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Weak Theories of Concatenation and Arithmetic

Yoshihiro Horihata

Abstract We define a new theory of concatenation WTC which is much weaker
than Grzegorczyk’s well-known theory TC. We prove that WTC is mutually in-
terpretable with the weak theory of arithmetic R. The latter is, in a technical
sense, much weaker than Robinson’s arithmetic Q, but still essentially undecid-
able. Hence, as a corollary, WTC is also essentially undecidable.

1 Introduction

The study of concatenation theory and arithmetic goes back to Quine [10] and
Tarski [18]. The latter introduced two important axioms for concatenation: associa-
tivity of concatenation and the so-called editor axiom.

In 2005, Grzegorczyk [4] introduced a theory of concatenation TC with only two
distinguished single-letters and studied this theory from the viewpoint of undecid-
ability. In January 2007, Grzegorczyk and Zdanowski [5] proved that TC is essen-
tially undecidable. But they left the following question open: Is Robinson’s arith-
metic Q interpretable in TC? Later in 2007, this question was solved positively; that
is, Q is interpretable in TC. Hence, these two theories are mutually interpretable,
since it is well known that I�0 interprets TC and Q interprets I�0 (see Hájek and
Pudlák [6] and Nelson [9]).

The interpretability of Q in TC was proved via three different approaches (Sterken
and Visser [12, 21], Ganea [3], and Švejdar [16]), which we sketch now. The main
difficulty of the interpretability of Q in TC is the translation of the arithmetical prod-
uct. To overcome this difficulty, interpretability is proved indirectly, that is, via an
intermediate theory.

First, we consider the proof by Sterken and Visser. They proved the interpretabil-
ity of Q in TC via the intermediate theory TCQ, introduced by Sterken. In her Mas-
ter’s thesis [12], Sterken defined a theory TCQ of concatenation which is an analogue
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of Q for concatenation theory, and she proved that TCQ interprets Q. Then Visser
proved in [21] that TC and TCQ are mutually interpretable.

Another proof is given by Ganea or LSvejdar. They proved the interpretability of
Q in TC via Grzegorczyk’s variant Q� of Q, whose addition and multiplication can
be nontotal. In Švejdar [15], he proved that Q and Q� are mutually interpretable by
applying Solovay’s method of shortening of cuts (about this method, developed in an
unpublished letter Solovay [11], see [6]). Hence, to interpret Q in TC, it is enough
to interpret Q� in TC. Subsequently, Ganea [3] and LSvejdar [16] constructed this
interpretation.

In this paper, we focus on the very weak arithmetical theory R which was intro-
duced in Tarski et al. [17]. It is known that R cannot interpret Q since R is locally
finitely satisfiable; that is, for any finite subtheory T of R, T has a finite model.
Hence, R is much weaker than the Robinson’s arithmetic Q. Nonetheless, R is still
essentially undecidable [17]. Thus, we first define a new weak theory of concatena-
tion WTC. Then we prove that this theory and R are mutually interpretable. This fact
implies that WTC is essentially undecidable.

Here we briefly consider other ways of axiomatizing weak theories of concatena-
tion which are mutually interpretable with R. In fact, in the Appendix A, we show
that the alternative theory WTC0 is logically equivalent to WTC. For yet another
axiomatization, we can consider a weak theory of concatenation without the empty
sequence, called WTC�". We conjecture that WTC�" and WTC (and hence R) are
mutually interpretable. For this conjecture and the definition of WTC�", see Sec-
tion 4.3 of this article.

By combining the main result of this article (Theorem 4.1) and the result of
Visser [22], we can prove that for each theory T , WTC interprets T if and only if
T is locally finitely satisfiable. Here Visser’s result is the fact that R interprets T if
and only if T is locally finitely satisfiable. In general, it is very difficult to prove that
some theory T does not interpret some theory S . Hence, the Visser’s result men-
tioned above is important. Therefore, our rephrasing of Visser’s result in the context
of the theory of concatenation is significant.

As to a brief overview of the rest of the paper: in Section 2, we introduce the rele-
vant known theories of concatenation and their properties. In Section 3, we introduce
our new theory of concatenation WTC and prove that this theory is ˙1-complete. In
Section 4, we prove our main theorem; that is, WTC and R are mutually interpretable.
In Subsection 4.1, we provisionally prove that WTC interprets R. The full proof is in
Appendix B. In Subsection 4.2, we prove that R interprets WTC. In Subsection 4.3,
we consider some corollaries of our main theorem and formulate some questions for
future research.

2 The Theories TC, Q, and R

First of all, we define the notion of interpretation.

Definition 2.1 (Interpretation) Let˙ and� be recursive languages of first-order
logic. A relative translation � W ˙ ! � is a pair hı; F i such that

.1/ ı is a � -formula with one free variable;

.2/ F is a mapping from ˙ to the � -formulas.

We translate ˙ -formulas to � -formulas as follows:
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.1/ For each n-ary relation symbol R of ˙ ,

.R.x1; � � � ; xn//
�
WD F.R/.x1; � � � ; xn/I

.2/ .' ^  /� WD '� ^  � and likewise for other propositional connectives;

.3/ .8x'.x//� WD 8x.ı.x/! '� /;

.4/ .9x'.x//� WD 9x.ı.x/ ^ '� /.

Let S and T be a ˙ -theory and a � -theory, respectively. Then S is interpretable in
T , denoted by T F S , if there exists a translation � from ˙ to � such that for each
axiom ' of S , T proves '� .

Here we only consider relational languages. If the language has function symbols,
then we first translate it to a relational one, by the usual method for eliminating
function symbols. For a more precise definition of interpretation, see, for example,
Visser [20].

Interpretability has some useful properties.

Proposition 2.2 Suppose T F S .

.1/ If T is consistent, then so is S ;

.2/ if S is essentially undecidable, then so is T .

Hence, to prove that a theory is essentially undecidable, it is enough to show that
the theory interprets another theory which is already known to be essentially unde-
cidable. Similarly, we can use interpretability to prove the relative consistency of
some theories, by interpreting a theory in some consistent theory. We can also see
the notion of interpretability as a measure of the strength of theories. Especially, it
is important that we can compare the strength of some theories whose languages are
different.

Next, we consider the definition of the theory of concatenation with two single-
letters. Before this, we define standard strings. Let a and b be single-letters. We
say that u is a standard string over fa; bg if u is a finite sequence of the elements of
fa; bg. An empty string is denoted by ". Then let fa; bg� be a set of empty string "
and all standard strings over fa; bg.

