
Notre Dame Journal of Formal Logic
Volume 54, Number 2, 2013

Degrees of Categoricity and
the Hyperarithmetic Hierarchy

Barbara F. Csima, Johanna N. Y. Franklin, and Richard A. Shore

Abstract We study arithmetic and hyperarithmetic degrees of categoricity. We
extend a result of E. Fokina, I. Kalimullin, and R. Miller to show that for every
computable ordinal ˛, 0.˛/ is the degree of categoricity of some computable
structure A. We show additionally that for ˛ a computable successor ordinal,
every degree 2-c.e. in and above 0.˛/ is a degree of categoricity. We further
prove that every degree of categoricity is hyperarithmetic and show that the index
set of structures with degrees of categoricity is…11-complete.

1 Introduction

Though classically two structures are considered the same if they are isomorphic, in
computable model theory we must distinguish between particular presentations of a
structure, since they may have different computable properties. We say that a struc-
ture is computably categorical, if between any two computable presentations that
are isomorphic, there exists a computable isomorphism. For example, the structure
.�;</, the countable dense linear order without end points, is easily seen to be com-
putably categorical since the usual back-and-forth isomorphism can be constructed
computably between computable copies. However, there are many computable struc-
tures that are not computably categorical. A well-known example is the structure
.!;</. It is easy to construct a computable copy, bN , of .!;</ such that any isomor-
phism between it and the standard copy, N , computes the halting set. It is also easy
to see that in order to construct an isomorphism between two copies of .!;</, all we
need to do is identify the least element of each order, then the next element of each
order, and so on. These are †01-questions, so 00 can certainly build an isomorphism.
This leads us to recall the relativized definition of computable categoricity.

Received August 9, 2011; accepted May 7, 2012
2010 Mathematics Subject Classification: Primary 03D45
Keywords: computability theory, computable structure theory, Turing degrees, isomor-
phisms
© 2013 by University of Notre Dame 10.1215/00294527-1960479

215

http://www.nd.edu/~ndjfl/
http://www.ams.org/mathscinet/msc/msc2010.html
http://www.nd.edu
http://dx.doi.org/10.1215/00294527-1960479


216 Csima, Franklin, and Shore

Definition 1.1 A computable structure C is d-computably categorical for a Tur-
ing degree d if, for every computable A Š C , there is a d-computable isomorphism
from C to A.

We have observed above that the structure .!;</ is not only 00-computably categor-
ical but that if c is such that .!;</ is c-computably categorical, then c � 00 (since,
in particular, c computes an isomorphism between N and bN ). Thus, for the struc-
ture .!;</, the degree 00 exactly describes the difficulty of computing isomorphisms
between copies of the structure.

This natural idea of a “degree of categoricity” for a computable structure was first
introduced by Fokina, Kalimullin, and Miller in [2].

Definition 1.2 ([2]) A Turing degree d is said to be the degree of categoricity
of a computable structure C if d is the least degree such that C is d-computably
categorical. The degree d is a degree of categoricity if it is the degree of categoricity
of some computable structure.

So far, every known degree of categoricity d has the following additional property.
There is a structure C with computable copies C1 and C2 such that not only does C

have degree of categoricity d but every isomorphism f W C1 Š C2 computes d. If a
degree of categoricity has this property, we say it is a strong degree of categoricity.

In [2], Fokina, Kalimullin, and Miller proved that for all m < !, 0.m/ (and,
in fact, any degree 2-computably enumerable [c.e.] in and above 0.m/) is a strong
degree of categoricity, as is 0.!/. They prove the results first for m D 1 and then
use relativization and Marker’s extensions [5] to transfer them to all m < !. In
the case for !, they paste together the structures for the 0.m/. In this paper, we
give direct constructions by effective transfinite recursion that extend their results
through the hyperarithmetic hierarchy. That is, in Theorem 3.1 we show that for every
computable ordinal ˛, 0.˛/ is a strong degree of categoricity, and in Theorem 3.2 that,
given the additional assumption that ˛ is a successor ordinal, so are all degrees d that
are 2-c.e. in and above 0.˛/. We then go on to show in Theorem 4.1 that any degree
of categoricity must be hyperarithmetic. We use this to show that the index set of
structures with degrees of categoricity, which at first glance seems no better than†12,
is actually …1

1. We then use our result that degrees of the form 0.˛/ are all degrees
of categoricity to show that this index set is actually…1

1-complete in Theorem 4.2.

1.1 Notation and conventions As many of the results in this paper use structures
defined in Hirschfeldt and White [4], we will adopt many of their conventions. In
particular, we will use Ash and Knight’s [1] terminology in discussing the hyper-
arithmetic hierarchy. For general references see Harizanov [3] for computable struc-
ture theory, Soare [8] for computability theory, and Sacks [7] for hyperarithmetic
theory.

Definition 1.3 A system of notations for ordinals is comprised of a subset O of
the natural numbers, a function j jO that maps each element of O to an ordinal, and
a strict partial order <O on O . In particular, we have the following.

(1) O contains 1, and j1jO D 0.
(2) If a 2 O is a notation for the ordinal ˛, then 2a 2 O and j2ajO D ˛C 1. For

b 2 O , we let b <O 2a if either b <O a or b D a.



