
Notre Dame Journal of Formal Logic
Volume 53, Number 4, 2012

Generic Expansions of Countable Models

Silvia Barbina and Domenico Zambella

Abstract We compare two different notions of generic expansions of countable
saturated structures. One kind of genericity is related to existential closure, and
another is defined via topological properties and Baire category theory. The
second type of genericity was first formulated by Truss for automorphisms. We
work with a later generalization, due to Ivanov, to finite tuples of predicates and
functions.

Let N be a countable saturated model of some complete theory T , and let
.N; �/ denote an expansion of N to the signature L0 which is a model of some
universal theory T0. We prove that when all existentially closed models of T0
have the same existential theory, .N; �/ is Truss generic if and only if .N; �/ is
an e-atomic model. When T is !-categorical and T0 has a model companion
Tmc, the e-atomic models are simply the atomic models of Tmc.

1 Introduction

In model theory there are two main notions of a generic automorphism of a structure.
In some cases, the automorphisms that one obtains through these notions are similar
enough that it is natural to ask whether, and how, they are related.

Let T be a theory with quantifier elimination in a language L. Let L0 D L[¹f º,
where f is a unary function symbol. Let T0 be T together with the sentences which
say that f is an automorphism. For a modelM of T and f 2 Aut.M/, we say that
f is generic if .M; f / is an existentially closed (e.c.) model of T0 (see Kikyo [11]).

This notion of genericity first appeared in [15], where Lascar constructs some
models of T0 that have certain properties of universality and homogeneity. Later this
became relevant to work on expansions of structures via an automorphism, mainly in
the case of algebraically closed fields (see Chatzidakis and Hrushovski [3], Chatzi-
dakis and Pillay [4]). In a series of papers (notably [4]; see also, e.g., [11], Ku-
daibergenov and Macpherson [13], Baldwin and Shelah [1]) conditions are given for
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T0 to have a model companion Tmc, describing the best case scenario where the e.c.
models of T0 are an elementary class.

A second notion of genericity was introduced by Truss in [19]. An automorphism
of a countable structureM is Truss generic if its conjugacy class is comeager in the
canonical topology on the automorphism group Aut.M/. More generally, a tuple
.f1; : : : ; fn/ 2 Aut.M/n is generic in this sense if ¹.f g1 ; : : : ; f

g
n / W g 2 Aut.M/º

is comeager in the product space Aut.M/n. The intuition underlying this definition
is that a generic automorphism should exhibit any finite behavior that is consistent
in the structure, modulo conjugacy. This is reminiscent of an existential closure
condition and suggests that a comparison with genericity à la Lascar is meaningful.
Several related notions of generic automorphism are described—and the relationship
among some of them is investigated—in Truss [20].

Truss generic automorphisms populate rather different habitats. Generic tuples
are a useful tool in the two main techniques for reconstructing !-categorical struc-
tures from their automorphism group, namely, the small index property (see Las-
car [14]) and Rubin’s weak 89-interpretations in [18] (see, e.g., Hodges et al. [7],
Barbina and Macpherson [2] for specific applications of Truss generics). The ex-
istence of a comeager conjugacy class is interesting in its own right: for an !-
categorical structure M , it implies that Aut.M/ cannot be written nontrivially as a
free product with amalgamation (see Macpherson and Thomas [16]). Ivanov [9] iso-
lates conditions under which a countable !-categorical structure has a Truss generic
automorphism or tuple. In [10], Kechris and Rosendal isolate conditions of this kind
in the more general case of countable homogeneous structures and prove a wealth of
topological consequences in Polish groups.

Ivanov generalizes Truss genericity so that it applies to predicates and indeed to
arbitrary finite signatures (see [9]). His work concerns generic expansions of !-
categorical structures. One application is to the semantics of generalized quantifiers
in the context of second-order logic. Lascar genericity, too, applies to predicates:
in [4] the authors show that for a complete L-theory T , L0 D L [ ¹rº, where r is a
unary relation and T0 D T , T0 has a model companion if and only if T eliminates
the 91-quantifier. Therefore it makes sense to extend the comparison to expansions
of a structure by a finite tuple of predicates and functions, rather than simply by an
automorphism.

