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Interval Orders and Reverse Mathematics

Alberto Marcone

Abstract We study the reverse mathematics of interval orders. We establish

the logical strength of the implications among various definitions of the notion

of interval order. We also consider the strength of different versions of the char-

acterization theorem for interval orders: a partial order is an interval order if and

only if it does not contain 2 ⊕ 2. We also study proper interval orders and their

characterization theorem: a partial order is a proper interval order if and only if

it contains neither 2 ⊕ 2 nor 3 ⊕ 1.

1 Introduction

Interval orders are a particular kind of partial orders occurring quite naturally in

many different areas and are widely studied. A partial order P = (P,≤P ) is an

interval order if the elements of P can be mapped to nonempty intervals of a linear

order L so that p <P q holds if and only if every element of the interval associated

to p precedes every element of the interval associated to q . The linear order L and

the map from P to intervals are called the interval representation of P. The basic

reference on interval orders is Fishburn’s monograph [9].

The name “interval order” was introduced by Fishburn [8] although the notion was

studied much earlier by Wiener [23] who used the terminology “relation of complete

sequence.” Interval orders model many phenomena occurring in the applied sciences:

[9], Section 2.1, includes examples such as chronological dating in archaeology and

paleontology, scheduling of manufacturing processes, and psychophysical percep-

tion of sounds. Notice that if P is a countable interval order then we can assume that

L is the rational or (as usual in applications) the real line (a real representation, in

the terminology of [9]).

Most recent research on interval orders (see, e.g., the survey [22] and Chapter

8 of [18]) focuses on finite partial orders, whereas in this paper we consider mostly

infinite ones (although a careful analysis of the finite case is instrumental in obtaining
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results in the infinite case). A recent result about infinite interval orders shows that

every interval order which is a well quasi order is a better quasi order [15].

The basic characterization for interval orders is given by the following theorem

proved independently by Fishburn [8] and Mirkin [13].

Characterization Theorem 1 A partial order is an interval order if and only if it

does not contain 2 ⊕ 2.

Here “P does not contain 2 ⊕ 2” means that for no P ′ ⊆ P the restriction of ≤P

to P ′ is the partial order with Hasse diagram
r

r

r

r

. It is easy to see that P does not

contain 2 ⊕ 2 if and only if

∀p0, q0, p1, q1 ∈ P(p0 ≤P q0 ∧ p1 ≤P q1 H⇒ p0 ≤P q1 ∨ p1 ≤P q0).

Two natural ways of strengthening the notion of interval order lead to the definitions

of unit interval order and proper interval order. An interval order with a real repre-

sentation such that all intervals have the same positive length (which can be assumed

to be 1) is called a unit interval order. If an interval order P has an interval repre-

sentation such that an interval associated to an element of P is never a proper subset

of another such interval, then we say that P is a proper interval order. An interval

representation with the above property is called a proper interval representation.

It is immediate that every unit interval order is a proper interval order. If the

partial order is finite then the reverse implication is also true ([16], see [2] for a short

proof). On the other hand, there exist infinite proper interval orders which are not

unit interval orders: a simple example is provided by the ordinal ω + 1. Notice,

however, that the fact that ω + 1 is not a unit interval order has more to do with

the real line (which in this context appears to be “too short”) than with structural

properties of the partial order. Therefore, when dealing with infinite partial orders

the notion of proper interval order appears to be more natural, as witnessed also by

the following characterization theorem.

Characterization Theorem 2 A partial order is a proper interval order if and only

if it contains neither 2 ⊕ 2 nor 3 ⊕ 1.

“P does not contain 3 ⊕ 1” means that for no P ′ ⊆ P the restriction of ≤P to P ′ is

the partial order with Hasse diagram
r

r

r

r. It is easy to see that P does not contain

3 ⊕ 1 if and only if

∀p0, p1, p2, q ∈ P(p0 <P p1 <P p2 H⇒ p0 ≤P q ∨ q ≤P p2).

Characterization Theorem 2 is usually known as the Scott-Suppes Theorem. Scott

and Suppes [19] proved the theorem in the finite case for unit interval orders (see

[1] for a simple proof in this setting). Fishburn’s monograph includes a proof of this

theorem with no restrictions on cardinality ([9], Theorem 2.7).

In this paper we study interval orders and proper interval orders from the view-

point of reverse mathematics. The basic reference for reverse mathematics is Simp-

son’s book [21], which contains all background material needed for this paper (and

much more). A sample of recent research in the area is contained in [20].

In reverse mathematics, one formalizes theorems of ordinary mathematics and

attempts to discover the set theoretic axioms required to prove these theorems. This

project is usually carried out in the context of subsystems of second-order arithmetic,

taking RCA0 as the base system. RCA0 is the subsystem obtained from full second-

order arithmetic by restricting the comprehension scheme to 1
0
1 formulas and adding
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a formula induction scheme for 6
0
1 formulas. In this paper, we will be concerned

only with RCA0 and its fairly weak extension known as WKL0 (WKL0 is strictly

weaker than the subsystem ACA0 obtained by extending the comprehension scheme

in RCA0 to all arithmetic formulas). WKL0 is obtained by adjoining Weak König’s

Lemma (i.e., König’s Lemma for trees of sequences of 0s and 1s) to RCA0.

Many results about partial and linear orders have been studied from the viewpoint

of reverse mathematics: recent papers include [6], [5], [4], [3], [10], [11], [12], and

[14]. Moreover, [17], Section 3, includes a couple of results about interval graphs,

which are strictly connected to interval orders.

2 Overview of Results and Plan of the Paper

The first step in the study of a new topic in the context of reverse mathematics is

finding appropriate formalizations of the relevant notions. Often this requires mak-

ing choices between classically equivalent definitions for the mathematical concepts

appearing in the definitions. In this paper, we consider a number of equivalent defi-

nitions for the notions of interval order and of proper interval order, and we examine

how difficult it is to prove the equivalences of these definitions.

There is no particular difficulty in coding a countable partial order in the weak

base theory RCA0. The only point to note is that we consider only countable par-

tial orders. However, the notion of interval order hinges on the notion of interval

of a linear order, and the latter can be interpreted in different ways, leading to no-

tions that are not necessarily equivalent in the weak base theory RCA0. We can

define an interval of the linear order L = (L,≤L) to be a set I ⊆ L which satisfies

∀x, y ∈ I ∀z ∈ L(x ≤L z ≤L y H⇒ z ∈ I ). Another possibility is to restrict

our attention to closed intervals (this is often done in the literature about interval

orders; for example, in [22] this is done from the outset) and code them by pairs

(a, b) of elements of L such that a ≤L b (obviously in this case x ∈ L belongs to

the interval if and only if a ≤L x ≤L b). If we apply the latter concept of interval

we speak of a closed interval representation of the partial order. In defining interval

orders there is a further subtlety, which turns out to be important in our study of the

proof theoretic strength of various statements; that is, we may require the map of the

interval representation to be injective. Combining the two possible choices in each

of the two cases we obtain four notions of interval order: interval order, 1-1 interval

order, closed interval order, and 1-1 closed interval order. Another notion is obtained

by further strengthening the definition of 1-1 closed interval order: a closed interval

representation is a distinguishing representation if all endpoints of the closed inter-

vals are distinct (see, e.g., [22]). This leads to the notion of distinguishing interval

order. In Section 3 we will give the precise definitions of these notions in RCA0.

The five notions introduced above are all equivalent, and we establish the axioms

needed to show the equivalences among them and with the characterization provided

by Characterization Theorem 1. (Notice that the proofs of the latter theorem in [9]

and [22] can be easily carried out in ACA0; see Remark 4.8 below.)

We show that RCA0 proves exactly the implications appearing in Figure 1 (where

an arrow with origin in the node labeled A pointing toward the node labeled B rep-

resents the statement “every partial order which satisfies A satisfies B”) or that can

be obtained by composing arrows appearing in that diagram. In particular, we obtain

the following result about Characterization Theorem 1.
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distinguishing interval order

1-1 closed interval order

closed interval order 1-1 interval order

interval order

no 2⊕ 2

Figure 1 Implications about interval orders provable in RCA0.

Theorem 2.1 RCA0 proves that a partial order is an interval order if and only if it

does not contain 2 ⊕ 2.

The arrows pointing downward (possibly diagonally) in Figure 1 either follow from

the definitions or are straightforward to prove (these implications are collected in

Theorem 3.13), while the two arrows pointing upward will be proved in Section 5.