Degrees of Categoricity 217

(3) Given a limit ordinal �, we say that the eth partial computable function 'e
defines a fundamental sequence for � if it is total, 'e.k/ �O 'e.k C 1/ for
all k, and � is the least upper bound of the ordinals j'e.k/jO . In this case,
3 �5e 2 O and j3 �5ejO D �. For b 2 O we will set b <O 3 �5e if there exists
a k such that b <O 'e.k/.

For technical convenience, Hirschfeldt and White also require in [4] that the fun-
damental sequences contain only successor ordinals and have 1 as a first element.
We assume without loss of generality that all members of O have this property.

Definition 1.4 For a 2 O we define H.a/ by effective transfinite recursion as
follows:

(1) H.1/ D ;,
(2) H.2a/ D H.a/0, and
(3) H.3�5e/ D ¹hu; vi j u <O 3�5e & v 2 H.u/º D ¹hu; vi j 9n.u �O 'e.n/&

v 2 H.u//º:

It is a result of Spector [1] that for a computable ordinal ˛ (i.e., one with a notation
in O), the Turing degree of H.a/ when a is notation for ˛ does not depend on the
choice of a. It is denoted by 0.˛/.

Now we define the hyperarithmetic hierarchy in terms of computable infinitary
formulas.

Definition 1.5 A †0-index (…0-index) for a computable predicate R.f; n/ is a
triple h†; 0; ei (h…; 0; ei) such that e is an index for R. If ˛ is a computable ordinal,
a †˛-index for a predicate R.f; n/ is a triple h†; a; ei such that a is a notation for
˛ and e is an index for a c.e. set of…ˇk -indices for predicates Qk.f; n; x/ such that
ˇk < ˛ for all k < ! and

R.f; n/,
_
k<!

.9x/Qk.f; n; x/:

A …˛-index for a predicate R.f; n/ is a triple h…;a; ei such that a is a notation for
˛ and e is an index for a c.e. set of †ˇk -indices for predicates Qk.f; n; x/ such that
ˇk < ˛ for all k < ! and

R.f; n/,
^
k<!

.8x/Qk.f; n; x/:

We say that a predicate is †˛ (…˛) if it has a †˛-index (…˛-index) and �˛ if it
is both †˛ and…˛ .

2 Hirschfeldt and White’s “Back-and-Forth Trees”

The structures in this paper will be directed graphs. We begin by making use of
Hirschfeldt and White’s “back-and-forth trees.” We use the construction as in [4];
however, instead of fixing a path O 0 � O , we define structures A2b and E2b for
each b 2 O and other structures at limit ordinals. The structures Aa and Ea will
be constructed by effective transfinite recursion with a case division as to whether
a D 1, a D 22b (is the successor of a successor), or a D 23�5e (is the successor of a
limit). Auxiliary structures La

1 and La
k
for k < ! will be constructed for a D 3 � 5e .

For a 2 O , these structures will be isomorphic to subtrees of !<! with height � !
and no infinite paths.



218 Csima, Franklin, and Shore

Figure 1 A1 and E1.

Figure 2 Aa and Ea for a D 22
b .

A1 consists of a single node, and E1 consists of a single root node with infinitely
many children, none of which have children themselves (Figure 1).

Now consider a D 22
b , that is, the successor of a successor ordinal. Aa will

consist of a single root node with infinitely many copies of E2b attached to it, and Ea
will consist of a single root node with infinitely many copies of A2b and infinitely
many copies of E2b attached to it (Figure 2).

Finally, consider an ordinal of the form a D 23�5
e . To define Aa and Ea, we first

define auxiliary trees L3�5e

k
for each k < ! and an auxiliary tree L3�5e

1 (Figure 3).
For each k < !, we let L3�5e

k
consist of a single root node with exactly one copy of

A'e.n/ attached to it for every n � k and exactly one copy of E'e.n/ attached to it for
every n > k. We define L3�5e

1 to consist of a single root node with exactly one copy
of A'e.n/ attached to it for every n < !. (Note: This is where we make use of our
assumption that if 3 � 5e 2 O , then each 'e.n/ is a notation for a successor ordinal.)

Now we can define Aa and Ea. We let Aa consist of a root node with infinitely
many copies of L3�5e

n attached to it for every n < ! and let Ea consist of a root node
with infinitely many copies of L3�5e

1 and infinitely many copies of L3�5e

n for each
n < ! attached to it (Figure 4).



Degrees of Categoricity 219

Figure 3 L3�5e

1 and L3�5e

k
.

Figure 4 Aa and Ea for a D 23�5
e .

We say that the back-and-forth trees L3�5e

1 and L3�5e

n for n < ! have rank 3 � 5e
and that the back-and-forth trees Aa and Ea have rank a.

The above definitions are given by computable transfinite recursion. In fact, we
have given a procedure that, for any natural number a, assumes that a 2 O with all
fundamental sequences containing only successors and begins to build the desired
structure. In any case, a computable tree is constructed, and if a 2 O , then it is of
the desired form.

Note that for a 6D a0, we may have, for example, Ea 6Š Ea0 even though
jajO D ja

0jO . Nonetheless, in cases where it is not likely to lead to confusion, we
will use E˛ , A˛ , L˛

k
, and L˛

1 to denote copies of Ea, Aa, La
k
, and La

1, respectively,
for some a 2 O with jajO D ˛.

