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Automorphisms of Saturated and
Boundedly Saturated Models of Arithmetic

Ermek S. Nurkhaidarov and Erez Shochat

Abstract We discuss automorphisms of saturated models of PA and boundedly
saturated models of PA. We show that Smoryński’s Lemma and Kaye’s Theorem
are not only true for countable recursively saturated models of PA but also true
for all boundedly saturated models of PA with slight modifications.

1 Introduction

In this paper our main interests are the study of groups of automorphisms of saturated
and boundedly saturated models of Peano Arithmetic. Throughout this paper we will
assume the existence of such structures. We will show that Smoryński’s Lemma and
Kaye’s Theorem are true for all boundedly saturated (and in particular all saturated)
models of PA. We begin by showing that these results are true for saturated models
of PA (these are generalizations of results from [9]). We then show that any automor-
phism of a boundedly saturated model which is not saturated can be extended to an
automorphism of the saturated end extension of the model. That allows us to apply
the results proved for saturated models to boundedly saturated models as well.

In Section 3 for the saturated case, and in Section 6 for the boundedly saturated
case, we prove the following analogue of Smoryński’s Lemma [13].

Theorem 1.1 Let M be a (boundedly) saturated model of Peano Arithmetic of
cardinality λ. A cut I ⊂ M is of the form Ifix( f ) for some f ∈ Aut(M) if and only
if I ⊂ M is an exponentially closed cut and dcf(I ) = λ.

In Section 4 for saturated models, in Section 6 for boundedly saturated models which
are not short, and in Section 7 for short saturated models, we prove analogues of
Kaye’s Theorem [4] which together give the following.
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Theorem 1.2 Let M be a (boundedly) saturated model of Peano Arithmetic. Then
H is a closed normal subgroup of Aut(M) if and only if there exists an invariant cut
I ⊆ M such that H = Aut(M)(I ).

From the last theorem we obtain two important corollaries concerning automorphism
groups of boundedly saturated models of PA.

Corollary 1.3 Let M1,M2 be saturated models of Peano Arithmetic such that
M1 |H TA and M2 6|H TA. Then their automorphism groups are nonisomorphic
as topological groups.

The above result is also true when in the statement above “saturated models” is re-
placed with “boundedly saturated models which are not short” (see Corollary 6.7).

Corollary 1.4 Let M be a saturated model of Peano Arithmetic. Then there are
short saturated elementary initial segments of M whose automorphism groups are
nonisomorphic as topological groups.

Remark 1.5 The topology used for the automorphism groups is the topology with
stabilizers of finite subsets of the model as basic open sets. The first author has
recently shown (yet to appear) that Corollary 1.3 is also true for saturated models
with the finer topology with stabilizers of subsets of cardinality less than that of the
model as basic open sets. The significance in showing this is that the finer topology
has the small index property, which implies that the automorphism groups of the
models in the corollary are nonisomorphic as abstract groups.

2 Basic Theorems and Definitions

We will assume that the reader is familiar with the basic facts about models of Peano
Arithmetic. The book of Kaye [3] can be used to review them.

Throughout the paper, M is a model of Peano Arithmetic (PA). Let A ⊆ B ⊆ M .
We define the following notion:

A ⊆e B ⇐⇒ ∀x ∈ A∀y ∈ B(y < x → y ∈ A).

If A ⊆e B we call A an initial segment of B, and B an end extension of A. A set
I ⊆e M is called a cut if I 6= ∅ and I is closed under the successor function.

For A ⊆ M we define

sup A = {x ∈ M : ∃y ∈ A(x ≤ y)}

and
inf A = {x ∈ M : ∀y ∈ A(x < y)}.

The standard cut will be denoted by ω. If a ∈ M |H PA, then a codes the sequence
(a)0, (a)1, . . .. True Arithmetic (TA) is Th(N).

If M is a model of PA, we write Aut(M) for the automorphism group of M .
A model M is called recursively saturated if it realizes all recursive types p(x, a),
a ∈ M . Countable recursively saturated models of PA are ω-homogeneous as ex-
pressed in the following lemma.

Lemma 2.1 If M is a countable recursively saturated model of Peano Arithmetic,
then two elements of M belong to the same orbit of Aut(M) if and only if they realize
the same complete type.
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We say that a type over a model M is bounded if it contains the formula v < a for
some a ∈ M .

Definition 2.2 A model M is saturated if and only if for every A ⊆ M with
|A| < |M |, M realizes every type over A. A model M is boundedly saturated if and
only if for every A ⊆ M with |A| < |M |, M realizes every bounded type over A.

Clearly, every saturated model of PA is boundedly saturated. Let M |H PA, a ∈ M .
We define

gap(a) = {b ∈ M : there is a Skolem term t (x) such that a ≤ t (b) and b ≤ t (a)}.

The Moving Gaps Lemma [5] is true for all recursively saturated models and hence
for all saturated models.

Lemma 2.3 (Moving Gaps Lemma) Let M be a (recursively) saturated model of
PA. Suppose that g ∈ Aut(M) and a, b, d ∈ M are such that g(a) 6= a < gap(b)
< gap(d). Then there exists c ∈ M such that gap(b) < c < gap(d) and
g(c) /∈ gap(c).