Figure 1 implies that in RCA0 there are at most three distinct notions of interval

order. In order of decreasing strength these are closed interval order, 1-1 interval

order, and interval order. In Section 6 we show that each of the missing implica-

tions is equivalent to WKL0. For the stronger notions of interval order we obtain the

following reverse mathematics results about Characterization Theorem 1.

Theorem 2.2 In RCA0 the following are equivalent:

1. WKL0;

2. a partial order is a 1-1 interval order if and only if it does not contain 2 ⊕ 2;

3. a partial order is a closed interval order if and only if it does not contain

2 ⊕ 2;

4. a partial order is a 1-1 closed interval order if and only if it does not contain

2 ⊕ 2;

5. a partial order is a distinguishing interval order if and only if it does not

contain 2 ⊕ 2.

In particular, this implies that RCA0 does not prove the equivalence among the three

notions of interval order mentioned above.

Section 4 is devoted to a detailed analysis of the equivalences for finite partial

orders. This analysis will be used in the proofs of Sections 5, 6, and 7.

When defining proper interval orders the same choices about intervals and injec-

tivity are possible: we thus have five different notions of proper interval order, plus

the characterization provided by Characterization Theorem 2. We show that RCA0

proves exactly the implications appearing in Figure 2 or that can be obtained by com-

posing arrows appearing in that diagram. In particular, we obtain the following result
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proper distinguishing interval order

proper 1-1 closed interval order

proper closed interval order proper 1-1 interval order

proper interval order

neither 2⊕ 2 nor 3⊕ 1

Figure 2 Implications about proper interval orders provable in RCA0.

about Characterization Theorem 2.

Theorem 2.3 RCA0 proves that a partial order is a proper interval order if and

only if it contains neither 2 ⊕ 2 nor 3 ⊕ 1.

Figures 1 and 2 are similar, except that the latter includes one arrow whose analogous

is missing from the former. Indeed within RCA0, a 1-1 interval order is necessarily a

distinguishing interval order if we have a proper representation, but not in general.

Figure 2 implies that in RCA0 there are at most two distinct notions of proper

interval order, that is, proper closed interval order and proper interval order. We

show that the missing implication is equivalent to WKL0 even if we restrict ourselves

to closed interval orders. For the stronger notions of interval order we obtain the

following reverse mathematics results about Characterization Theorem 2.

Theorem 2.4 In RCA0 the following are equivalent:

1. WKL0;

2. a partial order is a proper 1-1 interval order if and only if it contains neither

2 ⊕ 2 nor 3 ⊕ 1;

3. a partial order is a proper closed interval order if and only if it contains

neither 2 ⊕ 2 nor 3 ⊕ 1;

4. a partial order is a proper 1-1 closed interval order if and only if it contains

neither 2 ⊕ 2 nor 3 ⊕ 1;

5. a partial order is a proper distinguishing interval order if and only if it con-

tains neither 2 ⊕ 2 nor 3 ⊕ 1.

In Section 7 the definitions and the arguments of Sections 3 through 6 are adapted

to the case of proper interval orders and all results about proper interval orders are

proved. Some of the proofs are straightforward translations of the corresponding

proofs for interval orders, while others exploit the properties of proper interval or-

ders.

Our results are stated in terms of subsystems of second-order arithmetic but have

corollaries that can be viewed as examples of computable mathematics in the style
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of [7]. Samples of these corollaries are the following, where we use standard termi-

nology from computability theory.

Corollary 2.5 For every computable partial order P not containing 2 ⊕ 2 there

exist a computable linear order L and a computable function from P to intervals of

L witnessing that P is an interval order.

Corollary 2.6 There exists a computable partial order P not containing 2 ⊕ 2 such

that for every computable linear order L there is no computable function from P to

closed intervals of L witnessing that P is a closed interval order.

Corollary 2.7 For every computable partial order P not containing 2 ⊕ 2 there

exist a low (respectively, almost recursive) linear order L and a low (respectively,

almost recursive) function from P to closed intervals of L witnessing that P is a

distinguishing interval order.

(Corollary 2.7 follows from our results by the properties of ω-models of WKL0 which

appear in [21], Section VIII.2.)

We assume some familiarity of the reader with subsystems of second-order arith-

metic, but the paper is self-contained as far as interval order theory is concerned.

From now on, when a definition or the statement of a result starts with the name of

a subsystem of second-order arithmetic in parenthesis, it means that the definition is

given, or the statement provable, in that subsystem.

3 Definitions and Elementary Facts

Definition 3.1 (RCA0) A partial order P is a pair (P,≤P) where P is a set and

≤P ⊆ P × P is reflexive, transitive, and antisymmetric. The partial order P is a

linear order if we have also ∀p, q ∈ P(p ≤P q ∨ q ≤P p).

Remark 3.2 If P is a partial order then P ⊆ N and hence on P we have also

the restriction of the usual order on the natural numbers. When there is danger of

confusion we denote the latter by ≤N.

Definition 3.3 (RCA0) If P is a partial order we define the relations<P and ⊥P as

follows:

p <P q ⇐⇒ p ≤P q ∧ p 6= q,

p ⊥P q ⇐⇒ p �P q ∧ q �P p.

Sometimes it is convenient to use quasi orders, which are defined by dropping the

requirement of antisymmetry from the definition of partial order. In particular, we

will be interested in linear quasi orders.

Definition 3.4 (RCA0) P = (P,≤P ) is a quasi order if ≤P ⊆ P × P is reflexive

and transitive. If we have also ∀p, q ∈ P(p ≤P q ∨ q ≤P p) we say that P is a

linear quasi order.

Definition 3.5 (RCA0) If P is a quasi order we define <P by

p <P q ⇐⇒ p ≤P q ∧ p �P q,

while no changes are needed in the definition of ⊥P . Furthermore, we define ≡P by

p ≡P q ⇐⇒ p ≤P q ∧ p ≤P q.
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It is immediate to check in RCA0 that if P is a quasi order then ≡P is an equivalence

relation.

In our setting using (linear) quasi orders in place of partial (respectively, linear)

orders is just a matter of convenience, as the following easy lemma shows.

Lemma 3.6 (RCA0) Let P be a quasi order. Then there exist P ′ ⊆ P and

f : P → P ′ such that P
′ = (P ′,≤P ) is a partial order and f is a surjective

order-preserving function satisfying f (p) = p for every p ∈ P ′. Furthermore, if P

is a linear quasi order then P
′ is a linear order.

Proof Since P ⊆ N we can let

P ′ = { p ∈ P | ∀q <N p q 6≡P p } ;

f (p) = the <N-least q such that q ≡P p. �

We can now introduce the different notions of interval order.

Definition 3.7 (RCA0) A partial order P is an interval order if there exist a linear

order L and a set F ⊆ P × L such that, abbreviating { x ∈ L | (p, x) ∈ F } by F(p)

for every p ∈ P , we have

(i1) F(p) 6= ∅ and ∀x, y ∈ F(p) ∀z ∈ L(x <L z <L y H⇒ z ∈ F(p)) for all

p ∈ P;

(i2) p <P q ⇐⇒ ∀x ∈ F(p) ∀y ∈ F(q) x <L y for all p, q ∈ P .

P is a 1-1 interval order if we have also

(i3) F(p) 6= F(q) whenever p 6= q .

P is a closed interval order if there exist a linear order L and two functions

f0, f1 : P → L such that

(c1) f0(p) ≤L f1(p) for all p ∈ P;

(c2) p <P q ⇐⇒ f1(p) <L f0(q) for all p, q ∈ P .

P is a 1-1 closed interval order if we have also

(c3) f0(p) 6= f0(q) or f1(p) 6= f1(q) whenever p 6= q .

P is a distinguishing interval order if besides (c1) and (c2) we have also

(c4) fi (p) 6= f j (q) whenever p 6= q or i 6= j .

It is immediate that if we set F(p) = { x ∈ L | f0(p) ≤L x ≤L f1(p) }, conditions

(c1) – (c3) are the translations of conditions (i1) – (i3).

Remark 3.8 Lemma 3.6 implies that in the preceding definitions we can use linear

quasi orders in place of linear orders. Whenever it is convenient for the clarity of the

exposition, we will use this fact without mentioning it explicitly.

Definition 3.9 (RCA0) A partial order P does not contain 2 ⊕ 2 if

∀p0, q0, p1, q1 ∈ P(p0 <P q0 ∧ p1 <P q1 H⇒ p0 ≤P q1 ∨ p1 ≤P q0).