We will make use of the following results from Hirschfeldt and White [4]. Note
that we have slightly reworded their results. Hirschfeldt and White fix a particular
path through O , noting that their results work equally well for any path through O ,
and word their results in terms of computable ordinals ˛. For us, it will be more
convenient to speak of the notations, a 2 O .

Proposition 2.1 ([4, Proposition 3.2]) Let P .n/ be a †˛-predicate.



220 Csima, Franklin, and Shore

1. If ˛ is a successor ordinal, then for every notation a for ˛, there is a sequence
of trees Tn, uniformly computable from the notation a and a †˛-index for P ,
such that for all n,

Tn Š

´
Ea if P .n/; and
Aa otherwise.

(Note: If ˛ <O !, then P .n/ must be †˛C1.)
2. If ˛ is a limit ordinal, then for every notation a for ˛, there is a sequence of

trees Tn, uniformly computable from the notation a and a †˛-index for P ,
such that for all n,

Tn Š

´
La
1 if :P .n/; and

La
k
for some k otherwise.

For the following two lemmas, we need to define a limb of a tree. We say that a tree
S is a limb of another tree T if S � T and every child in T of a node of S is in S

as well. A back-and-forth limb is a limb that is isomorphic to one of Hirschfeldt and
White’s back-and-forth trees.

Lemma 2.2 ([4, Lemma 3.4]) Let T be any tree. For each a 2 O , there is an
infinitary formula �a.x/ 2 L!1;! such that for any back-and-forth limb S of T with
root r ,

T ˆ �a.r/, rank.S/ D a:
Furthermore, “T ˆ �a.r/” is a…˛-condition for a computable structure T , where
˛ D jajO , and an index for �a.x/ can be found uniformly in a.

If S is a back-and-forth limb, then by definition it is isomorphic to Aa, Ea, La
1, or

La
k
for some a 2 O . We call the isomorphism type of S a back-and-forth index of

S and note that it can be viewed as a natural number (namely, the computable index
of the back-and-forth tree it is isomorphic to). Note that a back-and-forth limb may
have more than one rank, and more than one back-and-forth index, as there might be
distinct yet isomorphic back-and-forth trees. However, along a fixed path of O , the
ranks and back-and-forth indices are unique, and in such cases we may speak of “the
rank” and “the back-and-forth index.”

Definition 2.3 To each back-and-forth tree B, we associate a natural complexity
based on its back-and-forth index as follows. For n < !, En has natural complexity
†nC1 and An has natural complexity…nC1. For ˛ � !, E˛ has natural complexity
†˛ , A˛ has natural complexity …˛ , L˛

1 has natural complexity …˛ , and L˛
k
has

natural complexity †˛ .

Lemma 2.4 ([4, Lemma 3.5]) Let T be a tree, and let B be any back-and-forth
tree. Then there is an infinitary formula 'B.x/ 2 L!1;! such that for any back-and-
forth limb S of T which has root r and the same rank as B,

T ˆ

´
'B.r/ if S Š B; and
:'B.r/ otherwise.

Furthermore, for computable T , the complexity of T ˆ 'B.r/ is the natural com-
plexity of B, and an index for 'B.r/ can be found uniformly from the back-and-forth
index of B.



Degrees of Categoricity 221

We can use the above lemmas to see to what extent 0.˛/ can be used to compute
isomorphisms between back-and-forth trees.

Corollary 2.5 Let T be any computable tree, and let S be a back-and-forth limb
of T with .S/ <O a and root r . Then H.a/ can, uniformly in r , compute the
back-and-forth index of S .

Proof Recall that ¹b j b <O aº is c.e. By Lemma 2.2, for each b 2 O , T ˆ �b.r/

is a …jbjO -condition, so for b <O a, H.a/ can compute whether T ˆ �b.r/. As
T ˆ �b.r/ for some b <O a,H.a/ can compute b D .S/. Now, for each back-and-
forth tree B of rank b, by Lemma 2.4, T ˆ 'B.r/ has complexity …b or †b . In
either case, since b <O a,H.a/ can compute whether T ˆ 'B.r/ and thus compute
the back-and-forth index of S .

Corollary 2.6 Let S1 be a back-and-forth limb of a computable tree T1 with root
r1, and let S2 be a back-and-forth limb of a computable tree T2 with root r2. Suppose
that S1 Š S2 and rank.Si / �O a. Then H.a/ can, uniformly in r1 and r2, compute
an isomorphism f W S1 ! S2.

Proof This follows easily by Corollary 2.5 and recursive transfinite induction. In-
deed, suppose the result holds for all b <O a. Let ci1; ci2; : : : denote the children of
ri in Si . Note that sinceH.a/ �T ;0, certainlyH.a/ can uniformly compute the cij .
Since rank.Si / �O a, each cij is the root of a back-and-forth limb of rank <O a.
By Corollary 2.5,H.a/ can uniformly compute the back-and-forth index of the limb
with root cij , so H.a/ can bijectively match each c1j to some c2

k
with the same index

(since S1 Š S2). Then by the induction hypothesis, H.a/ can extend this bijection
to an isomorphism between S1 and S2.

3 Examples of Degrees of Categoricity

We begin by demonstrating that certain degrees in the hyperarithmetic hierarchy are
degrees of categoricity.

Theorem 3.1 For any a 2 O , there is a computable structure Sa with (strong)
degree of categoricityH.a/.