Let M(a) = sup(gap(a)). Notice that M(a) is the smallest elementary initial seg-
ment of M containing a.

Definition 2.4 If M = M(a) for some a ∈ M then M is said to be short. If M is
boundedly saturated and short then we say that M is short saturated.

Notice that when M |H TA then N is short saturated. We will frequently use the fact
that most results concerning models of Peano Arithmetic remain true if we expand
the language by a finite number of constants.

3 Initial Segments

In this section, we prove an analogue of Smoryński’s Lemma. Let M |H PA. If
g ∈ Aut(M), then

Ifix(g) = {x ∈ M : ∀y < x(g(y) = y)}.

Thus Ifix(g) is the largest cut pointwise fixed by g. We say that I ⊆e M is an
exponentially closed cut if whenever a ∈ I then 2a

∈ I .

Lemma 3.1 ([5]) Let M be a model of Peano Arithmetic. If I = Ifix(g) for some
g ∈ Aut(M), then I is an exponentially closed cut.

Smoryński [13] proved the converse of Lemma 3.1 for countable recursively satu-
rated models.

Lemma 3.2 (Smoryński’s Lemma [13]) Let M be a countable recursively saturated
model of Peano Arithmetic and let I ⊆e M be a cut. If I is an exponentially closed
cut then there is g ∈ Aut(M) such that Ifix(g) = I.

The proof of Smoryński’s Lemma is based on the following two propositions.

Proposition 3.3 ([5], [8], [13]) Let M be recursively saturated and let a, b, c ∈ M
be such that for all x < 22c

: (M, x, a) ≡ (M, x, b). Then for each a′ there is b′

such that, for all x < c, (M, x, a, a′) ≡ (M, x, b, b′).
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Proposition 3.4 ([13]) Let M be recursively saturated. Then for every a ∈ M
and every nondefinable d there are b, c < 2d2

such that b 6= c and for all x < d,
(M, x, a, b) ≡ (M, x, a, c).

Recall from [10] that when M |H PA is saturated and |M | = λ then λ is regular and
2κ ≤ λ whenever κ < λ. For the rest of this section we fix M to be a saturated model
of Peano Arithmetic of cardinality λ and G = Aut(M).

Let I ⊂ M be a cut. By dcf(I ) we denote the least cardinality κ of a downward
cofinal set A ⊂ M \ I . By cf(I ) we denote the least cardinality µ of a cofinal set
B ⊂ I .

Theorem 3.5 A cut I ⊂ M is of the form Ifix( f ) for some f ∈ G if and only if I is
exponentially closed and dcf(I ) = λ.

Proof H⇒ First, by Lemma 3.1, I is closed under exponentiation. Now we prove
that dcf(I ) = λ. We notice that if I = ω then dcf(I ) = λ. Assume that dcf(I ) 6= λ
(in particular, I 6= ω). Then there is a set A ⊂ M \ I which is downward cofinal
in M \ I and card(A) < λ. We can choose A in such a way that, for every a′

∈ A,
f (a′) 6= a′. Because card(A) < λ, by the saturation of M there exist c ∈ I and
a ∈ M such that for every a′

∈ A there is n < c with (a)n = a′. Using saturation
again we can assume that (a)i ≥ (a) j when i < j < c. Define

J = sup{n : n < c and (a)n ∈ A}.

Let b = f (a). By the assumptions on a, b, c, I, and J we have (b)i = f ((a)i ) = (a)i
when c > i > J . Also for every i ∈ J there is j < c such that i ≤ j and (a) j ∈ A;
hence (b) j = f ((a) j ) 6= (a) j . Thus J is definable from a, b, and c:

n ∈ J ⇐⇒ n < c and there exists j < c such that n ≤ j and (a) j 6= (b) j .

Define m to be the least element such that m 6∈ J . Then m − 1 is the largest element
in J , and (a)m−1 is the least element in A. Hence (a)m−1 6∈ I and (a)m−1 − 1 ∈ I ,
which is impossible.

⇐H We will prove this direction by a back-and-forth argument. Order M in order
type λ (that is, let M = {m j : j < λ}). We construct a sequence Bi = {bk : k < i}
and Ci = {ck : k < i} such that at each step we have ai > I with the property,

for all formulas θ, all b̄ ∈ Bi , c̄ ∈ Ci M |H ∀x < ai (θ(x, b̄) ↔ θ(x, c̄)).

For the forth direction at any nonlimit step, let bi = m j , where j is the least one with
m j in M\Bi . By Proposition 3.3, for every b̄ ∈ Bi with corresponding c̄ ∈ Ci there
exists c′

∈ M such that for all formulas θ(x, ȳ, y),

M |H ∀x < ai+1(θ(x, b̄, bi ) ↔ θ(x, c̄, ci )),

where ai+1 = log2(log2(ai )) > I . Since M is saturated there exists ci such that for
all formulas θ and for all b̄ ∈ Bi , c̄ ∈ Ci ,

M |H ∀x < ai+1(θ(x, b̄, bi ) ↔ θ(x, c̄, ci )).

