (possibly partial) function pŒT �V ŒG�.
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It is easy to see that FG is indeed a function. Also, this function is independent from
the choice of T and U , so the notation FG is unambiguous.

Definition 1.6 Let F WR ! R be universally Baire. Let � be an uncountable
cardinal, and let G be Col.!;�/-generic over V . Let A 2 V ŒG� be a transitive
model of ZFC� which is countable in V ŒG�. We say that A is closed under F (or,
F -closed) if and only if for all posets P 2 A and for all g 2 V ŒG�which are P-generic
over A, AŒg� is closed under FG ; that is, FG.x/ 2 AŒg� for all x 2 R \AŒg� in the
domain of FG .

The following lemma can be proved easily by an absoluteness argument.

Lemma 1.7 Let F WR ! R be universally Baire. Let P 2 V be a poset, and
let H be P-generic over V . If V ŒH 0� is a set generic extension of V ŒH�, then
FH

0 � RV ŒH� D FH .

Here is an example, of which the case n D 1 will be important later. Let n < !, and
let V be closed under X 7! M #

n .X/. Then F W x 7! M #
n .x/, construed as a function

from R to R, is universally Baire (see [3, Lemma 2.9]). If A is closed under F in the
sense of Definition 1.6, then A must be closed under X 7! M #

n .X/ in the ordinary
sense. The same is of course true for mouse operators other thanM #

n .

Definition 1.8 Let X 2 H!2 , and let '.x/ be a †1 formula in the language of set
theory. We say that '.X/ is honestly consistent if and only if for every F WR ! R
which is universally Baire there is an F -closed transitive model A such that

(a) A 2 V Col.!;2@1 /;
(b) .H!2/V � A;
(c) if T � !V1 , T 2 V , and V ˆ T is stationary, then A ˆ T is stationary; and
(d) A ˆ ZFC� C '.X/.

Definition 1.9 By Bounded Martin’s Maximum�, BMM�, we mean the conjunc-
tion of the following two statements:

(a) NS!1 is precipitous, and
(b) ifX 2 H!2 and if '.x/ is a†1 formula such that '.X/ is honestly consistent,

then '.X/ holds true in V .

Theorem 1.10 If BMM� holds true, then so does (1).

Proof Let � D 2@1 and � D .2� /C, and let H be Col.!;< �/-generic over
V . Note that � D !

V ŒH�
1 . Let x 2 R \ V ŒH� be a real coding the structure

.H.2@1 /C I 2;NS/V . There is some G which is Col.!;< �/-generic over V Œx� with
the property that V Œx;G� D V ŒH�. We have

S
GW! � � ! �, and for each � < �,S

G.�; �/W! ! � is a surjection. Setting

NS� D
°
� < �W

[
G.0; �/ D �

±
for � < �, . NS� W � < �/ is a family of pairwise disjoint subsets of � D !

V ŒH�
1 such

that each NS� is stationary in V ŒH�.
Let eW � ! Œ��<� \ LŒx;G�, e 2 LŒx;G� be an enumeration of all the bounded

subsets of � which exist in LŒx;G�.
Let ND D ¹˛ < �WJ˛Œx� ˆ ZFC�º, let D0 � � be the club of all limit points of
ND, and letD D ND nD0. ThenD is an unbounded nonstationary subset of �. We let
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d W! � �� �! D be some bijection which exists in LŒx�. Setting S� D NS� \D0 for
� < �, we have that .S� W � < �/ is a family of pairwise disjoint subsets of � each of
which is stationary in V Œx;G� and such that S� \D D ; for all � < �.

We now fix S 2 V , S � !V1 , stationary and costationary in V . Working inside
LŒx;G�, we may construct a generic iteration�

.Mi ; �ij W i � j � �/; .Gi W i < �/
�

of M0 D .H.2@1 /C I 2;NS/V with the following properties.
(i) If �, i < � and e.�/ 2 Mi n

S
k<i ran.�ki / is stationary in Mi , then

S� n crit.Gi / � �i�.e.�//.
(ii) For n < ! and �, � < �, G.n; �/ D � iff d.n; �; �/ 2 �0�.S/.

