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Order-Computable Sets

Denis Hirschfeldt, Russell Miller, and Sergei Podzorov

Abstract We give a straightforward computable-model-theoretic definition of
a property of 10

2 sets called order-computability. We then prove various results
about these sets which suggest that, simple though the definition is, the property
defies any easy characterization in pure computability theory. The most striking
example is the construction of two computably isomorphic c.e. sets, one of which
is order-computable and the other not.

1 Introduction

The Turing degree of a countable structure (whose domain is a subset of ω) is the
join of the Turing degrees of the domain and of the functions and relations on that
structure, in the relevant language. We say that a structure is computable if it has
Turing degree 0, the degree of the computable sets. (For the purposes of this paper,
all structures are assumed to have domain ω, because we want the Turing degree to
reflect the relative computability of the functions and relations in the structure. For
us, choosing the domain to be more complex than ω is cheating.)

It is common for two isomorphic structures to have different Turing degrees. (For
simplicity, the isomorphic structures are often called copies of each other.) This
observation has led to a great deal of research into the spectra of structures and of
relations on structures, which are essentially measurements of the intrinsic compu-
tational complexity of the structures themselves and of additional relations on them.
We suggest Section 15 of [3] for definitions and an overview of this area. (The two
main definitions are given in this paper at the beginning of Section 4.)

Most of this research has attempted to produce spectra with certain desirable char-
acteristics or to prove that no spectrum can have those characteristics. In this paper
we take a different, more concrete approach. We consider the structure (ω,<), the
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most straightforward copy of a very simple linear order. We add one additional unary
relation A to the language and ask, for specific sets A ⊂ ω, whether the structure
(ω,<, A) has a computable copy. Clearly, the answer is positive if A itself is com-
putable, but it can be so for certain noncomputable A as well. If the structure does
have a computable copy, then we call A an order-computable set.

In approaching this question, we initially expected to find a straightforward char-
acterization of order-computability using pure computability-theoretic properties of
the set A such as the Turing degree of A and/or the position of A in the Ershov hierar-
chy. (It is quickly seen that all order-computable sets are10

2.) However, the property
of order-computability defied all attempts at easy characterization in these terms. We
believe that the results in this paper will demonstrate to the satisfaction of all that no
easy characterization is possible without resorting to model theory, thus reinforcing
the general thesis that computability issues become significantly more complex when
placed in the context of model theory than in pure computability theory on subsets
of ω.

2 Order-Computable Sets

Definition 2.1 A set A ⊆ ω is order-computable if there exists a computable copy
of the structure (ω,<, A) in the language of linear orders with an additional unary
predicate.

Notice that for every computable structure (ω,≺, R) such that (ω,≺) ∼= (ω,<),
there is a unique set A such that (ω,≺, R) ∼= (ω,<, A). In particular,

A = {n ∈ ω : (∃x ∈ R) x has exactly n predecessors under ≺}.

Every order-computable set is 10
2, since we may use a 0′-oracle to find the unique

element with exactly n predecessors, then check whether it lies in R. We say that
the ordering (ω,≺, R) order-computes A. In the case when R = E , the set of even
numbers, we may say simply that ≺ order-computes A. This case is standard in the
sense that we can always choose R = E .

Lemma 2.2 For every infinite coinfinite order-computable set A, there exists a
computable order ≺ on ω such that (ω,≺, E) ∼= (ω,<, A), where E is the set of
even numbers.

Proof If (ω,<, A) ∼= (ω,≺′, R) with R and ≺
′ computable, then there exists a

computable permutation h of ω with h(E) = R. Define m ≺ n if and only if
h(m) ≺

′ h(n). �

The same would work for any other infinite coinfinite computable set, of course;
choosing E just standardizes certain of our constructions.

Before describing any results regarding order-computable sets, we develop some
of the tools to be used. If ≺ is the order given by Lemma 2.2 corresponding to an
order-computable set A, we define the predecessor approximation function f A for A
by

f A(n, s) =

{
|{y ≤ s : y ≺ n}| if n < s

↑ otherwise.
Thus, for each s, the function f A(·, s) is a permutation of the numbers 0, . . . , s − 1.
The limit gA(n) = lims→∞ f A(n, s) is the predecessor function for A. Thus
gA(E) = A. (If |A| = k or |A| = k with k < ω, then a similar process works with
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either {0, . . . , k − 1} or its complement in place of E .) It is easy to give conditions
for a function f to serve this role.

Definition 2.3 A binary partial function f is a predecessor approximation function
if it satisfies, for all n and s,

1. f (n, s)↓ if and only if n < s,
2. the function f (·, s) is a permutation of the set {0, . . . , s − 1},
3. if n < s, then f (n, s) ≤ f (n, s + 1) ≤ f (n, s)+ 1, and
4. limt f (n, t) converges.

So every order-computable set A gives rise to a computable predecessor approxima-
tion function as described above. (More specifically, each computable order ≺ that
order-computes A gives rise to such a function, and for distinct orders the functions
will be different.) Conversely, any computable predecessor approximation function
f arises in this fashion, since we may build a computable order ≺ using f by adding
s to the order at stage s + 1 so that s has exactly f (s, s + 1) predecessors among the
elements already added at previous stages. The first two conditions in Definition 2.3
make it clear that this is always possible. The third shows that ≺ really is a com-
putable linear order (since we never change our minds about the order of elements),
and the last condition shows that (ω,≺) has order type ω.

This analysis allows us to examine the complexity of order-computability. The
original Definition 2.1, correctly stated, is 61

1 , since it quantifies over isomorphisms
between computable linear orders. However, it is not strictly 61

1 , since any two
computable orders of order type ω are in fact 10

2-isomorphic. (We can use a ∅′-
oracle to find the least element of each, then the successors of those elements, and
so on.) The simplest bound on the complexity uses Definition 2.3. If A is a 10

2 set,
suppose that for every x , lims ϕe(x, s)↓= A(x). Then A is order-computable if

1. A is finite or
2. A is finite or
3. there exists a computable predecessor approximation function ϕi such that

limt ϕi (n, t) ∈ A if and only if n is even.
The first two items are both 60

4 properties of e, and the last is also 60
4 , once one

works through Definition 2.3. So for 10
2 sets (as given by indices of computable

approximations), order-computability is actually a 60
4 property, and similarly for

c.e. sets, the index set {e ∈ ω : We is order-computable} is 60
4 . We conjecture that

these sets are actually 60
4 -complete.

Often we will ensure that a set A is not order-computable by using a diag-
onal argument to show that no partial computable function ϕe is a predecessor
approximation function for A. We say that an approximation ϕe,t proves that
ϕe is not a predecessor approximation function if there exist n and s such that
ϕe,t (n, s + 1) ↓/∈ {ϕe,t (n, s), ϕe,t (n, s) + 1} or such that ϕe,t (n, s) ↓≥ s or such
that ϕe,t ( · , s) is not one-to-one or such that n ≥ s and ϕe,t (n, s) ↓. If there are
no such n and s (and if ϕe(n, s) ↓ for all n < s), then our construction must either
make limt ϕe(w, t) = ∞ for some witness element w or make limt ϕe(2n, t) /∈ A or
limt ϕe(2n + 1, t) ∈ A for some n.

Building a set A that is order-computable, on the other hand, uses negative re-
quirements. We define a canonical process for trying to build a computable order
on ω that order-computes A. Let A be an infinite coinfinite 10

2 set with computable
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approximation 〈As〉s∈ω. (We will assume that every As is finite.) First we need a
simple lemma.

Lemma 2.4 Let A and 〈As〉 be as above. Then for every s there exists a stage
t > s and a strictly increasing function g : {0, . . . ,max As} → ω such that for each
n ≤ max As ,

n ∈ As ⇐⇒ g(n) ∈ At .

Proof Since A is infinite and coinfinite, there exists a g as required such that

n ∈ As ⇐⇒ g(n) ∈ A.

But also there must be a t so large that At and A agree up to max(range(g)). �

We now define the derived order L = (ω,≺, E) for the approximation 〈As〉 to A.
(We may assume that for all s, no x ≥ s lies in As .) To construct ≺, we start with L0
consisting of a single element /∈ E . At stage s +1, we write b0,s ≺ b1,s ≺ · · · ≺ bn,s
for the order Ls and let σ be the string 〈E(b0,s), . . . , E(bn,s)〉 ∈ 2n+1. If σ is an
initial segment of As+1, we add one fresh element bn+1,s to Ls with bn,s ≺ bn+1,s .

If σ 6⊆ As+1, we search for a strictly increasing function g : dom(Ls) → ω such
that

(∀i ≤ n)[bi,s ∈ E ⇐⇒ g(bi,s) ∈ As+1].