Similarly the back direction.
At limit step define Bi =

⋃
j<i

B j , Ci =
⋃
j<i

C j and because dcf(I ) = λ we have

a > I with the property, for all formulas θ, all b̄ ∈ Bi , c̄ ∈ Ci

M |H ∀x < a(θ(x, b̄) ↔ θ(x, c̄)).
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To guarantee that Ifix( f ) = I add one more step. Given Bi ,Ci consider any d > I .
We show how to find bi ≤ d: bi 6∈ Ifix( f ). By Proposition 3.4 and using satu-
ration of M , we can find a′ > I, b′′, b′ < d, b′′

6= b′ such that for all x < a′,
(M, x, Bi , b′) ≡ (M, x, Bi , b′′). By Proposition 3.3 and using saturation of M we
can find a′′ > I and ci such that, for all x < a′′, (M, x, Bi , b′) ≡ (M, x,Ci , ci ).
Now let ai be the smaller of a′, a′′, and pick bi = b′ if b′

6= ci ; otherwise choose
bi = b′′. �

One can notice that we actually proved a little stronger result.

Lemma 3.6 Let I ⊂ M be an exponentially closed cut such that dcf(I ) = λ,
let A ⊆ M have cardinality less than λ, and let h : A → M be such that
(M, x, a)a∈A ≡ (M, x, h(a))a∈A for all x ∈ I . Then there is f ∈ G such that
f ⊇ h and Ifix( f ) = I .

Saturation of M easily implies the next lemma.

Lemma 3.7 Let I be a cut such that cf(I ) 6= λ. Then dcf(I ) = λ.

Corollary 3.8 If I ⊂ M is an exponentially closed cut and cf(I ) < λ then there
exists f ∈ G such that Ifix( f ) = I .

Corollary 3.9 If a ∈ M then there exists f ∈ G such that Ifix( f ) = M(a).

4 Closed Normal Subgroups

If M is a model of Peano Arithmetic, we can consider its automorphism group
Aut(M) as a topological group by letting the stabilizers of finite subsets of M be
the basic open subgroups.

Let A ⊂ M and let H be a subgroup of Aut(M). Then we define

H(A) = {g ∈ H : g(a) = a for every a ∈ A};

in particular, Aut(M)a is the stabilizer of a point a ∈ M .
Let I be a cut in a model M . We say I is invariant if for every f ∈ Aut(M),

f (I ) = I . We will leave the proof of the following lemma to the reader.

Lemma 4.1 Let M |H PA be saturated and let I ⊂ M be a cut. Then I is invariant
if and only if there is a sequence of definable elements in M which is cofinal in I or
a sequence of definable elements in M which is downward cofinal in M\I .

We note that the above result is not true for short saturated models. In particular, if
M(a) is short saturated and M(a) 6= M(0), there are other invariant initial segments
to the model, as will be discussed in Section 7.

It is not difficult to see that if I is an invariant cut, then Aut(M)(I ) is a closed nor-
mal subgroup in Aut(M). Kaye [4] showed that for countable recursively saturated
models the converse is true (another proof can be found in [11]).

Theorem 4.2 (Kaye’s Theorem) Let M be a countable recursively saturated model
of Peano Arithmetic. A subgroup H of Aut(M) is a closed normal subgroup if and
only if there is an invariant cut I ⊆e M such that H = Aut(M)(I ).

For the rest of this section we fix M to be a saturated model of Peano Arithmetic of
cardinality λ and G = Aut(M).
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Lemma 4.3 Let a 6= b ∈ M, let g ∈ G satisfy g(a) = b, let I = Ifix(g), and let
J = inf

n∈ω
jn , where

jn = max{ j ∈ M : ∀x̄ < j
∧
θ<n

(θ(x̄, a) ↔ θ(x̄, b))}.

Then I ⊂ J .

Proof Clearly, I ⊆ J . By Theorem 3.5, dcf(I ) = λ. By the definition of J we have
that J is ω-coded from above. Hence, J 6= I . �

If I ⊆ M is a cut, we define

Aut(M)(>I ) = {g ∈ Aut(M) : I ( Ifix(g)}.

Lemma 4.4

1. Suppose I is a cut, dcf(I ) = λ, and I is closed under exponentiation. Then
G(>I ) 6= G(I ) and the closure of G(>I ) is G(I ).

2. Suppose I is an exponentially closed cut and dcf(I ) 6= λ. Then G(>I ) = G(I ).

Proof

1. By Theorem 3.5, G(>I ) 6= G(I ). Clearly, G(>I ) ≤ G(I ). Let g ∈ G(I ) and
g(a) = b. We must show that there is h ∈ G(>I ) with h(a) = b. Let J be
the cut defined in the previous lemma, so I ⊂ J , and let c ∈ J \ I . Define
2c

0 = c, 2c
1 = 2c, and 2c

n+1 = 22c
n . Let 2c

ω = sup{2c
n : n ∈ ω}. Notice that

2c
ω is closed under exponentiation. Also, cf(2c

ω) = ω. Hence, by Lemma 3.7
dcf(2c

ω) = λ. Then by Lemma 3.6 we can find h such that h ∈ G(2c
ω) and

h(a) = b. Since I < c, we have I ⊂ 2c
ω, and we are done.

2. Clearly, G(>I ) ≤ G(I ). Now if f ∈ G(I ), then by Theorem 3.5 Ifix( f ) ⊃ I ,
because dcf(I ) 6= λ. Therefore, f ∈ G(>I ). �

We will need the following lemma from [11].