In [9] the structures considered are models of !-categorical theories. In [10]
they are locally finite ultrahomogeneous structures. In order to provide a suitable
framework for a comparison with generics à la Lascar, we require the base theory T
to be small and to have quantifier elimination. The latter assumption is not essential
but it streamlines a few definitions and it is standard in [4], [11], and Kikyo and
Shelah [12]. We consider an expansion T0 of T in a language where finitely many
predicate and function symbols are added. When L0 D L[¹f º, where f is a unary
function symbol and T0 says that f is an automorphism, the setting is as in [4], [11],
and [12]. For our main results we require the e.c. models of T0 to have the same
existential theory. (This is true in particular when T0 has a model companion which
is a complete theory.) While this assumption is more restrictive than in [10] and,
modulo !-categoricity, [9], it allows us to replace Fraïssé limits with existentially
closed models.

We work with a given countable saturated model N ˆ T , and we consider the
set Exp.N; T0/ of expansions of N that model T0. We endow Exp.N; T0/ with the
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topology in [9], a natural generalization of the canonical topology on Aut.N /, which
makes Exp.N; T0/ a Baire space.

In Section 2 we define a subspace of Exp.N; T0/ which will later turn out to con-
tain the Truss generic expansions. We define a set of “slightly saturated” expansions
of N which we call smooth. A smooth expansion of N realizes all the types of the
form

p�L.x/ [
®
'.x/

¯
; (�)

where p�L.x/ is a type in the base languageL and '.x/ is a quantifier-free formula in
the expanded language L0. We prove that smooth expansions are a comeager subset
of Exp.N; T0/. The set of e.c. expansions is also comeager, so that the smooth e.c.
expansions form a Baire space in their own right.

In Section 3 we define e-atomic expansions. An e-atomic expansion is existen-
tially closed, smooth, and only realizes p.x/ if p�8.x/[p�9.x/ is isolated by types
of the form 9yq.x; y/, where q.x; y/ is as in (�). We show that the e-atomic ex-
pansions are exactly the expansions that are generic in the sense of [19]. When T is
!-categorical and Tmc exists, this amounts to showing that the Truss generic expan-
sions are the atomic models of Tmc.

Our original purpose was to describe the role of Truss generic automorphisms
among existentially closed models of T0 when T0 is as in [4]. While both [9] and [10]
work within the framework of amalgamation classes, our motivation led to a differ-
ent approach and, occasionally, to some duplication of results in [9] and [10] under
different assumptions. However, we have kept our version as it is functional to our
comparison between notions of genericity.

As remarked by the anonymous referees, some of our results appear with different
terminology in Hodges [5], where the approach is that of Robinson forcing, so that
“enforceable” corresponds to “comeager” in our context. For a smoother comparison
with [5] one should take our L to be empty and let T be the theory of a pure infinite
set. The Henkin constants play the role of the model N in our context. Then the
notion of 9-atomic model translates to our e-atomic. With this dictionary in mind,
the reader may compare Lemma 2.4 with Corollary 3.4.3 of [5] and Theorem 3.6
with Theorem 4.2.6 (cf. also Theorem 5.1.6) of [5].

2 Baire Categories of First-Order Expansions

Let T be a complete theory with quantifier elimination in the countable language
L. Let L0 be the language L enriched with finitely many new relation and function
symbols. We shall denote a structure of signature L0 by a pair .N; �/, where N is a
structure of signature L and � is the interpretation of the symbols in L0 X L.

Let T0 be any theory of signature L0 containing T . We define
Exp.N; T0/ WD

®
� W .N; �/ ˆ T0

¯
:

We write Exp.N / for Exp.N; T /.
There is a canonical topology on Exp.N / (cf. [9]) which makes it a Baire space.

The purpose of this section is to define a subspace Y of Exp.N /, that of smooth,
e-atomic expansions, which is itself a Baire space and which in Section 3 proves
significant for the relationship between Truss and Lascar generic expansions.

For a sentence ' with parameters in N we define Œ'�N WD ¹� W .N; �/ ˆ 'º.
The topology on Exp.N / is generated by the open sets of the form Œ'�N , where ' is
quantifier free. When N is countable, this topology is completely metrizable: fix an
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enumeration ¹ai W i 2 !º of N , and define d.�; �/ D 2�n, where n is the largest
natural number such that for every tuple a in ¹a0; : : : ; an�1º and any symbols r; f in
L0 X L,

a 2 r� , a 2 r� and f � .a/ D f � .a/;

where r� is the interpretation of r in .N; �/. When such an n does not exist,
d.�; �/ D 0.