If there is no such g, let Ls+1 = Ls . If there are such functions g, choose the first
in the dictionary order. (That is, choose that g with g(b0,s) minimal. If several still
remain, choose that g with g(b1,s) minimal, and so on.) For each i < n, suppose
g(bi,s) < k1 < · · · < kp < g(bi+1,s) are the consecutive integers from g(bi,s)
to g(bi+1,s). We add one new number to the order Ls+1 for each k j with the new
number being even if and only if k j ∈ As+1. Thus we have “embedded” Ls into
As+1. This completes the construction.

It is easily shown by induction that each time we find the desired g, we have

〈E(b0,s+1), . . . , E(bm,s+1)〉 = As+1�(m + 1)

where m + 1 = max As+1. This holds at infinitely many stages, since Lemma 2.4
makes it clear that the required g exists at infinitely many stages, so we do build
an infinite computable linear order L by this process. Moreover, L has an initial
segment of order type ω, since A is 10

2 and g was always chosen lexicographically.
However, the derived order L may not actually be of order type ω. (This will hold

for certain approximations 〈As〉 even if A is order-computable.) If L is of type ω,
then clearly A is order-computable. In the rest of this section, we will build several
order-computable sets A. Our technique will be to build a computable approximation
to each A, ensuring that the derived order L (for the approximation we build) is of
type ω. To ensure this, we will have requirements

Nx : x has only finitely many predecessors in L.

Each Nx acts by placing a finite restraint on A. If we know that x has only k predeces-
sors at stage s in the construction of L above, then by making At�(k+1) = As�(k+1)
for all t > s, we can ensure that x never acquires any more ≺-predecessors, so that
Nx is satisfied.

Our first result uses a simple combination of these requirements with Friedberg-
Muchnik requirements to build a set that is noncomputable but order-computable.
(Clearly, every computable set is order-computable.)
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Lemma 2.5 There exists a noncomputable order-computable c.e. set A.

Proof This is actually a special case of the later Lemma 2.12, but we give the proof
anyway as an introduction to this type of argument.

The construction of A and the derived order ≺ that order-computes A uses the N -
requirements defined above, along with Friedberg-Muchnik requirements to ensure
A >T ∅:

Pe : A 6= ϕe.

Pe puts at most one element into A and then stays satisfied forever. P -requirements
always choose their witness elements we,s larger than any number yet seen in the
construction (hence larger than the total number of elements in the order ≺ up to that
stage), thus implicitly respecting all higher-priority N -requirements.

Let A0 = ∅ with all we,0 undefined. At stage s + 1, if some Pe with e < s sees
that ϕe,s(we,s)↓= 0, it enumerates we,s into As+1 and declares itself satisfied. Also,
if s + 1 is a stage at which the construction of the derived order for A (using the
approximation built in this construction) makes an embedding, let x be the largest
element of Ls and make the witness elements for all unsatisfied Pe with e > x
undefined. If there is no embedding at stage s + 1, then for the least e for which Pe
is not yet satisfied and we,s is undefined, choose we,s+1 to be larger than any number
yet seen. This completes the construction.

Now for any fixed x ∈ ω, let s be a stage such that x ∈ Ls and no Pe with e ≤ x
enumerates any element into A after stage s. Of course, x has only finitely many
predecessors in Ls . It may acquire finitely many more at a future stage t + 1 under
some embedding of Lt , but if this happens, then all witness elements for unsatisfied
requirements Pe with e > x will be chosen large after stage t + 1, hence larger than
the number p of predecessors of x in Lt+1. Thus At+1� p = A� p, and so no later
embeddings can add any more predecessors of x to L. Thus Nx is satisfied.

But then, for any e ∈ ω, there is a stage s such that no x ≤ e acquires any new
predecessors in L after stage s. So Pe will eventually have a permanent witness
we = limt we,t and will enumerate we into A if and only if ϕe(we)↓= 0. Thus Pe is
satisfied as well. �

The set built by this construction can easily be forced to be low by adding lowness
requirements. In fact, though, we have a stronger result.

Theorem 2.6 Every low c.e. set is order-computable.

Proof Let A be a low c.e. set. We use the characterization in [8], p. 229,
that therefore there must exist a computable function f such that for every j ,
W j ∩ {n : Dn ⊆ A} = W f ( j) ∩ {n : Dn ⊆ A}, and, moreover, if W j ∩ {n : Dn ⊆ A}

= ∅, then W f ( j) must be finite. (Here Dn is the nth canonical finite set.)
Take any enumeration 〈As〉 of A. For each n ∈ ω, we will enumerate a c.e. set

Wg(n) using the Recursion Theorem to assume that we know indices g(n) in advance,
uniformly in n.

Suppose that after stage s, the order ≺ is defined on exactly k elements so that ≺

agrees with Ats�k (i.e., for all j < k, j ∈ Ats if and only if the ( j + 1)st element of
≺ at this stage is even). If Ats+1 = Ats , then set ts+1 = 1 + ts and make no change
to ≺. Otherwise, some (unique) element n entered A at stage ts + 1, so we will need
to displace the current (n + 1)st element e (which must be odd) of the order ≺. We
search for the first available embedding of the order ≺ into some At with t > ts ,
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just as when we build the standard model. Since A may be assumed infinite and
coinfinite, we find such a t , by Lemma 2.4. Suppose that e corresponds to the number
n′

∈ At under this embedding. We pick the index m such that Dm = At ∩{0, . . . , n′
}

and enumerate m into Wg(e). We then run the enumeration of W f (g(e)) and find the
least stage t ′ such that either m ∈ W f (g(e)),t ′ or Dm ∩ At ′ 6= ∅. If Dm ∩ At ′ 6= ∅, we
search for the next larger t with an embedding of ≺ into At and repeat the process for
that t . Otherwise, m ∈ W f (g(e)),t ′ , and we set ts+1 = t , add elements to ≺ as dictated
by the embedding of ≺ into At , and add extra elements at the end of ≺ (odd or even,
corresponding to At ) until ≺ has an odd number as its rightmost element. We declare
this new order to be stage s + 1 in the construction of ≺ and note that it agrees with
(the appropriate initial segment of) Ats+1 . This completes the construction.

We claim that at each stage this procedure must finally terminate with some t .
Indeed, there exists an embedding of ≺ into A, which we will eventually find as an
embedding of ≺ into At for some t . Clearly, the m chosen at this stage will have
Dm ∩ A = ∅, so by our choice of f , this m must eventually appear in W f (g(e)).

Now the ordering computed by ≺ does have an initial segment of type ω that
matches A as in all such constructions. We must show that this initial segment actu-
ally contains every element of the order. To see this, take any odd element e of ≺.
We will show that e has only finitely many predecessors in ≺. Each embedding adds
only finitely many predecessors. If we made infinitely many embeddings in which
predecessors were added before e, then Wg(e) and W f (g(e)) would both be infinite,
with every m ∈ Wg(e) satisfying Dm ∩ A 6= ∅. By our conditions on f , this is
impossible. Therefore, every such e has only finitely many predecessors, and since
at every stage ≺ ends with an odd number, each even number in ≺ can have only
finitely many predecessors. Thus (ω,≺) ∼= (ω,<), and ≺ order-computes A. �

We conjecture that there is no uniform proof for Theorem 2.6. That is, there is no
computable function h such that for every e, if Wx is low, then h(x) is the index
of a linear order of type ω that order-computes Wx . This would not contradict the
construction above, since the index of the function f used in the construction need
not be computable from the index of the low c.e. set A. (In fact, if Theorem 2.6
cannot be uniformized, then the index of f could not be computable from the index
of A for that very reason.)

The lowness in Theorem 2.6 can also be avoided. We recall the difference hier-
archy. A set W is ω-c.e. if there exists a computable function g and a computable
approximation 〈Ws〉 to W such that for all x ∈ ω,

g(x) ≥ |{s : Ws+1(x) 6= Ws(x)}|.

If g can be taken to be the constant function n (for n ∈ ω) and W0 can be taken to be
∅, then we say that W is n-c.e. (For further details, see III.3.8 of [8].)

Theorem 2.7 For every α ≤ ω and every α-c.e. set W , there exists an order-
computable α-c.e. set A ≡T W .

Corollary 3.17 will show that this result does not extend to α > ω.

Proof First we define the E-extension of a finite binary string. Fix σ ∈ 2k , for any
k ∈ ω. Write σ0 = σ and let σ1, σ2, . . . , σ2k be a listing of all strings in 2k in the
dictionary order. We define the E-extension of σ by

σE (x) = σi ( j), where x = j + ik, j < k, i ≤ 2k .
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In short, σE has initial segment σ with every possible string of length k appended
to it. (Notice that except for the first k bits, σE is actually the same for every string
σ ∈ 2k .) For future reference, let h be the function

h(k) = k · (2k
+ 1).

Thus, if lh(σ ) = k, then lh(σE ) = h(k).
We give details for the proof of the lemma when α = 1, that is, for c.e. sets.