In particular, if T � �, T 2 M�, M� ˆ T is stationary, then T is stationary in
V ŒH�.

Also, LŒx; �0�.S/� D LŒx;G�. This is true as D, d 2 LŒx�, so that G may be
read off from d and �0�.S/ inside LŒx; �0�.S/�, that is, LŒx;G� � LŒx; �0�.S/�.
On the other hand, the generic iteration ..Mi ; �ij W i � j � �/; .Gi W i < �// is
inside LŒx;G�, so that we certainly have �0�.S/ 2 LŒx;G�, so that LŒx; �0�.S/� D
LŒx;G�.

We may lift the iteration maps to act on V ; that is, there is a unique generic
iteration �

.Ni ; Q�ij W i � j � �/; .Gi W i < �/
�

of .V I 2;NS/ such that Mi D .H.2@1 /C/
Ni for i � � and �ij D Q�ij � Mi for

i � j � �. Let us write N D N�.
Now let F WR ! R be universally Baire, and let T0, U0 be the class-sized trees

witnessing that F is universally Baire (with F D pŒT0�). Set T� D Q�0�.T0/ and
U� D Q�0�.U0/, so that pŒT�� D pŒT0� and pŒU�� D pŒU0�.

By Lemma 1.7, every rank initial segment of V ŒH� is closed under F . Hence
in V ŒH�, there is some transitive F -closed A with .H.2@1 /C/

N � A, A ˆ T is
stationary for all T � �, T 2 M�, such that M� ˆ T is stationary and such that A
is a model of ZFC� plus “there is some real x and some G which is Col.!;< �/-
generic over LŒx� with LŒx; �0�.S/� D LŒx;G�.” (Just take an appropriate rank
initial segment of V ŒH� as A.)

We may use the tree T� to witness the fact that A is F -closed. By absoluteness
then, in N Col.!; Q�0;�.2@1 // there is some transitive F -closed (as being witnessed by
T�) A with the above properties. Pulling this back via Q�0� we get that in V Col.!;2@1 /

there is some transitive F -closed (as being witnessed by T0) A with .H!2/V � A,
A ˆ T is stationary for all T � !1, T 2 V , such that V ˆ T is stationary, and
such that A is a model of ZFC� plus “there is some real x and some G which is
Col.!;< !1/-generic over LŒx� with LŒx; S� D LŒx;G�.”

We have shown that (1) is honestly consistent.

Theorem 1.11 If BMM� holds true, then so does (2).

Proof Let us again write � D 2@1 and � D .2� /C, and let G be Col.!;< �/-
generic over V . Let H be Col.�; �/-generic over V ŒG�. We have that � D !

V ŒG;H�
1

and Þ holds in V ŒG;H�. Let e�W � ! Œ��<� \ V ŒG;H�, e� 2 V ŒG;H�, be an
enumeration of all the bounded subsets of � which exist in V ŒG;H�. Let .�i W i < �/
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witness thatÞ holds in V ŒG;H�. As in the previous proof, we may set

NS� D
°
� < �W

[
G.0; �/ D �

±
for � < �, so that . NS� W � < �/ is a family of pairwise disjoint subsets of �, each NS�
being stationary in V ŒG;H�.

Let x 2 R \ V ŒG� be such that the structure .H.2@1 /C I 2;NS/V is in LŒx� and
is countable there. Let x# D .J˛Œx�I 2; U /, and let � D crit.U /. Let g 2 V ŒG� be
Col.!;< �/-generic over x# (equivalently, over LŒx�), and let

I D
®
X 2 P .�/ \ x#Œg�W 9Y 2 UY \X D ;

¯
:

Then .x#Œg�I 2; I / ˆ I is a � -complete uniform normal ideal on �, and .x#Œg�I 2; I /
is generically iterable via I and its images in a way that every iteration map lifts an
iteration map resulting from iterating the ground model x#.

We may let .W� W � < �/ 2 x#Œg� be a partition of � into I -positive sets. We may
also let eW � ! Œ��<� \ LŒx; g� be an enumeration of all the bounded subsets of �
which exist in LŒx; g�.