Definition 3.10 (RCA0) If P is a partial order and p ∈ P , the strict downward and

upward closures of p in P are the sets

p ↑P = { q ∈ P | p <P q } and p ↓P = { q ∈ P | q <P p } .

When P is clear from the context we write p ↑ and p ↓.

The next lemma is a basic observation about partial orders not containing 2 ⊕ 2.
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Lemma 3.11 (RCA0) If P does not contain 2 ⊕ 2 then for every p, q ∈ P we have

either p ↑ ⊆ q ↑ or q ↑ ⊆ p ↑, and similarly either p ↓ ⊆ q ↓ or q ↓ ⊆ p ↓.

Proof If p ↑ * q ↑ and q ↑ * p ↑, let p1 ∈ p ↑ \ q ↑ and q1 ∈ q ↑ \ p ↑. Then

p, p1, q, q1 show that P contains 2 ⊕ 2. The argument for the strict downward clo-

sures is similar. �

The following lemma is useful to show that an interval order is actually a 1-1 interval

order.

Lemma 3.12 (RCA0) Suppose P is an interval order such that

∀p, q ∈ P(p 6= q H⇒ p ↑ 6= q ↑ ∨ p ↓ 6= q ↓).

Then P is a 1-1 interval order.

Proof Let L and F satisfy conditions (i1) and (i2). We claim that F satisfies also

(i3). Fix p, q ∈ P with p 6= q . We have either p ↑ 6= q ↑ or p ↓ 6= q ↓. With-

out loss of generality, we may assume the former inequality holds and there exists

r ∈ p ↑ \ q ↑. Then q ≮P r and for some x ∈ F(r) and y ∈ F(q) we have x ≤L y.

On the other hand, p <P r so that z <L x for all z ∈ F(p). Hence y /∈ F(p) and

F(p) 6= F(q). �

We now prove the “easy” arrows appearing in Figure 1.

Theorem 3.13 (RCA0)

1. Every distinguishing interval order is a 1-1 closed interval order.

2. Every 1-1 (closed) interval order is a (closed) interval order.

3. Every (1-1) closed interval order is a (1-1) interval order.

4. Every interval order does not contain 2 ⊕ 2.

Proof The statements in (1) and (2) follow immediately from the definitions (since

condition (c4) implies condition (c3)). For the statements in (3), given L, f0, and f1

as in the definition of closed interval order, let

F = { (p, x) ∈ P × L | f0(p) ≤L x ≤L f1(p) } .

To prove (4), let L and F witness that P is an interval order. Suppose toward a

contradiction that p0, q0, p1, q1 ∈ P are such that p0 <P q0, p1 <P q1, p0 �P q1,

and p1 �P q0. The third condition implies the existence of x, y ∈ L such that

x ∈ F(p0), y ∈ F(q1), and y ≤L x . Similarly, by the fourth condition, there exist

x ′, y ′ such that x ′ ∈ F(p1), y ′ ∈ F(q0), and y ′ ≤L x ′. The first two conditions

imply, respectively, x <L y ′ and x ′ <L y: using transitivity we have x <L x , which

is impossible. �

4 Finite Interval Orders

We start by introducing one of the basic tools in the analysis of partial orders not

containing 2 ⊕ 2. Within RCA0 we can define it only for finite partial orders.

Definition 4.1 (RCA0) Given a finite partial order P, let P+ =
{

p+ | p ∈ P
}

,

P− =
{

p− | p ∈ P
}

, and P∗ = P+ ∪ P−. Define a binary relation ≤∗
P

on P∗ as
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follows:

p+ ≤∗
P

q+ ⇐⇒ p ↑P ⊇ q ↑P;

p− ≤∗
P

q− ⇐⇒ p ↓P ⊆ q ↓P;

p+ ≤∗
P

q− ⇐⇒ p <P q;

p− ≤∗
P

q+ ⇐⇒ q ≮P p.

P
∗ = (P∗,≤∗

P
) is the conjoint linear quasi order associated to P. When P is clear

from the context, we write ≤∗ in place of ≤∗
P

.

The following lemma justifies the use of the words “linear quasi order” in Defini-

tion 4.1.

Lemma 4.2 (RCA0) If P is a finite partial order which does not contain 2 ⊕ 2 then

≤∗ is a linear quasi order. Moreover, P
∗ and the functions p 7→ p−, p 7→ p+ show

that P is a closed interval order.

Proof Reflexivity of ≤∗ follows immediately from the definition. Using Lemma 3.11

it is also immediate that for every x, y ∈ P∗ we have x ≤∗ y or y ≤∗ x . It remains

to show that ≤∗ is transitive and to this end we need to consider eight cases. We

tackle three of them, the others being trivial or similar to one of these:

Case 1 If p+ ≤∗ q+ ≤∗ r− then p ↑ ⊇ q ↑ and q <P r , that is, r ∈ q ↑; therefore,

r ∈ p ↑ which means p <P r and hence p+ ≤∗ r−;

Case 2 If p+ ≤∗ q− ≤∗ r+, then p <P q and r ≮P q; hence, q ∈ p ↑ \ r ↑ and,

by Lemma 3.11, p ↑ ⊃ r ↑ holds, so that p+ ≤∗ r+;

Case 3 If p+ ≤∗ q− ≤∗ r−, then p <P q and q ↓ ⊆ r ↓, which imply p <P r and

hence, p+ ≤∗ r−.

Since for every p we have p− ≤∗ p+ (in fact, p− <∗ p+) condition (c1) of Defini-

tion 3.7 is satisfied. Condition (c2) follows immediately from the definition. �

Remark 4.3 Notice that for all p, q ∈ P we have p+ 6≡∗ q−. In other words, each

≡∗-equivalence class is contained in either P+ or P−.

Lemma 4.2 does not prove that P is a distinguishing interval order, or even a 1-1

closed interval order: if p, q ∈ P are distinct and such that p ↓ = q ↓ and p ↑ = q ↑

we have p− ≡∗ q− and p+ ≡∗ q+. To obtain the stronger conclusions we can

proceed as follows.

Definition 4.4 (RCA0) Given a finite partial order P which does not contain 2 ⊕ 2,

let P
∗ be the conjoint linear quasi order associated to P. A linear order (P∗,≤L) is

compatible with P
∗ if

∀x, y ∈ P∗(x <∗ y H⇒ x <L y).

Remark 4.5 Each (P∗,≤L) compatible with P
∗ is defined by giving a linear or-

der on each ≡∗-equivalence class and keeping the order between ≡∗-inequivalent

elements unchanged.

Lemma 4.6 (RCA0) If P is a finite partial order which does not contain 2 ⊕ 2 then

there exists a linear order compatible with P
∗.



434 Alberto Marcone

Proof For example, let

x ≤L y ⇐⇒ x <∗ y ∨ (x ≡∗ y ∧ x ≤N y).

≤L is a linear order compatible with P
∗. �

Lemma 4.7 (RCA0) Any finite partial order which does not contain 2 ⊕ 2 is a

distinguishing interval order.

Proof Let P be a finite partial order which does not contain 2 ⊕ 2, and, by

Lemma 4.6, ≤L a linear order compatible with P
∗. By Lemma 4.2 and Remark 4.3

(P∗,≤L) and the functions p 7→ p−, p 7→ p+ witness that P is a distinguishing

interval order. �

Combining Lemma 4.7 with Theorem 3.13 we obtain that RCA0 proves the equiv-

alence of the six characterizations of interval orders restricted in the case of finite

partial orders.

Remark 4.8 The reader should notice that we carried out the discussion in this

section only for finite partial orders, but the constructions and arguments apply also

for infinite ones. However, in the infinite case RCA0 does not suffice to define ≤∗

and we need to use ACA0. Indeed, arithmetical comprehension guarantees the exis-

tence of, say, the set of all pairs (p, q) such that p ↑ ⊇ q ↑. Therefore, we showed

that ACA0 proves the equivalence of the six characterizations of interval orders for

countable partial orders.

Our goal is to obtain sharper results, in particular, showing that all equivalences

can be proved in WKL0 (which is strictly weaker than ACA0). We will in fact use the

results of this section about finite partial orders to prove results about infinite partial

orders without resorting to the full power of ACA0.

The following fact about the conjoint linear quasi order will be useful in the proof of

Theorem 5.2.