The key is the construction of the set A0, the first element of the computable
approximation 〈As〉 to A. We define a0 = 0 and proceed by recursion. Given
σ = A0 � ax , set A0(ax ) = 0, and then extend A0 so that it has initial segment
τ = (· · · (σˆ0)E )E ) · · · )E , where we take the E-extension exactly (x + 1) times.
Then define ax+1 to be the length of τ .

Clearly, the sequence 〈ax 〉 increases extremely fast. It would be possible to reduce
the rate of increase, but our definition makes the following lemma immediate.

Lemma 2.8 For every σ ∈ 2<ω, there exists a monotonic function f from k into
lh(σE ) with f (0) ≥ k and σ(i) = σE ( f (i)) for all i < k.

This will give us the embeddings we need within A whenever a new element appears
in W .

Having built A0, we continue with As+1. If Ws+1 = Ws , then As+1 = As .
Otherwise, let x be the unique (without loss of generality) element of Ws+1 − Ws ,
and let As+1 = As ∪ {ax }. Thus A is c.e., and indeed W is 1-reducible to A via the
function x 7→ ax . On the other hand, A ≤T W : we know ax ∈ A if and only if
x ∈ W , and elements not in the computable sequence 〈ax 〉x∈ω belong to A if and
only if they belong to the computable set A0.

To see that this A is order-computable, we build an order ≺ as follows. Start with
the empty order. At each stage s +1, we assume inductively that ≺ (on its domain of
definition Ds , which contains j elements, say) matches the initial segment As� j . If
As+1 = As , we do nothing. Otherwise, let ax be the new element of As+1. If ax ≥ j ,
then simply add new elements to Ds+1, to the right of all elements of Ds , until ≺

on Ds+1 matches As+1 � ax . If j > ax , then add a new even number y to ≺ with
exactly ax predecessors (under ≺) in Ds . Write σ for the binary string generated by
Ds under ≺, and

τ = (σ�ax )ˆ1ˆ(σ ↙ ax )

where σ ↙ ax represents σ with its initial segment σ�ax chopped off:

(σ ↙ ax )(n) = σ(n + ax ).

Thus, τ is the string corresponding to Ds ∪ {y} under ≺.
By Lemma 2.8, τ embeds into As+1. Find the shortest such embedding f , that is,

that one minimizing f (i) for every i < lh(τ ). Since f is an embedding, we can now
add new elements to Ds+1 so that Ds+1 contains exactly f (lh(τ )− 1) elements and
matches the initial segment of As+1 of that length.

It remains to show that (ω,≺) ∼= (ω,<). To see this, we claim that if a num-
ber y ∈ Ds − Ds−1 has < ax predecessors under ≺ in Ds , then y has < ax+1
predecessors under ≺ in ω. The first time y acquires new predecessors, resulting
from a change to W � x , it must wind up with no more than h(ax ) predecessors,
by Lemma 2.8. (Recall that for σ ∈ 2k , h(k) = lh(σE ).) A subsequent change to
W � (x + 1) could add more predecessors, but y would still have at most h(h(ax ))
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predecessors. At most (x + 1) changes to W � (x + 1) can ever occur, since W is
c.e., and these changes would leave y with at most hx+1(ax ) predecessors. However,
hx+1(ax ) < ax+1 by our construction of the sequence 〈ax 〉, and so the entrance of
any number > x + 1 into W will not add any predecessors to y. This proves the
claim and the lemma for c.e. sets.

It is clear how to handle the case α > 1: instead of iterating the E-extension
operation (x + 1) times when extending A0� ax in the definition of A0, one extends
it as many times as A� (x + 1) could change. For α ∈ ω, this is just α · (x + 1)
times; for an ω-c.e. set with bound g (as on p. 322), it would be

∑
t≤x g(t) times. If

x appears in the set W at stage s + 1, we add ax to As+1 just as before, but also now,
if x leaves W at stage s + 1, we remove ax from As+1. Thus the limit A will also be
α-c.e., and the rest of the proof goes through just as before. �

The proof shows a somewhat stronger result, in fact, since the reduction from W to
A was a 1-reduction, not just a Turing reduction. Indeed, in many cases we have
1-equivalence.

Corollary 2.9 For every set W that is c.e. but not simple, there exists an order-
computable c.e. set A ≡1 W .

Proof We may assume that W itself is not order-computable, hence not computable.
Since W is not simple, W contains an infinite c.e. set, which in turn contains an infi-
nite computable set Y . Also, W itself contains an infinite computable set X . More-
over, X is coinfinite in W and Y is coinfinite in W , because W is noncomputable.
We now tweak the function f (x) = ax to get a computable permutation g of ω with
g(W ) = A, with ax and A as defined in the proof of Theorem 2.7. Define com-
putable bijections h X : X → (A0 − f (X ∪ Y )) and hY : Y → (A0 − f (X ∪ Y )).
(Since f is increasing, these are all infinite computable sets.) Then define g by

g(n) =


f (n), if n /∈ X ∪ Y

h X (n) if n ∈ X
hY (n) if n ∈ Y.

This is the desired computable permutation of ω mapping W onto A. �

On the other hand, while order-computable sets must be 10
2, they need not be ω-c.e.

Lemma 2.10 There exists an order-computable set that is not ω-c.e.

Proof We build an order-computable set A satisfying requirements

R〈e,i〉 : If ϕe and ϕi are total, then (∃w)[A(w) 6= lim
s
ϕi (w, s) or

|{s : ϕi (w, s + 1) 6= ϕi (w, s)}| > ϕe(w)].

Thus, if ϕi gives a computable approximation to the set A, then that approximation
cannot have ϕe as computable bound on the number of changes of this approxima-
tion. If we can make this hold for all e and i , then A will not be ω-c.e. (Of course, we
must also make A order-computable.) Here we only sketch the method for satisfying
these requirements, since this lemma is a special case of the next lemma.

Our strategy is to choose a witness w j (with j = 〈e, i〉) and wait for ϕe(w j )
to converge. When it does, we know how many times we will have to change
our approximation As(w j ), so we redefine all wk (k > j) to be sufficiently much
larger than w j as to allow all those changes to A to take place without ruining
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the order-computability of A. We may put numbers between w j and w j+1 into A
and remove them without harming any R-requirements. At the start none of them
is in A, and we move them in and out as necessary to create embeddings for the
construction of the standard order corresponding to our approximation. Each time
ϕi (w j , s + 1)↓6= ϕi (w j , s), we set A(w j ) 6= ϕi (w j , s + 1) and change A between
w j and w j+1 as needed to ensure order-computability. This continues until the ap-
proximation ϕi (w j , s) has changed ϕe(w j )+1 times; then we have satisfied R j , and
we leave A�w j+1 fixed forever after. �

The question then arises whether there exists an order-computable set whose Turing
degree contains no ω-c.e. set. We do manage to build such a set, so one conjecture
about order-computable sets (that their Turing degrees might be precisely the ω-
c.e. degrees) falls by the wayside.

Lemma 2.11 There exists an order-computable set A whose Turing degree contains
no ω-c.e. set.

Proof The idea is to satisfy the requirements

R〈e,i, j,k〉 : If ϕe is total and B = 8A
j and A = 8B

k , then there exists w s.t.

[B(w) 6= lim
s
ϕi (w, s) or |{s : ϕi (w, s + 1) 6= ϕi (w, s)}| > ϕe(w)].

Write Cs(w) = ϕi (w, s) for all s and w. (We do not know for sure whether Cs is
an approximation to B or not; if it is not, then the procedure below will eventually
terminate.)

We choose a witness xn , where n = 〈e, i, j, k〉, and wait until 8B
k (xn) ↓ with

some use un and ϕe(w)↓ for every w ≤ un . Set mn = 1 + un · maxw<un ϕe(w). We
now move xn into A, thereby forcing a change on B� un . When 8B

k (xn) = A(xn)

again and the approximation Cs � un matches B� un , we restore A�use(8A
j (un)) to

its state before xn entered A, which forces B � un to return to its state at that time.
Eventually Cs � un = B � un again, meaning that we have forced two C-changes
for at least one w < un . We repeat this entire process mn times (actually mn+1

2
times would suffice), thereby guaranteeing that some w < un has changed at least
ϕe(w) + 1 times and that Cs(w) has matched every such change. Thus the function
ϕe does not show B to be ω-c.e.

Once we have permanently chosen xn , we wait for un and ϕe � un and 8A
j (un)

to converge. Once they do, we know the maximum number of times we will have
to force changes to B � un , and we know how much of A we will have to restore
each time. Therefore, we know how much of A will have to be left open in order
for the necessary embeddings to take place for us to build a standard order (from our
approximation 〈As〉) to order-compute A. At this time we choose xn+1, xn+2, . . . all
to be large enough not to interfere with that space (since Rn+1 will never change
A� xn+1). The requirements Rn+1, . . . are injured every time we make A-changes on
behalf of Rn , and the procedure for Rn+1, . . . must be restarted each such time. �

We can also find a noncomputable Turing degree that contains only order-computable
sets. Indeed, our result is stronger.