Proof We build the structures Sa for a 2 O by transfinite recursion. These struc-
tures will consist of infinitely many disjoint copies of the different kinds of back-
and-forth trees described in Section 2, though they will not be trees themselves. To
do this, we will describe the back-and-forth trees we want to use and then assign
elements of ! to the various parts of these trees by defining a set of edges that will
produce these trees. Note that, in fact, for any a 2 ! the procedure can be used to
build a computable structure Sa, where the structure has the desired form for each
a 2 O .

For each a 2 O , we will build a “standard” copy of Sa as well as a “hard” but still
computable copy bSa such that any isomorphism between Sa and bSa will compute
H.a/.

First, we consider the case a D 2. Let S2 consist of infinitely many disjoint copies
of A1 and E1, and fix an approximation ¹Ksºs2! to 00. We define the set of edges of
the standard copy S2 to be ®

.h2n; 0i; h2n; ki/
ˇ̌
k > 0

¯
;



222 Csima, Franklin, and Shore

so the substructure consisting of the elements in an “even” column is isomorphic
to E1 (with h2n; 0i as the root node) and the elements in the “odd” columns are
not connected to any other elements and are thus, when considered as singletons,
substructures that are isomorphic to A1. Now we define the set of edges of the hard
copy, bS2, to be ®

.h2n; 0i; h2n; ti/
ˇ̌
n 2 Kt

¯
:

In bS2, the root nodes of copies of E1 are of the form h2n; 0i for n 2 K, and their
child nodes are of the form h2n; ti for those t where n 2 Kt . Elements coding pairs
of any other form will not be connected to any other elements and, when considered
as singletons, will be substructures isomorphic to A1. Let f W bS2 Š S2. Then
n 2 K ” f .h2n; 0i/ D h2m; 0i for some m.

Now we consider two arbitrary computable copies of S2. Since 00 can answer all
†1- and…1-questions, it can determine which elements of each are A1-components,
which are roots in E1-components, and which are children in E1-components, so it
is powerful enough to compute an isomorphism between these copies.

Now we consider the case of 2a where a D 2b for some b 2 O . In this case, let
S2a consist of infinitely many disjoint copies of Aa and Ea.

We now verify that S2a has degree of categoricity H.2a/. In the following dis-
cussion, we assume that jajO > !; the case where jajO is finite is similar but some
indices are off by one.

Since H.2a/ is †0
jajO

, using Proposition 2.1(1), we can build a computable copybS2a of S2a such that for every n, hn; 0i is a parent node of a tree isomorphic to
Ea if n 2 H.2a/ and a parent node of a tree isomorphic to Aa if n … H.2a/. We
have a standard copy of S2a where h2n; 0i is a parent node of a tree isomorphic to
Ea and h2n C 1; 0i is a parent node of a tree isomorphic to Aa for every n. Let
f W bS2a Š S2a . Then n 2 H.2a/ if and only if f .hn; 0i/ D h2k; 0i for some k.

Conversely, let B be an arbitrary computable copy of S2a . We describe anH.2a/-
computable isomorphism f W B ! S2a . It is a †1-question whether a vertex in B

has an edge going to it. Hence,H.2a/ can certainly compute the root nodes, ri , of all
the connected components of B. Each connected component is isomorphic to either
Ea or Aa, which both have rank a. By Corollary 2.5,H.2a/ uniformly computes the
back-and-forth index of the limb extending from each root node. Thus H.2a/ can
first define a bijection between the root nodes ri in B and the root nodes hi; 0i in S2a

that is back-and-forth index preserving. Then, by Corollary 2.6, H.2a/ can extend
this to an isomorphism B Š S2a .

Now we consider the case where a D 3 � 5e . Let Sa consist of infinitely many
disjoint copies of A'e.k/ and E'e.k/ for all k 2 !.

To make the hard copy, bSa, we proceed as follows. Using Proposition 2.1(1), let
hu; v; nC1; 0i be the parent node of a tree that is isomorphic to E'e.n/ if u �O 'e.n/
and v 2 H.u/ and isomorphic to A'e.n/ otherwise. Let hu; v; 0; 0i be the parent
node of a tree that is isomorphic to E'e.0/ if .9n/Œu �O 'e.n/� and isomorphic to
A'e.0/ otherwise. To make the standard copy, we let hk; n; 0i be the parent node of
a tree that is isomorphic to E'e.n/ if k is even and A'e.n/ if k is odd.

Let f W bSa Š Sa; we wish to use f to compute H.a/. First, compute
f .hu; v; 0; 0i/. If f .hu; v; 0; 0i/ is not of the form h2y; 0; 0i, then u 6<O a, so
hu; vi … H.a/. Otherwise, we know that u <O a, so we search for n such that



Degrees of Categoricity 223

u �O 'e.n/. Then we compute f .hu; v; n C 1; 0i/, which must have the form
hk; n; 0i for some k. We have hu; vi 2 H.a/ if and only if k is even.

Now we let B be an arbitrary computable copy of Sa. We describe an H.a/-
computable isomorphism f W B ! Sa. As before, H.a/ can certainly compute the
root nodes, ri , of all the connected components of B. Each connected component
is a back-and-forth tree of rank <O a. By Corollary 2.5, H.a/ uniformly computes
the back-and-forth index of the limb extending from each root node. Thus, as before,
H.a/ can first define a bijection between the root nodes ri in B and the root nodes
hk; n; 0i in Sa that is back-and-forth index preserving. Then, by Corollary 2.6,H.a/
can extend this to an isomorphism B Š Sa.