Lemma 4.9 Let P
∗ be the conjoint linear quasi order associated to the finite partial

order P and let p ∈ P. Then

1. either p− is a minimum in P
∗ (i.e., ∀x ∈ P∗ p− ≤∗ x) or there exists q ∈ P,

q 6= p such that q+ is an immediate predecessor of p− in P
∗ (i.e., x <∗ p−

implies x ≤∗ q+ for all x ∈ P∗);

2. either p+ is a maximum in P
∗ (i.e., ∀x ∈ P∗ x ≤∗ p+) or there exists q ∈ P,

q 6= p such that q− is an immediate successor of p+ in P
∗ (i.e., p+ <∗ x

implies q− ≤∗ x for all x ∈ P∗).

Proof We prove the first statement (the second is proved similarly). Since P and

P
∗ are finite, if p− is not minimal in P

∗ there exists x ∈ P∗ which is an immediate

predecessor of p−.

To show that x = q+ for some q , it suffices to show that for every r ∈ P with

r− <∗ p− there exists q ∈ P with r− ≤∗ q+ <∗ p−. Indeed, r− <∗ p− means

r ↓ $ p ↓ and there exists q ∈ p ↓ \ r ↓. Then q ≮P r and q <P p which imply

r− ≤∗ q+ and q+ <∗ p−. It is obvious that q 6= p, since p− <∗ p+. �
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5 Proofs in RCA0

We start this section with the quite simple proof that the upper upward-pointing arrow

of Figure 1 is provable in RCA0.

Theorem 5.1 (RCA0) Every closed interval order is a distinguishing interval order.

Proof Let P be a closed interval order and let L, f0 and f1 witness this. Let

P∗ =
{

p+, p− | p ∈ P
}

and L ′ = L ∪ P∗ (we are assuming L ∩ P∗ = ∅).

We would like to define a linear order ≤L ′ on L ′ so that the maps p 7→ p−

and p 7→ p+ witness that P is a distinguishing interval order. We first describe ≤L ′

informally: the restriction of ≤L ′ to L coincides with ≤L , and p+ and p− are placed,

respectively, “just above f1(p)” and “just below f0(p)”; if distinct p and q are such

that f1(p) = f1(q) then p+ and q+ are placed according to ≤N, and similarly for

p− and q− when f0(p) = f0(q); if f0(p) = f1(q) then p− is below q+.

To simplify the explicit definition of ≤L ′ , we can exclude the elements not be-

longing to the range of the functions we have in mind and, therefore, consider only

the restriction of ≤L ′ to P∗. Thus we set, for every p, q ∈ P ,

p+ ≤L ′ q+ ⇐⇒ f1(p) <L f1(q) ∨ ( f1(p) = f1(q) ∧ p ≤N q);

p− ≤L ′ q− ⇐⇒ f0(p) <L f0(q) ∨ ( f0(p) = f0(q) ∧ p ≤N q);

p+ ≤L ′ q− ⇐⇒ f1(p) <L f0(q);

p− ≤L ′ q+ ⇐⇒ f0(p) ≤L f1(q).

It is left to the reader checking that L
′ = (P∗,≤L ′) is a linear order. We define

f ′
0, f ′

1 : P → P∗ by f ′
0(p) = p− and f ′

1(p) = p+, and again we leave to the reader

checking that conditions (c1), (c2), and (c4) of Definition 3.7 hold. Therefore, P is a

distinguishing interval order. �

We now show that also the bottom upward-pointing arrow of Figure 1 is provable in

RCA0.

Theorem 5.2 (RCA0) Every partial order not containing 2 ⊕2 is an interval order.

Proof Let P be a partial order not containing 2 ⊕ 2. Let { pn | n > 0 } be an enu-

meration of P (notice that for notational convenience we start our enumeration from

1). If s ∈ N, let Ps = ({ pn | 0 < n ≤ s } ,≤P) and let P
∗
s be the conjoint linear

quasi order associated to the finite partial order Ps . We have P∗
s−1 ⊂ P∗

s and we can

investigate which relations are preserved from P
∗
s−1 to P

∗
s .

Claim 5.2.1 x <∗
s−1 y implies x <∗

s y for every x, y ∈ P∗
s−1.

Proof If exactly one of x and y is in P+
s−1 (and the other is in P−

s−1) the claim fol-

lows immediately from the definition of conjoint linear quasi order. If x, y ∈ P+
s−1,

say x = p+
n and y = p+

m , then x <∗
s−1 y means that pn ↑Ps−1 % pm ↑Ps−1 . Since

pi ↑
Ps ∩ P∗

s−1 = pi ↑
Ps−1 , pn ↑Ps ⊆ pm ↑Ps cannot hold and, by Lemma 3.11 (which

uses the hypothesis that P does not contain 2 ⊕ 2), pn ↑Ps % pm ↑Ps , that is, x <∗
s y.

The argument for the case x, y ∈ P−
s−1 is similar. �

On the other hand, it is obvious that x ≡∗
s−1 y does not imply x ≡∗

s y; for example,

if x = p+
n , y = p+

m , pn ↑Ps−1 = pm ↑Ps−1 , pn <P ps , and pm 6<P ps . We say that x
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is separated below at s if for some y we have x ≡∗
s−1 y and x <∗

s y. Analogously, x

is separated above at s if for some y we have x ≡∗
s−1 y and y <∗

s x .

Claim 5.2.2 At most one ≡∗
s−1-equivalence class contained in P+

s−1 (recall Re-

mark 4.3) contains elements separated at s (and the same for ≡∗
s−1-equivalence

classes contained in P−
s−1).

Proof Notice that, by Lemma 4.9, p+
n can be separated at s only if x <∗

s p−
s <∗

s y

for some x, y ≡∗
s−1 p+

n . By the previous claim, this can happen for the elements of

at most one ≡∗
s−1-equivalence class. �

We define a linear quasi order L = (L,≤L) where

L =
{

xk
n | n ∈ N ∧ n > 0 ∧ k ∈ Z ∧ n ≤ |k|

}

.

If s ∈ N, let Ls =
{

xk
n ∈ L | n ≤ |k| ≤ s

}

. We define ≤L by stages so that, at stage

s, ≤L is defined on the finite set Ls and satisfies the following conditions:

(i) the set
{

x s
n, x−s

n | n ≤ s
}

⊆ Ls is ordered by ≤L according to P
∗
s , where x s

n

and x−s
n replace, respectively, p+

n and p−
n ;

(ii) if n < s then x−s
n <L x−s+1

n and x s
n >L x s−1

n ;

(iii) if n < s and y ∈ Ls−1 then neither x−s
n ≤L y <L x−s+1

n nor x s−1
n <L y ≤L x s

n

hold.

An easy induction using (i) and (ii) yields xk
n <L xh

n if and only if k <Z h. Notice

also that (i) and (iii) imply xk
n 6≡L xh

m whenever k 6= h.

Since L0 = ∅ at stage 0 there is nothing to do. Let s > 0 and suppose we have

defined ≤L on Ls−1 satisfying (i) – (iii). To define ≤L on Ls it suffices to describe

the position of the x s
ns and x−s

n s for n ≤ s.

First consider x s
n for n < s. If p+

n is not separated above at s then x s
n is an

immediate successor (among the elements of Ls ) of x s−1
n . If p+

n is separated above

at s, fix p+
m which is separated below at s. By Claim 5.2.2 we have p+

m ≡∗
s−1 p+

n , and

hence by (i) x s−1
m ≡L x s−1

n . Let x s
n be an immediate successor of x−s

s , which is an

immediate successor of x s
m (which, by the first clause of the present definition, is an

immediate successor of x s−1
m ≡L x s−1

n ). The position of x−s
n for n < s is established

similarly: if p−
n is not separated below at s then x−s

n is an immediate predecessor of

x−s+1
n , otherwise fix p−

m which is separated above at s and let x−s
n be an immediate

predecessor of x s
s , which is an immediate predecessor of x−s

m .

If p+
s ≡P∗

s
p+

n for some n < s, then set x s
s ≡L x s

n , and similarly if p−
s ≡P∗

s
p−

n

for some n < s, set x−s
s ≡L x−s

n . If the previous case does not hold and p+
s is the

maximum in P
∗
s then x s

s is the maximum in Ls . Similarly, if p−
s is the minimum in

P
∗
s then x−s

s is the minimum in Ls . If the position of x s
s is not yet determined, by

Lemma 4.9, p+
s is the immediate predecessor in P

∗
s of some p−

n with n < s: let x s
s be

the immediate predecessor of x−s
n in Ls . Similarly, if p−

s is the immediate successor

in P
∗
s of some p+

n with n < s, let x−s
s be the immediate successor of x s

n in Ls .