Working inside .x#Œg�I 2; I /, we may construct a generic iteration�
.Mi ; �ij W i � j � �/; .Gi W i < �/

�
of M0 D .H.2@1 /C I 2;NS/V with the following property.

(i) If �, i < � and e.�/ 2 Mi n
S
k<i ran.�ki / is stationary in Mi , then

W� n crit.Gi / � �i�.e.�//.
In particular, M� 2 x

#Œg� and .NS/M� D I \M� . Working inside V ŒG;H�, we
may then construct a generic iteration�

.M�i ; �
�
ij W i � j � �/; .G

�
i W i < �/

�
of M�0 D .x

#Œg�I 2; I / with the following properties.
(ii) If �, i < � and e�.�/ 2 ��0i .I

C/ n
S
k<i ran.�ki /, then NS� n crit.G�i / �

�i�.e
�.�//.

(iii) If i < �, then G�i is generic over LŒM�i ; .�k W k � i/� (not just over M�i ).
In particular, ��0�.I / D .NS�/V ŒG;H� \M�� . Also, if k � i � �, then

�k 2M�k ” �k 2M�i :

Let�
.Mi ; �ij W i � j � �/; .Gi W i < �/

�
D ��0�

�
.Mi ; �ij W i � j � �/; .Gi W i < �/

�
;

which is a generic iteration of M0 D .H.2@1 /C I 2;NS/V . We have �0;�..NS/V / D
�0;�.I / \M�� D .NS�/V ŒG;H� \M�, so that every T � �, T 2 M�, which is
stationary in M� is also stationary in V ŒG;H�.

Let D � �, D 2 V ŒG;H�. Let SD D ¹i < �W �i D D \ iº which is stationary
in V ŒG;H�. Suppose thatD \ � 2M�� for every � < �. There is then a club C � �
such that D \ i 2 M�i for all i < �. This gives some stationary NS � SD \ C and
some i0 < � and ND 2 M�i0 such that ��i0j .

ND/ D D \ j for all j 2 NS . But then
D D ��i0�.

ND/ 2 M�� . Writing M�� D .J˛� Œx; g
��I 2; �0�.I // and letting B � �

code x˚ g� in a simple way, we have shown that B is amenably closed in V ŒG;H�.
We may again lift ..Mi ; �ij W i � j � �/; .Gi W i < �// to a generic iteration

..Ni ; Q�ij W i � j � �/; .Gi W i < �// of .V I 2; .NS/V /. Let us write N D N�.
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Let us fix some A � !1, A 2 V . Also, let F WR ! R be universally Baire,
and let T0, U0 be the class-sized trees witnessing that F is universally Baire (with
F D pŒT0�). Set T� D Q�0�.T0/ and U� D Q�0�.U0/, so that pŒT�� D pŒT0� and
pŒU�� D pŒU0�.

By Lemma 1.7, every rank initial segment of V ŒG;H� is closed under F . In
V ŒG;H�, there is thus some transitive F -closed (as being witnessed by T�) A with
.H.2@1 /C/

N � A, A ˆ T is stationary for all T � �, T 2 N , such that N ˆ T is
stationary, and such that A is a model of ZFC� plus “there is some amenably closed
B � � with Q�0�.A/ 2 LŒB�.” (Take an appropriate rank initial segment of V ŒG;H�
as A.)

Hence by absoluteness, in N Col.!; Q�0;�.2@1 // there is some transitive F -closed (as
being witnessed by T�) A with the above properties. Pulling this back via Q�0;� we get
that in V Col.!;2@1 / there is thus a transitive F -closed (as being witnessed by T0) A
with .H!2/V � A, A ˆ T is stationary for all T � !1, T 2 V , such that V ˆ T is
stationary, and such that A is a model of ZFC� plus “there is some amenably closed
B � � with A 2 LŒB�.”

We have shown that .2/ is honestly consistent.

There is an obvious question which we have to leave unanswered: Does BMM plus
NS!1 is precipitous prove BMM�? We will explore this question further in the next
section.

2 BMM� and Woodin’s Axiom .�/

We now aim to discuss the relationship between BMM� and .�/. In order to do
so, we shall need strengthenings of BMM�, which we call BMM�;CC (in analogy
with MMCC and BMMCC; see Definition 2.2) and A–BMM�;CC (where A is a
universally Baire set of reals; see Definition 2.6). We apologize for the awkward
notation.