The reader may easily verify that this metric is complete. We check that it induces
the topology defined above. Fix n and � . Let ' be the conjunction of the formulas
of the form fa D b and ra which hold in .N; �/ for some b 2 N and some tuple a
from ¹a0; : : : ; anº. Then

Œ'�N D
®
� W d.�; �/ < 2�n

¯
:

Conversely, let ' be a quantifier-free sentence with parameters in N , and take an
arbitrary � 2 Œ'�N . Let A be the set of parameters occurring in '. Let n be large
enough that®

t � .a/ W a � A and t is a subterm of a term appearing in '
¯
� ¹a0; : : : ; an�1º:

Clearly .N; �/ ˆ ' for any � at distance < 2�n from � , so®
� W d.�; �/ < 2�n

¯
� Œ'�N ;

as required.
If g W M ! N is an isomorphism and � 2 Exp.M/ we write �g for the unique

expansion of N that makes g W .M; �/ ! .N; �g/ an isomorphism. Explicitly, for
every predicate r , every function f in L0 X L, and every tuple a 2 N ,

.N; �g/ ˆ ra, .M; �/ ˆ rg�1a;

.N; �g/ ˆ fa D b , .M; �/ ˆ fg�1a D g�1b:

We write T0;8 for the set of consequences of T0 that are universal modulo T (i.e.,
equivalent to a universal sentence in every model of T ). Then

Exp.N; T0/ � Exp.N; T0;8/ � Exp.N /:

Notation 2.1 For the rest of this section we assume T to be small and fix some
N , a countable saturated model of T . We shall often avoid the distinction between
the expansion � 2 Exp.N / and the model .N; �/.

Lemma 2.2 Let T0 be an arbitrary expansion of T to the signature L0. Then
Exp.N; T0;8/ is the closure of Exp.N; T0/ in the above topology.

Proof Let � 2 Exp.N; T0;8/. We claim that � is adherent to Exp.N; T0/. Let
Œ'�N be an arbitrary basic open set containing � . As .N; �/ models the universal
consequences of T0, there exists some .N 0; � 0/ ˆ T0 such that .N; �/ � .N 0; � 0/.
Let A � N be the set of parameters occurring in '. We may assume that N 0 is
countable and saturated (in L); therefore by quantifier elimination (q.e.) in L it is
isomorphic to N over A, so Œ'�N contains some element of Exp.N; T0/.

Conversely, suppose that � … Exp.N; T0;8/. Then for some parameter- and
quantifier-free formula '.x/ we have T0 ` 8x'.x/ and .N; �/ ˆ :'.a/. Then
the open set Œ:'.a/�N separates � from Exp.N; T0/.
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Notation 2.3 For the rest of this section we fix a theory T0 that is universal mod-
ulo T , so that, by Lemma 2.2, Exp.N; T0/ is a closed subset of Exp.N /; hence it is
complete (as a metrizable space). If not otherwise specified, expansions � , �; and so
on, range over Exp.N; T0/.

We say that � is existentially closed, or e.c., if every quantifier-free L0-formula with
parameters in N that has a solution in some .U; �/, such that .N; �/ � .U; �/ ˆ T0,
has a solution in .N; �/.

Lemma 2.4 The set of existentially closed expansions is comeager in Exp.N; T0/.

Proof Let  .x/ be a quantifier-free formula with parameters in N . We show that
the following set is open dense:®

� W .N; �/ ˆ 9x .x/
¯

[
®
� W .U; �/ ² 9x .x/ for every .N; �/ � .U; �/ ˆ T0

¯
: (?)

The set of existentially closed expansions is the intersection of these sets as  .x/
ranges over the quantifier-free formulas of L0. So the lemma follows.

It is clear that the first set in (?) above is a union of basic open sets. For
openness of the second set, suppose that � is such that there is no extension
.U; �/ � T0 [ ¹9x .x/º. Then Diag.N; �/ [ T0 [ ¹9x .x/º is inconsistent, and
hence by compactness there is � 2 Diag.N; �/ such that T0 ˆ � ! :9x .x/.
Then Œ��N is a neighborhood of � contained in the second set in (?).

For density, fix a basic open Œ'�N , and consider the theory T0[¹' ^9x .x/º. If
this theory is inconsistent, then Œ'�N is contained in the second set in (?). Otherwise
it has a model .U; �/. As U can be chosen to be countable andL-saturated, by q.e. in
L there is anL-isomorphism g W U 7! N which fixes the parameters of '^9x .x/.
Then  .x/ has a solution in .U g ; �g/; hence the first set in (?) intersects Œ'�N
in �g .