Next, to represent standard strings in theories, we define the name of standard
strings as follows: for each u 2 fa; bg�, we represent u in theories as u by rewriting
a to ˛ and b to ˇ, and the elements of u associate to the left. Here ˛ and ˇ are
(single-letter) constants of the theory. For example, abbab D ...˛ˇ/ˇ/˛/ˇ.

The theory TC of concatenation, as defined by Grzegorczyk, is the ._; ˛; ˇ/-
theory with the following axioms:

(TC1) 8x 8y 8z .x_.y_z/ D .x_y/_z/;
(TC2) 8x 8y 8u8v Œx_y D u_v ! ..x D u ^ y D v/

_ .9w ..x_w D u ^ y D w_v/ _ .x D u_w ^ w_y D v////�;
(TC3) 8x 8y .x_y ¤ ˛/;
(TC4) 8x 8y .x_y ¤ ˇ/;
(TC5) ˛ ¤ ˇ.

This theory has the standard model .fa; bg� n f"gI_; a; b/ for texts. The axioms
(TC1) and (TC2) were introduced by Tarski. The latter is called the editor axiom. It
was proved in [5] that TC and its analogue with n’s single-letters, n � 2, are mutually
interpretable. By the previous, all of them are essentially undecidable.
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Another variant of the concatenation theory is the theory TC" with empty string
". The latter is the ._; "; ˛; ˇ/-theory with the following axioms:
(TC"1) 8x .x_" D "_x D x/;
(TC"2) 8x 8y 8z .x_.y_z/ D .x_y/_z/;
(TC"3) 8x 8y 8u8v .x_y D u_v !

9w ..x_w D u ^ y D w_v/ _ .x D u_w ^ w_y D v///;
(TC"4) ˛ ¤ " ^ 8x 8y .x_y D ˛ ! x D " _ y D "/;
(TC"5) ˇ ¤ " ^ 8x 8y .x_y D ˇ ! x D " _ y D "/;
(TC"6) ˛ ¤ ˇ.
This theory has the standard model .fa; bg�I_; ˛; ˇ; "/ for texts. It was proved
in [21] that TC" and TC are mutually interpretable.

In what follows, we abbreviate x_y to xy, and by TC"2, we can omit parenthe-
ses. Let us consider some facts which are (not) provable in TC". For the proofs of the
following propositions and other properties of TC", see [3, 4, 5, 16, 21], LSvejdar [13],
and Čačić [1].

Definition 2.3 (v;vini;vend) We say that x is a substring of y if there exist z and
z0 such that zxz0 D y, denoted by x v y. We say that x is an initial string of y if
there exists z such that xz D y, denoted by x vini y. Similarly, we say that x is an
end string of y if there exists z such that zx D y, denoted by x vend y.

The proofs of the following proposition may be found in [5] and [16].

Proposition 2.4 TC" proves the following assertions:
.1/ 8x .x˛ ¤ " ^ ˛x ¤ "/.
.2/ 8x 8y .xy D "! x D " ^ y D "/.
.3/ 8x 8y .x˛ D y˛ _ ˛x D ˛y ! x D y/.
.4/ 8x 8y 8z .xy D z˛ ! y D " _ ˛ vend y/.
.5/ 8x 8y .˛ v xy ! ˛ v x _ ˛ v y/.

In each item, ˛ may be replaced by ˇ.

The following facts express that, even though x v y, we cannot find the exact posi-
tion of x within y. The proof of the following proposition may be found in [13].

Proposition 2.5 TC" cannot prove the following assertions:
.1/ 8x 8y 8z .xz D yz ! x D y/.
.2/ 8x :.9y .xy D x ^ y ¤ "//.

Item (2) expresses that TC" cannot refute the statement x is a proper initial string of
itself.

Next we consider some arithmetics and their properties. The well-known Gödel
and Rosser’s first incompleteness theorem states that Q is essentially undecidable.
Here Q is Robinson’s arithmetic with language .C; � ; 0;S/ and axioms as follows.

(Q1) 8x 8y .S.x/ D S.y/! x D y/;
(Q2) 8x .S.x/ ¤ 0/;
(Q3) 8x .x ¤ 0! 9y.x D S.y///;
(Q4) 8x .x C 0 D x/;
(Q5) 8x 8y .x C S.y/ D S.x C y//;
(Q6) 8x .x � 0 D 0/;
(Q7) 8x 8y .x � S.y/ D x � y C x/.
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Here x � y is defined as 9z .x C z D y/. In [17], the much weaker arithmetic R is
defined. The arithmetic R is the .C; � ;S; 0/-theory with axioms as follows. For all
n;m 2 !,

(R1) NnC Nm D nCm;
(R2) Nn � Nm D n �m;
(R3) Nn ¤ Nm for n ¤ m;
(R4) 8x.x � Nn! x D N0 _ � � � _ x D Nn/;
(R5) 8x.x � Nn _ Nn � x/.

Here we define x � y � 9z.zCx D y/ and N0 D 0 and nC 1 D S. Nn/. It was proved
in [17] that R is also essentially undecidable. Moreover, it was proved by Cobham
(e.g., Vaught [19]) that if we drop the axiom scheme (R5) from R, the resulting
theory, called R0 in Jones and Shepherdson [7], and R are mutually interpretable.
Hence, R0 is also essentially undecidable.

It is interesting to note that R0 is minimal essentially undecidable in the following
sense: if one omits one of the axiom schemes of R0, the resulting theory is not
essentially undecidable. See [7] for other minimal arithmetical theories which are
essentially undecidable.

Another important fact is that the theory R is locally finitely satisfiable. Hence,
Q is not interpretable in R, since Q is finitely axiomatizable. In 2009, Visser proved
that R interprets T if and only if T is locally finitely satisfiable [22]. We will apply
this very powerful and important theorem to interpret WTC in R. This is the topic of
Section 4.2.

3 The Theory WTC and ˙1-Completeness

We now define the notions standard string and name of the standard string over three
single-letters in the same way as for two single-letters. Note that the standard strings
associate to the left.

Definition 3.1 The ._; "; ˛; ˇ; 
/-theory WTC has the following axioms. For
each u 2 fa; b; cg�,
(WTC1) 8x v u .x_" D "_x D x/;
(WTC2) 8x 8y 8z Œ..x_y/_z v u _ x_.y_z/ v u/! .x_y/_z D x_.y_z/�;
(WTC3) 8x 8y 8s 8t Œ.x_y D s_t ^ x_y v u/!