Lemma 4.5 Let N be a countable recursively saturated model of PA. Let
g ∈ Aut(N ), I = Ifix(g) and suppose there exist arbitrarily small x > I such
that g(x) < x. Suppose a < b ∈ N and h ∈ G(I ) are such that b = h(a). Then
there exist u, v, w ∈ N such that

g(v) = u < v, tp(u, v) = tp(u, w) and tp(v,w) = tp(a, b).

In order to prove the analogue of this lemma in the saturated case, we use the fact
that whenever M is recursively saturated (and in particular when M is saturated),
for any automorphisms g, h of M and any ā ∈ M , there is a countable recursively
saturated model N , with g′, h′

∈ Aut(N ), such that (N , g′, h′, ā) ≺ (M, g, h, ā).
This fact can be proven by a downward Skolem-Löwenheim type argument.

Lemma 4.6 Let g ∈ G, I = Ifix(g) and suppose there exist arbitrarily small x > I
such that g(x) < x. Suppose a < b ∈ M and h ∈ G(I ) are such that b = h(a). Then
there exist u, v, w ∈ M such that

g(v) = u < v, tp(u, v) = tp(u, w) and tp(v,w) = tp(a, b).
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Proof There exists (N , g′, h′) ≺ (M, g, h) such that a, b ∈ N and N is re-
cursively saturated and countable. By Lemma 4.5 there are u, v, w ∈ N such
that g′(v) = u < v, tp(u, v) = tp(u, w), and tp(v,w) = tp(a, b). Since
(N , g′, h′) ≺ (M, g, h) we are done. �

Now we prove an analogue of Kaye’s Theorem.

Theorem 4.7 Let H ≤ Aut(M). Then H is a closed normal subgroup if and only
if there exists an invariant cut I ⊂ M such that H = Aut(M)(I ).

Proof ⇐H It is not difficult to see that if I is an invariant cut, then G(I ) is a closed
normal subgroup in G.

H⇒ We prove this direction exactly the same way as in [11]. Suppose g ∈ G and
let I = Ifix(g). Without loss of generality, we can assume that there exist arbitrarily
small x > I such that g(x) < x . We know I is exponentially closed and dcf(I ) = λ.
Let J ⊆ I be the largest invariant exponentially closed cut (such J is well defined).
G(J ) is a closed normal subgroup, g ∈ G(J ). So it is sufficient to show that G(J ) is
the closure of {g− f1 g f2 : f1, f2 ∈ G}.

Let h1 ∈ G(J ) and let c, d ∈ M be such that h1(c) = d. If c = d , there
is no problem. Assume c < d . Then it follows from Lemma 4.4 that there are
h2, f, h ∈ Aut(M) such that h2(c) = d and h = h f

2 ∈ G(I ). Let a = f −1(c),
b = f −1(d). Then a < h(a) = b, so there exist u, v, w as in Lemma 4.6. Let
f3, f4 ∈ G be such that

f3(u) = u, f3(v) = w, f4(v) = a, f4(w) = b.

Let f1 = f −1
3 f −1

4 f −1 and f2 = f −1
4 f −1. Then g− f1 g f2(c) = d . The case c > d is

similar. �

�ω is the set of all elements greater than the standard cut and smaller than any non-
standard definable element. In general �ω in models of PA might be empty. Using
saturation one can show that if Th(M) 6= TA (by our assumption M is saturated) then
�ω 6= ∅. The next lemma easily follows from Theorem 4.7.

Lemma 4.8 If Th(M) 6= TA then G(�ω) is the largest proper closed normal sub-
group in G.

From Theorem 4.7 we obtain a corollary.

Corollary 4.9 Let M1,M2 be two saturated models of Peano Arithmetic of cardi-
nality λ such that M1 |H TA and M2 6|H TA. Then their automorphism groups are
nonisomorphic as topological groups.

Proof Because M1 |H TA, M1 does not have any nonstandard definable elements.
Since M2 6|H TA, there are nonstandard definable elements in M2. Thus, by The-
orem 4.7, Aut(M1) has no nontrivial closed normal subgroups and Aut(M2) has
nontrivial closed normal subgroups (consider, for example, a subgroup Aut(M2)(�ω)
from Lemma 4.8). Therefore, Aut(M1) cannot be topologically isomorphic to
Aut(M2). �
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5 Bounded Saturation

In this section we show that every automorphism of a boundedly saturated model of
PA which is not saturated can be extended to an automorphism of the saturated end
extension of the model.

It is not hard to show that when M is a saturated model and N ≺end M then N is
boundedly saturated. Moreover, in a recent unpublished paper, Schmerl showed, us-
ing a back-and-forth argument, that if N is boundedly saturated and M is a saturated
model with N ≡ M and |N | = |M |, then N is isomorphic to an elementary initial
segment of M . Hence, we get the following.

Proposition 5.1 N is boundedly saturated if and only if N ≺end M for some satu-
rated model M.

For the rest of the paper we fix a saturated model M , λ = |M |, G = Aut(M).

Proposition 5.2 Let N ≺end M. Then N is saturated if and only if cf(N ) = λ.