Definition 2.1 Let X 2 H!2 , and let '.x; PINS/ be a †1 formula in the language
of set theory, augmented by a predicate PINS for the nonstationary ideal on !1. We
say that '.X; PINS/ is honestly consistent if and only if for every F WR! R which is
universally Baire there is an F -closed transitive model A such that

(a) A 2 V Col.!;2@1 /;
(b) .H!2/V � A;
(c) if T � !V1 , T 2 V , V ˆ T is stationary, then A ˆ T is stationary; and
(d) A ˆ ZFC� C '.X; PINS/.

Definition 2.2 By Bounded Martin’s Maximum�;CC, BMM�;CC, we mean the
conjunction of the following two statements.

(a) NS!1 is precipitous, and
(b) if X 2 H!2 and if '.x; PINS!1 / is a †1 formula in the language of set the-

ory, augmented by a predicate for the nonstationary ideal on !1, such that
'.X; PINS!1 / is honestly consistent, then '.X; PINS!1 / holds true in V .

In Definitions 2.1 and 2.2 we understand that the predicate PINS!1 is interpreted by
.NS!1/

A and .NS!1/
V inside A and V , respectively. Of course, BMM�;CC strength-

ens both BMM� as well as BMMCC.



Bounded Martin’s Maximum with an Asterisk 341

After the first version of this paper had been written, J. Zapletal mentioned the
following principle to us.

Definition 2.3

(3) Let A � !1. There is then some B � !1 with A 2 LŒB� such that for every
D 2 P .!1/\LŒB�, ifLŒB� ˆ “D is stationary,” then V ˆ “D is stationary.”
(see Zapletal [14]).

Our proof of Theorem 1.11 presented above also produces the following result.

Theorem 2.4 If BMM�;CC holds true, then so does (3).

Definition 2.5 Let X 2 H!2 , let A � R be universally Baire, and let
'.x; PA; PINS!1 / be a †1 formula in the language of set theory, augmented by
predicates PA and PINS!1 for A and for the nonstationary ideal on !1, respectively.
We say that '.X; PA; PINS!1 / is honestly consistent if and only if for every F WR! R
which is universally Baire there is an F -closed transitive model A such that

(a) A 2 V Col.!;2@1 /;
(b) .H!2/V � A;
(c) if T � !V1 , T 2 V , V ˆ T is stationary, then A ˆ T is stationary; and
(d) A ˆ ZFC� C '.X; PA; PINS!1 /.

Definition 2.6 Let A � R be universally Baire. By A–Bounded Martin’s
Maximum�;CC, A–BMM�;CC, we mean the conjunction of the following two state-
ments:

(a) NS!1 is precipitous, and
(b) if X 2 H!2 and if '.x; PA; PINS!1 / is a †1 formula in the language of set

theory, augmented by predicates for A and for the nonstationary ideal on !1,
such that '.X; PA; PINS!1 / is honestly consistent, then '.X; PA; PINS!1 / holds
true in V .

In Definitions 2.5 and 2.6 we again understand that the predicate PINS!1 is inter-
preted by .NS!1/

A and .NS!1/
V inside A and V , respectively; moreover, if the

trees T and U witness that A is universally Baire with A D pŒT �, then PA is sup-
posed to be interpreted by A inside V and by pŒT � \ A D A� \ A inside A, where
A� D pŒT � \ V Col.!;2@1 / is the version of A inside V Col.!;2@1 /.

We now prove the following result which is in the spirit of [13, Theorems 10.127–
10.129, 10.137]. This result also shows that BMM� is consistent, in case the reader
may have wondered. This is true because if we let V be the least inner model of ZFC
which has ! Woodin cardinals ı0 < ı1 < � � � and is closed under X 7! M ##

! .X/, if
G is Col.!;< supn<! ın/-generic over V , and if

R� D
[®

R \ V ŒG � ın�Wn < !
¯
;

then we may construct inside V ŒG� an inner model

LM
##
! .R�/

of ZF plus AD which is the least inner model whose set of reals is R� and is closed
under X 7!M ##

! .X/, and
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LM
##
! .R�/Pmax

satisfies the hypotheses of Theorem 2.7 as well as .�/.

