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Proof-finding Algorithms for
Classical and Subclassical Propositional Logics

M. W. Bunder and R. M. Rizkalla

Abstract The formulas-as-types isomorphism tells us that every proof and the-
orem, in the intuitionistic implicational logic H→, corresponds to a lambda term
or combinator and its type. The algorithms of Bunder very efficiently find a
lambda term inhabitant, if any, of any given type of H→ and of many of its sub-
systems. In most cases the search procedure has a simple bound based roughly
on the length of the formula involved. Computer implementations of some of
these procedures were done in Dekker. In this paper we extend these methods
to full classical propositional logic as well as to its various subsystems. This
extension has partly been implemented by Oostdijk.

1 Introduction

The Curry-Howard or formulas-as-types isomorphism allows proofs and theorems of
intuitionistic implicational logic to be represented as combinators or lambda-terms
and their types. The work of Trigg, Hindley, and Bunder [12] shows that, for a large
class of weaker logics, proofs can be represented by restricted classes of lambda-
terms or combinators.

In Bunder [3], this work was used to develop proof-finding algorithms for these
implicational logics. Most of these algorithms have a bound on the number of algo-
rithm steps required to produce a λ-term proof, or a guarantee that there is no proof,
based on the structure of the formula being examined.

In this paper, we extend these algorithms to many logics with additional connec-
tives. This is done, first, by simply adding a constant type f and some definitions.
Intuitionistic versions of the relevance logics R→ and T→ are among the logics to
which these algorithms apply. Algorithms for stronger logics are obtained when we
add a “combinator” F with f → α as its type, for every α. Independently, we can

Received June 25, 2007; accepted April 26, 2009; printed September 30, 2009
2000 Mathematics Subject Classification: Primary, 03B20, 03B35, 03B40, 03B47
Keywords: proof-finding algorithms, propositional logics
c© 2009 by University of Notre Dame 10.1215/00294527-2009-011

261

http://www.nd.edu/~ndjfl
http://www.nd.edu


262 M. W. Bunder and R. M. Rizkalla

add a “combinator” P with Peirce’s Law as its type, or, equivalently, a new opera-
tor ν. Again we develop proof-finding algorithms for these logics. The strongest one
covered is classical propositional logic, which can be based on the types of F and P
and of the standard combinators K and S.

2 Q-Combinators and Restricted Lambda Terms

Combinators are operators which manipulate arbitrary expressions by cancellation,
duplication, bracketing, and permutation. Given any finite (basis-) set Q of combi-
nators, Q-combinators are defined as follows.

Definition 2.1

(i) If X ∈ Q, X is a Q-combinator.
(ii) If X and Y are Q-combinators, so is (XY ).

The operation in (ii) is called application. In terms formed by application we assume
association to the left. In particularly complex terms we will sometimes use { } or [ ]

instead of ( ).
The most common basis of combinators is {S, K}, where S and K have the prop-

erties

KXY = X

SXY Z = X Z(Y Z).

Combinatory reduction involves replacing KXY and SXY Z , in terms, by X and
X Z(Y Z), respectively.

{S, K}-combinators, or more simply SK-combinators, have the “combinatorial
completeness” property,

If A(X1, . . . , Xn) is formed by application, with zero or more copies of each
of X1, . . . , Xn , then there is an SK-combinator A such that

AX1 . . . Xn = A(X1, . . . , Xn).

Lambda(or λ)-terms are defined, using a set of variables V , as follows.

Definition 2.2

(i) If x ∈ V, x is a λ-term.
(ii) If X and Y are λ-terms, so is (their application) (XY ).

(iii) If X is a λ-term and x a variable, then (λx .X) (called a λ-abstract) is a λ-term.

We assume association to the left in λ-terms formed by application.

Definition 2.3

(i) If x occurs in Y and λx .Y is (a subterm of) X , then that occurrence of x is
bound in X .

(ii) If an occurrence of x in X is not bound in X , then that occurrence is free in X .