Proof It is not hard to show that if N is saturated, cf(N ) = λ. Conversely, suppose
that cf(N ) = λ. Let p(v) be a type with κ < λ many parameters finitely realized
in N . Enumerate all finite conjunctions of formulas from p(v), {8i }i∈κ . Let bi be
an element realizing the finite conjunction8i in N . Since cf(N ) = λ, there is b ∈ N
such that b > bi for all i ∈ κ . Then clearly the bounded type

q(v) = p(v) ∪ {v < b}

is finitely realized. But since N ≺end M , by the previous proposition, N is boundedly
saturated, so this type is realized in N by some c. Thus, c ∈ N realizes p(v). �

Notice that whenever N ≺end M , if f ∈ Aut(M) and f (N )= N , then f |N ∈ Aut(N ).
We now proceed to show that every automorphism of a boundedly saturated model
N ≺end M which is not saturated can be extended to an automorphism of M . This
result is in contrast to a result from [12] which states that there are continuum many
automorphisms of any countable short recursively saturated model which cannot be
extended to automorphisms of the recursively saturated elementary end extension of
the model.

Let N ⊆ M . By Cod(M/N ) we denote the set of all subsets of N which are
coded in M . For any c ∈ M , by x ∈ c we denote that x is an element of the set coded
by c in M . By lh(c) we denote the length of the sequence coded by c.

Proposition 5.3 Let N ≺end M be such that cf(N ) < λ. Let f ∈ Aut(N ). Then
f ∈ Aut((N ,Cod(M/N ))).

Proof Let X ⊂ N be coded in M by d. Let κ = cf(N ) and let {ei }i∈κ be a
cofinal sequence in N . For all i ∈ κ let ci be the smallest element in M coding
X ∩ [0, ei ] (such element must be in N ). Notice that if i < j ∈ κ , for all r < lh(ci ),
(ci )r = (c j )r . Now f (x) ∈ f (X) ⇐⇒ x ∈ X ⇐⇒ x ∈ ci ⇐⇒ f (x) ∈ f (ci )
for some i ∈ κ . Since f is a bijection on N , f (x) ∈ f (X) ⇐⇒ f (x) ∈ f (ci ) for
some i ∈ κ implies that x ∈ f (X) ⇐⇒ x ∈ f (ci ) for some i ∈ κ .

Now let p(v) be the following type.

p(v) = {∀r < lh( f (ci )), (v)r = ( f (ci ))r : i ∈ κ}.

Since for any i < j ∈ κ , for all r < lh( f (ci )), ( f (ci ))r = ( f (c j ))r , any finite
collection of formulas from p(v) is realized by some f (c j ), where j ∈ κ is the
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largest j used in the finite collection. Since there are κ < λ many parameters, p(v)
is realized in M by some c, and hence f (X) is coded in M . Therefore, f fixes
Cod(M/N ) setwise. �

The next proposition can be found in [7] for the countable recursively saturated case.
The proof in the saturated case is similar.

Proposition 5.4 Suppose that N ≺end M and that dcf(N ) = λ. Then every
f ∈ Aut((N ,Cod(M/N ))) extends to an automorphism of M.

Proof Let f ∈ Aut((N ,Cod(M/N ))). Let M = {mi : i < λ}. We will con-
struct an automorphism g of M extending f by back-and-forth. We will only
do the forth direction since the back is similar. Assume that for i < λ we have
Ai = {ak : k < i} ⊂ M and Bi = {bk : k < i} ⊂ M such that for all ā ⊂ Ai and all
x ∈ N ,

(M, ā, x) ≡ (M, b̄, f (x)),

where b̄ is a sequence of elements bk in Bi with the same indices as those of the aks
in Ai (we shall call this the b̄ corresponding to ā). Let j be the least j ∈ λ such that
m j ∈ M\Ai . Let a = m j . We will find b ∈ M such that for all ā ⊂ Ai and their
corresponding b̄ ⊂ Bi and all x ∈ N ,

(M, ā, a, x) ≡ (M, b̄, b, f (x)).

Let c′
∈ N be nonstandard. For any finite ā ⊂ Ai , we can assign (from the outside)

a unique sā < c′. This can be done since there are less than λ many finite ā ⊂ Ai ,
and since there are λ many elements in [0, c′).

Let e > N and let α be an element such that for every finite sequence ā ⊂ Ai and
all ϕ ∈ LPA

M |H ∀x < e(〈pϕq , sā, x〉 ∈ α ⇐⇒ ϕ(ā, a, x)).

Such α exists because M is saturated and because |Ai | < λ. The reason that we are
using 〈pϕq , sā, x〉, as opposed to 〈pϕq , ā, x〉, is that 〈pϕq , sā, x〉 enables us to use
the inductive assumption. Let S = α∩ N . Since S is coded in M , by our assumption,
S′

= f (S) is also coded in M by some β.
Now for every nonstandard c ∈ N with c > c′ and for every ā ⊂ Ai and any

ϕ ∈ LPA,

M |H ∃u∀x < c(〈pϕq , sā, x〉 ∈ S ∩ [0, 2c4
] ⇐⇒ ϕ(ā, u, x)).

Note that a is a witness for the existence of such u. Also note that the set S ∩ [0, 2c4
]

is coded in N . Let sb̄ = f (sā). Thus, by our inductive assumption,

M |H ∃u∀x < f (c)(〈pϕq , sb̄, x〉 ∈ S′
∩ [0, 2 f (c)4

] ⇐⇒ ϕ(b̄, u, x)).