Theorem 2.7 Suppose thatM ##
! exists1 and is fully iterable.2 Suppose that NS!1

is precipitous. Then the following statements are equivalent.
(A) .�/
(B) For every set A of reals with A 2 L.R/, A–bounded Martin’s Maximum�;CC

holds true.

Proof We first show .B/ H) .A/. Let sat.NS/ denote the saturation ofNS, that is,
the least cardinal � such that every antichain in P .!1/=NS has cardinality less than
�. In what follows, we shall write � for 2<sat.NS/ D Card.Hsat.NS//. If 2@1 D @2,
then � D 2@1 D @2 if NS is saturated, and � D 2@2 otherwise.
.B/ H) .A/ is now an immediate consequence of the following result.

Theorem 2.8 Let M be an inner model of ZF such that R � M , and let
� D P .R/ \M . Let � D 2<sat.NS/. Assume the following hypotheses.

(a) NS is precipitous.
(b) AD holds true inM .
(c) Every set of reals in � is �C-universally Baire.
(d) If A is a set of reals in � , ' is a …1

2 formula, and g is Col.!; �/-generic
over V , then

'.A/ ” '.Ag/;

where Ag is V Œg�’s version of A; that is, if the trees T and U witness that A
is �C-universally Baire with A D .pŒT �/V , then Ag D .pŒT �/V Œg�.

(e) For every setA of reals in � , A–Bounded Martin’s Maximum�;CC holds true.

Let A0 � !1 be such that !LŒA0�1 D !1. Then there is some G 2 V such that G is
Pmax-generic overM and

L.R/ŒG� D L.R/ŒA0� D L
�
P .!1/

�
: (1)

Proof of Theorem 2.8 Let us fixM as in the statement of the theorem. Let us also
fix, until the end of this proof, some A0 � !1 such that !LŒA0�1 D !1. Let G be the
set of all p D .M0I 2; J0; a0/ 2 Pmax such that there is some generic iteration�

.Mi ; �i;j W i � j � !1/; .Gi W i < !1/
�

of M0 D p such that �0;!1.a0/ D A0 and, writing M!1 D .M!1 I 2; J!1 ; A0/,
every set in

JC!1 D
�
P .!1/ \M!1

�
n J!1

is stationary in V .
We claim that G is Pmax-generic overM and that (1) holds true for G. In order to

verify this, we shall need to prove the following three claims, which will be shown
from the hypotheses of Theorem 2.8.

Claim 2.9 G is a filter.

Claim 2.10 IfD 2M is a dense subset of Pmax, thenD \G ¤ ;.
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By a standard Pmax-argument, if p 2 G, then there is a unique generic iteration�
.Mi ; �i;j W i � j � !1/; .Gi W i < !1/

�
of M0 D p such that �0;!1.a0/ D A0. Assuming Claims 2.9 and 2.10 and following
[13], we shall then write P .!1/G for the set of all X � !1 for which there is some
p 2 G such that if �

.Mi ; �i;j W i � j � !1/; .Gi W i < !1/
�

is the generic iteration of M0 D p with �0!1.a0/ D A0, then X 2 ran.�i;!1/ for
some i < !1.

Claim 2.11 We have P .!1/ D P .!1/G .

If NS were assumed to be saturated, then Claim 2.9 would be given by [13, The-
orem 4.74] and Claim 2.11 would follow from [13, Lemma 3.12, Corollary 3.13].
Under the hypotheses (a) and (e) instead, one can prove Claims 2.9 and 2.11 by an
easy application of the forcing developed in [2]. Using hypothesis (a), [2] designs a
stationary set preserving forcing which (for a given regular cardinal � � @2) adds a
generic iteration

.Mi ; �i;j W i � j � !1/

of a countable model M0 D .M0I 2; I0/ such that M!1 D .H� I 2;NS/. This im-
mediately gives Claim 2.11 by Bounded Martin’s MaximumCC. Also, if p, q 2 G,
then we may assume without loss of generality that p, q, A0 \ !M01 2 M0, so that
Bounded Martin’s MaximumCC also yields Claim 2.9.