The main rule of λ-calculus is

(β) (λx .X)Y = [Y/x]X

where in [Y/x]X , Y replaces all free occurrences of x in X in a capture-avoiding
manner. Replacing (λx .X)Y by [Y/x]X in a term is called β-reduction.
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Note that (β) gives combinatorial completeness in the λ-calculus. The A above
becomes (λx1.(λx2 . . . (λxn .A(x1, . . . , xn)) . . . )), which we will write more briefly
as

λx1 . . . xn .A(x1, . . . , xn).

More details on combinatory logic and the λ-calculus, including the formal definition
of [Y/x]X , can be found in Hindley and Seldin [9].

We will restrict λ-terms by restricting Definition 2.2(iii). For example, if x must
be free in X , the λ-terms defined are the λI -terms of Church. Other restrictions used
in [11] depend on where x is in X or how many occurrences there are of x in X .

SK-combinatory logic is, in a sense, equivalent to the full λ-calculus (see [2]).
In a similar way, many Q-combinatory logics have been shown to be equivalent to
certain restricted λ-calculi. Details appear in Trigg, Hindley, and Bunder [12].

3 Types, Implicational Logics, Combinators, and Lambda Terms

Many combinators and λ-terms represent functions. For example, if x∈α and y∈β,
where α and β can be thought of as sets, given the property of K, Kx : β → α; that
is, Kx is a function from β to α, or, equivalently, an element of the set β → α. Then
also K : α→(β→α). The set α→(β→α) is then called a type of K.

Types, for combinators and λ-terms, are defined as follows using a countable set
of atoms or atomic types A.

Definition 3.1

(i) If a∈A, a is a type.
(ii) If α and β are types, so is (α→β).

For types we assume association to the right.
In this paper we will not be much concerned with combinatory or λ-reduction

(which via Curry-Howard corresponds to proof reduction) or with how types are
assigned to combinators using their properties. We take each combinator from a set
Q, with its type as an axiom scheme.

Definition 3.2 Q-type theory has, for each of the combinators I, B, B′, K, C, S, S′,
and W that appears in Q, the corresponding axiom scheme from

` I : α → α
` B : (α → β) → (γ → α) → γ → β
` B′ : (α → β) → (β → γ ) → α → γ
` K : α → β → α
` C : (α → β → γ ) → β → α → γ
` S : (α → β → γ ) → (α → β) → α → γ
` S′ : (α → β) → (α → β → γ ) → α → γ
` W : (α → α → β) → α → β.

The sole rule of inference is

→e
` X : α → β ` Y : α

` (XY ) : β
.

The combinators in Q can be considered as labels of axioms of a Q-logic and the
Q-combinators as labels of theorems. In fact, a Q-combinator is a very concise rep-
resentation of a Hilbert-style proof of a theorem which is its type. Each combinator
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in Q that appears in it represents a use of an axiom and each application (forming an
(XY )) a use of →e .

Example 3.3

` SK : (a → a → a) → a → a
` SKK : a → a .

Types can be assigned to λ-terms using the type assignment system for λ-calculus,
TAλ.

Definition 3.4 The rules of TAλ are given by

→e
1 ` X : α → β 1′

` Y : α

1, 1′
` (XY ) : β

where each of 1 and 1′ is a set of judgments of the form x : γ and 1, 1′ is 1 ∪ 1′.

1, x : α ` x : α where x is not in 1

and

→i
1, x : α ` X : β

1 ` λx .X : α → β
where x is not in 1.

If in a combinatory logic or λ-calculus-based type theory ` X : τ , then X is called
an inhabitant of τ and τ a type of X in the given type theory.

Each λ-term inhabitant of a type represents a natural deduction proof of the type,
each application represents a use of →e, and each λ-abstraction a use of →i .

Example 3.5 x1 : α → β ` x1 : α → β x2 : α ` x2 : α

x1 : α → β, x2 : α ` x1x2 : β x3 : β → γ

x1 : α → β, x2 : α, x3 : β → γ ` x3(x1x2) : γ

x1 : α → β, x2 : α ` λx3.x3(x1x2) : (β → γ ) → γ

x1 : α → β ` λx2x3.x3(x1x2) : α → (β → γ ) → γ

` λx1x2x3.x3(x1x2) : (α → β) → α → (β → γ ) → γ

Details on assigning types to λ-terms can be found in Hindley [8]. The book also
includes an algorithm of Ben-Yelles, which finds λ-term inhabitants for types, that
is, proofs of potential theorems of H→.