Since f is an automorphism of N we get that for every nonstandard c ∈ N such that
f (c) > c′ and for every finite sequence b̄ ⊂ Bi and any ϕ ∈ LPA,

M |H ∃u∀x < c(〈pϕq , sb̄, x〉 ∈ β ∩ [0, 2c4
] ⇐⇒ ϕ(b̄, u, x)).

(Notice that for each c ∈ N , S′
∩ [0, 2c4

] = β ∩ [0, 2c4
].) Let dϕ,b̄ be the largest d

such that

M |H ∃u∀x < d(〈pϕq , sb̄, x〉 ∈ β ∩ [0, 2d4
] ⇐⇒ ϕ(b̄, u, x)).
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By overspill, dϕ,b̄ must be in M\N . Since dcf(N ) = λ and since there are less than
λ many finite subsets of Bi , there must be d ∈ M such that N < d < dϕ,b̄ for all
ϕ ∈ LPA and b̄ ⊂ Bi . Thus, by saturation there is b ∈ M such that for every b̄ ⊂ Bi
and any ϕ ∈ LPA

M |H ∀x < d(〈pϕq , sb̄, x〉 ∈ β ∩ [0, 2d4
] ⇐⇒ ϕ(b̄, b, x)).

Hence, for any x ∈ N , any ā ⊂ Ai and its corresponding b̄ ⊂ Bi , and any ϕ ∈ LPA,

M |H ϕ(ā, a, x) ⇐⇒ 〈pϕq , sā, x〉 ∈ α ⇐⇒ 〈pϕq , sb̄, x〉 ∈ β ⇐⇒ ϕ(b̄, b, x).

Finally, for any limit ordinal i ≤ λ let Ai =
⋃

j<i A j and Bi =
⋃

j<i B j . �

Since whenever N is a cut of M with cf(N ) < λ, dcf(N ) = λ (see Lemma 3.7),
Propositions 5.3 and 5.4 imply the following theorem.

Theorem 5.5 Let N ≺end M be such that cf(N ) < λ and let f ∈ Aut(N ). Then f
can be extended to an automorphism of M.

The above result shows that any boundedly saturated submodel of M which is not
saturated can be extended to M . We will now show that this is not true for some
saturated submodels.

We say that a type is rare if any element that realizes it in a model of PA is the
only element in its gap that does. It was shown in [6] that every recursively saturated
model has elements realizing rare types which are not selective. If b ∈ M realizes
such type, there is c ∈ Scl(b)\ Scl(0) with c < gap(b).

For b ∈ M let M[b] = M(b)\ gap(b). Notice that M[b] is an elementary initial
segment of M and dcf(M[b]) = ω. Therefore, cf(M[b]) = λ and hence M[b] is
saturated.

Proposition 5.6 Let b ∈ M realize a rare type which is not selective; then there is
f ∈ Aut(M[b]) which cannot be extended to an automorphism of M.

Proof By the remark before the proposition, there is c = t (b) for some Skolem
term t , with c /∈ Scl(0) and c < gap(b). Thus, c is a nondefinable element in M[b],
so there is f ∈ Aut(M[b]) which moves c. But such f cannot be extended because
f fixes M[b] setwise but moves c, and any g ∈ G which fixes M[b] setwise must fix
b (since b realizes a rare type), and so it must fix c = t (b). �

6 Initial Segments of Boundedly Saturated Models

In this section we show that the Moving Gaps Lemma and Smoryński’s Lemma apply
to all boundedly saturated models of PA. We then show that Kaye’s Theorem applies
to boundedly saturated models which are not short. The proof for the short case is
given in Section 7.

Fix N a boundedly saturated elementary initial segment of M with cf(N ) = κ < λ.
We begin with the Moving Gaps Lemma.

Lemma 6.1 Suppose that g ∈ Aut(N ), and a, b, d ∈ N are such that g(a) 6=

a < gap(b) < gap(d). Then there exists c ∈ N such that gap(b) < c < gap(d) and
g(c) /∈ gap(c).

Proof By Theorem 5.5 there is an automorphism g′
∈ Aut(M) extending g. Since

a ∈ N , g(a) = g′(a), so g′(a) 6= a < gap(b) < gap(d). Hence, by the Moving
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Gaps Lemma, there exists c ∈ M such that gap(b) < c < gap(d) and g′(c) /∈ gap(c).
Since c < d , c ∈ N , so g(c) = g′(c) /∈ gap(c). �

Notice that if N has no last gap (i.e., when N is not short), every automorphism of
N moves λ many gaps. However, if N has a last gap, there are 2λ many automor-
phisms of N which do not move any gaps. These are the automorphisms which fix
all elements below the last gap.

We now show that Smoryński’s Lemma applies to boundedly saturated models as
well.

Theorem 6.2 A cut I ⊂ N is Ifix( f ) for some f ∈ Aut(N ) if and only if I is an
exponentially closed cut such that dcf(I ) = λ.