It remains to verify Claim 2.10.
Let us fix D � Pmax, D 2 M , a dense set in Pmax, and let D� 2 � be a set of

reals coding D according to some natural coding device. As D� is �C-universally
Baire, we may pick trees T and U on ! � 2� such that

D� D pŒT � and Col.!;�/ pŒU � D
!! n pŒT �:

The following is a variant of the argument for Theorems 1.10 and 1.11.
Let us pick some g which is Col.!; �/-generic over V , so that .�C/V D !

V Œg�
1

and Hsat.NS/ is countable in V Œg�. By our hypothesis (a) and the proof of [13,
Lemma 3.10], p0 D ..Hsat.NS//

V I 2; .NS/V ; A0/ is then a Pmax condition in V Œg�.
The statement

8p 2 Pmax9q 2 Pmax.q �Pmax p ^ q 2 D/ (2)

which expresses that D is dense in Pmax is …1
2 in Pmax ˚ D in the codes, so that

by hypothesis (d) there is some q D .N0I 2; J0; A
0
0/ 2 V Œg� belonging to the set of

Pmax-conditions coded by .D�/g and such that q <Pmax p0. Let

j0W
�
.Hsat.NS//

V
I 2; .NS/V ; A0

�
! .N0I 2; J0; A

0
0/

be such that p0, j0 2 N0 witness that q < p0.
Let �

S� W � < .�
C/V

�
2 V Œg�

be a partition of .�C/V into stationary sets. Working inside V Œg�, we may then
choose a generic iteration

.Ni ; �i;j W i � j � �
C/
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of N0 D .N0I 2; J0; A
0
0/ D q such that, writing N.�C/V D .N I 2; J; A

0/,

8S 2
�
P
�
.�C/V

�
\N

�
n J9� < .�C/V 9ˇ < .�C/V S� n ˇ � S

(see, e.g., [2, proof of Lemma 5] and also the proofs of Theorems 1.10, 1.11). In
particular,

J D .NS/V Œg� \N: (3)

Writing

j D �0;.�C/V .j0/W
�
.Hsat.NS//

V
I 2; .NS/V ; A0

�
! �0;.�C/V .p0/

D .M.�C/V I 2; I; A
0/;

we thus also have

I D J \M.�C/V D .NS/V Œg� \M.�C/V :

As V is .�C/-iterable in V Œg� by our hypothesis (a) and the proof of [13,
Lemma 3.10], we may lift the generic iteration of ..Hsat.NS//

V I 2; .NS/V ; A0/ which
gave rise to j0 to a generic iteration of .V I 2; .NS/V ; A0/. Let us write

O| WV !M

for the induced iteration map, so that O| � j .
Now let x 2 pŒT � \ V Œg� code N0, and let .x; y/ 2 ŒT � \ V Œg�. This gives

.x; O| 00y/ 2
�
O|.T /

�
: (4)

By D�–Bounded Martin’s Maximum�;CC, the proof of Claim 2.10 will be fin-
ished if we show that the natural †1 statement '.A0; PD�; PINS!1 / expressing the
existence of a Pmax-condition in G coded by a real in D� is an honestly consis-
tent statement, in the sense of Definition 2.5. The proof that '.A0; PD�; PINS!1 / is
honestly consistent in the sense of Definition 2.5 is essentially as in the proofs of
Theorems 1.10 and 1.11.

Let F W R ! R be a universally Baire function in V , let � > � be a cardinal, let
T and U be a pair of trees on ! � 2� witnessing the �C-universal Baireness of F
(with F D pŒT �), and set T � D O|.T / and U � D O|.U /, so that pŒT � D pŒT �� and
pŒU � D pŒU ��.