9w ..x_w D s ^ y D w_t / _ .x D s_w ^ w_y D t //�;
(WTC4) ˛ ¤ " ^ 8x 8y .x_y D ˛ ! x D " _ y D "/;
(WTC5) ˇ ¤ " ^ 8x 8y .x_y D ˇ ! x D " _ y D "/;
(WTC6) 
 ¤ " ^ 8x 8y .x_y D 
 ! x D " _ y D "/;
(WTC7) ˛ ¤ ˇ ^ ˇ ¤ 
 ^ 
 ¤ ˛.
Here, since within the system WTC, the associative law does not hold for every triple
of strings, we define the relation symbols v;vini, and vend as follows:

x v y � xDy _ 9k 9l Œk_xDy _ x_lDy _ .k_x/_lDy _ k_.x_l/Dy�;

x vini y � xDy _ 9l .x
_lDy/;

x vend y � xDy _ 9k .k
_xDy/:

Remark 3.2 There are different ways to axiomatize weak theories of concatena-
tion. In Appendix A, we consider another axiomatization WTC0 of weak theory of
concatenation. Our reasons for our choice of the axioms of WTC are the following:
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.1/ The theory WTC is a naturally weaker version of TC" in the following sense:
the axioms (WTC1), (WTC2), and (WTC3) of WTC are weaker versions of
the axioms (TC"1), (TC"2), and (TC"3) of TC", respectively. The other
axioms of WTC are similar to the axioms (TC"4), (TC"5), and (TC"6) of
TC".

.2/ While the statement

8x .x v u$
_
vvu

x D v/

is an axiom of WTC0, it is provable in WTC; that is, we do not need to add
this statement to the axioms of WTC.

Remark 3.3 Here we have to define the theory WTC as a theory with three single-
letters. As we will prove in Section 4.3, any two theories WTCn (n � 2) are mutually
interpretable (see Theorem 4.13). Our choice of WTC makes the proof of the main
theorem, Theorem 4.8, as clear as possible.

In WTC, the constant string associates to the left. As such, WTC proves the identity
of all strings which only differ up to positions of parentheses.

Example 3.4 WTC proves ˛..ˇ˛/˛/ D .˛ˇ/.˛˛/.

Proof Let u 2 fa; b; cg� be abaa. Then u D ..˛ˇ/˛/˛. By (WTC2),

u D .˛ˇ/.˛˛/: .�/

Since .˛ˇ/˛ v u, by (WTC2), .˛ˇ/˛ D ˛.ˇ˛/. Hence, u D .˛.ˇ˛//˛. By
(WTC2), .˛.ˇ˛//˛ D ˛..ˇ˛/˛/. Therefore,

u D ˛..ˇ˛/˛/: .�/

Then, by .�/ and .�/, ˛..ˇ˛/˛/ D .˛ˇ/.˛˛/.

The theory WTC is much weaker than TC, but WTC still proves the following state-
ments.

Proposition 3.5 WTC proves the following assertions:

.1/ 8x .x˛ ¤ " ^ ˛x ¤ "/. The same for ˇ and 
 .

.2/ 8x 8y .xy D "! x D " ^ y D "/.

Proof We reason in WTC. We prove (1) by contradiction. To do this, let us assume
that x˛ D " holds (the same argument holds for the other case). Then, by (WTC1),
ˇ.x˛/ D ˇ. Then, by (WTC2),

.ˇx/˛ D ˇ: .�/

Then, by (WTC5), ˇx D " or ˛ D ". Then, by (WTC4), ˇx D " holds. Then, by
.�/, ˇ D .ˇx/˛ D "˛ D ˛. This contradicts (WTC7).

For part (2), let us assume that xy D " holds. Then .xy/˛ D ˛. By (WTC2),
x.y˛/ D ˛. By (WTC4), x D " or y˛ D ". But by 1, x D " holds. Also, from the
assumption, ˛.xy/ D ˛ holds. Then we can prove y D " by the same arguments as
above.

Next we define the notion good string.
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Definition 3.6 (Good string) We define the formula Good.x/ as follows:

Good.x/ � ID.x/ ^ AS.x/ ^ EA.x/;

where

(i) ID.x/ � 8s v x .s_" D "_s D s/;
(ii) AS.x/ � 8s0 8s1 8s2 ŒŒs0_.s1_s2/ v x _ .s0_s1/_s2 v x�

! s0
_.s1

_s2/ D .s0
_s1/

_s2�;
(iii) EA.x/ � 8s0 8s1 8t0 8t1 Œ.s0_s1 D t0_t1 ^ s0_s1 v x/!

9w ..s0
_w D t0^s1 D w

_t1/_.s0 D t0
_w^w_s1 D t1//�.

If Good.x/ holds, then we say that x is a good string.

The set of good strings contains all standard texts.

Proposition 3.7 For each u 2 fa; b; cg�;WTC ` Good.u/.

Proof For each u 2 fa; b; cg�, since u v u holds inside WTC, we can apply for
u the axioms (WTC1), (WTC2), and (WTC3) of WTC. Thus Good.u/ holds within
WTC.

We can prove that, if we limit the relation v to substrings of good strings, the defi-
nition of v inside WTC is equivalent to the definition inside TC. Then we can prove
that the good strings are closed under substrings.

Proposition 3.8 WTC proves the following assertions:

.1/ 8x .Good.x/! 8y .y v x $ 9k 9l Œ.ky/l D x�//;

.2/ 8x .Good.x/! TRv.x//, where
TRv.x/ � 8y 8z .y v x ^ z v y ! z v x/;

.3/ 8x .Good.x/! 8y v x Good.y//.

Proof We reason in WTC. For part (1), let x be a good string. For each y, by the
definition of v within WTC, the direction “ ” is trivial. We prove the converse by
cases in the definition of v. Let us assume that y v x.

(i) If y D x, then put k D " and l D ". Then, ID.x/ and y v x implies
y" D "y D y. Thus, .ky/l D ."y/l D yl D y" D y holds.

(ii) If there exist k and l such that .ky/l D x, then there is nothing to prove.
(iii) If there exist k and l such that k.yl/ D x, then k.yl/ v x and AS.x/ imply

.ky/l D k.yl/ D x.
(iv) If there exists k such that ky D x, then put l D ". Then ky v x and ID.x/

imply .ky/l D .ky/" D ky D x.
(v) If there exists l such that yl D x, then we can give an argument analogous

to the one used in case (iv).

For part (2), let x be a good string and let y and z be strings such that y v x and
z v y. By part (1), the condition y v x is equivalent to .ky/l D x for some k and l .
We prove (2) by cases in the definition of z v y as for (1).