In [3], we gave proof-finding algorithms for each of the following implicational
logics (named by their axioms): BCK-logic, BCI-logic, BCIW-logic (the relevance
logic R→), BB′IW-logic (T→), SK-logic (H→), BB′IK-logic, and BB′I-logic; we
indicated how algorithms could be found for a number of others. For any Q-logic
this involved finding a natural deduction or λ-term proof of a form that is translatable
into a Q-combinator via the work in [2]. In most cases a fixed bound on the number
of λ-terms the algorithm would need to create to find the proof term, or to prove
there was none, was given. This bound is based on the form of the potential theorem
being tested. In the cases of BCIW and BB′IW there was no simple bound, but the
finiteness of the procedure could be guaranteed. In each case the Q-combinator, that
is, Hilbert-style proof, can be found.

Our aim will be to extend the (sub)intuitionistic proof algorithms of [3], for the
above implicational logics, to provide us with proofs of theorems involving connec-
tives other than →. We also consider various strengthenings of the above logics and
the corresponding type theories.
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Note that several combinators are interdefinable. All combinators are definable
in terms of S and K or (B, C, K, and W) and as B′

= CB, I = SKK = CKK,
S = B(BW)(B(B′B′)B), and equal combinators have the same types, it follows that
SK-logic is the same as BB′WK-logic, and so on.

4 Logics with Minimal Negation

We pick an atomic type f from A to define minimal negation.

Definition 4.1 ∼ α ≡ α → f .

Definition 4.2 A Q-logic (Q-type theory), which includes connectives defined
using f (e.g., negation, as defined in Definition 4.1), will be called a Q-logic (Q-
type theory) with minimal negation, or an MQ-logic (MQ-type theory).

As f has only the properties possessed by other atomic types, such as being unin-
habited, derivations in MQ-type theories are exactly the same as those in Q-type
theories; however, we will use `MQ for Q-provability where the types may include
a connective defined using f . Hence we have the following.

Proof-finding algorithm for MQ-logics

Aim Given a type τ , to find an X such that `MQ X : τ .

Method

1. Rewrite τ in terms of → and f using the definitions of any other connectives.
2. Find X using the Q-algorithm of [3].

Theorem 4.3 If τ is a type, which may include connectives definable using f , then
τ is inhabited in MQ if and only if an X such that `MQ X : τ is found by the
algorithm for MQ.

Proof For each Q this follows from the appropriate theorem for Q in [3]. �

Here are some results, easily derivable using this algorithm, for MQ-logics.

Proposition 4.4

(i) In MQ-logics with B′ as a theorem, `MQ (a → b) →∼ b →∼ a.

(ii) In MQ-logics with C as a theorem, `MQ (a →∼ b) → b →∼ a.

(iii) In MQ-logics with W as a theorem, `MQ (a →∼ a) →∼ a.

(iv) In MQ-logics with C and I as theorems, `MQ a →∼∼ a.

We will now consider several other possible connectives definable using f .

Definition 4.5

α&β ≡ (α → β → f ) → f

α ∧ β ≡ ((α → β) → α → f ) → f

α ∨ β ≡ (α → f ) → β

α ∨1 β ≡ (α → β) → β

α ≡ α → α → α.
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Proofs involving these connectives are rather less trivial. We give the λ-terms gener-
ated by Dekker’s Brouwer 7.9.0 [6]. The algorithms used by Dekker, that is, those of
[3], only generate λ-terms which, via the work in [2], are translatable into Hilbert-
style logics.

Proposition 4.6
(i) In MQ-logics with K `MQ α→β ∨ α.

(ii) In MQ-logics with B,C,I and W `MQ (α→β)&(α→γ )→α→β&γ .

(iii) In MQ-logics with S and K `MQ (α→β) ∧ (α→γ )→α→β ∧ γ .

(iv) In MQ-logics with B and B′
`MQ α & β → (α&β).