In V Col.!;2�/ there is a pŒT ��-closed model A such that HM
!2
� A, every set in

.P .!1/ n NS!1/M is stationary in A, and such that A satisfies ZFC� together with
'.A0; Œ O|.T /�;NS!1/. (The existence of A in Col.!; 2�/ is witnessed by some rank-
initial segment of V Œg�.) By absoluteness, Col.!; O|.2�// forces overM that there is
a pŒ O|.T /�-closed model A such that HM

!2
� A, every set in .P .!1/ n NS!1/M is

stationary in A, and such that A satisfies ZFC� together with '.A0; Œ O|.T /�;NS!1/.
Finally, by elementarity of O|.T / we get that V Col.!;2�/ forces over V that there is a
pŒT �-closed model A such thatHV

!2
� A, every set in .P .!1/nNS!1/V is stationary

in A, and such that A satisfies ZFC� together with '.A0;D�;NS!1/.

We are now going to prove .A/ H) .B/ of Theorem 2.7. This will be arranged
by varying the argument for [13, Theorem 10.99] (see also the proof of [13, Theo-
rem 10.127]).

We shall use the following lemma to produce A-iterable Pmax-conditions, where
A is a set of reals (see [13, Definition 4.3] on the definition of the concept of
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“A-iterability.”) The proof of [13, Lemma 4.40] presents a different method for pro-
ducing A-iterable structures, but we thought that writing up the method for proving
Lemma 2.12 would be of independent interest.

Lemma 2.12 Suppose thatM ##
! exists and is fully iterable. LetA 2 P .R/\L.R/.

There is then some x 2 R and some Q 2 M ##
! .x/ which has the ı-c.c. and is of size

ı inM ##
! .x/, where ı is the least Woodin cardinal ofM ##

! .x/, such that if g 2 V is
Q-generic overM ##

! .x/, then
M ##
! .x/Œg�

is an A-iterable Pmax-condition.

Proof Let A be definable from x 2 R and (finitely many) R-indiscernibles inside
L.R/. Let Q 2 M ##

! .x/ be a standard forcing iteration of length ı to force both NS
to be saturated as well as MA!1 , where ı is the least Woodin cardinal of M ##

! .x/.
We claim that if g 2 V is Q-generic overM ##

! .x/, thenM ##
! .x/Œg� is an A-iterable

Pmax-condition.
Let us write M D M ##

! .x/Œg�. We know from [13, Lemma 3.10] that M is
generically iterable and is hence a Pmax-condition. It thus remains to be seen thatM
is A-iterable.

The set A \ N is uniformly definable over any z-mouse N with infinitely many
Woodin cardinals and a top measure, where x is coded into z 2 H!1 , in the following
way. Let y 2 A iff L.R/ ˆ '.y; x; �0; : : : ; �k�1/, where �0 < � � � < �k are
R-indiscernibles. Let N 0 result from N by iterating the top measure of N and its
images k C 1 times, and let �0 < � � � < �k be the sequence of the critical points.
Then

y 2 A \N ” N 0

Col.!;<supn.ın//
ˆ L�k .R

�/ ˆ '.y; x; �0; : : : ; �k�1/; (5)

where ı0 < ı1 < � � � are the Woodin cardinals of N (and thus also of N 0) and R�
denotes the collection of all reals which are added by proper initial segments of the
forcing Col.!;< supn.ın// (see Steel [12, p. 1663]). In particular, A\N 2 N , and
thus A \M 2M .

It remains to be seen that if
j WM ! N

is a generic iteration ofM , then j.A\M/ D A\N . Suppose not. Let �1 < �2 < � � �
be the Woodin cardinals of M (i.e., the Woodin cardinals of M ##

! .x/ above ı C 1).
Let

j WM j .ıCM /! N

be a generic iteration of M j .ıCM / with j.A \M/ ¤ A \ N , and let M � be an
iterate ofM via extenders with critical points and lengths between ı and �1 such that
j is generic over M � for the extender algebra at �1. Using (5), M �Œj � can see that
j WM j .ıCM /! N is a generic iteration with j.A \M/ ¤ A \N , and by pulling
back the statement that there is such a generic iteration we thus get that inMCol.!;�1/

there is some generic iteration j WM j .ıCM /! N with j.A \M/ ¤ A \N .
However, inside M , A \ M is �C1 -universally Baire, again using (5). Namely,

we may let T 2 M be a tree of height ! searching for y, NM , k, h such that
kW NM ! .M j supn.�n//# 2 M is elementary, h is Col.!; k�1.�1//-generic over
NM with y 2 NMŒh�, and y is in A \ NMŒh� as computed using the recipe (5) for
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N D NMŒh�. If .y; NM;k; h/ 2 ŒT �, then we write y 2 pŒT �. We also let U 2 M be
defined in exactly the same way, except that “y is in A \ NMŒh�” gets replaced by “y
is not in A\ NMŒh�.” If .y; NM;k; h/ 2 ŒU �, then we write y 2 pŒU �. The trees T and
U are easily seen to witness that A \M is �C1 -universally Baire insideM .