Lemma 2.12 There exists a noncomputable c.e. set A such that every set Turing-
computable in A is order-computable.



326 Denis Hirschfeldt, Russell Miller, and Sergei Podzorov

Corollary 2.13 There exist infinitely many Turing degrees d such that every set of
degree d is order-computable. �

Proof of Lemma 2.12 The requirements for constructing A are simple. If 8A
e com-

putes a set Be, we will use

Be,s(x) =

{
8

As
e,s(x), if 8As

e,s(y)↓∈ {0, 1} for all y ≤ x
0, if not

as a 10
2 approximation to Be and build the derived ordering ≺e corresponding to Be.

(Notice that our approximations are defined even if 8A
e does not compute any set.)

We then satisfy

Pe : If ϕe is total, then ϕe 6= A;

N〈e,k〉 : If ≺e is defined on k at some stage, then k has only finitely many
≺e-predecessors.

The construction for the P -requirements is standard, once we have defined the re-
straints for the N -requirements. At stage s, if k has exactly p predecessors in the
order ≺e, we set

r(e, k, s) = max
x≤p+1

use(8As
e,s(x))

where the use of a divergent computation is 0 by definition. (The computation must
converge for all such x at the first stage s at which the order ≺e includes k but might
diverge for some such x later if P -requirements injure N〈e,k〉.) If ≺e does not yet
include k, then r(e, k, s) = 0.

For every i ≥ 〈e, k〉 and every stage s, the witness element wi,s will be
> r(e, k, s). The requirement Pi waits for ϕe,s(wi,s) to converge to 0, then
enumerates wi,s into A, possibly injuring lower-priority N -requirements but not
higher-priority ones. This completes the construction.

Once we reach a stage after which no higher-priority P -requirement ever again
injures N〈e,k〉, we wait until k appears in the order ≺e at some stage s. Once
it does (with exactly x predecessors, say), the restraint r(e, k, s) on A forces
Bt� (x + 2) = Bs� (x + 2) for all t ≥ s. Hence the element k never again acquires
another predecessor in the order ≺e, and r(e, k, t) = r(e, k, s) for all t ≥ s. In turn,
this allows the next P -requirement to choose a witness element that will never again
be changed and will enter A if necessary to satisfy P . Thus all requirements are
ultimately satisfied.

If B ≤T A, then we have B = 8A
e for some e, and the 〈Be,s〉 defined above is a

computable approximation to B. If B is infinite, then the order ≺e is the derived order
for this approximation. Since every N〈e,k〉 is satisfied, we know (ω,≺e) ∼= (ω,<),
and thus B is order-computable. (Clearly, every finite B is order-computable as
well.) �

3 Non-Order-Computable Sets

An order-computable set must not only be 10
2 but must also be the range of a

limitwise-monotonic function. Indeed, if (ω,≺, R) ∼= (ω,<, A), then A is pre-
cisely the set {|{y ≺ x}| : x ∈ R}, and if we enumerate R as {x0 < x1 < · · · },
then the limit as s → ∞ of the (computable, monotonic) predecessor approximation
function f (k, s) = |{y ≤ s : y ≺ xk}| has range A.
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Limitwise-monotonic functions are also called subcomputable or 60
1 ; a simple

definition is that the function must be total and the set of points below its graph must
be a c.e. set. The range of such a function is always a 60

2 set, but can fail to be 10
2,

so clearly not all such ranges are order-computable.
In [5], Khoussainov, Nies, and Shore proved that there exist 10

2 sets that are not
the range of any limitwise-monotonic function (though this result appears to have
been proved earlier by Khisamiev [4]). These are the first examples of 10

2 sets that
are not order-computable. We can imitate their proof and include lowness require-
ments, thereby showing that low sets can fail to be order-computable.

Lemma 3.1 There exists a low set A that is not the range of any limitwise-
monotonic function.

Corollary 3.2 There exist low sets that are not order-computable. �

This set A cannot itself be made c.e., of course. It is an open question, suggested
by the referee of this paper, whether one could build such an A which is Turing-
reducible to a low c.e. set.

Proof of Lemma 3.1 We imitate the finite-injury proof in [5], with its requirements

Re : If fe(x) = lim
t→∞

ϕe(x, t) is total and ϕe is monotonic,

then range( fe) 6= A,

which are satisfied by fixing a witness xe and moving each new ϕe(xe, t) out of A.
We add requirements

Li,x : [(∃∞s)8As
i,s (x)↓] H⇒ 8A

i (x)↓

to ensure that A is low. The idea is that each Li,x attempts to protect a finite initial
segment of A so as to satisfy itself. Each higher-priority Re either acts only finitely
often, keeping a particular ϕe(xe, t) out of A forever (in which case eventually it no
longer interferes with Li,x ) or else drives ϕe(xe, t) higher and higher as t increases.
In this latter case, for each y there is a stage s so large that Re sets no conditions
on A� y after stage s, and so, for any string σ such that 8σi (x) converges, this Re
will eventually allow A� lh(σ ) to be set to σ , leaving Li,x satisfied at all subsequent
stages so that the restraint function l(〈i, x〉, s) for Li,x will converge and will not
injure any lower-priority requirements from then on.

Define distinct witness elements me,0 for each e ∈ ω, which we will use to ensure
that if ϕe(·, t) does converge monotonically to a total function fe as t → ∞, then A
is not the range of fe. We let A0 = {me,0 : e ∈ ω}, make all xe,0 and te,0 undefined,
and set all l(e, 0) = 0.

At stage s + 1, we have a substage e for each e = 〈i, x〉 ≤ s, starting with e = 0.
First, to avoid injuring any higher-priority R j or Lk , we search for the shortest
σ ∈ 2<s such that

1. 8 σ
i,s(x)↓ and

2. for all j < e such that x j,s ↓< lh(σ ), σ(ϕ j (x j,s, t j,s)) = 0 and
3. for all j < e such that x j,s ↑ and m j,s < lh(σ ), σ(m j,s) = 1 and
4. for all k < e, σ� l(k, s + 1) = As+1� l(k, s + 1).

If there is no such σ , then l(e, s+1) = 0 and we make no change to As+1. Otherwise,
we define As+1 � lh(σ ) = σ and l(e, s + 1) = lh(σ ). (The final condition above
ensures that this does not contradict any definition of As+1 at any previous substage
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of stage s + 1.) If there are several σ of minimal length satisfying these conditions,
use the first in the dictionary order.

We then continue this substage by attending to Re as follows:

1. If there exists j < e such that either
(a) l( j, s + 1) ≥ me,s or
(b) ϕ j,s(x j,s+1, t j,s+1)↓= ϕe,s(xe,s, te,s)↓ or
(c) xe,s is undefined and ϕ j,s(x j,s+1, t j,s+1)↓= me,s ,

then all Rk with k ≥ e are injured at stage s + 1. We make all
xk,s+1 and tk,s+1 undefined, redefine each mk,s+1 to be the least num-
ber larger than maxn<k l(n, s + 1) that is not in {mn,s+1 : n < k}

∪ {ϕn(xn,s+1, tn,s+1) : n < k & xn,s+1 ↓}, and end the stage.
2. If there is no such j , but xe,s is defined, then so is te,s , and we ask if
ϕe,s(xe,s, te,s +1)↓≥ ϕe(xe,s, te,s). If not, then Re makes no changes at all. If
so, then Re removes ϕe,s(xe,s, te,s + 1) from As+1 and sets te,s+1 = te,s + 1.

3. Otherwise, xe,s is undefined. We leave me,s+1 = me,s and ask if there exists
a pair 〈x, t〉 ≤ s such that ϕe,s(x, t)↓= me,s . If so, then Re chooses the ele-
ments of the least such pair to be xe,s+1 and te,s+1, respectively, and removes
me,s+1 from A. If not, we do nothing.

As long as e < s and case 1 did not apply, we now continue with the next substage
e + 1. If e = s or case 1 applied, this concludes stage s + 1.

The proof that the requirements Re are satisfied proceeds just as in [5] once we
have proven that each restraint built by an L-requirement is bounded. Assume by
induction that for each j < e, lims l( j, s) ↓< ω and that for each j ≤ e, R j is
satisfied. Let s0 be a stage so large that of all the requirements R j with j ≤ e,
the only ones that make any changes to A after stage s0 are those that make infin-
itely many such changes, so that lims ϕ j (x j,s, t j,s) = ∞. (Call these requirements
R j1 , . . . ,R jn .) If there exists a stage s′ > s0 at which l = l(e, s′) > 0, then only
these R jk can change A� l after stage s′. However, there exists another stage s1 > s′

such that for all s ≥ s1 and all k ≤ n, ϕ jk (x jk ,s, t jk ,s) > l. But then at all stages
s > s1, the requirement Le is allowed to set As� l = As′� l. It does so (unless there
is a shorter string it can use for the same purpose). Hence l(e, s) ≤ l for cofinitely
many s, and 8A

e (x) ↓, as required by Le. Also, lims l(e, s) ≤ me+1,s1+1, allowing
the induction to proceed on Re+1. �

The next lemma gives a straightforward proof for a weak version of Corollary 3.18
below.