(i) If y D x, then there is nothing to prove.
(ii) If there exist k0 and l 0 such that .k0y/l 0 D x, then we can prove this case as

follows:
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x D Œk..k0z/l 0/�l

D Œk.k0.zl 0//�l .by .k0z/l 0 v x and AS.x//

D Œ.kk0/.zl 0/�l .by k.k0.zl 0// v x and AS.x//

D .kk0/Œ.zl 0/l� .by .kk0/.zl 0/ v x and AS.x//

D .kk0/Œz.l 0l/� .by .zl 0/l v x and AS.x//

Hence, by the definition of v, z v x holds.
(iii), (iv), and (v) can be proved by a similar argument in (ii).

For part (3), let x be a good string and let y be a substring of x. Then, by part (2),
TRv.x/ holds. Then this property provides that ID.x/, AS.x/, and EA.x/ imply
ID.y/, AS.y/, and EA.y/, respectively. Hence Good.y/ holds.

Proposition 3.9 The theory WTC proves the following assertions:
.1/ 8x 8y ...Good.x˛/ ^ x˛ D y˛/ _ .Good.˛x/ ^ ˛x D ˛y//! x D y/.

The same for ˇ and 
 .
.2/ 8x 8y 8z ..Good.xy/ ^ xy D z˛/! .y D " _ ˛ vend y//.

The same for ˇ and 
 .
.3/ 8x 8y 8z ..Good.xy/ ^ xy D ˛z/! .x D " _ ˛ vini x//.

The same for ˇ and 
 .

Proof We reason in WTC. For part .1/, let us assume that Good.x˛/ ^ x˛ D y˛.
The other case is similar. By EA.x˛/, there exists w such that

.xw D y ^ ˛ D w˛/ _ .x D yw ^ w˛ D ˛/:

In both cases, w D " holds by (WTC4). Hence, x D y holds by ID.x˛/.
For part .2/, let us assume that Good.xy/ ^ xy D z˛. Then, by EA.xy/, the

following assertion holds: there exists w such that

.xw D z ^ y D w˛/ _ .x D zw ^ wy D ˛/:

Assume that the first clause holds; then, by y D w˛, ˛ vend y holds. This is
what we want to prove. Assume that the second clause holds; then, by wy D ˛,
w D " _ y D " holds. If y D ", then there is nothing to prove. If w D ", then
y D w˛ D ˛ and this implies that ˛ vend y.

Finally, part (3) follows in the same way as part (2).

Lemma 3.10 For each u; v 2 fa; b; cg�,
.1/ u D v if and only if WTC ` u D v;
.2/ u ¤ v if and only if WTC ` u ¤ v.

Proof This is proved via (meta-)induction on the length of v 2 fa; b; cg�.

Lemma 3.11 For each u 2 fa; b; cg�, WTC proves

8x .x v u$
_
vvu

x D v/:

Proof By the definition of v inside WTC, the direction “ ” is easy. Thus we
only need to prove the converse. This is proved via (meta-)induction on the length
of u 2 fa; b; cg�.
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First, let u be an empty string for the base step of the induction. We reason in
WTC. Since u is an empty string, u D ". We can easily prove that for all x, if x v ",
then x D ". Thus, this lemma holds in this case.

Next, we assume the following: for some u 2 fa; b; cg�,

8x .x v u!
_
vvu

x D v/:

Then we have to prove that 8x.x v u˛ !
W
vvua x D v/ (the same discussion

holds for uˇ and u
 ). To prove this, let us take x such that x v u˛. Since u˛
is a good string, the statement x v u˛ is equivalent to 9k9l..kx/l D u˛/. Then
EA..kx/l/ implies that there exists w such that

..kx/w D u ^ l D w˛/ _ .kx D uw ^ wl D ˛/:

Assume that the first clause .kx/w D u ^ l D w˛ holds. Then the induction
hypothesis implies that x D v for some v v u. It is trivial that this v is also a
substring of ua. This implies that the induction step holds for this case.

Assume that the second clause kx D uw ^ wl D ˛ holds. Then wl D ˛ im-
plies w D " _ l D ". If w D " holds, then, by kx D uw, x v u holds, which
implies the desired condition. If l D " holds, then kx D u˛. If x D ", then there is
nothing to prove. Thus we assume that x ¤ ". By Proposition 3.9(2), this assump-
tion and kx D u˛ imply that x D x0˛ for some x0. Then, by Proposition 3.9(1),
.kx0/˛ D u˛ implies kx0 D u. By the induction hypothesis, since x0 v u, there
exists v v u such that x0 D v. Then .kv/˛ D u˛ holds. Since u˛ is a standard
string, the associative law implies k.v˛/ D u˛. Thus, v˛ v u˛. Since x D x0˛ and
x0 D v, x D v˛. Hence, x D v˛ holds where va is a substring of ua.

Lemma 3.12 For each u; v 2 fa; b; cg�,

.1/ u v v if and only if WTC ` u v v;

.2/ :u v v if and only if WTC ` :u v v.

Proof This is proved via induction on the length of v 2 fa; b; cg�.

Next we consider the ˙1-completeness of WTC. Here a ˙1-formula is defined as
follows: ' is a ˙0-formula if the all quantifiers occurring in ' are bounded, that is,
are the form 8x v t or 9x v t where t is a term which does not contain x. Then '
is a ˙1-formula if ' is a ˙0-formula or the form 9x1 � � � 9xn �.x1; � � � ; xn/ where �
is a ˙0-formula and n � 1.

Theorem 3.13 (˙1-completeness of WTC) The theory WTC is ˙1-complete; that
is, for each ˙1-formula ', if fa; b; cg� � ', then WTC ` '.

Proof It is enough to prove this statement for ˙0-formulas. The theorem follows
from Lemmas 3.10, 3.11, 3.12.

4 The Theories WTC and R Are Mutually Interpretable

In this section and Appendix B, we prove our main theorem.

Theorem 4.1 The theories WTC and R are mutually interpretable.
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In Subsection 4.1, we show that WTC can interpret R. This is proved in Appendix B,
because the proof is complicated and the reader does not need to know the details to
understand the rest of this section. In Subsection 4.2, we prove that R interprets WTC
by applying Visser’s result in [22]. In Subsection 4.3, we consider some corollaries
and some open questions.

4.1 The theory WTC interprets R In this subsection, we prove the interpretability
of R in WTC. For details of this interpretation, consult Appendix B. Since R and
R0 are mutually interpretable, to interpret R in WTC, it is sufficient to interpret R0,
whose axioms are the first four schemes of R. The difficult part of this interpretation
is to translate the multiplication of R0. The essential idea of this interpretation is
from [16]. The translation from R0 to WTC, excluding the product,

- 0 H) ";
- S.x/ H) x_˛;
- x C y D z H) x_y D z.