(v) In MQ-logics with B,C and I `MQ α ∧ β → (α ∧ β).

(vi) In MQ-logics with B,C and K `MQ α→β →α ∧ β.

(vii) In MQ-logics with B,C and I `MQ α→β →α&β.

(viii) In MQ-logics with C and B or B′
`MQ α ∧ β →β ∧ α.

(ix) In MQ-logics with C and W `MQ α→α&α.

(x) In MQ-logics with C and I `MQ α→α ∧ α.

(xi) In MQ-logics with B and B′
`MQ (α→β)→(α ∨1 γ )→(β ∨1 γ ).

(xii) In MQ-logics with B,C,I and W `MQ α ∧ (β ∨ γ )→α ∧ β ∨ α ∧ γ .

(xiii) In MQ-logics with S and K `MQ α&(β ∨ γ )→α&β ∨ α&γ .

(xiv) In MQ-logics with B,C,I and W `MQ (α→β)&(α→γ )→α→β&γ .

Proof

(i) λx1x2.x1.
(ii) λx1x2x3.x1(λx4x5.x3(x4x2)(x5x2)).

(iii) λx1x2x3.x1(λx4x5.x3(λx6.x4x5x2)(x5x2)).
(iv) λx1x2x3x4.x1(λx5x6.x3(λx7x8.x2(λx9x10.x4(x5x7x9)(x6x8x10)))).
(v) λx1x2x3x4.x2(λx5x6.x3(λx7x8.x1(λx9x10.x4(λx11.x9x10(x5x6)(x7x11))x8).

(vi) λx1x2x3.x3(λx1.x2)x1.
(vii) λx1x2x3.x3x1x2.

(viii) λx1x2.x1.(λx3x4.x2x4x3).
(ix) λx1x2.x2x1x1.
(x) λx1x2.x2(λx1.x1)x1.

(xi) λx1x2x3.x2(λx4.x3(x1x4)).
(xii) λx1x2x3.x1(λx5x4.x2(λx6.x3x5(λx6.x4(x6x5)))).

(xiii) λx1x2x3.x1(λx4x5.x2(λx6.x3(λx5.x4x5(λx7.x6(λx5.x7)x5))x5)).
(xiv) λx1x2x3.x1(λx4x5.x3(x4x2)(x5x2)). �

The combinatory versions of the proofs, which may be complex, are also given in
Oostdijk’s (partial) implementation of the algorithms. The proof in (ii), for exam-
ple, in BCIW-logic, translates to C(BBB)

{
B(C(B[BW(B(BC(BB)))]B)(CI)

}
. The

proofs of (iii) to (v) are more complex still.

Notation 4.7 Whereas in the above theorem and others in this paper we talk of
logics “with the combinators C1, . . . , Cn,” all that is really needed is to have com-
binators with the types of C1, . . . , Cn. The lambda terms given in the proofs can be
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translated in terms of the combinators and the theorems are proved, by →e, from
their types. Hence, other combinators with the same types will do.

The algorithms can also show that many theorems are unprovable. For example, in
SK,

∼ a → a → b − (a)

(∼ a →∼ b) → b → a − (b)

∼∼ a → a − (c)

a ∨ a → a − (d)

a → a ∨ b − (e)

a&b → a − ( f )

a ∧ b → a. − (g).

5 Logics with Implication and Intuitionistic Negation

In this section we extend the type theory to include one extra axiom.

Axiom F ` F : f → α.

We then have the following definition.

Definition 5.1 QF-type theory is MQ-type theory with Axiom F. QF-logic is MQ-
logic with the extra axiom ` f → α.

We will treat F like a combinator, or label representing this axiom, in our Hilbert-
style proofs as well as in the natural deduction proofs. We therefore have BCIF-
logic, SKF-logic, and so on.

The following theorem will justify the proof-finding algorithm for such logics.

Theorem 5.2 If τ is a type whose subtypes are α1, . . . , αn , then `QF X : τ if and
only if there is a Q-term Y such that

(i) FV (Y ) =
{

y1, . . . , yn
}
,

(ii) y1 : f → α1, y2 : f → α2, . . . , yn : f → αn `Q Y : τ ,
where, for the purpose of checking whether Y is a Q-term, the yi s are treated as
constants.