Example 2.5 Let T be any complete small theory with quantifier elimination in
the language L. Let L0 XL contain only a unary relation symbol r , and let T0 D T .
In [4] the authors prove that if T eliminates the 91-quantifier, then T0 has a model
companion Tmc. By Lemma 2.4, Exp.N; Tmc/ is comeager.

Example 2.6 Let T and L be as in Example 2.5. Let L0 X L contain two unary
function symbols f and f �1, and let T0 be T together with a sentence which says
that f is an automorphism with inverse f �1. We need a symbol for the inverse of
f because we want T0 to be universal. It is considerably more difficult than in Ex-
ample 2.5 to find a condition which guarantees the existence of a model companion
of T0 (see [1]). An important example where the model companion of T0 exists is
the case where T is the theory of algebraically closed fields (see [3]). Then Tmc
is also known as ACFA. Let N be a countable algebraically closed field of infinite
transcendence degree. By Lemma 2.4, Exp.N; Tmc/ is comeager.

Definition 2.7 We say that � is a smooth expansion if .N; �/ realizes every
finitely consistent type of the form p�L.x/ ^  .x/, where  .x/ is quantifier free
and p�L.x/ is a type in L with finitely many parameters.

When T is !-categorical, any expansion is smooth. For an example of an expansion
that is not smooth, let T be the theory of the algebraically closed fields of some fixed
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characteristic, and let N be an algebraically closed field of infinite transcendence
degree. Expand N by a relation r.x/ which holds exactly for the elements of acl.¿/.
Then .N; r/ is not smooth.

Lemma 2.8 The set of smooth expansions is comeager in Exp.N; T0/.

Proof The set of smooth expansions is the intersection of sets of the form A [ B ,
where

A D
®
� W .N; �/ ˆ 9xŒp�L.x/ ^  .x/�

¯
;

B D
®
� W p�L.x/ ^  .x/ is not finitely consistent in .N; �/

¯
;

and p�L.x/ ^  .x/ range over the types as in Definition 2.7. As T is small, there
are countably many of these sets. Let

C D
®
� W Diag.N; �/ [ T0 [ ¹9xŒ�.x/ ^  .x/� W �.x/ 2 p�L.x/º is inconsistent

¯
;

and observe that C � B , so the lemma follows if we prove that A[C is open dense.
For openness we argue as in Lemma 2.4. For density, take a basic open Œ'�N , and

consider the theory

S D T0 [ ¹'º [
®
9xŒ�.x/ ^  .x/� W �.x/ 2 p�L.x/

¯
:

If S is inconsistent, then Œ'�N is contained in C . Otherwise, by compactness, S has
a model .U; �/, where p�L.x/ ^  .x/ has a solution b. As U can be chosen to be
countable and L-saturated, by q.e. there is an L-isomorphism g W U ! N that fixes
the parameters of p�L.b/ ^ ' ^  .b/. Then b is a solution of p�L.x/ ^  .x/ in
.N; �g/ as well; therefore �g 2 A \ Œ'�N .

We shall write Y for the set of existentially closed smooth expansions of N . From
Lemmas 2.4 and 2.8 we know that Y is a comeager subset of Exp.N; T0/. We
may regard Y as a Polish space in its own right with the topology inherited from
Exp.N; T0/. When T is !-categorical, Y is simply the set of e.c. models of T0.

3 Truss Generic Expansions

The notation is as in Notation 2.1 and 2.3. When developing the results in this section
we originally had in mind the case when T0 has a model companion Tmc which is
a complete theory. These assumptions are motivated by the conditions described
in [4], and they make the comparison between Truss generic and Lascar generic
automorphisms rather neat. However, our results hold in the more general case where
all existentially closed models of T0 have the same existential theory, so this will be
the underlying assumption. If '.x; y/ is a quantifier-free formula in L0 and p.x; y/
is a parameter-free type in L, then in every smooth model the infinitary formula
9yŒp.x; y/ ^ '.x; y/� is equivalent to a type. Infinitary formulas of this form are
called existential quasifinite.

Let b be a finite tuple in N . For any ˛ 2 Y we define the 1-diagram of ˛ at b,

diag�1.˛; b/ WD
®
'.b/ W '.x/ is universal or existential and .N; ˛/ ˆ '.b/

¯
;

and write Db for the set of 1-diagrams at b. On Db we define a topology whose
basic open sets are of the form

Œ�.b/�D D
®
diag�1.˛; b/ W .N; ˛/ ˆ �.b/

¯
;
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where �.x/ is any existential quasifinite formula. When diag�1.˛; b/ is an isolated
point ofDb , we say that it is e-isolated inDb .