Notice that the latter part of the definition is compatible with the positions of

x s
s and x−s

s given earlier in some cases (i.e., if some p−
n or p+

n is separated at s)

above: in fact if p+
m and p+

n are separated below and above, respectively, at s then

p−
s is an immediate successor in P

∗
s of p+

m (and similarly for the other case). It is

straightforward to check that ≤L restricted to Ls satisfies (i) – (iii).
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The definition of L is thus complete. We need to define F ⊆ P × L, and we

would like to set

F =
{

(pn, xk
m) | ∃s x−s

n ≤L xk
m ≤L x s

n

}

.

To show the existence of F in RCA0, we need to prove that the 6
0
1 formula appearing

in the above definition is provably 1
0
1.

Claim 5.2.3 If t = max(|k|, n), then ∃s x−s
n ≤L xk

m ≤L x s
n is equivalent to

x−t
n ≤L xk

m ≤L x t
n .

Proof One direction of the equivalence is obvious, so assume that x−s
n ≤L xk

m ≤L x s
n

for some s 6= t . If s < t the conclusion follows immediately from x−t
n <L x−s

n and

x s
n <L x t

n . If s > t then xk
m ∈ Ls−1 (because m ≤ |k| ≤ t < s) and n < s:

hence by (iii) we have x−s+1
n ≤L xk

m ≤L x s−1
n . Repeating this argument we obtain

x−t
n ≤L xk

m ≤L x t
n . �

Claim 5.2.3 shows that F exists. It is immediate that (i1) is satisfied, so we need

only to check (i2). If pn <P pm then by (i) we have x s
n <L x−s

m for every

s ≥ max(n,m) and this easily implies ∀x ∈ F(pn) ∀y ∈ F(pm) x <L y. If

pn ≮P pm then x−s
m <L x s

n where s = max(n,m): since x s
n ∈ F(pn) and

x−s
m ∈ F(pm), ∀x ∈ F(pn) ∀y ∈ F(pm) x <L y fails. �

6 Equivalences with WKL0

We first show that WKL0 suffices to prove that the six characterizations of interval

orders we introduced are equivalent.

Lemma 6.1 (WKL0) Every partial order not containing 2 ⊕ 2 is a distinguishing

interval order.

Proof Let P be a partial order not containing 2 ⊕ 2. By Lemma 4.7 we can assume

P is infinite and let { pn | n ∈ N } be a one-to-one enumeration of P . If s ∈ N let

Ps = ({ pn | n ≤ s } ,≤P) and P
∗
s be the conjoint linear quasi order associated to the

finite partial order Ps . P
∗
s is a linear quasi order by Lemma 4.2 because P, and hence

the finite partial order Ps , does not contain 2 ⊕ 2.

Let T be the set defined by setting σ ∈ T if and only if σ is a finite sequence of

length lh(σ ) such that, for all s, t < lh(σ ),

1. σ(s) is (the code for) a linear order (denoted by ≤σ(s)) compatible with P
∗
s

(see Definition 4.4);

2. if s < t < lh(σ ) then σ(t) extends σ(s); that is, x ≤σ(s) y ⇐⇒ x ≤σ(t) y

for all x, y ∈ P∗
s .

T exists by 1
0
1-comprehension. It is immediate that T is a tree. Since σ(s) can

assume only finitely many values—corresponding to the (codes of the) finitely many

linear orders on the finite set P∗
s —T is bounded in the sense of [21], Definition

IV.1.3. By Lemma 4.6, for every s, there exists a linear order compatible with P
∗
s .

By taking its restrictions to P∗
t for t < s we construct a sequence in T of length s.

Thus T is infinite.

By Bounded König’s Lemma, which is provable in WKL0 ([21], Lemma IV.1.4),

T has an infinite path. This path is a sequence { α(s) | s ∈ N } of (codes for) finite

linear orders, each one extending the previous ones and such that α(s) is compatible
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with P
∗
s . If x, y ∈ P∗, let x ≤L y if and only if x ≤α(s) y for any (or, equivalently,

each) s with x, y ∈ P∗
s . (Notice that here we are considering P∗ just as a set, without

the ordering ≤∗
P

which is not definable in WKL0.) ≤L exists by 1
0
1-comprehension.

It is straightforward to check that (P∗,≤L) is a linear order and that conditions

(c1), (c2), and (c4) are satisfied by the functions p 7→ p−, p 7→ p+ (because they

are satisfied by each ≤α(s), by the proof of Lemma 4.7). Hence P is a distinguishing

interval order. �

Corollary 6.2 (WKL0) The five notions of interval order of Definition 3.7 and the

property of not containing 2 ⊕ 2 are all equivalent.

Proof This follows from Theorem 3.13 and Lemma 6.1. �

We now show that the implications that cannot be obtained by composing arrows

appearing in Figure 1 are equivalent to WKL0. In particular, these implications are

not provable in RCA0.

The following well-known characterization of WKL0 ([21], Lemma IV.4.4) is use-

ful.

Lemma 6.3 (RCA0) The following are equivalent:

(i) WKL0;

(ii) if f, g : N → N are one-to-one functions such that ∀n,m f (n) 6= g(m) then

there exists a set X such that ∀n( f (n) ∈ X ∧ g(n) /∈ X).

Lemma 6.4 (RCA0) If every interval order is a 1-1 interval order then WKL0 holds.

Proof We will show that under our hypothesis (ii) of Lemma 6.3 holds. Fix one-to-

one functions f, g : N → N such that ∀n,m f (n) 6= g(m). We want to find a set X

such that ∀n( f (n) ∈ X ∧ g(n) /∈ X).

We define a partial order ≤P on the set P =
⋃

k∈N
Pk , where, for each k,

Pk = {ak, bk} ∪
{

cn
k | n ∈ N

}

. If p ∈ Pk and q ∈ Ph with k 6= h we set p ≤P q

if and only if k <N h. The elements of each Pk are pairwise ≤P -incomparable with

the following exceptions:

1. if n is such that f (n) = k, then cn
k <P ak <P cn+1

k ;

2. if n is such that g(n) = k, then cn
k <P bk <P cn+1

k .

Notice that our hypothesis on f and g imply that for each k at most one of the two

possibilities occurs, and for at most one n. ≤P can be defined within RCA0.

Let P = (P,≤P ): it is immediate that P does not contain 2 ⊕ 2. By Theorem 5.2

P is an interval order and by our hypothesis P is a 1-1 interval order. Hence there

exist a linear order L = (L,≤L ) and F ⊆ P × L satisfying conditions (i1) – (i3) of

Definition 3.7. Let ϕ(k) and ψ(k) be the 5
0
1 formulas

F(ak) ⊆ F(bk) and F(bk) ⊆ F(ak),

respectively. Since (i3) holds (i.e., F is one-to-one) we have ∀k ¬(ϕ(k)∧ψ(k)) and

we are in the hypothesis of 5
0
1-separation ([21], Exercise IV.4.8), which is provable

in RCA0: hence there exists a set X satisfying

∀k((ϕ(k) H⇒ k ∈ X) ∧ (ψ(k) H⇒ k /∈ X)).

We claim that X satisfies also ∀n( f (n) ∈ X ∧ g(n) /∈ X), thus completing the proof.

To this end it suffices to show that ∃n f (n) = k implies ϕ(k) and ∃n g(n) = k

implies ψ(k).
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We prove only the first of these implications, the second being similar. Suppose n

is such that f (n) = k: then cn
k <P ak <P cn+1

k , cn
k �P bk , and bk �P cn+1

k . The last

two conditions and (i2) imply the existence of x ∈ F(cn
k ), x ′ ∈ F(bk), y ∈ F(cn+1

k ),

and y ′ ∈ F(bk) such that x ′ ≤L x and y ≤L y ′. By the first condition and (i2), for

all z ∈ F(ak), we have x <L z <L y, and hence x ′ <L z <L y ′. Now we use (i1),

obtaining F(ak) ⊆ F(bk), that is, ϕ(k). �

Lemma 6.5 (RCA0) If every 1-1 interval order is a closed interval order then WKL0

holds.

Proof Again we will show that under our hypothesis (ii) of Lemma 6.3 holds and

we fix one-to-one functions f, g : N → N such that ∀n,m f (n) 6= g(m). We want

to find X such that ∀n( f (n) ∈ X ∧ g(n) /∈ X).