Then, in WTC, we can prove the interpreted (R1), (R3), and (R4) by Lemma 3.10
and Lemma 3.11.

In what follows, we will prove some propositions to construct the translation of
the product. The key result of this subsection (and this article) is Theorem 4.8.

Lemma 4.2 The theory WTC proves

8x 8y ..Good.xy/ ^ ˛ v xy/! .˛ v x _ ˛ v y//:

The same is true for ˇ and 
 .

Proof We reason in WTC. Let us assume that xy is good and ˛ is a substring
of xy. Then, by Proposition 3.8(1), ˛ v xy is equivalent to 9k9l.k˛/l D xy. Then,
by EA.xy/, there exists w such that

..k˛/w D x ^ l D wy/ _ .k˛ D xw ^ wl D y/:

If the first clause holds, then .k˛/w D x implies ˛ v x. If the second clause holds,
by Proposition 3.9(2), k˛ D xw implies w D " or ˛ vend w. If w D ", then
k˛ D x implies ˛ v x. If ˛ vend w, then there exists w0 such that w0˛ D w and
y D wl D .w0˛/l . This means that ˛ is a substring of y.

Definition 4.3 (Number string) We define the formula Num.x/ as follows:

Num.x/ � 8y ..y v x ^ y ¤ "/! ˛ vend y/:

If Num.x/ holds, then we say that x is a number string.

Proposition 4.4 For each u 2 fag�;WTC ` Num.u/.

Proof This is proved via induction on the length of u 2 fag�.

Proposition 4.5 The theory WTC proves the following assertions:
.1/ 8x ..Good.x/ ^ Num.x//! 8y v x Num.y//;
.2/ 8x 8y ..Good.xy/ ^ Num.x/ ^ Num.y//! Num.xy//.

Proof We reason in WTC. For part .1/, let us assume that x is good and Num.x/
holds. Let y be any substring of x. If y D ", then there is nothing to prove. If y ¤ ",
then let z be a substring of y and assume that z ¤ ". By TRv.x/, z v x holds, and
by Num.x/, ˛ vend z holds. This implies Num.y/.
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For part (2), let x; y be number strings which satisfy Good.xy/. To prove that xy
is a number string, let z be a nonempty substring of xy. Then kzl D xy for some k
and l . Then, by EA.xy/, applying the editor axiom to k.zl/, there exists w such that

.kw D x ^ zl D wy/ _ .k D xw ^ wzl D y/:

If w D ", then z v y. Since y is a number string, ˛ vend z holds. So let us assume
that w ¤ ". Then, if kw D x ^ zl D wy, then, by Proposition 3.8(3), wy is also a
good string. Hence, by EA.wy/, there exists h which satisfies

.zh D w ^ l D hy/ _ .z D wh ^ hl D y/:

If h D ", then z v x or z v y and thus there is nothing to prove. So let us assume
that h ¤ ". The first clause implies z v x and then ˛ vend z since x is a number
string. The second clause implies h v y. Since h ¤ ", h D h0˛ for some h0.
Because z D wh, we find that z D wh0˛. Finally, if k D xw ^ wzl D y, then
z v y holds. Then, since y is a number string, ˛ vend z holds. This completes the
proof of this proposition.

The next lemma states that we can treat the string between ˇ’s as a block.

Lemma 4.6 The theory WTC proves the following assertions:
.1/ for all x; y; s and t , if xˇs is good, xˇs D yˇt , and s and t have no

occurrences of ˇ, then x D y and s D t .
.2/ for all x; y; s; t and p, if xˇsˇp is good, xˇsˇp D yˇtˇ, and s and t have

no occurrences of ˇ, then either
(a) there exists w such that xˇsˇw D yˇ and wtˇ D p, or
(b) x D y, s D t , and p D ".

Proof For part (1), let us assume that Good.xˇs/ ^ .xˇ/s D .yˇ/t holds. Then,
by EA.xˇs/, there exists w such that

..xˇ/w D yˇ ^ s D wt/ _ .xˇ D .yˇ/w ^ ws D t /:

We only consider the first case. In the other case, we can prove similarly. If w ¤ ",
then, by Proposition 3.9(2), w D w0ˇ for some w0. Then s D wt D .w0ˇ/t holds,
and this implies that ˇ v s. But this contradicts :.ˇ v s/. Hence, w D " and
xˇ D yˇ must hold, and by Proposition 3.9(1), x D y holds. Finally, by s D wt ,
we have s D t .
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For part (2), let us assume that Good.xˇsˇp/ ^ xˇsˇp D yˇtˇ holds. Then, by
the editor axiom for .xˇsˇ/p D .yˇ/.tˇ/, there exists w such that

..xˇsˇ/w D yˇ ^ p D wtˇ/ _ .xˇsˇ D yˇw ^ wp D tˇ/:

The first case is immediate. In the second case, if w D ", then there is nothing to
prove. Let us assume that w ¤ ". Then, by Proposition 3.9(2), .xˇs/ˇ D .yˇ/w

implies that w D w0ˇ for some w0. Then

tˇ D wp D w0ˇp: .�/

Now we prove p D " by contradiction. Assume that p ¤ "; then, by Proposi-
tion 3.9(2), .�/ implies p D p0ˇ for some p0. Then, by Proposition 3.9(1), .�/
implies t D w0ˇp0 and this contradicts :.ˇ v t /. Thus p D " holds.

Therefore, .�/ implies that w D tˇ. Hence, xˇsˇ D yˇw D yˇtˇ. By Propo-
sition 3.9(1), xˇs D yˇt holds. By (1) of this lemma, x D y and s D t hold. This
completes the proof of this lemma.

To interpret the multiplication of R, we define a witnessing string for the product.

Definition 4.7 We define the formula PWitn.x; y;w/ which means “w is a wit-
ness of the product of x and y” as follows:

(i) Num.x/ ^ Num.y/ ^ Good.w/;
(ii) ˇ
ˇ vini w;

(iii) 9z .Num.z/ ^ ˇy
zˇ vend w/;
(iv) 8p 8z ..Num.z/^pˇy
zˇ D w/!8z0 .Num.z0/!:.ˇy
z0ˇ v pˇ///;
(v) 8p 8q 8s2 8t2 Œ.Num.s2/ ^ Num.t2/ ^ pˇs2
 t2ˇq D w ^ p ¤ "/
! .9s1 9t1 .Num.s1/^Num.t1/^s2 D s1˛^t2 D t1x^ˇs1
 t1 vend p//�;

(vi) 8p 8q 8s 8t ..Num.s/ ^ Num.t/ ^ pˇs
 tˇq D w ^ q ¤ "/
! s˛
 txˇ vini q/.