Finally, we consider the case of 2a where a D 3 � 5e . Let S2a consist of infinitely
many disjoint copies of La

1 and La
k
for all k < !. To make the standard copy, we let

hn; k; 0i be the parent node of a tree that is isomorphic to La
k
if n is even and La

1 oth-
erwise. H.2a/ is †0

jajO
. Using Proposition 2.1(2), we can build a computable copybS2a of S2a such that for every n, hn; 0i is a parent node of a tree isomorphic to La

k

for some k if n 2 H.2a/ and a parent node of a tree isomorphic to La
1 if n … H.2a/.

Let f W bS2a Š S2a . Then n 2 H.2a/ if and only if f .hn; 0i/ D h2l; k; 0i for some
l and k.

The argument that H.2a/ suffices to compute an isomorphism between arbitrary
computable presentations of S2a is as in the previous cases, since all connected com-
ponents are back-and-forth trees with rank <O 2a.

Now we can extend the set of known degrees of categoricity even further.

Theorem 3.2 Let ˛ be a computable successor ordinal. If d is 2-c.e. in and above
0.˛/, then d is a (strong) degree of categoricity.

Proof We build a graph G with degree of categoricity d. Let D 2 d be 2-c.e. in
and above 0.˛/, and let B and C be †0˛ sets such that C � B and D D B � C .
Let ¹Bkºk2! be an enumeration of B relative to 0.˛/. For each n 2 !, we will
make use of vertices labeled en

k
; an
k
; bn
k
; cn
k
; dn
k
for k 2 !, which will all belong

to a single connected component of the graph. We attach an .n C 4/-cycle to the
point en0 . We now use Proposition 2.1(1) to build two computable copies G and bG
of the graph. Since the description of the component for n is the same for each n,
we drop the superscript to ease notation. In both copies, we have edges .ek ; ekC1/,
.ek ; ak/, .ek ; bk/, .ek ; ck/, .ek ; dk/, .ak ; bk/, .bk ; ck/, .ck ; dk/, and .dk ; ak/ for all
k (Figure 5). In both copies, a0 will be a parent node of a tree isomorphic to E˛ and
c0 will be a parent node of a tree isomorphic to E˛ if n 2 C and A˛ otherwise. In
G , let b0 be a parent node of a tree isomorphic to E˛ if n 2 B and A˛ otherwise,
and let d0 be a parent node of a tree isomorphic to E˛ if n 2 C and A˛ otherwise
(Figure 6). In bG , we reverse the roles of b0 and d0 (Figure 7).

Now for k > 0, in both copies, we will make ak a parent node of a tree isomorphic
to E˛ and ck a parent node of a tree isomorphic to A˛ . In G , let bk be a parent node
of a tree isomorphic to E˛ if n 2 .BkC1 �Bk/\C and A˛ otherwise, and let dk be
a parent node of a tree isomorphic to A˛ (Figure 8). In bG , we reverse the roles of bk
and dk (Figure 9).

Finally, to guarantee that any isomorphism between G and bG will computeH.˛/,
we proceed as follows. We add a 3-cycle and a copy of S˛ built the “standard” way



224 Csima, Franklin, and Shore

a0

��

d0oo a1

��

d1oo

b0 // c0

OO

b1 // c1

OO

e0

ee 99

\\ BB

//

yy

e1

`` >>

WW GG

// : : :

.nC 4/-cycle

66

Figure 5 Basic structure of the nth connected component of G and bG .

E˛
E˛ if n 2 C
A˛ otherwise

a0

��

gg

d0oo

77

b0 //

ww

c0

OO

''
E˛ if n 2 B
A˛ otherwise

E˛ if n 2 C
A˛ otherwise

Figure 6 G .

E˛
E˛ if n 2 B
A˛ otherwise

a0

��

gg

d0oo

77

b0 //

ww

c0

OO

''
E˛ if n 2 C
A˛ otherwise

E˛ if n 2 C
A˛ otherwise

Figure 7 bG .



Degrees of Categoricity 225

E˛ A˛

ak

��

aa

dkoo

==

bk //

}}

ck

OO

!!
E˛ A˛

Figure 8 G for k > 0 if n 2 .BkC1 � Bk/ \ C .

E˛ E˛

ak

��

aa

dkoo

==

bk //

}}

ck

OO

!!
A˛ A˛

Figure 9 bG for k > 0 if n 2 .BkC1 � Bk/ \ C .

to G with edges from each node of the 3-cycle to the root node of S˛ . We do the
same for bG , but we use a copy of bS˛ built the “hard” way instead. These 3-cycles
must be matched up by any isomorphism between these structures, which means that
such an isomorphism must be able to map a “standard” copy of S˛ to a “hard” copy.

Note that in any computable copy of the structure, for each n, the points isomor-
phic to e0; e1; e2; : : : are computable, as are the 4-cycles emanating from them. Each
member of such a 4-cycle is a parent node of a tree isomorphic to either E˛ or A˛ ,
and an isomorphism of two copies of the structure matches these up correctly.

Let p be an isomorphism between G and bG . This means that p must be able
to compute H.˛/, since it can compute an isomorphism between the 3-cycles with
copies of S˛ and bS˛ attached to them.