It is sometimes convenient to use the syntactic counterpart of Db which we now
define. If p.x/ is a complete L0-type, we write p�8.x/, respectively, p�9.x/, for
the set of universal, respectively, existential, formulas in p.x/. We write p�1.x/ for
p�8.x/ [ p�9.x/. We say that a type is realized in Y if it is realized in some .N; �/
with � 2 Y . Let SYx be the set of types of the form p�1.x/, where p.x/ is some
complete parameter-free type realized in Y . On SYx define the topology where the
basic open sets are of the form

Œ�.x/�S D
®
q�1.x/ W �.x/ � q.x/

¯
;

where �.x/ is some existential quasifinite formula, and where q.x/ ranges over the
parameter-free types realized in Y . When Œ�.x/�S isolates p�1.x/ in SYx , we say that
p.x/ is e-isolated by �.x/.

Lemma 3.1 Let b be a tuple in N , and let p�L.x/ be the parameter-free type of
b in the language L. There is a homeomorphism h W Db ! Œp�L.x/�S . For every
existential quasifinite formula �.x/ containing p�L.x/, the image under h of the set
Œ�.b/�D is the set Œ�.x/�S .

Proof Let h be the map that takes diag�1.˛; b/ to the type®
'.x/ W '.b/ 2 diag�1.˛; b/

¯
:

Note that, by q.e. inL, this type contains p�L.x/. It is clear that hmapsDb injec-
tively to SYx . For surjectivity, let q.x/ be a complete parameter-free type realized in
Y , say, .N; �/ ˆ q.a/ for some � 2 Y , and suppose that q�1.x/ belongs to Œ�.x/�S .
As p�L.x/ � q.x/, there is an isomorphism g W N ! N such that g.a/ D b. Then
q�1.x/ is the image of diag�1.�

g ; b/ under h. This proves surjectivity.

From this fact it is clear that diag�1.˛; b/ is e-isolated in Db if and only if p.x/, the
parameter-free type of b in .N; ˛/, is e-isolated. The following lemma is also clear.

Lemma 3.2 Let p.x/ be a complete parameter-free type realized in Y , and let
�.x/ be an existential quasifinite formula such that p�L.x/ � �.x/ � p.x/. Then
the following are equivalent:

1. p.x/ is e-isolated by �.x/;
2. �.x/ ˆ p�1.x/ holds in every � 2 Y .

Definition 3.3 Let ˛ 2 Y . We say that .N; ˛/ is an e-atomic model, or that ˛ is
e-atomic, if for all finite tuples b in N the 1-diagram diag�1.˛; b/ is e-isolated.

The notion of e-atomic is close to Ivanov’s notion of .A; 9/-atomic in [9, Section 2].
However, the context is different, and a circumstantial comparison is not straightfor-
ward. When all e.c. models of T0 have the same existential theory, any existential
quasifinite formula is realized in all ˛ 2 Y . Therefore in this case an e-atomic ex-
pansion .N; ˛/ realizes p�1.x/ if and only if p.x/ is e-isolated.

Remark 3.4 As remarked in Section 2, when T is !-categorical, every expan-
sion is smooth. In this case, if the model companion Tmc of T0 exists, the e-atomic
expansions are exactly the atomic models of Tmc.



518 Barbina and Zambella

Theorem 3.5 Suppose that N ˆ T is countable and saturated and that all e.c.
models of T0 have the same existential theory. Then any two e-atomic expansions of
N are conjugate.

Proof Let ˛ and ˇ be e-atomic. We prove the following claim: any finite 1-
elementary partial map f W .N; ˛/ ! .N; ˇ/ can be extended to an isomorphism,
where a map is 1-elementary if it preserves existential and universal formulas. Since
we assume all e.c. models to have the same existential theory, the empty map be-
tween existentially closed models is 1-elementary, so the theorem follows from the
claim.

To prove the claim it suffices to show that for any finite tuple b we can extend f
to some 1-elementary map defined on b. The claim then follows by back and forth.
Let a be an enumeration of dom f . Then diag�1.˛; ab/ is e-isolated in Db , say, by
some existential quasifinite formula �.v; x/. Let p.v; x/ D tp.a; b/. By fattening
� if necessary, we may assume that it contains p�L.v; x/. Since ˇ is smooth and
f is 1-elementary, the type �.fa; x/ is realized in ˇ, say, by c. By Lemma 3.2,
�.v; x/ ˆ p�1.v; x/ holds both in ˛ and ˇ, so f [ ¹hb; ciº gives the required
extension.