In this way, we can construct a standard witnessing string for the product of standard
numbers. Moreover, we can prove the uniqueness of the witnessing by applying the
condition (iv) of PWitn. Thus, we can prove the following theorem.

Theorem 4.8 For each u; v 2 fag�, there exists w 2 fa; b; cg� such that

WTC ` PWitn.u; v; w/ ^ 8w0 .PWitn.u; v; w0/! w D w0/:

For the proof of this theorem, see Appendix B. With this theorem, we can define the
translation of the product x �y D z in R by formula (1) and prove that this translation
is well-defined.

M.x; y; z/ � .9Šw PWitn.x; y;w/ ^ 9w .PWitn.x; y;w/ ^ 
zˇ vend w//

_ Œ.:9Šw PWitn.x; y;w// ^ z D 0�: (1)

In this way, we obtain the following corollary.

Corollary 4.9 The theory WTC interprets R.

4.2 The theory R interprets WTC To interpret WTC in R, we apply Visser’s result
[22, Theorem 5.1]; that is, for each theory T , it is locally finitely satisfiable if and
only if R F T . Thus, we obtain the following theorem.

Theorem 4.10 The theory R interprets WTC.
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Proof One can easily check that WTC is locally finitely satisfiable. By Theorem
5.1 in [22], R interprets WTC.

Therefore, by Corollary 4.9 and the above theorem, we obtain our main theorem,
Theorem 4.1.

4.3 Conclusion and remarks In this section, we consider some corollaries of our
main theorem. First, we consider the following assertions.

Corollary 4.11

.1/ The theory WTC is essentially undecidable.

.2/ The theory WTC cannot interpret TC.

.3/ For the notion “Good”, WTC cannot prove that Good is closed under con-
catenation.

Proof For (1), since R is essentially undecidable, the interpretability of R in WTC
implies the essential undecidability of WTC. Since R cannot interpret Q and Q and
TC are mutually interpretable, (2) holds. If WTC would prove that Good.x/ is closed
under concatenation, then WTC can interpret TC relative to Good.x/. Thus (3) holds.

By combining Theorem 4.1 and Visser’s result in [22], we obtain the following.

Corollary 4.12 For each theory T , WTC interprets T if and only if T is locally
finitely satisfiable.

Proof By [22, Theorem 5.1], the following conditions are equivalent:
.1/ R interprets T ;
.2/ T is locally finitely satisfiable.

Then, by Theorem 4.1, we obtain that WTC interprets T if and only if T is locally
finitely satisfiable.

Theorem 4.13 Let WTCn .n � 2/ be weak theories of concatenation WTC with
n’s single-letters (by exchanging some axioms of WTC or adding some axioms to
WTC). Any two theories WTCn (n � 2) are mutually interpretable.

Proof It is enough to prove that for each n � 3, WTC2 interprets WTCn. We prove
this by the following two steps:

.1/ for each n � 3, R interprets WTCn;

.2/ WTC2 interprets R.
For part (1), we can easily check that all theories WTCn, n � 3, are locally finitely
satisfiable. Then, by Visser’s result [22], R interprets WTCn, n � 3.

For part (2), we can prove this as follows. We can prove Theorem 4.8 in the case
of WTC2 by replacing ˇ and 
 which appear in the proof of Theorem 4.8, by ˇˇ
and ˇ, respectively. This is because we can prove the following facts, which are the
modified statements of Lemma 4.6:

.1/ 8x 8y 8s 8t Œ.Good.xˇˇs/^.xˇˇ/s D .yˇˇ/t^:.ˇˇ v s/^:.ˇˇ v t //
! .x D y ^ s D t /�.

.2/ 8x 8y 8s 8t 8p Œ.Good.xˇˇsˇkˇˇp/ ^ xˇˇsˇkˇˇp D yˇˇtˇlˇˇ^
:.ˇ v s/ ^ :.ˇ v t / ^ :.ˇ v k/ ^ :.ˇ v l//

! ..9w .xˇsˇˇkˇw D yˇ ^ wtˇˇlˇ D p//
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_.x D y ^ s D t ^ k D l ^ p D "//�:

Then, by the transitivity of interpretations, WTC2 interprets WTCn for each n � 3.
Thus, any two theories WTCn (n � 2) are mutually interpretable.

Finally, we formulate some questions. First, we consider an alternative weak theory
of concatenation WTC�". The language is ._; ˛; ˇ; 
/ and the axioms are as follows.

Definition 4.14 (The theory WTC�") For each u 2 fa; b; cg� n f"g,
(WTC�"1) 8x 8y 8z ŒŒx_.y_z/ v u _ .x_y/_z v u�

! x_.y_z/ D .x_y/_z�;
(WTC�"2) 8x 8y 8s 8t Œ.x_y D s_t ^ x_y v u/!

..x D y/ _ 9w ..x_w D s ^ y D w_t / _ .x D s_w ^ w_y D t ///�;
(WTC�"3) 8x 8y .x_y ¤ ˛/;
(WTC�"4) 8x 8y .x_y ¤ ˇ/;
(WTC�"5) 8x 8y .x_y ¤ 
/;
(WTC�"6) ˛ ¤ ˇ ^ ˇ ¤ 
 ^ 
 ¤ ˛.

We believe the following question can be answered positively.
(Q1) Are WTC and WTC�" mutually interpretable?

Next we consider our results from the point of view of the Tarski degree theory
(for the latter, see Friedman [2], LSvejdar [14], or Chapter 7 of Lindström [8]). An
important goal in this theory is to find meaningful theories whose Tarski degree is
different from or equal to the known theories. Here, “meaningful” means that the
statements of the axioms of the theory are natural.

(Q2) Is there some meaningful theory T such that TCF T FWTC, but WTC · T
and T · TC?

With regard to this question, the second referee of this paper formulated a theory
which is strictly between TC and WTC, with respect to interpretability. However,
the theory in question is not very natural. Moreover, the second referee also stated
several theories T such that

(i) TC F T and T · TC, and
(ii) T and WTC are incompatible, with respect to interpretability.

One example is the theory of one successor, called S . It is easy to see that S is
interpretable in TC. Since S has no finite model, WTC cannot interpret S by Corol-
lary 4.12. Since S is decidable, S cannot interpret WTC.

Appendix A

We define the weak theory WTC0 of concatenation as follows. The language of WTC0

is the same as that of WTC and the axioms of WTC0 are as follows.