Now if p.a0/ D a0, then either n 2 C (in which case n … D) or n … B (in which
case n … D as well). Therefore, if p.a0/ D a0, then n … D. If p.a0/ 6D a0, then
n 2 B . This means that n 2 D if and only if n … C . Since p computes H.˛/ and
n 2 B , p computes the k such that n 2 BkC1 � Bk . Then n 2 D if and only if
p.ak/ D ak .



226 Csima, Franklin, and Shore

E˛ A˛

a0

��

aa

d0oo

==

b0 //

}}

c0

OO

!!
A˛ A˛

Figure 10 G and bG if n … B .

E˛ E˛

a0

��

``

d0oo

>>

b0 //

~~

c0

OO

  
E˛ E˛

Figure 11 Copy 1 and copy 2 if n 2 C .

Conversely, we claim that, given arbitrary computable copies of the structures,D
can compute an isomorphism between them. Note that the limbs of E˛ and A˛ all
have rank ˛ � 1, so by Corollary 2.5,H.˛/ can compute the back-and-forth index of
limbs of the trees attached to any of ak ; bk ; ck ; dk in either copy. Moreover, E˛ has
A˛ as a proper substructure; that is, any back-and-forth index of a limb of A˛ also
occurs as the back-and-forth index of a limb of E˛ , but not conversely. Thus the fact
that a tree attached to some node is E˛ (and not A˛) is c.e. inH.˛/.

If n … D, then there are two possibilities: either n is not in B (and therefore,
not in C ) or n is in both B and C . In the first case, exactly one of the nodes a0,
b0, c0, and d0 (in fact, a0) is a parent node of a tree isomorphic to E˛ (Figure 10).
In the second case, all of these nodes are parent nodes of a tree isomorphic to E˛
(Figure 11). Now, by Corollary 2.5, we can use H.˛/ to find at least one E˛ parent
node in each copy and match these up, applying Corollary 2.5 to match up limbs of
the E˛ with the same back-and-forth index, and Corollary 2.6 to (uniformly) extend
these to isomorphisms of the limbs. The rest of the four nodes can then be safely
matched up, using the same procedure to construct the isomorphism, assuming they
are all copies of A˛—if at some point it turns out that one is an E˛ and not an A˛ ,



Degrees of Categoricity 227

E˛ A˛

a0

��

aa

d0oo

==

b0 //

}}

c0

OO

!!
E˛ A˛

Figure 12 Copy 1 if n 2 B and n … C .

E˛ E˛

a0

��

aa

d0oo

==

b0 //

}}

c0

OO

!!
A˛ A˛

Figure 13 Copy 2 if n 2 B and n … C .

then they all are. If n 2 D, then exactly two of the nodes a0, b0, c0, and d0 are parent
nodes of a tree isomorphic to E˛ (Figures 12 and 13); H.˛/ can find these in each
copy and match them up.

For k > 0, exactly one or two of the nodes ak ; bk ; ck ; dk are parent nodes of a tree
isomorphic to E˛ . The only way that there are two is if n 2 .BkC1 �Bk/\C . Now
H.˛/ and hence D can compute whether n 2 BkC1 � Bk , and if n 2 BkC1 � Bk ,
then n 2 C if and only if n … D. Therefore,D can compute whether there are one or
two copies of E˛ with parent nodes among ak ; bk ; ck ; dk , and H.˛/ can find these
in each copy and match them up.

We conclude by observing that since D �T H.˛/, D can compute an isomor-
phism between the copies of S˛ attached to the 3-cycle in each copy.

4 General Properties of Degrees of Categoricity

Fokina, Kalimullin, and Miller [2] showed that any strong degree of categoricity is
hyperarithmetic. The effective perfect set theorem is the main ingredient in their
proof ([2, Theorem 6.3]). Here, we strengthen their result and show that every de-
gree of categoricity is hyperarithmetic. We then go on to show that the index set of
structures that have a degree of categoricity is actually…1

1-complete.



228 Csima, Franklin, and Shore

Theorem 4.1 If d is a degree of categoricity, then d 2 HYP.

Proof Let d … HYP, and let A be any computable structure. We will show that d
is not a degree of categoricity for A. Let A0, A1, A2; : : : be a list of all computable
copies of A. Note that ¹f j f W A0 Š A1º is …0

2, so it is certainly †11. Hence by
Kreisel’s basis theorem [7], there exists an isomorphism f1 W A0 Š A1 such that
d 6�h f1. Suppose that we are given isomorphisms fi W A0 Š Ai for 1 � i � n such
that d 6�h f1˚� � �˚fn. Then by Kreisel’s basis theorem relativized to f1˚� � �˚fn,
there exists an isomorphism fnC1 W A0 Š AnC1 such that d 6�h f1 ˚ � � � ˚ fnC1.
Now let a;b be an exact pair for the sequence f1; f1˚f2; f1˚f2˚f3; : : : . Since fn
is an isomorphism between A0 and An, both a and b can compute an isomorphism
between any two arbitrary computable copies of A. Therefore, if d is a degree of
categoricity for A, then d � a and d � b. However, since a;b is an exact pair,
d �T f1 ˚ � � � ˚ fn for some n, giving us a contradiction.

Now we consider the complexity of the index set of structures that have a degree of
categoricity. Let A0;A1;A2; : : : be a list of the partial computable structures.