Proof Let I ⊂ N be an exponentially closed cut such that dcf(I ) = λ. Since
cf(N ) = κ , there is a set A of cardinality κ cofinal in N . Then by Lemma 3.6, there
is g ∈ G such that g(A) = A and Ifix(g) = I . But since g(A) = A, g(N ) = N , and
therefore g|N is an automorphism of N . Let f = g|N . Then Ifix( f ) = I .

Conversely, let f ∈ Aut(N ) be a nontrivial automorphism of N . By Theorem
5.5 there is an automorphism g ∈ G extending f . Since I = Ifix(g) = Ifix( f ), by
Theorem 3.5, I is an exponentially closed cut such that dcf(I ) = λ. �

We now proceed to show that Kaye’s Theorem is true for boundedly saturated models
which are not short.

We begin by sketching a proof of the following result which is based on a proof
from the same unpublished paper of Schmerl. Suppose N is not short and a, b ∈ N
are such that tp(a) = tp(b). Let A be a cofinal sequence in N of elements {ai }i∈κ
realizing minimal type. Therefore, (M, a, A) ≡ (M, b, A). By the homogeneity of
M , there is an automorphism of M sending a to b and fixing A. Since A is cofinal in
N , the restriction of the automorphism to N is an automorphism of N sending a to b.
This proves the following.

Proposition 6.3 Every boundedly saturated model of PA which not short is ω-
homogeneous.

In the proof of Lemma 4.5 from [11], the types used were not bounded. However,
one can guarantee that for any α > gap(b), the existence of the elements u, v, and w
is below α, by adding the formulas x < α and y < α to the sequences of formulas
and types constructed, as well as replacing ∃z with ∃z < α in ψn(x, y) in the proof.
Therefore, Lemma 4.6 can be modified as follows.

Lemma 6.4 Let g ∈ G, I = Ifix(g) and suppose there exist arbitrarily small x > I
such that g(x) < x. Suppose a < b ∈ M and h ∈ G(I ) are such that b = h(a). Let
α > gap(b). Then there exist u, v, w < α such that

g(v) = u < v, tp(u, v) = tp(u, w), and tp(v,w) = tp(a, b).

Lemma 6.5 Let g ∈ Aut(N ), I = Ifix(g) and suppose there exist arbitrarily small
x > I such that g(x) < x. Suppose a < b ∈ N and h ∈ Aut(N )(I ) are such that
b = h(a). Suppose further that there is α ∈ N with α > gap(b). Then there exist
u, v, w < α such that

g(v) = u < v, tp(u, v) = tp(u, w), and tp(v,w) = tp(a, b).
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Proof Since g ∈ Aut(N ), by Theorem 5.5 there is g′
∈ G extending g. Thus,

Ifix(g′) = I and there exist arbitrarily small x > I such that g′(x) < x . Also, by
Theorem 5.5, there is h′

∈ G extending h, so h′
∈ Aut(N )(I ) and b = h(a). Thus,

by Lemma 6.4, there are u, v, w < α such that

g′(v) = u < v, tp(u, v) = tp(u, w) and tp(v,w) = tp(a, b).

Since α ∈ N , u, v, w ∈ N and g(v) = u < v, and the result follows. �

Theorem 6.6 Suppose that N is not short. Let H ≤ Aut(N ). Then H is a
closed normal subgroup if and only if there exists an invariant cut I ⊂ N such
that H = Aut(N )(I ).

Proof Exactly the same as the proof of Theorem 4.7, with N replacing M , Aut(N )
replacing G, and Lemma 6.5 replacing Lemma 4.6. �

Now Corollary 4.9 can be extended to all boundedly saturated models of PA which
are not short.

Corollary 6.7 Let M1,M2 be two boundedly saturated models of Peano Arithmetic
of cardinality λ which are not short, with M1 |H TA and M2 6|H TA. Then their
automorphism groups are nonisomorphic as topological groups.

7 Short Saturation

In this section we show that Kaye’s Theorem is true for short saturated models of PA.
This result, together with Theorem 4.7 and Theorem 6.6, imply that Kaye’s Theo-
rem is true for all boundedly saturated models of PA. We then use this result to
show that any saturated model of PA has short elementary initial segments whose
automorphism groups are nonisomorphic as topological groups.

For the rest of the paper let a ∈ M . Then M(a) is a short saturated elementary
initial segment of M . Let G(a) = Aut(M(a)).

Since gap(a) is the last gap in M(a), it must be fixed setwise by all automorphisms
of the model. Moreover, if an automorphism of M fixes gap(a) setwise, its restriction
to M(a) is an automorphism of M(a). This implies the following.

Proposition 7.1 Let f ∈ G. The restriction of f to the domain of M(a), f |M(a), is
in G(a) if and only if f (gap(a)) = gap(a).

Notice that since the last gap of M(a) must be fixed setwise, if b ∈ gap(a) and
c /∈ gap(a) realize the same type, there is no automorphism sending b to c. Thus,
if gap(a) 6= gap(0), M(a) is not ω-homogeneous. However, if b, c ∈ gap(a)
and d̄, ē ∈ M(a) are such that (M(a), d̄, b) ≡ (M(a), ē, c), then by elementarity
(M, d̄, b) ≡ (M, ē, c), and since M is saturated, there is an automorphism h of M
sending d̄ to ē and b to c. Since b and c are in gap(a), h preserves gap(a) setwise,
so by Proposition 7.1 its restriction is an automorphism of M(a). Thus, we have the
following proposition.