Lemma 3.3 There exists a limitwise-monotonic function g whose range is 10
2 yet

is not order-computable. Indeed, we can build one such function g1 with low range
and another such function g2 whose range has degree 0′.

Corollary 3.4 The property of order-computability does not respect Turing equiv-
alence.

Proof of Corollary Theorem 2.7 and Lemma 3.3 provide two sets of Turing degree
0′, one order-computable and the other not. �
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Proof of Lemma Our strategy for building g = lims h(·, s) is to satisfy

Cm : (∀s) |{0, . . . , 3m − 1} ∩ range(h(·, s))| ≤ 2m;

Re : If ϕe(x, s) is a predecessor approximation function for an order-
computable infinite set, then range(lim

s
ϕe(·, s)) ∩ range(g) 6= ∅.

We write fe = lims ϕe(·, s) and exploit the fact that the set A = range(g) is order-
computable if and only if its complement A is. (If (ω,≺, R) is computable, so is
(ω,≺, R).) The requirements Cm make A coinfinite. Therefore, if A were order-
computable, then A would be infinite and have a computable predecessor approxi-
mation function ϕe such that range( fe) = A, contradicting Re.

To satisfy Re, we would like to pick a single witness we and define h(we, s) =

ϕe(we, t) for the greatest t such that ϕe,s(we, t)↓. (If ϕe(we, 0)↑, or if ϕe(we, t+1)<
ϕe(we, t) for some t , then clearly Re is satisfied, and we leave h(we, s) constant for
all subsequent s so as to guarantee that g = lims h(·, s) is limitwise monotonic.)
The danger, of course, is that possibly limt ϕe(we, t) = ω. This would disrupt our
strategy, since we must ensure that limt h(we, t) < ω. To deal with this problem, we
choose a single element we, compute ϕe(we, t) for each t , and assign infinitely many
elements we,k to follow me by setting h(we,k, s) = ϕe(we, t) as above. For each k
and all t , we will ensure that h(we,k, t) ≤ dk , for fixed finite numbers dk such that
d1 < d2 < · · · . Thus we will be able to satisfy Re if fe(we) turns out to be finite yet
will not have trouble if fe(we) diverges.

For each e for which the hypotheses of Re are satisfied, fe must have infinite
range. Therefore, we can wait for arbitrarily high values of ϕe(x, t) to appear and
then choose we to be an x for which ϕe(x, t) is sufficiently large. This allows
us to satisfy all Cm and also any higher-priority finitary requirements, such as the
L-requirements below, and to guarantee that range(g) will be 10

2 (since the func-
tions h(·, t) will only move a given element into or out of range(g) finitely often as
t → ∞). Thus satisfying our requirements will indeed prove the lemma.

The elements dk mentioned above are “dumps” which we decide beforehand will
lie in range(g). Specifically, we choose dk = 3k and assign elements ck ∈ ω such
that h(ck, t) = dk for every k and t . (This does not interfere with any require-
ment, since when we need to satisfy an Re, we do so by putting a number into
range(g), never by keeping a number out of range(g).) Whenever we want to re-
move an element h(x, s) from range(g), we can always find a dk > h(x, s) and
define h(x, s + 1) = dk , thereby removing h(x, s) from range(g) for the present
without introducing any new elements to range(g). Thus we can ensure that each Re
adds only one new element to range(g) so that range(g) is coinfinite.

Our satisfaction of the different requirements Re actually creates no priority con-
flicts, since each such requirement wants only to put certain elements into range(g),
not to keep any specific elements out of it. The only negative requirements arise from
making range(g) coinfinite and 10

2, and we resolve these conflicts by making each
Re consider only sufficiently large numbers from range( fe).

To make g1 have low range, we simply add in the lowness requirements as in the
proof of Lemma 3.1; once again, the strategy used there works. Each Le looks for
any σ it can find to guarantee convergence for its requirement; the only restraints on
its search are that σ must respect the (finitary) restraints of higher-priority Li and
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Ri , must have σ(dk) = 1 for all k, and must satisfy the coinfiniteness requirements
Cm .

To code the 60
1 -complete set K into the range of g2, on the other hand, we use

the dumps: whenever we want to put an element into a dump, we do not just add it
to the next higher dump, but rather to the dump dk , where k is the first element of K
we find such that dk is larger than the current value of the element. Also, rather than
guaranteeing that every dk lies in A, we wait for numbers n to enter Ks . Each time
some n ∈ Ks+1 − Ks , we choose a fresh element x not yet in the domain of h(·, s)
and define h(x, s′) = dn for all s′

≥ s. Thus K ≤1 A via the function that takes x to
dx . Since A = range(g2) is 10

2, this guarantees K ≡T range(g2). �

The predecessor approximation function for A has an important additional property.
Since (ω,≺) is a linear order, we know that if xi ≺ x j , then every new predecessor
of xi that appears must also precede x j . Stating this in terms of f A yields

(∀i, j, s) [ f A(i, s) < f A( j, s) H⇒ f A(i, s+1)− f A(i, s) ≤ f A( j, s+1)− f A( j, s)].

We refer to this as the order property for f A (or for gA = lims f A(·, s), by abuse of
terminology).

Moreover, if f is any monotonic computable function with the order property and
g = lims f is total, then g(E) is order-computable. This yields a characterization of
order-computability but hardly a satisfactory one.

Above we constructed a low set that was not order-computable. We now investi-
gate how close such a set can come to being c.e. Recalling the Ershov hierarchy as
defined on p. 322, we remind the reader that 2-c.e. sets are also called d.c.e., since
they can be expressed as the set-theoretic difference W1 − W2 of two c.e. sets W1
and W2.

Theorem 3.5 There exist a c.e. set W and a low d.c.e. set A that are not order-
computable.

Proof We give the construction of the set A. To build W , one simply runs the same
construction without the lowness requirements. Since these are the only require-
ments that ever remove an element from A, it is clear that the set W will indeed
be c.e., although not low. The contrast gives a fair insight into the impossibility of
building a low c.e. set that is not order-computable (cf. Theorem 2.6).

Our strategy is to build an approximation to a set A satisfying the standard lowness
requirements,

L〈e,x〉 : [(∃∞s)8As
e,s(x)↓] H⇒ 8A

e (x)↓,
while also ensuring that if ϕe appears to be a predecessor approximation function for
A, then in fact some element of the corresponding linear order must have infinitely
many predecessors:

Re : ϕe is not a predecessor approximation function for A.

The basic module for satisfying a single Re checks at every stage to see whether ϕe
has proven itself not to be a predecessor approximation function (as described after
Definition 2.3). As long as it has not done so, we pick a witness element we to put
into A. We choose we large enough to have an element of A below it, which we
use as a “trigger,” keeping it out of A for the present. If ϕe responds by matching
A up to we at some stage s (i.e., putting odd numbers in positions corresponding to
As and even numbers in positions corresponding to As), then we define ne to be the
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even number in position we and pull the trigger, by enumerating the trigger element
into As+1 (and naming it te,s+1). In order to match this change, ϕe must add an even
number to its order in that position, so that ne acquires a new predecessor, and then
must acquire enough more predecessors to correspond to a larger element of A. If
there are only finitely many such stages s, then clearly Re is satisfied. Otherwise,
we wait for a future stage s′ at which ϕe matches the new As′ up to ϕe(ne, s′) (thus,
on a longer initial segment than at stage s). When this happens, we enumerate a new
trigger te,s′+1 < ϕe(ne, s′) from As′ into A and start the process over. Ultimately,
this will add infinitely many predecessors of ne to the order, satisfying Re.

To make this basic module work, of course, we must ensure that elements of A are
far enough apart that triggers will always be available. The interplay between distinct
R-requirements is therefore limited to choosing the initial elements we,0 far enough
apart. This is a straightforward combinatorial exercise, described in Lemma 3.6. (L-
requirements will never be allowed to put elements into A, so they cannot mess up
the combinatorics.)