(iii) [F/y1, . . . , F/yn]Y ≡ X.

Proof (⇒) In a cut-free proof of `QF X : τ , by the subformula property, we can
replace each use of Axiom F by a hypothesis yi : f → αi , where αi is a subtype of τ .
This gives rise to a term Y which clearly satisfies (i) and (ii). [F/y1, . . .,F/yn]Y ≡ X
as this operation restores the original Fs, so (iii) holds.

(⇐) If, in the derivation of (ii), we replace each hypothesis yi : f → αi by an
axiom F : f → αi , we obtain a proof of `QF X : τ . �

Proof-finding algorithm for logics with implication and intuitionistic negation

Aim Given a type τ , to find, for a basis QF, an X such that `QF X : τ .

Method

1. Rewrite τ in terms of → and f .
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2. Use the Q-algorithm of [3], while treating y1, . . . , yn as constants, to find a
Y such that

y1 : f → α1, . . . , yn : f → αn `Q Y : τ

where α1, . . . , αn are the subtypes of τ . If there is no such Y , there is no X .
3. If there is such a Y ,

X = [F/y1, . . . , F/yn]Y.

Using the algorithm and translation into combinators, we have the following propo-
sition.

Proposition 5.3

(i) ` BF : ∼ a → a → b.
(ii) ` C(BF) : a →∼ a → b.

(iii) ` C(BF) : a → a ∨ b.

We also have ` BF :∼ a → a → b → c, ` C(BF) : (a → c) → (a → c)∨(b → c)
and so on.

For logics that have B and K we can replace Axiom F by a simpler axiom as a
result of the next lemma.

Lemma 5.4 In any logic with B, K, and F, the only uses of the F axiom that are
required are ones where α is an atom.

Proof An arbitrary type α must have the form α1 → · · · → αn → a for some
n ≥ 0. In a logic with B and K we have, for 1 ≤ i ≤ n,

`QF ( f → αi−1 → · · · → α1 → a) → f → αi → · · · → α1 → a,

so from `QF f → a we can prove `QF f → α.
In the corresponding QF-type theory, from `QF F : f → a we can prove

`QF BK(. . . (BKF) . . . ) : f → α,

where there are n BKs. So in the logic with the restricted Axiom F, we have the
same theorems but more complex proofs. The algorithm, however, can be simplified
as α1, . . . , αn can be the atoms in τ . �

Most standard tautologies, other than those in Propositions 4.6 and 5.3, in particular,
(b), (c), (d), (f), and (g), remain unprovable in SKF-logic as we do not have double
negation, or equivalently, Peirce’s Law.

6 Implicational Logics with Peirce’s Law (and Minimal Negation)

We can extend the Hilbert-style logics, or typed combinatory logics, to classical
logics by adding one extra axiom.

Axiom P ` P : ((α → β) → α) → α.

P is treated as a new combinator. Typed lambda calculus is extended by means of a
new operator ν with the introduction rule:

νI
1, x : α → β ` Y : α

1 ` νx .Y : α

The corresponding logical rule was first proposed in Popper [11] and is also used in
Curry [5]. Versions similar to the above typed rule (one with α and one with β at
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the end of the top line) appear in Gabbay and de Queroz [7] but have λx instead of
νx , which causes problems when translating from λ-terms to combinators. Gabbay
and de Queroz also have the equivalent of Axiom F but do not use the axiom or the
“νI -rule” to build proof-finding algorithms. Work on the properties of the ν-operator
can be found in Bunder and Hirokawa [4]. Translations from QP-combinators (with
or without F) to λν-terms and vice versa are given by

P = λy.νx .yx

νx .Y = P(λx .Y ).

The number of logics that we will be interested in is greatly reduced because, with
Axiom P, the type of W can be obtained using Axioms B′ and K and that of K can
be obtained using Axioms B, C, and I:

` BPB′
: (a → a → b) → a → b (B′

= CB)

` B(BP)(BC(CI)) : a → b → a.