We define a partial order ≤P on the set P =
⋃

k∈N
Pk , where Pk =

{ak, bk, ck} ∪
{

dn
k | n ∈ N

}

for each k. As in the previous proof, if p ∈ Pk

and q ∈ Ph with k 6= h we set p ≤P q if and only if k <N h. Within each Pk we

have

1. ak ⊥P bk , ak ⊥P ck , and ck <P bk ;

2. if f (n) 6= k 6= f (m) and g(n) 6= k 6= g(m), then dn
k <P dm

k if and only if

n <N m;

3. if f (n) 6= k and g(n) 6= k, then ak, bk, ck <P dn
k ;

4. if f (n) = k and m 6= n, then ak, ck <P dn
k <P dm

k and bk ⊥P dn
k ;

5. if g(n) = k and m 6= n, then bk, ck <P dn
k <P dm

k and ak ⊥P dn
k .

Figure 3 contains the Hasse diagram of the most significant part of the restriction of

≤P to Pk in the three possible cases.

≤P can be defined in RCA0. Let P = (P,≤P ).

Claim 6.5.1 P is a 1-1 interval order.

ak

ck

bk

d
0
k

d
1
k

d
2
k

ak ck

bkd
n

k

d
0
k

d
n−1

k

d
n+1

k

ak

ck

bk

d
n

k

d
0
k

d
n−1

k

d
n+1

k

Figure 3 The three cases of ≤P restricted to Pk in the proof of

Lemma 6.5: from left to right ∀n f (n) 6= k 6= g(n), f (n) = k,

and g(n) = k.
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Proof It is easy to check that P does not contain 2 ⊕ 2 and hence it is an interval

order by Theorem 5.2. To prove the claim, by Lemma 3.12 it suffices to show that

∀p, q ∈ P (p 6= q H⇒ p ↑ 6= q ↑ ∨ p ↓ 6= q ↓).

Fix p, q ∈ P with p 6= q . If p <P q or q <P p then both p ↑ 6= q ↑ and

p ↓ 6= q ↓ hold. If p ⊥P q then p, q ∈ Pk for some k, and we consider the different

possibilities. In each case we exhibit an element of P witnessing either p ↑ 6= q ↑ or

p ↓ 6= q ↓: ck ∈ bk ↓ \ ak ↓, bk ∈ ck ↑ \ ak ↑, if f (n) = k then ak ∈ dn
k ↓ \ bk ↓, and

if g(n) = k then bk ∈ dn
k ↓ \ ak ↓. �

By our hypothesis P is a closed interval order and there exist a linear order L and

f0, f1 : P → L satisfying (c1) and (c2). Let X = { k | f1(ak) ≤L f1(bk) }. To

complete the proof we need to check that f (n) ∈ X and g(n) /∈ X for every n.

If k = f (n) then f1(ak) <L f0(d
n
k ) ≤L f1(bk) and k ∈ X . If k = g(n) then

f1(bk) <L f0(d
n
k ) ≤L f1(ak) and k /∈ X . �

We summarize our results in the following theorem (a few more implications equiva-

lent to WKL0 can be stated using the information contained in Figure 1, Corollary 6.2,

and Lemmas 6.4 and 6.5).

Theorem 6.6 (RCA0) The following are equivalent:

(i) WKL0;

(ii) every partial order not containing 2 ⊕ 2 is a 1-1 interval order;

(iii) every interval order is a 1-1 interval order;

(iv) every 1-1 interval order is a distinguishing interval order;

(v) every 1-1 interval order is a closed interval order.

Proof The forward direction, that is, the fact that (i) implies each of (ii) – (v), is a

consequence of Corollary 6.2. The implication (ii) H⇒ (iii) follows from Theo-

rem 3.13(iv). Lemma 6.4 shows that (iii) implies (i). The implication (iv) H⇒ (v)

is immediate by Theorem 3.13. Lemma 6.5 shows that (v) implies (i). �

7 Proper Interval Orders

In this section we deal with proper interval orders. Throughout most of the section we

point out the changes needed in the definitions and proofs of Sections 3 – 6. However,

Theorem 7.16 is new, because its statement without “proper” is false by Lemma 6.5.

The proof of Lemma 7.21 is also new, because the interval order used in the proof of

Lemma 6.4 is not proper.

We start with the definitions and elementary facts corresponding to Section 3.

Definition 7.1 (RCA0) A partial order P is a proper interval order if there exist a

linear order L and a set F ⊆ P × L such that (i1), (i2) of Definition 3.7 hold and,

moreover,

(i4) F(p) ⊆ F(q) implies F(p) = F(q) for all p, q ∈ P .

P is a proper 1-1 interval order if (i3) of Definition 3.7 holds as well.

P is a proper closed interval order if there exist a linear order L and functions

f0, f1 : P → L such that (c1), (c2) of Definition 3.7 hold and, moreover,

(c5) f0(p) <L f0(q) if and only if f1(p) <L f1(q) for all p, q ∈ P .
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P is a proper 1-1 closed interval order if (c3) of Definition 3.7 holds as well. P is a

proper distinguishing interval order if besides (c1), (c2), and (c5) we have also (c4).

Definition 7.2 (RCA0) A partial order P does not contain 3 ⊕ 1 if

∀p0, p1, p2, q ∈ P(p0 <P p1 <P p2 H⇒ p0 ≤P q ∨ q ≤P p2).

Lemma 7.3 (RCA0) If P does not contain 3 ⊕ 1 then for every p, q ∈ P we have

either p ↓ ⊆ q ↓ or p ↑ ⊆ q ↑.

Proof Toward a contradiction assume that p ↓ * q ↓ and p ↑ * q ↑. If

p0 ∈ p ↓ \ q ↓ and p2 ∈ p ↑ \ q ↑, then p0, p, p2, q witness that P contains

3 ⊕ 1. �

Theorem 7.4 (RCA0)

(i) Every proper (distinguishing) (1-1) (closed) interval order is a (distinguish-

ing) (1-1) (closed) interval order.

(ii) Every proper distinguishing interval order is a proper 1-1 closed interval

order.

(iii) Every proper 1-1 (closed) interval order is a proper (closed) interval order.

(iv) Every proper (1-1) closed interval order is a proper (1-1) interval order.

(v) Every proper interval order contains neither 2 ⊕ 2 nor 3 ⊕ 1.

Proof Statement (i) is immediate from the definitions. The statements in (ii) – (iv)

are proved exactly as the corresponding statements in Theorem 3.13. To prove (v)

let P be a proper interval order: by (i) above P is an interval order and by Theo-

rem 3.13(iv) P does not contain 2 ⊕ 2.

To show that P does not contain 3 ⊕ 1 let L and F witness that P is a proper

interval order, and suppose toward a contradiction that p0, p1, p2, q ∈ P are such

that p0 <P p1 <P p2, p0 �P q and q �P p2. The second condition implies the

existence of x, y ∈ L such that x ∈ F(p0), y ∈ F(q), and y ≤L x . Similarly, by

the third condition, there exist y ′, x ′ such that y ′ ∈ F(q), x ′ ∈ F(p2), and x ′ ≤L y ′.

For every z ∈ F(p1) the first condition implies x <L z <L x ′: this implies, on one

hand, y, y ′ /∈ F(p) and, on the other hand, y <L z <L y ′ and hence z ∈ F(q) by

(i1), for all z ∈ F(p1). Therefore, F(p1) $ F(q), contradicting condition (i4). �

We now analyze finite partial orders containing neither 2 ⊕ 2 nor 3 ⊕ 1, imitating

what we did in Section 4.

Definition 7.5 (RCA0) Given a finite partial order P, let P# = P∗ be defined as in

Definition 4.1. Define a binary relation ≤#
P

on P# as follows:

p+ ≤#
P

q+ ⇐⇒ p ↑P % q ↑P ∨ (p ↑P = q ↑P ∧ p ↓P ⊆ q ↓P);

p− ≤#
P

q− ⇐⇒ p ↓P $ q ↓P ∨ (p ↓P = q ↓P ∧ p ↑P ⊇ q ↑P);

p+ ≤#
P

q− ⇐⇒ p <P q;

p− ≤#
P

q+ ⇐⇒ q ≮P p.

P
# = (P#,≤#

P
) is the proper conjoint linear quasi order associated to P. When P is

clear from the context, we write ≤# in place of ≤#
P

.
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Remark 7.6 Notice that ≤#
P

and ≤∗
P

are defined on the same set. It is immediate

that ≤#
P

⊆ ≤∗
P

, and, in general, equality does not hold: in fact, if p ↑P = q ↑P it is

always the case that p+ ≤∗
P

q+, whereas p+ ≤#
P

q+ fails when p ↓P * q ↓P.