Now let j WM j .ıCM / ! N be a generic iteration inside MCol.!;�1/ with
j.A\M/ ¤ A\N . We haveA\M D pŒT �\M , and thus j.A\M/ D pŒj.T /�\

N D .pŒj.T /� \MCol.!;�1// \ N . However, .pŒj.T /� \MCol.!;�1// D .pŒT � \

MCol.!;�1// by the fact that T , U witness that A \M is �C1 -universally Baire inM .
Therefore j.A \M/ D pŒT � \N D A \N , a contradiction!

We have to prove .A/ H) .B/ of Theorem 2.7.
We assume that M ##

! exists and is fully iterable and also that .�/ holds true. Let
us fix a set B of reals in L.R/, and let also A 2 H!2 . Let '.x; PB; PINS!1 / be a †1
formula in the language of set theory, augmented by predicates for B and for the
nonstationary ideal on !1. Suppose that '.A; PB; PINS!1 / is honestly consistent in the
sense of Definition 2.5. We aim to show that '.A; PB; PINS!1 / holds true in V .

Suppose not. We may assume without loss of generality that A � !1 and in fact
that A is Pmax-generic over L.R/ (see [13, Theorem 4.60]). Let PA be the canonical
name for A. Now say that

p D .M;2; I; a/  :'. PA; LB; PINS!1 /; (6)

where p 2 GA D ¹q D .N;2; I 0; a0/ 2 PmaxW a
0 D A \ !N1 º. We shall derive a

contradiction by finding some q <Pmax p with q  '. PA; LB; PINS!1 /.
By our hypothesis, the function F WR! R with F.x/ D (the canonical real code

for) M ##
! .x/, x 2 R, is universally Baire. Let A be an F -closed witness to the fact

that '.A; PB; PINS!1 / is honestly consistent.
LetM ##

! .X/ 2 A be such thatX is transitive and .P .!1/\A/[¹.NS!1/
Aº 2 X .

Let ı be the least Woodin cardinal ofM ##
! .X/, and let g beQ-generic overM ##

! .X/,
where Q is, inM ##

! .X/, a standard forcing iteration of size ı with the ı-c.c. forcing
both that NS is precipitous and that MA!1 holds. By Lemma 2.12, inside V Col.!;2@1 /

we have that

q D
�
M ##
! .X/Œg�I 2;NSM

##
! .X/Œg�; A

�
is a B�-iterable Pmax-condition with q <Pmax p, and

q ˆ '.A;B�;NS!1/;

so that q  '. PA; LB; PINS!1 /.
The assertion that there is such a q is now absolute between V and V Col.!;2@1 /.

We obtained a contradiction!

It remains open whether .�/ can be forced over models of choice containing large car-
dinals or whether .�/ indeed follows from a forcing axiom. In [13, Theorem 10.70],
Woodin proves that .�/ does not follow from MMCC.2@0/. In [7] and [8], Larson
shows that .�/ does not follow from MMC! , and he asks whether .�/ follows from
MMCC (see [8, Question 7.2]). Woodin asks whether .�/ can be forced from large
cardinals as [13, Question (18)(a), p. 924] (see also [9, p. 2158]).
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Theorem 2.7 yields an obvious scenario for showing that MMCC implies .�/.
Basically, one would have to show that if a †1 statement ' with parameters as in
A–BMM�;CC is honestly consistent in the sense of Definition 2.5, then ' can be
forced by a stationary set-preserving forcing. We do not know how to do that, though.

Notes

1. M ##
! is a mouse with ! Woodin cardinals and a top measure which is closed under #’s.

2. For example, suppose that there is a proper class of Woodin cardinals.
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