Definition 4.15 (The theory WTC0) For each u0; u1; u2; u3 2 fa; b; cg�,
(WTC’1) u0

_" D "_u0 D u0;
(WTC’2) .u0

_u1/
_u2 D u0

_.u1
_u2/;

(WTC’3) u0
_u1 D u2

_u3 !

9w ..u0
_w D u2 ^ u1 D w

_u3/ _ .u0 D u2
_w ^ w_u1 D u3//;

(WTC’4) ˛ ¤ " ^ 8x 8y .x_y D ˛ ! x D " _ y D "/;
(WTC’5) ˇ ¤ " ^ 8x 8y .x_y D ˇ ! x D " _ y D "/;
(WTC’6) 
 ¤ " ^ 8x 8y .x_y D 
 ! x D " _ y D "/;
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(WTC’7) ˛ ¤ ˇ ^ ˇ ¤ 
 ^ 
 ¤ ˛;
(WTC’8) 8x .x v u0 !

W
vvu0

x D v/.

The axioms (WTC’1), (WTC’2), and (WTC’3) of WTC0 are the standard version of
the axioms (TC"1), (TC"2), and (TC"3) of TC", respectively. The axiom (WTC’8) of
WTC0 corresponds to the axiom (R4) of R. The other axioms of WTC0 are the same
with the corresponding axioms of WTC. The definitions of the relations v;vini, and
vend are same with the one of WTC.

It follows that WTC and WTC0 are logically equivalent; that is, WTC proves the
axioms of WTC0, denoted by WTC ` WTC0, and vice versa. In fact, to prove
WTC ` WTC0, it suffices to prove WTC ` (WTC08), but this is already done in
Lemma 3.11. To prove WTC0 ` WTC, it is enough to show that WTC0 ` (WTC�)
where � D 1; 2; 3. But in WTC0, we can prove (WTC�) from (WTC0�), by applying
(WTC08) to the antecedent of (WTC�).

Appendix B

In this appendix, we prove Theorem 4.8. This is done in two steps.

Step 1 (Existence of the witness) For each u; v 2 fag�, there exists w 2 fa; b; cg�

such that WTC ` PWitn.u; v; w/.

Proof of Step 1 We prove this fact by the induction on the length of v 2 fag�.
First, we prove this fact when v is the empty string. In this case, we put w WD bcb.
Then, for this w, we prove that PWitn.u; "; w/ holds in WTC by proving each condi-
tion of the definition of PWitn. We can easily prove (i), (ii), and (iii) of the definition
of PWitn.

For part (iv), let us assume that pˇy
zˇ D ˇ
ˇ .D w/. Then we can easily
prove that p D " holds. Then, for any z0, we can prove that ˇy
z0ˇ v pˇ never
holds, and this implies that (iv) holds. To prove (v), it is enough to prove that for
each p; q; s; and t , if Num.s/ ^ Num.t/ and pˇs
 tˇq D w, then p D " holds. We
assume this antecedent. Then

pˇs
 tˇq D ˇ
ˇ: .�/

To prove p D " by contradiction, assume that p ¤ ". Then, by Lemma 4.6(2),(
9h .pˇs
 tˇh D ˇ ^ q D h
ˇ/; or
p D " ^ s
 t D 
 ^ q D ":

The second case implies p D ", which contradicts the assumption. We consider the
first case. Since pˇs
 tˇh D ˇ for some h, pˇ D " or s
 tˇh D ". If pˇ D "

holds, then, by Proposition 3.5(2), ˇ D " holds, which contradicts (WTC5). Hence
s
 tˇh D " holds. Then, by Proposition 3.5(2), s
 D " and tˇh D ". Thus, both
of them yield a contradiction. Therefore, p D " holds, and hence (v) is proved.
For part (vi), let us assume that for some p; q; s; and t , Num.s/ ^ Num.t/ and
pˇs
 tˇq D ˇ
ˇ .D w/ hold. We can prove q D " by the same discussion in (v),
and this implies that (vi) holds.

Secondly, we prove the induction step. To prove this, let us assume that for some
v 2 fag�, for each u 2 fag�, there exists w 2 fa; b; cg� such that

WTC ` PWitn.u; v; w/:
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We have to prove the above for v˛. Fix u 2 fag� and let w 2 fa; b; cg� be such
that PWitn.u; v; w/ holds by the induction hypothesis. Then, by (iii) of the defini-
tion of PWitn.u; v; w/, there exist z0 and w0 such that w D w0ˇv
z0ˇ. Then let
Ow 2 fa; b; cg� be

Ow WD w0bvcz0bvacz0ub .D wvacz0ub/:

In what follows, we prove that this Ow satisfies PWitn.u; v˛; Ow/ by proving each
condition of the definition of PWitn.

We can easily prove (i), (ii), and (iii) of the PWitn. For part (iv), for each p
and number string z, let us assume the antecedent of (iv); that is, pˇv˛
zˇ D
w v˛
z0 uˇ. Since zˇ and z0 uˇ have no 
 , by Lemma 4.6(1), pˇv˛ D w v˛.
Since w D w0ˇv
z0ˇ, pˇv˛ D w0ˇv
z0ˇv˛. Since v˛ has no ˇ, by
Lemma 4.6(1), p D w0ˇv
z0 and hence pˇ D w. Thus, to prove the conse-
quent of (iv), it is enough to show

8z0 :.ˇv˛
z0ˇ v w/:

We prove this by contradiction. For this, assume that kˇv˛
z0ˇl D w for some
k; l and z0. Then, since kˇv˛
z0ˇl D w0ˇv
z0ˇ, Lemma 4.6(2) implies that there
exists h such that(

.�/ kˇv˛
z0ˇh D w0ˇ ^ l D hv
z0ˇ; or

.��/ k D w0 ^ v˛
z
0 D v
z0 ^ l D ":

For case .�/, we can prove k ¤ " as follows: If k D ", then, w D ˇv˛
z0ˇhv
z0ˇ
holds. But, ˇ
ˇ vini ˇv˛
z

0ˇhv
z0ˇ never happens. Thus, k ¤ ".
Then, by (v) of the definition of PWitn.u; v; w/, there exist number strings s and

t such that v˛ D s˛, z0 D tu, and ˇs
 t vend k. Then, v˛ D s˛ implies v D s, and
ˇs
 t vend k implies k D k0ˇs
 t for some k0. Hence, k D k0ˇv
t holds. Thus,
by .�/, w0ˇ D .k0ˇv
t/ˇv˛
z0ˇh holds. This implies that ˇv
tˇ v w0ˇ. This
contradicts (iv) for the witness w. For case .��/, v˛
z0 D v
 implies v˛ D v. But
this is impossible since, by finitely many applications of Proposition 3.9(1) (in fact,
by metainduction), v˛ D v implies ˛ D ". For parts (v) and (vi), these steps are
probably at least as complicated as step (iv). This completes the proof of step 1.