Theorem 4.2 The index set DC D ¹e j Ae has a degree of categoricityº is …1
1-

complete.

Proof We begin by giving the natural formula  .e/ that expresses that the struc-
ture Ae has a degree of categoricity, that is, the formula

.9D/
®
.8i/Œ.9F /.F W Ae Š Ai /! .9 OF �T D/. OF W Ae Š Ai /� &

.8C/Œ.8i/Œ.9F /.F W Ae Š Ai /! .9 OF �T C/. OF W Ae Š Ai /�

! D �T C �
¯
:

We note that  .e/ is †12. However, by Theorem 4.1, we know that any degree of
categoricity is hyperarithmetic. Thus many of the existential quantifiers in  can be
bounded by HYP without changing the meaning of the formula. That is, we have the
following formula O .e/ expressing that Ae has a degree of categoricity.

.9D 2 HYP/
®
.8i/Œ.9F /.F W Ae Š Ai /! .9 OF �T D/. OF W Ae Š Ai /� &

.8C/Œ.8i/Œ.9F 2 HYP/.F W Ae Š Ai /! .9 OF �T C/. OF W Ae Š Ai /�

! D �T C �
¯

We observe that this formula is …1
1: quantifiers like 9D 2 HYP can be written

as …1
1-formulas, and quantifiers like 9 OF �T D are arithmetic. Furthermore, we

note that we can write 9F 2 HYP in the second half of the conjunction instead
of simply 9F because we require D to be in HYP and because the first half of the
conjunction states that there is an isomorphism from Ae to Ai that is computable
from D. Therefore, O .e/ is equivalent to  .e/. Now we only need to show that the
set DC is…1

1-complete.
For each a 2 !, we will, uniformly in a, define a computable structure Ra.

If a 2 O , then Ra will have a degree of categoricity. If a … O , then Ra will
have distinguishable computable substructures with degrees of categoricityH.b/ for
b’s in O of rank unbounded in !CK1 . Thus Ra itself does not have a degree of
categoricity by Theorem 4.1.

We begin with a folklore reduction that can be found in White [9, Proposi-
tion 5.4.1]. There is a recursive function f such that if a 2 O , then f .a/ is an index



Degrees of Categoricity 229

for a recursive linear ordering of type ˛ < !CK1 and if a … O , then f .a/ is an index
for a recursive linear ordering of type !CK1 .1 C �/ (the Harrison linear ordering).
We then apply a standard translation g of a recursive linear order into a recursive
notation system �g.e/ as can be found in Rogers [6, Theorem 11.8.XX]. This trans-
lation takes an index e for a recursive well-ordering to a recursive notation system in
O of limit ordinal length (actually ! times the length of the original ordering) and
one for a linear order of type !CK1 .1 C �/ to a recursive notation system (although
not a well-founded one) with a well-founded initial segment that is a path in O of
type !CK1 .

Let Ra be a disjoint labeled union of the Sb for each b in the notation system
g.f .a//; that is, there is a .b C 3/-cycle with a copy of Sb attached to a node in
the cycle. Note that since the notation system is recursive and each Sb is uniformly
computable (in b), Ra is computable. Note that we can build “standard” and “hard”
copies of Ra by using (for any b 2 O) the standard copies of Sb in the standard copy
of Ra and the hard copies bSb in the hard copy bRa of Ra. Since for each b in the
system, the copy of Sb in Ra is labeled by a .bC3/-cycle, it is easy to see that for any
b 2 O in the system, any isomorphism f W bRa ! Ra computes H.b/. If a 2 O ,
then the notation system is an initial segment of O of length some limit notation
c 2 O . By the uniformities of all our constructions, it is easy to see that H.c/ can
always compute an isomorphism between any two copies of Ra. On the other hand,
the uniform replacement of the Sb by hard and easy ones produces copies such that
any isomorphism uniformly computes H.b/ for every b <O c, and so computes
H.c/. Hence if a 2 O , Ra has degree of categoricity H.c/. On the other hand, if
a … O , then the system includes initial segments of a path inO of length !CK1 . Thus
Ra includes distinguishable copies of Sb for b of rank unbounded in !CK1 . Again
we can build “easy” and “hard” copies of Ra by using “easy” and “hard” copies
of the Sb as appropriate. We then see that any degree of categoricity of Ra must
compute H.b/ for each b in the system g.f .a//. As these are of unbounded rank,
it follows that the degree of categoricity cannot be hyperarithmetic, contradicting
Theorem 4.1.

5 Further Questions

Although we have answered some questions arising from Fokina, Kalimullin, and
Miller’s work, several questions still remain.

Question 5.1 Is every degree that is n-c.e. in and above a degree of the form 0.˛/
for a computable ordinal ˛ and some n < ! a (strong) degree of categoricity?

Fokina, Kalimullin, and Miller answered the above, in the affirmative and for strong
degrees, for all ˛ � ! and n � 2. In this paper, we have extended the result for
n � 2 and all computable successor ordinals ˛. For n D 2 the question is open for
limit ordinals, and for n > 2 it is open for any computable ˛.

So far, every known degree of categoricity is 2-c.e. in and above some degree of
the form 0.˛/ for ˛ < !CK1 .

Question 5.2 Is there a degree of categoricity that is not n-c.e. in and above a
degree of the form 0.˛/ for a computable ordinal ˛ and some n < !?