The following lemma justifies the use of the words “linear quasi order” in Defini-

tion 7.5.

Lemma 7.7 (RCA0) If P is a finite partial order which does not contain 2 ⊕ 2 then

≤# is a linear quasi order. Moreover, if P does not contain 3 ⊕ 1 then P
# and the

functions p 7→ p−, p 7→ p+ show that P is a proper closed interval order.

Proof The proofs that ≤# is a linear quasi order and that the functions p 7→ p−,

p 7→ p+ witness that P is a closed interval order are identical to the same proofs for

≤∗ in Lemma 4.2. Hence we need only to show that condition (c5) of Definition 7.1

is met, that is, that p− <# q− if and only if p+ <# q+ for all p, q ∈ P .

Suppose p, q ∈ P are such that p− <# q− holds. Then either p ↓ $ q ↓ or

p ↓ = q ↓ and p ↑ % q ↑. In the first case, Lemma 7.3 implies that q ↑ ⊆ p ↑;

even if q ↑ = p ↑ we have q+ �# p+ (because q ↓ * p ↓) and hence p+ <# q+.

In the second case, p+ <# q+ is immediate. The reverse implication is proved

similarly. �

Remark 7.8 Remark 4.3 applies also to ≤#; that is, each ≡#-equivalence class is

contained in either P+ or P−. Moreover, p+ ≡# q+ if and only if p ↑P = q ↑P

and p ↓P = q ↓P if and only if p− ≡# q−. Therefore, the ≡#-equivalence classes

contained in P+ are paired in a straightforward way with those contained in P−.

Definition 7.9 (RCA0) Given a finite partial order P which contains neither 2 ⊕ 2

nor 3 ⊕ 1, let P
# be the proper conjoint linear quasi order associated to P. A linear

order (P#,≤L) is compatible with P
# if

∀x, y ∈ P#(x <# y H⇒ x <L y),

∀p, q ∈ P(p 6= q ∧ p+ ≡# q+ ∧ p+ <L q+ H⇒ p− <L q−), and

∀p, q ∈ P(p 6= q ∧ p− ≡# q− ∧ p− <L q− H⇒ p+ <L q+).

(Actually, the second and third conditions imply each other.)

Remark 7.10 Defining (P#,≤L) compatible with P
# means defining a linear order

on each ≡#-equivalence class and keeping the order between ≡#-inequivalent ele-

ments unchanged. Moreover, we require that the linear orders on the ≡#-equivalence

classes containing p+ and p− are the same.

Lemma 7.11 (RCA0) If P is a finite partial order which contains neither 2 ⊕ 2 nor

3 ⊕ 1 then there exists a linear order compatible with P
#.

Proof For example, let

x ≤L y ⇐⇒ x <# y ∨ (x ≡# y ∧ x ≤N y).

≤L is a linear order compatible with P
#. �

Lemma 7.12 (RCA0) Any finite partial order which contains neither 2⊕2 nor 3⊕1

is a proper distinguishing interval order.
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Proof Let P be a finite partial order which contains neither 2 ⊕ 2 nor 3 ⊕ 1, and,

by Lemma 7.11, ≤L a linear order compatible with P
#. Then (P#,≤L) and the

functions p 7→ p−, p 7→ p+ show that P is a proper distinguishing interval order.

Indeed, if p 6= q and, say, p+ ≡# q+, then we have also p− ≡# q−: if p+ <L q+

then the second condition of Definition 7.9 implies p− <L q−. �

Combining Lemma 7.12 with Theorem 7.4 we obtain that RCA0 proves the equiva-

lence of the six characterizations of proper interval orders in the finite case.

Remark 7.13 Remark 4.8 applies also to what we have done with ≤# in the pre-

vious lemmas, and we can conclude that ACA0 suffices to prove the equivalence of

the six characterizations of proper interval orders for countable partial orders. As

with interval orders, we will obtain sharper results also for proper interval orders, in

particular showing that all equivalences can be proved in WKL0.

Remark 7.14 Notice that Lemma 4.9 does not hold with P
# in place of P

∗. If

P = {p, q, r} is ordered by ≤P as 2 ⊕ 1 (i.e., the only nonreflexive relation is

p <P q) then p− <# r− <# p+ <# q− <# r+ <# q+.

Now we show that the upward pointing implications of Figure 2 are provable in

RCA0 much as we did with Figure 1 in Section 5.

Theorem 7.15 (RCA0) Every proper closed interval order is a proper distinguish-

ing interval order.

Proof We can repeat the proof of Theorem 5.1. One needs only to check that the

construction preserves properness. We leave this to the reader. �

As already noticed, the next theorem has no counterpart for arbitrary interval orders.

Theorem 7.16 (RCA0) Every proper 1-1 interval order is a proper closed interval

order.

Proof Let L = (L, F) witness that the partial order P is a proper 1-1 interval order.

Claim 7.16.1 For all p, q ∈ P the following are equivalent:

(1) p = q ∨ ∃x, y ∈ L(x ∈ F(p) \ F(q)∧ y ∈ F(q) ∧ x <L y);

(2) ∀x, y ∈ L(x ∈ F(p) \ F(q) ∧ y ∈ F(q) H⇒ x <L y).

Proof First assume that (1) holds and (2) fails. Since p = q implies (2), there exist

x, y, x ′, y ′ ∈ L with x, x ′ ∈ F(p) \ F(q), y, y ′ ∈ F(q), x <L y and y ′ <L x ′.

Let z ∈ F(q): we have neither z ≤L x (because x /∈ F(q)) nor x ′ ≤L z (because

x ′ /∈ F(q)). Hence x <L z <L x ′ and F(q) ⊆ F(p). Since it is immediate that

F(q) 6= F(p), we are contradicting condition (i4) in Definition 7.1.

Now assume (2) holds and (1) fails, so that in particular p 6= q and hence

F(p) 6= F(q) because condition (i3) holds. If F(p) \ F(q) = ∅ then F(q) ⊇ F(p)

and we are again contradicting (i4). Therefore, we can choose x ∈ F(p) \ F(q) and

y ∈ F(q): (2) implies x <L y and then we have (1), against our assumption. �

Obviously, (1) is 6
0
1 and (2) is 5

0
1. We denote either of them by ϕ(p, q): ϕ is a

provably 1
0
1 formula and we can use it in the comprehension scheme. The following

two claims about ϕ are useful.

Claim 7.16.2 ϕ(p, q) implies q ↑ ⊆ p ↑ and p ↓ ⊆ q ↓.
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Proof Let r ∈ q ↑: to show r ∈ p ↑, that is, p <P r , by (i2) it suffices to show that

x <L z for all x ∈ F(p) and z ∈ F(r). If x ∈ F(q) this follows from q <P r . If

x ∈ F(p) \ F(q) let y ∈ F(q): we have x <L y <L z and we are done. The proof

that p ↓ ⊆ q ↓ is even simpler. �

Claim 7.16.3 For every p, q ∈ P either ϕ(p, q) or ϕ(q, p) holds.

Proof When p = q the claim is obvious, so we assume p 6= q . Then F(p) 6= F(q)

by (i3), and by (i4) F(p) \ F(q) and F(q) \ F(p) are both nonempty. Let

x ∈ F(p) \ F(q) and y ∈ F(q) \ F(p): if x <L y then ϕ(p, q) holds; if

y <L x then we have ϕ(q, p). �

Let P# = P+ ∪ P− and define ≤L ′ by

p+ ≤L ′ q+ ⇐⇒ ϕ(p, q);

p− ≤L ′ q− ⇐⇒ ϕ(p, q);

p+ ≤L ′ q− ⇐⇒ p <P q;

p− ≤L ′ q+ ⇐⇒ q ≮P p.

Reflexivity of ≤L ′ is immediate from the fact that ϕ(p, p) holds for every p. To

check transitivity start by noticing that using (2) it is immediate that ϕ(p, q) and

ϕ(q, r) imply ϕ(p, r). This gives two of the eight cases. The other four cases where

some hypothesis is of the form ϕ(p, q) are easily handled using Claim 7.16.2. Only

two cases are left.

1. If p+ ≤L ′ q− ≤L ′ r+ then p <P q and r ≮P q . Thus there exist z ∈ F(r)

and y ∈ F(q) with y ≤L z. Since p 6= r we can pick x ∈ F(p) \ F(r): we

have x <L y and hence x <L z. Therefore, ϕ(p, r) and p+ ≤L ′ r+.