This basic module never puts any number into A more than once. Moreover, once
ϕe(ne, s) has increased, the te and thewe that we had put into A can be removed from
A if necessary to satisfy a lowness requirement. Thus, if we → ∞, we will satisfy
each lower priority Li,x -requirement by waiting until ϕe(ne, s) is so large that we
can clean up behind it and build an initial segment of A of length < ϕe(ne, s) that
makes 8A

i (x) converge.
We start with A0 = ∅ and all variables undefined. At stage s + 1, we have one

substage for each i = 〈e, x〉 ≤ s in turn, starting with 0. At substage i , we first
search for the shortest σ ∈ 2<s (if any; otherwise choose the empty string) such that

1. 8σe,s(x)↓ and
2. σ�max j<i l( j, s + 1) = As�max j<i l( j, s + 1) and
3. wi,s is defined and σ�wi,s = As�wi,s and
4. for all z such that σ(z) = 1, z ∈ As and
5. for all z < lh(σ ) such that z = t j,s for some j < i , σ(z) = As(z).

We set As+1� lh(σ ) = σ and set

l(i, s + 1) = max
t≤s+1

use(8At
e,t (x))

(where by definition the use of a divergent computation is 0). If we have a choice
between two σ of equal length, we take the first in the dictionary order.

If As+1� lh(σ ) 6= As� lh(σ ), then Li has injured all Lk (k > i) and all Rk (k ≥ i):
every l(k, s+1)with k > i , and every nk,s+1,wk,s+1, and tk,s+1 with k ≥ i , becomes
undefined, and we end the stage s immediately. Otherwise, we continue the substage
i , turning now to the requirement Ri . If ϕi,s has proven that it is not a predecessor
approximation function, we end this substage and go on to substage i +1. Otherwise,
we work to satisfy Ri as follows:

1. Ifwi,s is undefined, we pickwi,s+1 to equal 2i+1 plus the greatest number yet
seen in the construction and enumerate it into As+1. We also make all nk,s+1
with k ≥ i and all wk,s+1 and tk,s+1 with k > i undefined.

2. If wi,s is defined, but ni,s is not, we check whether As�(1 +wi,s) is an initial
segment of the set approximated by ϕi,s . If not, we do nothing. If so, we set
ni,s+1 to be the n such that ϕi,s(n, ui,s) = wi,s and let wi,s+1 = wi,s . (Here
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ui,s is the greatest u such that ϕi,s(x, u) ↓ for all x < u.) We choose the
trigger ti,s+1 to be the greatest number < wi,s such that
(a) ti,s+1 /∈ ∪t≤s At , and
(b) no number w j,t with t ≤ s and j ∈ ω satisfies ti,s+1 ≤ w j,t < wi,s ,

and enumerate ti,s+1 into As+1. Notice that ni,s+1 is uniquely defined (since
ϕi,s appears to be a predecessor approximation function) and must be even,
since wi,s ∈ As . We will prove in Lemma 3.6 below that such a ti,s+1 must
exist.

3. Otherwise, ni,s is defined. With ui,s as above, we check whether
As � (1 + ϕi,s(ni,s, ui,s)) is an initial segment of the set approximated by
ϕi,s . If not, we do nothing. If so, then keep ni,s+1 = ni,s , redefine ti,s+1 to
be the greatest element < ϕi,s(ni,s, ui,s) satisfying
(a) ti,s+1 /∈ ∪t≤s At , and
(b) no number w j,t with t ≤ s and j ∈ ω satisfies ti,s+1 ≤ w j,t

< ϕi,s(ni,s, ui,s),
and enumerate ti,s+1 into As+1.

This completes substage i and the construction.
For each i , write wi = lims wi,s . Also, let {v0 < v1 < · · · } be the set

{wi,s : i, s ∈ ω}. (We will not have wi = vi for all i , because of injuries to the
R-requirements.)

Lemma 3.6 At every stage s and substage i of this construction, if substep 2 or
3 requires a trigger ti,s+1 to be defined and enumerated into A, then there exists a
trigger satisfying the two conditions named in that substep.

Proof This is a combinatorial argument. First, notice that the only elements to
enter A are the various w j,s and the triggers tk,s , which enter A only if some greater
element is already in A.

Choose the least j such that ϕi (ni,s, s) ≤ v j . Now v j was chosen (as wm,s0 for
some m ≤ j , at some stage s0) to equal 2m+1 plus the greatest element yet seen in
the construction, at which time the set

T = {t /∈ As0 : v j−1 < t < v j }

of available triggers contained at least 2m+1
− 1 elements. The only way for any

of them ever to enter A is if v j = ϕk(nk, s1) at some stage s1 > s0, for some
k < m; when this happens, v j − 1 would be chosen as tk,s1+1 and would enter A.
At subsequent stages, if Rk enumerates any more triggers into A, we would have
ϕk(nk, s1) > v j , so the triggers would also be > v j . Thus this Rk enumerates at
most one of the 2m+1

− 1 elements into A.
Subsequently, another Rk′ with k′ < m may have either ϕk′(nk′ , s2) = v j or

ϕk′(nk′ , s2) = v j − 1 and may enumerate v j − 2 into A as a trigger. Moreover,
if ϕk′(nk′ , s2) = v j − 1, then we might subsequently have ϕk′(nk′ , s3) = v j , in
which case Rk′ would enumerate another element of T into A. However, this Rk′

enumerates at most these two elements of T into A. The inductive step is now clear:
the third requirement Rk′′ (k′′ < m) might enumerate as many as four triggers from
T into A, corresponding to the four numbers v j − 3, . . . , v j that could already be
in A, and the next R-requirement could enumerate eight triggers from T into A and
so on. But only R0, . . . ,Rm−1 can enumerate triggers from T into A, so the total
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number of triggers needed from T is at most 1 + · · · + 2m
= 2m+1

− 1, and we saw
that T is at least this large. This proves Lemma 3.6. �

If lims ti,s is finite, or if Ri never reaches substep 3, then we say that Ri is finite-
acting. Otherwise, Ri is infinite-acting, and 〈ti,s〉s∈ω is an infinite nondecreasing
unbounded sequence.

We now show by induction on i that every Li (say with i = 〈e, x〉) and ev-
ery Ri is eventually satisfied. Assume this is true for all higher-priority require-
ments, and let s0 be a stage so large that none of them injures Li after s0, that
As0 � l( j, s0) = A � l( j, s0) for all j < i , and that for every finite-acting higher-
priority requirement R j , we have t j,s0 = t j (or, if t j,s is undefined for all s, then

w j,s0 is defined). If there is a stage s1 > s0 such that 8
As1
e,s1(x) ↓, let σ be the re-

striction of As1 to the use u of this computation. (If there are many such stages s1,
choose the one with the shortest corresponding σ and leftmost in the dictionary order
for that length. If s1 does not exist, then Le,x is satisfied.) Now there will be another
stage s2 > s1 such that t j,s > u for every higher-priority infinite-acting R j and
every s ≥ s2. Between stages s1 and s2, moreover, no number < u will have been
removed from A: no higher-priority L-requirement has acted; the lower-priority L-
requirements never change A below l(i, s1) ≥ u; and by our choice of s1, Li itself
has no reason to redefine A. Hence at stage s2, Li will remove from A any elements
added to A by R-requirements in the meantime, setting As2 = σ , and will preserve
this much of A forever after so that 8A

e (x) ↓. Thus Li is satisfied and never again
injures any lower-priority requirements.

The requirement Ri (acting at the i th substage of each stage) may stop perma-
nently in either substep 2 or substep 3 above. If we stop in substep 2, then wi stays
in A forever (since no lower-priority L-requirement can remove it, and any action
by a higher-priority L-requirement would redefine wi,s). But the initial segment
A�(1 +wi ) does not match that of the set (if any) order-computed by ϕi , for if it did,
we would move to substep 3.

If we stop in substep 3 and Ri is finite-acting, fix s0 such that ti = ts0 . Then
for all s ≥ s0, the initial segment A� (1 + ϕi (ni , s)) does not match that of the set
order-computed by ϕi,s . Otherwise, Ri is infinite-acting, so substep 3 must have
enumerated the current ti,s into A at infinitely many stages s. Each time, that forced
ϕi (ni , s) to increase in order for ϕi to approximate an initial segment of A again,
because no lower-priority L-requirement was allowed to remove ti,s from A until a
new trigger ti,s′ > ti,s was defined. This ensures that lims ϕi (ni , s) = ∞. So in both
cases, we see that ϕ is not a predecessor approximation function for A, and Re is
satisfied.

The only elements that ever enter A are ones that have never before entered A,
by our choice of wi,s in substep 1 and our conditions on the triggers in substeps 2
and 3. The L-requirements may remove elements from A, so A will be d.c.e. The
same construction without the L-requirements would never remove elements from
A, but would still satisfy all R-requirements, hence would build a c.e. set that is not
order-computable. �

We may use the same strategy to show that the join of two sets, even of two c.e. sets,
need not preserve order-computability.
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Theorem 3.7 There exist order-computable c.e. sets A and B whose join

A ⊕ B = {2n : n ∈ A} ∪ {2n + 1 : n ∈ B}

is not order-computable.