Theorem 3.6 Suppose that N ˆ T is countable and saturated and that all e.c.
models of T0 have the same existential theory. If an e-atomic expansion of N exists,
then the set of e-atomic expansions is comeager in Exp.N; T0/.

Proof We prove that the set of e-atomic expansions is a dense Gı subset of Y ,
hence comeager in Exp.N; T0/.

To prove density, let  .x/ be a parameter- and quantifier-free formula. Let a 2 N
be such that  .a/ is consistent with T0. We show that .N; ˛/ ˆ  .a/ for some
e-atomic ˛. Write p�L.x/ for the parameter-free type of a in the signature L. Let ˇ
be any e-atomic expansion, and let c be a realization of p�L.x/ ^  .x/ in .N; ˇ/.
Let g be an automorphism of N such that g.c/ D a. Then ˛ WD ˇg is the required
expansion. Hence the set of e-atomic expansions is dense.

We now prove that the set of e-atomic expansions is a Gı -subset of Y . Let b be a
finite tuple, and denote by Xb the set of expansions ˛ 2 Y such that diag�1.˛; b/ is
e-isolated. It suffices to prove that Xb is an open subset of Y .

Let ˛ 2 Xb , and let Œ�˛.b/�D be the basic open subset of Db that isolates
diag�1.˛; b/. We may assume that �˛.b/ has the form 9yŒp˛�L.b; y/^'˛.b; y/�. So
let a˛ be a witness of the existential quantifier. We have that Y \ Œ'˛.b; a˛/�N � Xb .
It follows that

Y \
[
˛2Xb

Œ'˛.b; a˛/�N D Xb :

Hence Xb is an open subset of Y .

In [19], a notion of generic automorphisms is introduced and a number of examples
are given of countable !-categorical structures that have generic automorphisms.
The following definition, which appears in [9], generalizes the notion of generic
automorphisms to arbitrary expansions.

Definition 3.7 We say that an expansion � is Truss generic if ¹�g W g 2 Aut.N /º
is a comeager subset of Exp.N; T0/.
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Remark 3.8 There is at most one comeager subset of Exp.N; T0/ of the form
¹�g W g 2 Aut.N /º. This is because any two sets of this form are either equal or
disjoint, and two comeager sets in a Baire space have nonempty intersection.
Theorem 3.9 Suppose that N ˆ T is countable and saturated and that all e.c.
models of T0 have the same existential theory. Let ˛ be any expansion in Exp.N; T0/.
Then the following are equivalent:

1. ˛ is e-atomic;
2. ˛ is Truss generic.

Proof Let ˛ be e-atomic. By Theorem 3.6, the set X of e-atomic expansions is
comeager. By Theorem 3.5, and because X is closed under conjugacy by elements
of Aut.N /, X is of the form ¹�g W g 2 Aut.N /º for any e-atomic � . By Remark 3.8,
X is exactly the set of Truss generic expansions.

Conversely, let ˛ be Truss generic. As smoothness and existential closure are
guaranteed by Lemma 2.8, we only need to prove that ˛ omits p�1.x/ for any com-
plete parameter-free type p.x/ that is not e-isolated. It suffices to prove that the
set of expansions in Y that omit p�1.x/ is dense Gı in Y and hence comeager in
Exp.N; T0/. Then some Truss generic expansion omits it and, as Truss generic ex-
pansions are conjugated, the same holds for ˛.

Denote by Xb the set of expansions in Y that model :p�1.b/. The set of expan-
sions in Y that omit p�1.x/ is the intersection of Xb as the tuple b ranges over N .
So it suffices to show that Xb is open dense in Y .

First we prove density. Let  .a; b/ be a quantifier-free formula where a and
b are disjoint tuples. We need to show that there is an expansion in Y that mod-
els  .a; b/ ^ :p�1.b/. Let q�L.z; x/ be the parameter-free type of a; b in the
language L. Since p.x/ is not e-isolated, there is �.x/ 2 p�1.x/ such that
 .z; x/ ^ q�L.z; x/ ^ :�.x/ is realized by some a0; b0 in some � 2 Y . There
is an automorphism g W N ! N such that g.a0b0/ D ab. We conclude that
 .a; b/ ^ :p�1.b/ holds in .N; �g/.