Thus BCIP, BCKP, BCIWP, and SKP logics are all the same.
Also BB′IKP and BB′KP logics are the same as SKP logic as

` B(BW)(B(B′(BB′K(B′) : (a → b → c) → b → a → c

and
` WK : a → a

have the same types as C and I, respectively.
Based on the lemma below, we have a proof-finding algorithm for SKP-logic, that

is, classical implicational logic, but not at this stage for the remaining weaker sys-
tems, BB′P and BB′IP. We can, of course, add minimal negation and the definitions
of the other connectives.

Lemma 6.1 A proof of τ in SKP-logic can be written as a proof in SK-logic of τ
using the hypotheses

τ → a1, . . . , τ → an

where a1, . . . , an are some or all of the atoms of τ , followed by νI steps.

Proof Consider the last proof segments ending in a νI step in a proof tree of τ .
These will take the form

1i , αi → βi1 → · · · → βiki → bi ` αi → βi1 → · · · → βiki → bi

Di1

νI
1′

i , αi → βi1 → · · · → βiki → b ` αi

1′

i ` αi
where 1 ≤ i ≤ m.

These are then used in a part D2 of the proof tree of τ . Each Di1 may contain
further uses of νI but the remainder of D2 will contain none.

Now consider a proof tree D′

2 in which, for each i, 1′

i ` αi and the steps above it
are replaced by

1′

i , βi1, . . . , βiki , αi ` αi . (1)
D′

2 will be the same as D2 except that extra hypotheses β11, . . . , β1k1 , α1, . . .,
βm1, . . . , βmkm , αm are included. The final step will give

β11, . . . , β1k1 , α1, . . . , βm1, . . . , βmkm , αm ` τ.
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We then obtain

τ → b1, β11, . . . , β1k1 , α1, . . . , βm1, . . . , βmkm , αm ` b1

and

τ → b1, β21, . . . , β2k2 , α2, . . . , βm1, . . . , βmkm , αm ` α1 → β11 → . . . β1k1 → b1.

We now add 11 to the hypotheses and apply D′

11, which is D11 with extra hypothe-
ses, to give

1′

1, τ → b1, β21, . . . , β2k2 , α2, . . . , βm1, . . . , βmkm , αm ` α1. (2)

We now apply D2
2 , which is D′

2 with (1) for 2 ≤ i and (2) instead of (1) for i = 1.
This will give

τ → b1, β21, . . . , β2k2 , α2, . . . , βm1, . . . , βmkm , αm ` τ,

τ → b1, τ → b2, β21, . . . , β2k2 , α2, . . . , βm1, . . . , βmkm , αm ` b2

τ → b1, τ → b2, β21, . . . , β2k2 , α2, . . . , βm1, . . . , βmkm , αm ` α2 → . . . β2k2 → b2

and so on, and eventually we have Dm+1
2 ending in

τ → b1, τ → b2, . . . , τ → bm ` τ.

In Dm+1
2 each Di1 is used once each, so the total number of νI steps in the derivation

is n fewer than the number in the derivation of ` τ . The last uses of νI in Dm+1
2 can

be eliminated from this derivation in the same way, eventually resulting in

τ → b1, τ → b2, . . . , τ → bn ` τ,

where m ≤ n. n νI steps then give ` τ . �

Note that Lemma 6.1 standardizes a proof in classical logic so that it consists of an
SK (i.e., H→) proof followed by a sequence of νI steps (at most one for each atom
b).

Proof-finding algorithm for classical implicational logic (SKP) (with minimal nega-
tion)

Aim Given a type τ , to find an X such that `SKP X : τ .

Method

1. Rewrite τ in terms of → and f .
2. Find a Y such that

y1 : τ → a1, . . . , yn : τ → an `(M)SK Y : τ

by the SK-algorithm of [3] or the MSK-algorithm above, where a1, . . . , an
are the atomic types of τ . If there is no such Y , there is no X .

3. If there is, then

X = νy1 . . . yn .Y.