Proof We will build two computable linear orders ≺
A and ≺

B on the domain ω,
each isomorphic to (ω,<), such that the sets A and B order-computed by these or-
ders are c.e., yet the join C = A⊕ B is not. We build C by the same method that was
used for building W in Theorem 3.5 with witness elements we,s and trigger elements
te,s that may be enumerated into either A or B (but not both) to force a potential pre-
decessor approximation function ϕe for C to add new elements preceding the number
ne such that ϕe(ne, u) = 2we. The requirements are as follows:

Px : The element x has only finitely many ≺
A-predecessors.

Qx : The element x has only finitely many ≺
B-predecessors.

Re : ϕe is not a predecessor approximation function for C.

N -requirements impose finite restraints on enumeration into A and B at any given
stage, and satisfying them will ensure that for each single x , the supremum of the
lengths of these restraints is finite. We start with elements we already enumerated
into A0 so that 2we ∈ C0; these are chosen far enough apart from each other (as
in Theorem 3.5) and will never be redefined, since the lowness requirements from
that theorem do not apply here. The requirement Re waits for ϕe to find an even
element ne with exactly 2we predecessors, then enumerates triggers into C to force
ϕe to add more predecessors to ne. However, we can satisfy Re at stage s + 1 either
by enumerating the trigger te,s into As+1, or by enumerating it into Bs+1, and this
allows us to respect the negative requirements.

We start with A0 = {we : e ∈ ω} and B0 = ∅, where w0 = 0 and
we+1 = we + 2e+1. The real witness elements are therefore the numbers 2we,
which are the elements of C0. At stage s + 1, we set the restraint functions
p(x, s + 1) and q(x, s + 1) to be the number of predecessors of x at this stage under
�

A and �
B , respectively. These are the restraints imposed by Px on A and by Qx

on B. Then, for each i < s in turn, we follow steps 2 and 3 from pages 331–332.
The only change is that when we need to enumerate a trigger element ti,s , we have to
choose whether to enumerate it into As+1 or Bs+1. Let y = µx[p(x, s + 1) ≥ ti,s]
and z = µx[q(x, s + 1) ≥ ti,s]. If y > z, then we enumerate ti,s into As+1 (so 2ti,s
enters Cs+1); otherwise, ti,s enters Bs+1 and 2ti,s +1 enters Cs+1. In either case, this
trigger forces ϕi to add more predecessors to ni , since the element entering Cs+1
is < ϕi (ni , ui,s). Moreover, we injured the lowest-priority negative requirement
possible (under the convention that Px has higher priority than Qx .) This completes
substage i of stage s + 1.

To finish stage s + 1 itself, we must also consider ≺
A and ≺

B . Suppose that ≺
A

currently has a elements in its domain. If As+1� a 6= As� a, then starting from the
point where they disagree, we add enough fresh elements (say a′-many) to the order
≺

A to make sure that ≺
A on these elements does approximate As+1� (a + a′). (If

As � a = As+1� a, we add one more element to the right end of the order ≺
A, odd

or even as dictated by As+1. This ensures that ≺
A has a domain of at least s + 1

elements at this stage.) Then we do the same for ≺
B using Bs+1. This completes the

construction.
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The set C = ∪sCs built by this construction is c.e. but not order-computable by
the same argument given for the set W in Theorem 3.5, since with C = A ⊕ B, we
now have even more space in C between witness elements 2we and triggers 2ti,s or
2ti,s + 1 than we did in W . It is important that for each i and s, at most one of the
two triggers 2ti,s and 2ti,s + 1 ever enters C , of course.

However, we claim that A = ∪s As and B = ∪s Bs both are order-computable.
The orders ≺

A and ≺
B were built to order-compute As+1 and Bs+1 at each stage

s + 1, so we need only show that each Px and Qx is injured only finitely of-
ten. (An injury to Px is a change to As � p(x, s), of course.) By induction on
x , suppose that no Py or Qy with y < x is injured after stage s0. Then we have
p(y, s) = p(y, s0) and q(y, s) = q(y, s0) for all s > s0 and all y < x . Let
m = max({p(y, s0) : y < x} ∪ {q(y, s0) : y < x}) and fix a stage s1 > s0 so
large that every Re with we < m either has te,s1 > m or never enumerates any more
triggers into C after stage s1. Hence no R-requirement at all will try to enumerate
any trigger < m into A or B after stage s1. So, if we need to put a trigger element
t < p(x, s + 1) into As+1 or Bs+1 at some stage s + 1 > s1, then no Qy with y < x
will stop us from putting it into Bs+1. Thus Px will never be injured after stage
s1. The same argument works for Qx , so all P - and Q-requirements are eventually
satisfied. �

It is easy to adapt the requirements of Theorem 3.5 to build a c.e. set that is nei-
ther order-computable nor simple; just ensure that all elements wi,s are even and
far enough apart that we can always choose even numbers as triggers. Then the
complement of A clearly contains an infinite c.e. set. Also, it is straightforward to
build both a simple order-computable set and a nonsimple one. (Moreover, both can
be made noncomputable; Friedberg-Muchnik requirements and the negative require-
ments for order-computability all mesh easily either with simplicity requirements or
with a construction on even numbers only. Follow the proof of Lemma 2.5.) The one
difficult question about simple sets is resolved by the following lemma.

Lemma 3.8 There exists a simple set A that is not order-computable.

Proof The proof adapts the construction of A in Theorem 3.5 with the same re-
quirements Re, adding simplicity requirements

Pe : We infinite H⇒ We ∩ A 6= ∅.
(Of course, we leave out the L-requirements, since we want A to be c.e. rather than
low.)

We adapt the construction from Theorem 3.5. The difficulty is that we can no
longer control which elements enter A, since Pe essentially says that we must give
carte blanche to cofinitely many elements. However, Pe will only actually enumerate
one of these cofinitely many elements into A, and so we can control the number of
elements in a given interval (such as [wi−1, wi ]) that could ever be enumerated into
A. Then we need only ensure the presence of enough triggers (for each i < e)
to add extra predecessors to each ni and make ϕi (ni ) > wi as before. (Since no
requirements are injured,wi is never redefined; hence the subscript s is unnecessary.)

Thus, the only actual alteration to the construction from Theorem 3.5 is that in
substep 1 we choose the new wi to be greater than 2i+2

+ i plus the greatest number
yet seen in the construction. Each Pe is allowed to enumerate into A one number
pe, which must be > we. (Of course, that one number is all that is needed to satisfy
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Pe forever.) Any time ϕi,s(ni , s) = pe for some i < e, we enumerate into A the
greatest available trigger < we without regard to the second of the two requirements
in substep 2 or 3. If pe is large, there could be a number w j between this trigger
and pe, but we have included enough available triggers below between we−1 and we
to ensure that pe will never require enumeration of a trigger < we−1. The number
2i+2

+ i above allows for i elements between wi−1 and wi to be enumerated into A
by requirements Pe with e < i , and then sufficiently many more triggers to move the
value of ϕ j (n j , s) (for every j < i) past wi , past every trigger already enumerated
into A and past pi . �

Another corollary of Theorem 3.5 strongly restricts the possible global connections
between order-computability and most traditional measures of computability.

Corollary 3.9 There exist computably isomorphic c.e. sets V and W such that V is
order-computable and W is not.

Proof As noted after the proof of Theorem 3.5, it is easy to ensure that the W in the
theorem is not simple. Apply Corollary 2.9 to the set W produced by Theorem 3.5.

�

The following theorem is closely related; indeed, the existence of the sets A and
B would follow from Corollary 3.9. We include it because it gives a concrete ex-
ample of a very straightforward computable permutation of ω that maps an order-
computable set to a non-order-computable one.

Theorem 3.10 Let a0 = 1 and an = (n + 1) + (n + 2) · an−1, and set m0,0 = 1
and me+1,0 = me,0 + ae+1 + 1 for all e. Define the computable permutation p of
ω by letting p(me+1,0 − k) = me,0 + k + 1 for each e and each k ≤ ae+1. There
exist 10

2 sets A and B, computably isomorphic to each other via p, such that B is
order-computable but A is not.

Proof We build A using the Khoussainov-Nies-Shore strategy to ensure that A
is not the range of any limitwise-monotonic function. The requirements are pre-
cisely the Re defined in the proof of Lemma 3.1. Simultaneously, we will build
a computable linear order (ω,≺) of type ω such that the set B order-computed by
(ω,≺, E) is precisely the image p(A). This will suffice to prove the theorem.

We call the interval [me,0 + 1,me+1,0] the (e + 1)st p-segment and note that p
maps each p-segment to itself, reversing the order of the elements. (We consider the
two-element segment [0, 1] to be the 0th p-segment, with p(0) = 1 and p(1) = 0.)