Now we prove that Xb is open in Y . Let � 2 Xb . We shall show that � belongs
to a basic open set contained in Xb . If .N; �/ ˆ :p�8.b/ the claim is obvious,
so suppose that .N; �/ ˆ :'.b/ for some existential formula '.x/ 2 p�9.x/. The
expansions in Y are existentially closed; hence (see, e.g., Hodges [6, Theorem 7.2.4])
there is an existential formula  .x/ with .N; �/ ˆ  .b/, such that  .x/! :'.x/
holds for every � 2 Y . Then Œ .b/�N � Xb , as required.

Corollary 3.10 Suppose that T is !-categorical, that N is a countable model
of T , and that T0 has a model companion Tmc which is a complete theory. Then an
expansion ˛ 2 Exp.N; T0/ is Truss generic if and only if it is an atomic model of Tmc.
Theorem 3.9 is related to Theorem 4.2.6 in [5] and to Theorem 2.4 in [9]. The-
orem 3.11 below is incidental to the main motivation of this paper, and it gives a
necessary and sufficient condition for Truss generic expansions to exist under the
assumptions on T and T0 underlying this section. As remarked by the anonymous
referee, in the !-categorical case Theorem 3.11 follows from [9, Theorems 1.2, 1.3,
and 2.4]. In particular, conditions (2) and (3) are equivalent to the Joint Embedding
Property (JEP) and the Almost Amalgamation Property (AAP) in [9].
Theorem 3.11 Suppose that N ˆ T is countable and saturated and that all e.c.
models of T0 have the same existential theory. The following are equivalent:
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(1) Truss generic expansions of N exist;
(2) for every finite b, the isolated points are dense inDb;
(3) for every finite x, the isolated points are dense in SYx .

Proof The equivalence .2/ , .3/ is clear by Lemma 3.1. Since the existence
of e-atomic models implies that isolated points are dense in SYx , the implication
.1/ ) .3/ follows from Theorem 3.9. To prove the converse we assume (2) and
construct a set � which is the quantifier-free diagram of an e-atomic model.

The diagram� is defined by finite approximations. Assume that at stage i we have
a finite set �i of quantifier-free sentences with parameters in N which is consistent
with T0. Below we define�iC1. The definition uses a fixed arbitrary enumeration of
length ! of all types of the form p�L.x/ [ ¹'.x/º with finitely many parameters in
N and where '.x/ is quantifier free. This exists because T is small by assumption.

If i is even, consider the i=2th type in the given enumeration. If this type is
consistent with T0 [ �i , let c be such that T0 [ p�L.c/ [ ¹'.c/º holds for some
expansion, and define�iC1 WD �i [ ¹'.c/º. Otherwise let�iC1 WD �i . If i is odd,
let b be a tuple that enumerates all the parameters in�i . Recall that we have assumed
(2), so there is an expansion ˛ which models �i and is such that diag�1.˛; b/ is
isolated inDb , say, by the type 9yŒp�L.b; y/^ '.b; y/�, where '.b; y/ is quantifier-
free. Let a satisfy p�L.b; x/ ^ '.b; x/, and define �iC1 WD �i [ ¹'.b; a/º.

Let .N; ˛/ be the model with diagram �. We claim that even stages guarantee
both smoothness and existential closure. Smoothness is clear. To prove existential
closure observe that if '.x/ is a quantifier-free formula with parameters in N that
has a solution in some extension of .N; ˛/, then in particular it is consistent with
T0 [ �i for every i , so at some stage '.c/ is added to the diagram of .N; ˛/. Odd
stages ensure that every type p�1.x/ realized in .N; ˛/ is e-isolated, so (1) follows
by Theorem 3.9.

Example 3.12 (Truss generic automorphisms of the random graph) Let L be the
language of graphs, and let T be the theory of the random graph. Let L0 and T0
be as in Example 2.6. The existence of Truss generic automorphisms of the random
graph was first proved in [19] and extended to generic tuples in [7], essentially using
Hrushovski [8]. These proofs use amalgamation properties of finite structures.

In the case of the random graph we can give a precise description of the isolated
tuples. It is known (see [11]) that T0 has no model companion. However, since the
class of e.c. models of T0 has the joint embedding property, all e.c. models have
the same existential theory; hence T and T0 satisfy the hypothesis of Theorem 3.11.
The existence of Truss generic automorphisms of the random graph follows by the
proposition below and Theorem 3.11. This proof is by no means shorter than the one
in [7], and it still uses [8].