Theorem 6.2 Given a type τ , `SKP X : τ , for some X if and only if the SKP-
algorithm finds an SKP-proof of τ .
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Proof If τ has an SKP-proof, it can be rewritten as in Lemma 6.1 and the SK-
algorithm can find a Y such that

y1 : τ → a1, . . . , yn : τ → an `SK Y : τ.

n applications of νI , and the translation from ν to P, then give

`SKP X : τ.

If τ has no SKP-proof, then no such Y or X can be found and this, again, is deter-
mined by the SK-algorithm in [3]. �

The following is derived using the algorithm.

Proposition 6.3 The following are theorems of SKP-logic with minimal negation.

(i) ((a → b) → a) → a.
(ii) a ∨ a → a.

(iii) a ∨1 b → b ∨1 a.
(iv) (a → c) → (b → c) → (a ∨1 b) → c.
(v) a&(b ∨1 c) → (a&b) ∨1 c.

(vi) a ∧ (b ∨1 c) → (a ∧ b) ∨1 c.

Proof

(i) νy1.λx1.x1(λx2.y1(λx1.x2)).
(ii) νy1.λx1.x1(λx2.y1(λx3.x2)).

(iii) νy1.λx1x2.x2(x1(λx3.y1(λx4x5.x3))).
(iv) νy1 y2.λx1x2x3.x1(y1(λx4x5x6.x2(x3(λx7.x6(λx8.y2(λx9x10x11.x4x7)))))).
(v) νy1.λx1x2x3.x3(λx4.x2(λx5x6.x1(λx7x8.x6(λx9.x8(λx10.x7(λx11x12.x10.

(y1(λx13x14.x12(λx15.x14(λx16.x13(λx17x18.x4x11x15)))))x9))))))).
(vi) νy1 y2.λx1x2.x2(λx3.x1(λx4x5.y2(λx6x7.x4x5(λx8.x7(λx9.x6

(λx10x11.x3.(λx12.x8)(y1(λx13x14.x10x11(λx15.x14(λx16.x13

(λx17x18.x16(λx19.x15)x18))))))))))). �

Note that parts (i), (ii), (iii), and (iv) are also BB′P and BB′IP theorems, but the
proofs given above do not translate into BB′P or BB′IP terms. Here are proofs,
obtained by hand, that do:

(i) and (ii) λx1.νy1.x1 y1.
(iii) λx1x2.νy1.x2(x1 y1).
(iv) λx1x2x3.νy1.x2(x3(λx4.y1(x1x4))).

It is clear from this that postponing the νI steps can make a longer proof; however,
the postponement allows a simpler algorithm. For BB′P and BB′IP logic the post-
ponement of the νI step cannot, in general, be done and we have no simple algorithm.

Common tautologies such as (a), (b), (c), (e), (f), and (g) are not theorems of
SKP-logic as they require Axiom F. Given the corresponding remark about SKF, it
is clear that none of the algorithms introduced here cover common logical systems
such as R, T , or E (see Anderson and Belnap [1]).
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7 Full Classical Logic

It is clear that the system SKFP represents full classical logic. Here is an algorithm.

Proof-finding algorithm for classical propositional (or SKFP-) logic

Aim Given a type τ , to find an X such that `SKFP X : τ .

Method

1. Rewrite τ in terms of → and f .
2. Find, using the SKF algorithm, a Y such that

`SKF Y : (τ → f ) → f ;

thus, X = νy.F(Y y).

Theorem 7.1 τ is a theorem of classical propositional logic if and only if a proof
of it can be found using the SKFP-algorithm.

Proof It is well known that if τ is a theorem of classical logic then (τ → f ) → f
is a theorem of intuitionistic logic. By Theorem 5.2, for any such theorem, a proof
can be found by the SKF-algorithm. �

Here is an example.

νy.F([λx1.x1(λx2x3.F(λx1.x3(x2(λx4.x1(λx2x3.x4)))))]y) : a ∨ b → b ∨ a.

All the algorithms in this paper were to be implemented in Oostdijk [10] and gen-
erally they work well; however, a “shortcut” taken in the implementation has meant
that a few proofs are unobtainable, even though the algorithm can be followed easily
by hand.
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