Proposition 7.2 If b, c ∈ gap(a) and d̄, ē ∈ M(a) are such that tp(d̄, b) = tp(ē, c),
then there is an automorphism g ∈ G(a) such that g(d̄) = ē and g(b) = c.

In order to show that Kaye’s theorem [4] is true for short saturated models, we need
the following result which is due to Blass [1] and Gaifman [2].
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Lemma 7.3 (Blass and Gaifman Lemma) Let K be a model of PA. Let a < b ∈ K .
If b ∈ gap(a) then there is a Skolem term t (x) such that K |H a < b ≤ t (a) = t (b).

The above lemma implies the following proposition whose proof can be found in [7].

Proposition 7.4 Let K be a model of PA. Let f ∈ Aut(K ) and let a ∈ K . If
f (a) ∈ gap(a), then there is c ∈ gap(a) such that f (c) = c.

Lemma 7.5 Let g ∈ G(a), I = Ifix(g) ⊂ M(a) and suppose there exists an arbi-
trarily small x > I such that g(x) < x. Suppose a′ < b′

∈ M(a) and h ∈ G(a)(I )
are such that b′

= h(a′). Then there exist u, v, w ∈ M(a) and e ∈ gap(a) such that

g(v) = u < v, tp(u, v, e) = tp(u, w, e), and tp(v,w, e) = tp(a′, b′, e).

Proof Since gap(a) is fixed setwise by all automorphisms, Proposition 7.4 implies
that both g and h fix some elements in gap(a). Therefore, by the Blass and Gaif-
man Lemma, there are some elements which are fixed by both g and h (since if
r ∈ gap(a) is fixed by g and s ∈ gap(a) is fixed by h, if t (r) = t (s) then t (r) is
fixed by both g and h). Thus, there is e ∈ gap(a) such that g(e) = h(e) = e. Now
consider the saturated structure, (M, e). Since g and h are automorphisms of the
short saturated initial segment (M(a), e), by Theorem 5.5 there are automorphisms
g′, h′

∈ Aut((M, e)) extending g and h, respectively. Since I = Ifix(g) = Ifix(g′),
and since h′

∈ Aut((M, e))(I ) and b′
= h(a′) = h′(a′), by Lemma 4.6 there exist

u, v, and w such that

g′(v) = u < v, tp(u, v) = tp(u, w), and tp(v,w) = tp(a′, b′).

But since e is in the language of this structure we conclude that tp(u, v, e) =

tp(u, w, e) and tp(v,w, e) = tp(a′, b′, e). Since e ∈ gap(a) and a′, b′
∈ M(a), then

tp(v,w, e) = tp(a′, b′, e) implies that v,w ∈ M(a), and since u < v, u ∈ M(a).
Thus, g(v) = g′(v) = u and the result follows. �

Notice that the above lemma is almost identical to Lemma 4.6, but here we have
added the element e ∈ gap(a). The reason we have added it is as follows. In the
saturated case, tp(u, v) = tp(u, w) and tp(v,w) = tp(a′, b′) imply the existence
of the automorphisms f3, f4 ∈ G with f3(u) = u, f3(v) = w, f4(v) = a′,
and f4(w) = b′. This is not necessarily true in the short case. However, if
tp(u, v, e) = tp(u, w, e) and tp(v,w, e) = tp(a′, b′, e) for some e ∈ gap(a), by
Proposition 7.2 there are such f3, f4 ∈ G(a).

Theorem 7.6 Let H ≤ G(a). Then H is a closed normal subgroup if and only if
there exists an invariant cut I ⊂ M(a) such that H = G(a)(I ).

Proof Exactly the same as the proof of Theorem 4.7, with a′ replacing a, b′ re-
placing b, M(a) replacing M , G(a) replacing G, and Lemma 7.5 replacing Lemma
4.6. �

Recall that a type is rare if any element that realizes it in a model of PA is the only el-
ement in its gap that does. It follows from [2] that any saturated model has gaps with
elements realizing rare types (labeled gaps), while it follows from [6] that any satu-
rated model has also gaps with no elements realizing rare types (nonlabeled gaps).
Since the last gap of a short saturated model is fixed setwise, all the elements defined
by elements realizing rare types in the last gap must be fixed by all automorphisms.
This implies that when the last gap of a short saturated model M(a) is labeled, there
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are infinitely many invariant initial segments cofinally high in the model, which im-
plies that there is no least proper closed normal subgroup. On the other hand, it
was shown in [6] that the type of every element in a nonlabeled gap of a countable
recursively saturated model is ubiquitous; that is, the type is realized cofinally high
and cofinally low in the gap. However, the proof of this fact does not make use of
the countability of the model and hence is true for all recursively saturated models
and in particular all saturated models. Thus, when a short saturated model M(b) has
a nonlabeled last gap, it has no invariant initial segments in its last gap. Therefore,
it has a largest invariant initial segment, namely, inf(gap(b)), which implies a least
proper closed normal subgroup. This proves the following.

Corollary 7.7 Let M be a saturated model, and let a, b ∈ M be such that gap(a)
is labeled and gap(b) is nonlabeled. Then Aut(M(a)) � Aut(M(b)) as topological
groups.
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