Proposition 3.13 Let T be the theory of the random graph, and let N be a count-
able random graph. Let L0 and T0 be as in Example 2.6. Then for every finite tuple
b in N , the e-isolated points inDb are dense.

Proof By the main result in [8], for every finite subset B of the random graph
N there is a finite set A such that B � A � N and every partial isomorphism
g W N ! N with dom g; rngg � B has an extension to an automorphism of A.

Let  .b/ be any existential formula consistent with T0. Let .N; ˛/ be a model
that realizes  .b/. We shall show that Œ .b/�D contains an isolated point. By the
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result in [8] mentioned above, there is a model .N; �/ which has a finite substructure
.A; ��A/ that models .b/. We may assume that � is existentially closed. Let '.a; b/
be the quantifier-free diagram ofA in .N; �/. We claim that 9z'.z; b/ isolates a point
ofDb , namely, diag�1.�; b/.

To prove the claim, let � 2 Y model 9z'.z; b/, and prove that .N; �/ �1;b .N; �/.
As '.a; b/ is the diagram of a substructure we can assume that .N; �/ and .N; �/
overlap on A. Since both � and � are existentially closed and can be amalgamated
over A, they are 1-elementarily equivalent.

Example 3.14 (Cycle-free automorphisms of the random graph) Let L, T , N ,
and L0 be as in Example 3.12. The theory T0 says that f is an automorphism
with inverse f �1, and moreover, for every positive integer n it contains the axiom
8xf nx ¤ x. These axioms claim that f has no finite cycles. It is known (see
[13]) that T0 has a model companion. Now we prove that there is no Truss generic
expansion in Exp.N; T0/.

Suppose for a contradiction that some expansion .N; �/ is Truss generic. Let
b be an element of N . As T is !-categorical, existential quasifinite formulas are
equivalent to existential formulas. So, by Theorem 3.11, there is an existential
formula '.b/ that isolates diag�1.�; b/ inDb . As the symbol f �1 can be eliminated
at the cost of a few extra existential quantifiers, we may assume that it does not occur
in '.b/. Let n be a positive integer which is larger than the number of occurrences
of the symbol f in '.b/. Denote by f� the interpretation of f in .N; �/. Let
A � N be a finite set containing b and such that the sets ¹c; f�c; : : : ; f n�1� cº,
for c 2 A, are pairwise disjoint, and let B be the union of all these sets. Clearly
we can choose A such that B contains witnesses of all the existential quantifiers
in '.b/. The latter requirement guarantees that if ˛ is an expansion such that
˛�B D ��B , then .N; ˛/ ˆ '.b/. Define d WD f n� b and e WD f�d . Let e0 2 N
realize the type tp�L.e=f� ŒB�/, and let it be such that r.b; e/ ½ r.b; e0/. As
b … f� ŒB�, the theory of the random graph ensures the existence of such an e0. Let
g WD .f� � B/ [ ¹hd; e0iº. We claim that g W N ! N is a partial isomorphism.
To prove the claim it suffices to check that r.a; d/ $ r.ga; e0/ for every a 2 B .
We know that r.a; d/ $ r.ga; e/. As ga 2 f� ŒB�, by the choice of e0 we have
r.ga; e/ $ r.ga; e0/. Then r.a; d/ $ r.ga; e0/ follows. Finally, it is easy to see
that the homogeneity of N yields an extension of g to a cycle-free automorphism of
N and hence an expansion ˛. By construction, ˛�B D ��B , so, as observed above,
.N; ˛/ ˆ '.b/. But .N; �/ and .N; ˛/ disagree on the truth of r.b; f nC1b/. This
contradicts the fact that '.b/ isolates diag�1.�; b/.
Example 3.14 shows that the existence of the model companion of T0 is not sufficient
to guarantee the existence of Truss generic expansions. The following corollary of
Theorem 3.11 gives a sufficient condition.
Corollary 3.15 Suppose that T0 has a complete model companion Tmc which is
small. Then N has a Truss generic expansion.
Proof Modulo Tmc every formula is equivalent to an existential (or, equivalently, to
a universal) one. Then SYx is the set of all complete parameter-free types consistent
with Tmc. Though the topology on SYx is not the standard one, the usual argument
(e.g., Marker [17, Theorem 4.2.11]) suffices to prove that the isolated types are dense.
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