2. If p− ≤L ′ q+ ≤L ′ r− then q ≮P p and q <P r . Let x ∈ F(p) and

y ∈ F(q) be such that x ≤L y. Since p 6= r we can choose z ∈ F(r) \ F(p):

x <L z follows immediately and hence we have that ϕ(r, p) does not hold.

By Claim 7.16.3 we have ϕ(p, r) and p− ≤L ′ r−.

The fact that (P#,≤L ′) is linear follows immediately from the definition and

Claim 7.16.3.

Define f0, f1 : P → P# as usual by f0(p) = p− and f1(p) = p+. Conditions

(c1), (c2), and (c5) follow immediately from the definition of ≤L ′ . Therefore, P is a

proper closed interval order. �

Remark 7.17 The reader may have noticed the construction of the proof of Theo-

rem 7.16 satisfies also condition (c4). Therefore, the proof actually shows that RCA0

suffices to prove that every proper 1-1 interval order is a proper distinguishing inter-

val order. This result is also obtained combining the statements of Theorems 7.16

and 7.15.

Theorem 7.18 (RCA0) Every partial order which contains neither 2 ⊕ 2 nor 3 ⊕ 1

is a proper interval order.

Proof The proof follows the pattern of the proof of Theorem 5.2: throughout the

proof we replace P
∗
s with P

#
s , the proper conjoint linear quasi order associated to Ps .

We point out only the spots where differences occur.
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To prove the analogous of Claim 5.2.1, we need to consider the case of n,m < s

such that p+
n <#

s−1 p+
m because pn ↑Ps−1 = pm ↑Ps−1 and pn ↓Ps−1 $ pm ↓Ps−1 .

Besides Lemma 3.11, Lemma 7.3 (which uses the hypothesis that P does not contain

3 ⊕ 1) also is needed here: since pm ↓Ps * pn ↓Ps , we have pm ↑Ps ⊆ pn ↑Ps

and, therefore, pm ↑Ps % pn ↑Ps cannot occur. Hence p+
n <#

s p+
m . The analogous of

Claim 5.2.2 states that at most two ≡#
s−1-equivalence class contained in P+

s−1 contain

elements separated at s, and the same for ≡#
s−1-equivalence classes contained in

P−
s−1.

The definition of ≤L on Ls requires considering a few more possible situations.

When n < s and p+
n is separated above at s, fix p+

m separated below at s with

p+
m ≡#

s−1 p+
n and hence x s−1

m ≡L x s−1
n . If pn ↑Ps $ pm ↑Ps then no changes are

needed, but now it might happen that pn ↑Ps = pm ↑Ps (because pn ↓Ps % pm ↓Ps

forces p+
m <#

s p+
n ). In the latter case, x s

n is an immediate successor of x s
m , which by

the other clauses in the definition is an immediate successor of x s−1
m ≡L x s−1

n . If p−
n

is separated below at s, act similarly.

If p+
s is neither the maximum of P

# nor ≡#
s p+

n for some n < s, let z ∈ P#
s be an

immediate successor of p+
n (now we cannot be sure that z ∈ P−

s ) and let x s
s be an

immediate predecessor of the element of Ls \ Ls−1 which corresponds to z. Proceed

analogously for x−s
s .

The definition of F (including Claim 5.2.3) and the proof that L witnesses that P

is an interval order needs no changes. Thus we need only to show that condition (i4)

is met. Assume F(pn) ⊆ F(pm) and fix s ≥ max(n,m). By condition (iii) we have

x−s
n ≤L x−s

m <L x s
m ≤L x s

n , and hence p−
n ≤#

s p−
m <#

s p+
m ≤#

s p+
n . By Lemma 7.7

this implies that p−
n ≡#

s p−
m and p+

m ≡#
s p+

n , and hence x−s
n ≡L x−s

m and x s
m ≡L x s

n .

From the definition of F we get F(pn) = F(pm), and the proof is complete. �

We now conclude with results similar to the ones obtained in Section 6, showing that

the implications missing from Figure 2 are equivalent to WKL0.

Lemma 7.19 (WKL0) Every partial order containing neither 2 ⊕ 2 nor 3 ⊕ 1 is a

proper distinguishing interval order.

Proof The proof of Lemma 6.1 works without major changes, replacing P
∗
s with P

#
s .

Obviously, we use Lemmas 7.7, 7.11, and 7.12 in place of Lemmas 4.2, 4.6, and 4.7.

Notice that since (c5) is satisfied by each ≤α(s) it is satisfied also by (P#,≤L). �

Corollary 7.20 (WKL0) The five notions of proper interval order of Definition 7.1

and the property of containing neither 2 ⊕ 2 nor 3 ⊕ 1 are all equivalent.

Proof This follows from Theorem 7.4 and Lemma 7.19. �

Lemma 7.21 (RCA0) If every closed interval order which is also a proper interval

order is a proper closed interval order then WKL0 holds.

Proof We will show that under our hypothesis (ii) of Lemma 6.3 holds. Fix one-to-

one functions f, g : N → N such that ∀n,m f (n) 6= g(m). We want to find a set X

such that ∀n( f (n) ∈ X ∧ g(n) /∈ X).

We define a partial order ≤P on the set P =
⋃

k∈N
Pk , where Pk =

{ak, bk}∪
{

cn
k | n ∈ N

}

for each k. If p ∈ Pk and q ∈ Ph with k 6= h we set p ≤P q
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if and only if k <N h. The elements of each Pk are pairwise ≤P -incomparable with

the following exceptions:

1. if n is such that f (n) = k, then ak <P cn
k ;

2. if n is such that g(n) = k, then cn
k <P ak .

≤P can be defined within RCA0. Let P = (P,≤P ).

Claim 7.21.1 P is a closed interval order.

Proof Let N = (N,≤N) and define f0, f1 : N → P by setting

f0(ak) = f1(ak) = 3k + 1;

f0(bk) = 3k;

f1(bk) = 3k + 2;

f0(c
n
k ) = 3k if f (n) 6= k;

f1(c
n
k ) = 3k + 2 if g(n) 6= k;

f0(c
n
k ) = 3k + 2 if f (n) = k;

f1(c
n
k ) = 3k if g(n) = k.

It is straightforward to check that conditions (c1) and (c2) of Definition 3.7 are met.

�

Claim 7.21.2 P is a proper interval order.

Proof Claim 7.21.1 and Theorem 3.13 imply that P does not contain 2 ⊕ 2. Our

hypothesis on f and g imply that cn
k <P ak <P cm

k cannot occur: hence P does not

contain 3 ⊕ 1. By Theorem 7.18, P is a proper interval order. �

Claims 7.21.1 and 7.21.2 and our hypothesis imply that P is a proper closed interval

order. Hence there exist a linear order L = (L,≤L) and f0, f1 : P → L satisfy-

ing conditions (c1), (c2) of Definition 3.7 and condition (c4) of Definition 7.1. Let

X = { k ∈ N | f1(ak) <L f1(bk) }.

We now show that X satisfies ∀n( f (n) ∈ X ∧ g(n) /∈ X), thus completing the

proof. If f (n) = k then ak <P cn
k and bk ≮P cn

k : hence f1(ak) <L f0(c
n
k ) ≤L f1(bk)

and k ∈ X . If g(n) = k then cn
k <P ak and cn

k ≮P bk : hence f0(bk) ≤L f1(c
n
k )

<L f0(ak). From f0(bk) <L f0(ak), (c4) yields f1(bk) <L f1(ak) and hence

k /∈ X . �

Theorem 7.22 (RCA0) The following are equivalent:

(i) WKL0;

(ii) every partial order containing neither 2⊕2 nor 3⊕1 is a proper 1-1 interval

order;

(iii) every partial order containing neither 2 ⊕ 2 nor 3 ⊕ 1 is a proper closed

interval order;

(iv) every proper interval order is a proper 1-1 interval order;

(v) every closed interval order which is also a proper interval order is a proper

closed interval order.

Proof The forward direction, that is, the fact that (i) implies each of (ii) – (v), is

a consequence of Corollary 7.20. The implications (ii) H⇒ (iii) and (iv) H⇒ (v)



Interval Orders and Reverse Mathematics 447

follow from Theorem 7.16. Theorem 7.4(v) shows (ii) H⇒ (iv). The implication (iii)

H⇒(v) is immediate by Theorem 7.4. Lemma 7.21 shows that (v) implies (i). �
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