Finally, the question of whether the degrees of categoricity are precisely the strong
degrees of categoricity are the same is still open.



230 Csima, Franklin, and Shore

Question 5.3 Is every degree of categoricity a strong degree of categoricity?

Theorem 4.1 tells us that we can limit our search for a counterexample to the hyper-
arithmetic case and provides some evidence that these degrees are the same, but no
more.

Along similar lines, but with a view toward the structures, one might ask the
following.

Question 5.4 Does there exist a structure which has a degree of categoricity that
is not a strong degree of categoricity for that structure?

References

[1] Ash, C. J., and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy,
vol. 144 of Studies in Logic and the Foundations of Mathematics, North-Holland, Ams-
terdam, 2000. Zbl 0960.03001. MR 1767842. 216, 217

[2] Fokina, E. B., I. Kalimullin, and R. Miller, “Degrees of categoricity of computable struc-
tures,” Archive for Mathematical Logic, vol. 49 (2010), pp. 51–67. Zbl 1184.03026.
MR 2592045. DOI 10.1007/s00153-009-0160-4. 216, 227

[3] Harizanov, V. S., “Pure computable model theory,” pp. 3–114 in Handbook of Recursive
Mathematics, Vol. 1, vol. 138 of Studies in Logic and the Foundations of Mathematics,
North-Holland, Amsterdam, 1998. MR 1673621. DOI 10.1016/S0049-237X(98)80002-
5. 216

[4] Hirschfeldt, D. R., and W. M. White, “Realizing levels of the hyperarithmetic hi-
erarchy as degree spectra of relations on computable structures,” Notre Dame Jour-
nal of Formal Logic, vol. 43 (2002), pp. 51–64. Zbl 1048.03035. MR 2033315.
DOI 10.1305/ndjfl/1071505769. 216, 217, 219, 220

[5] Marker, D., “Non †n axiomatizable almost strongly minimal theories,” Journal of Sym-
bolic Logic, vol. 54 (1989), pp. 921–27. MR 1011179. DOI 10.2307/2274752. 216

[6] Rogers Jr., H., Theory of Recursive Functions and Effective Computability, McGraw-Hill
Book Co., New York, 1967. Zbl 0256.02015. MR 0224462. 229

[7] Sacks, G. E., Higher Recursion Theory, Perspectives in Mathematical Logic, Springer,
Berlin, 1990. Zbl 0716.03043. MR 1080970. DOI 10.1007/BFb0086109. 216, 228

[8] Soare, R. I., Recursively Enumerable Sets and Degrees: A Study of Computable Functions
and Computably Generated Sets, Perspectives in Mathematical Logic, Springer, Berlin,
1987. MR 0882921. 216

[9] White, W. M., Characterizations for Computable Structures, Ph.D. dissertation, Cornell
University, Ithaca, N.Y., 2000. MR 2700906. 228

Acknowledgments

B. Csima was partially supported by Natural Science and Engineering Research Coun-
cil of Canada Discovery grant 312501. R. Shore was partially supported by National
Science Foundation grants DMS-085281 and DMS-1161175 and John Templeton Foun-
dation grant 13408. This project was started by B. Csima and R. Shore while the former
was visiting MIT, and we thank them for their hospitality. B. Csima would also like to
thank the Max Planck Institute for Mathematics in Bonn, Germany for a productive visit.

http://www.emis.de/cgi-bin/MATH-item?0960.03001
http://www.ams.org/mathscinet-getitem?mr=1767842
http://www.emis.de/cgi-bin/MATH-item?1184.03026
http://www.ams.org/mathscinet-getitem?mr=2592045
http://dx.doi.org/10.1007/s00153-009-0160-4
http://www.ams.org/mathscinet-getitem?mr=1673621
http://dx.doi.org/10.1016/S0049-237X(98)80002-5
http://dx.doi.org/10.1016/S0049-237X(98)80002-5
http://www.emis.de/cgi-bin/MATH-item?1048.03035
http://www.ams.org/mathscinet-getitem?mr=2033315
http://dx.doi.org/10.1305/ndjfl/1071505769
http://www.ams.org/mathscinet-getitem?mr=1011179
http://dx.doi.org/10.2307/2274752
http://www.emis.de/cgi-bin/MATH-item?0256.02015
http://www.ams.org/mathscinet-getitem?mr=0224462
http://www.emis.de/cgi-bin/MATH-item?0716.03043
http://www.ams.org/mathscinet-getitem?mr=1080970
http://dx.doi.org/10.1007/BFb0086109
http://www.ams.org/mathscinet-getitem?mr=0882921
http://www.ams.org/mathscinet-getitem?mr=2700906


Degrees of Categoricity 231

Csima
Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
csima@math.uwaterloo.ca

Franklin
Department of Mathematics
University of Connecticut
Storrs, Connecticut 06269-3009
USA
johanna.franklin@uconn.edu

Shore
Cornell University
Ithaca, New York 14853-4201
USA
shore@math.cornell.edu

mailto:csima@math.uwaterloo.ca
mailto:johanna.franklin@uconn.edu
mailto:shore@math.cornell.edu

	1 Introduction
	1.1 Notation and conventions

	2 Hirschfeldt and White's ``Back-and-Forth Trees''
	3 Examples of Degrees of Categoricity
	4 General Properties of Degrees of Categoricity
	5 Further Questions
	References
	Acknowledgments
	Author's addresses