In the next step, we prove the uniqueness of the witness. In the following, we fix
u; v 2 fag� and w 2 fa; b; cg� such that WTC ` PWitn.u; v; w/.

Step 2 (Uniqueness of the witness) WTC ` 8w0 .PWitn.u; v; w0/! w D w0/.
To prove step 2, we first prove the following two lemmas. Note that each witness-

ing string is a good string.

Lemma 4.16

.1/ For each k; l 2 fag�, WTC proves

8w0 ŒPWitn.u; v; w0/! 8p .pˇk
lˇ vini w ! pˇk
lˇ vini w
0/�:

.2/ The theory WTC proves 8w0 ŒPWitn.u; v; w0/! w vini w
0�.

Proof For part (1), we prove this by the induction on the length of k 2 fag�. If
k D ", we can easily check that pˇk
lˇ vini w implies p D " and l D ". Thus, by
(ii) in the definition of PWitn.u; v; w0/, we have pˇk
lˇ vini w

0.
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To prove the induction step, we assume that for some k 2 fag�, we have, for each
l 2 fag�,

WTC ` 8p.pˇk
lˇ vini w ! pˇk
lˇ vini w
0/: .�/

For k˛, assume that pˇk˛
lˇ vini w for some l 2 fag�. By (ii) of the definition
of PWitn, it is easy to show that p ¤ ". Then, by (iv) of PWitn, there exist number
strings s and t such that k˛ D s˛ ^ l D tu ^ ˇs
 t vini p. Hence, pˇ D p0ˇs
 tˇ

for some p0. By assumption,

p0ˇs
 tˇk˛
lˇ vini w .�/

holds. Thus p0ˇs
 tˇ vini w and therefore, p0ˇk
tˇ vini w. Then, by the induction
hypothesis, it follows that p0ˇk
tˇ vini w

0. Hence, p0ˇk
tˇq D w0 for some q.
Here we can prove that q ¤ " as follows. If q D ", then, by Lemma 4.6(2), we

can show that k D v. Then this contradicts the assumption pˇk˛
lˇ vini w, (v)
and (iv). Hence, q ¤ ". Then we can prove (1) as follows: by (vi) of the definition
of PWitn, we can easily prove p0ˇk
tˇk˛
tuˇ vini w

0. Since l D tu, we have
proved .�/. This completes the proof of (1) of this lemma.

For part (2), we can easily prove it as a corollary of (1). In fact, since
PWitn.u; v; w/ holds, there exists some number string z such that ˇv
zˇ vend w.
Then w D pˇv
zˇ for some p. Then, since z v w, z D uz for some uz 2 fag�,
and hence w D pˇv
uzˇ. Then, since pˇv
uzˇ vini w, by part (1) of this lemma,
pˇv
uzˇ vini w

0. This means that w vini w
0.

The second lemma, provable in WTC, is as follows.

Lemma 4.17 For each w0 with PWitn.u; v; w0/,
.1/ 8x 8y 8p 8q ..Num.x/ ^ Num.y/ ^ pˇx
yˇq D w0 ^ q ¤ "/!
9z .Num.z/ ^ ˇv
zˇ vend ˇq//;

.2/ 8x 8y 8p 8q ..Num.x/ ^ Num.y/ ^ pˇx
yˇq D w0 ^ q ¤ "/!
8z0 .Num.z0/! :.ˇv
z0ˇ v pˇx
yˇ///.

Proof We reason in WTC. For part (1), let p and q be such that pˇx
yˇq D w0

and q ¤ " hold. By (iii) of the definition of PWitn.u; v; w0/, there exists z such
that Num.z/ ^ ˇv
zˇ vend w

0 holds. Thus, w0 D w00ˇv
zˇ for some w00. Then,
by assumption, pˇx
yˇq D w00ˇv
zˇ holds. Then, by Lemma 4.6(2) and q ¤ ",
there exists h such that

pˇx
yˇh D w00ˇ and q D hv
zˇ:

Here, if h D ", then q D v
zˇ. Hence, ˇq D ˇv
zˇ and this implies
ˇv
zˇ vend ˇq. If h ¤ ", then, by pˇx
yˇh D w00ˇ, there exists h0 such
that h D h0ˇ. Since q D h0ˇv
zˇ, ˇq D ˇh0ˇv
zˇ holds. Thus, ˇv
zˇ vend ˇq

holds.
For part (2), let p and q be such that pˇx
yˇq D w0 and q ¤ " hold. Then, by

(1) of this lemma, there exist q0 and a number string z such that

ˇq D q0ˇv
zˇ: .��/

Hence, w0 D pˇx
yq0ˇv
zˇ holds. Now fix some number string z0. To prove (2),
we have to prove the following assertion:

:.ˇv
z0ˇ v pˇx
yˇ/: .��/
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Now, by (iv) of the definition of PWitn.u; v; w0/, the following assertion holds:

:.ˇv
z0ˇ v pˇx
yq0ˇ/: .� � �/

Here, if q0 D ", then :.ˇv
z0ˇ v pˇx
yˇ/ holds, which means .��/ holds. If
q0 ¤ ", then by .��/, q0 D ˇq00 for some q00. Thus, .� � �/ implies :.ˇv
z0ˇ
v pˇx
yˇq00ˇ/. Hence, .��/ holds.

Now we prove step 2 and complete the proof of Theorem 4.8. Recall the statement
of step 2:

WTC ` 8w0 .PWitn.u; v; w0/! w D w0/:

Proof of Step 2 We reason in WTC. Fix w0 such that PWitn.u; v; w0/ holds. Then,
by Lemma 4.16(2), w vini w

0 holds. Here w0 D wq for some q. To prove
w D w0 by way of contradiction, assume that q ¤ ". Since w is a witness for
the product of u and v, there exists a number string z0 such that ˇv
z0ˇ vend w.
Thus, pˇv
z0ˇ D w for some p. Hence, pˇv
z0ˇq D w0. Since q ¤ ", by
Lemma 4.17(2), :.ˇv
z0ˇ v pˇv
z0ˇ/ for each number string z0. This is a con-
tradiction. Hence, q D ". Thus, w D w0 holds. This completes the proof of
step 2.

Then, by step 1 and step 2, Theorem 4.8 is proved, and this completes the proof of
Corollary 4.9.
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