At stage 0, we enumerate every me,0 into A0. On the B-side, we immediately
define an ordering ≺ of type ω on the infinite set C = {n ∈ ω : n 6≡ 3(mod 4)} so
that the number 2e has exactly p(me,0) predecessors under ≺, and the odd elements
of C fill in the gaps. Thus the set B0 order-computed by (C,≺, E) is just p(A0).
The numbers not in C will all be added to the order later in the construction. The
witness elements xe and the corresponding te,0 are all undefined at stage 0.

At stage 2s, let As = {mi,s : i ∈ ω} and consider the least e < s (if any) for
which xe and te are currently defined and ϕe,s(xe, te,s + 1) ↓≥ ϕe,s(xe, te,s). We
make ϕe,s(xe, te,s +1) /∈ As+1 and set te,s+1 = te,s +1. The B-side has two possible
actions, depending on whether we have changed A or not:

1. If there exists an i > e such that ϕe,s(xe, te,s + 1) = mi,s , then mi,s has
been removed from As+1, and we define mi,s+1 = mi,s − 1 ∈ As+1 and
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make xi undefined. In this case, the requirement Ri has been injured by the
higher-priority Re. To parallel this A-change in B, we add the next available
odd number k to the order ≺ so that k has exactly p(mi,s) ≺-predecessors.
This forces p(mi,s) /∈ Bs+1 and p(mi,s+1) ∈ Bs+1. In turn, this change
requires an A-change, since every element of the order to the right of k has
now acquired a new predecessor. Therefore, for every j > i , we define
m j,s+1 = m j,s − 1 and make x j undefined, thereby injuring R j . This leaves
p(m j,s+1) = p(m j,s)+ 1, since p inverts the ordering on each p-segment so
that As+1 agrees with Bs+1.

2. If there is no such i , then there has been no change in As+1, so we do nothing
further.

For each i , if mi,s+1 is not defined by the process above, then mi,s+1 = mi,s .
At stage 2s + 1, find the least e < s for which xe is not currently defined and

there exist x, t ≤ s such that ϕe,s(x, t) ↓= me,s+1. (If there is no such e, we do
nothing.) We choose the least such pair 〈x, t〉 corresponding to this e, let xe = x
and te,s+1 = t , set me,s+1 = me,s − 1 ∈ As+1, and make me,s /∈ As+1. As above,
we add the next available odd number k to the order ≺ so that k has exactly p(me,s)
≺-predecessors. Thus p(me,s) /∈ Bs+1 and p(me,s+1) ∈ Bs+1. For every j > e, we
define m j,s+1 = m j,s − 1 and make x j undefined, thereby injuring R j in order to
preserve the agreement between As+1 and Bs+1. This completes the construction.

Now me is redefined (with me,s+1 = me,s − 1) when me,s first enters the range
of ϕe, and again each time a higher-priority Ri (i < e) injures Re. The numbers an
are defined so that if the requirement Re−n is never injured, then me will be reduced
at most an times. For n = 0, this is clear, since if Re is never injured, then me is
reduced only when we first discover a pair 〈x, t〉 with ϕe(x, t) = me. The definition
an = (n+1)+(n+2)·an−1 was selected because if Re−n is never injured, then Re−n
itself may reduce me once when xe−n is first defined and ϕe−n(xe−n, te−n,s) = me−n ,
then again when ϕe−n(xe−n, te−n,s′) = me−n+1, and so on, for a total of n+1 injuries.
In between any two of those injuries, me can be reduced at most an−1 times, by induc-
tive hypothesis, and similarly before the first such injury and after the last, yielding
a total of at most an reductions of me, hence, our choice of me,0 = me−1,0 + ae + 1,
which guarantees that for all s we have me−1,0 < me,s . Therefore, me,s always lies in
the same p-segment of ω and is mapped into that same p-segment by p. We see from
this that only finitely many predecessors will be added below each element of ≺ so
that (ω,≺) ∼= (ω,<). Also, as noted above, the approximations As = {me,s : e ∈ ω}

and Bs = {n ∈ ω : (∃x)[2x has exactly n ≺s-predecessors]} satisfy As = p(Bs) for
every s. �

The next theorem can be seen as a complement to Theorem 2.7 and Lemma 2.10.

Theorem 3.11 There exists a Turing degree a ≤T 0′ such that no set in a is order-
computable.

Proof We build a computable approximation 〈As〉s∈ω to a set A and prove that
deg(A) satisfies the theorem. The construction uses an infinite-injury argument with
the usual tree structure. For each e and each pair of oracle Turing functionals 9 and
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2, we will have a witness element we,9,2 satisfying the following requirements:

R〈e,9,2〉 : If ϕe appears to be a predecessor approximation function for a
set B and 9 A

= B and 2B
= A, then lim

t
ϕe(we,9,2, t) = ∞ or

A is computable.

Additional requirements will prevent A from being computable:

Pe : ϕe 6= A.

Together with the convergence of the approximation 〈As〉s∈ω , this clearly suffices to
prove the theorem.

We write ψ and θ for the use functionals of 9 and 2. By definition 9X
s (n)↑ if

and only if the use ψ X
s (n) = 0. Moreover, on the domain of 9X , ψ X is always an

increasing function, for any fixed oracle X .
The tree T that we use to build A has 4-branching nodes α for the R-requirements

and 2-branching nodes π for the P -requirements. The nodes π have outcomes f and
w and use simple diagonalization to ensure that Pe is satisfied. The four successors
of a node α, in order from left to right, will be denoted by

αˆ∞ ≺ αˆb ≺ αˆa ≺ αˆ f

and this order extends lexicographically to all of T . If lh(α) = 〈e,2,9〉 = x ,
then these outcomes attempt to satisfy Rx . The outcome f denotes a finite win
in which ϕe proves itself not to be a predecessor approximation function; b is the
outcome in which the functional 9 A fails to compute the set Be order-computed
by ϕe, and similarly a is the outcome in which 2Be fails to compute A. In the
remaining outcome ∞, we will force limt ϕe(wα, t) = ∞ for some number wα ,
thereby ensuring that ϕe is not actually a predecessor approximation function for the
set Be. The basic module for accomplishing all this is explained below.

We partition the elements of ω into countably many infinite computable sets, each
of which is the set of toggle elements for some node on T . Let α be a node on T
of length 2x . The specific toggle element used by α at stage s will be named tα,s ,
and α will move these elements into and out of A in order to satisfy Rx . Similarly,
nodes α of length 2e +1 will move toggle elements into A to satisfy Pe. We call this
α an Rx -node or a Pe-node, accordingly, and we also sometimes speak simply of
R-nodes (those of even length) and P -nodes (odd length). If α is on the true path P ,
that is, the leftmost path through the tree such that every node on P acts at infinitely
many stages, then α will succeed in doing this, and its successor on P will depend
on which strategy it uses to satisfy its requirement.

We use t ′α,s to denote the least toggle element for α greater than tα,s . Of course,
to make A ≤T ∅′, we must ensure that every element enters or leaves A only finitely
often.

For each e and each stage s such that ϕe,s fails to prove that ϕe is not a predecessor
approximation function, we find the greatest le,s (possibly 0) such that ϕe,s( · , le,s) is
a permutation of {0, . . . , le,s −1} and define Be,s to be the image of the even numbers
under ϕe,s( · , le,s). The length of the approximation Be,s is therefore le,s . Thus, if ϕe
really is a predecessor approximation function, then lims le,s = ∞ and Be = lim Be,s
will exist. (If ϕe,s does prove that ϕe is not a predecessor approximation function,
then Be,s is undefined.) Moreover, every order-computable set B will appear as Be
for some e.
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To initialize a node α at a stage s means to choose tα,s to be a toggle element for
α that is larger than any number yet seen in the construction, to remove from A all
toggle elements for α, and to make wα,s undefined. We start with A0 = ∅ and every
wα,0 and tα,0 undefined. At stage 0 we initialize the empty node. At stage s + 1, we
have substages numbered 0 through (at most) s. At substage u, we act on behalf of
some node α of length u, a successor of the node for which we acted at the preceding
substage. This α will be said to be eligible to act at stage s + 1, and s + 1 will be
called an α-stage.

At substage u, we let α be that node that was made eligible at the preceding
substage. (At substage 0 the empty node is eligible.) If lh(α) = 2e + 1 is odd,
then we act on behalf of Pe, setting tα,s+1 = tα,s . If αˆ f was eligible at the last α-
stage and α has not been initialized since, we simply make αˆ f eligible at this stage
as well. Otherwise, if ϕe,s(tα,s) ↓= 0, we enumerate tα,s into As+1 and make αˆ f
eligible. Finally, if neither of these cases applies, then we make αˆw eligible. This
completes this substage.

If lh(α) = 2x is even, we choose 〈e,2,9〉 = x . We act according to the least-
numbered of the following eight steps that applies.

1. If ϕe,s proves that it is not a predecessor approximation function (so that Be,s
is undefined), then we make αˆ f eligible and end this substage.

2. If wα,s is undefined and θ Be,s
s (tα,s) ≥ le,s , then again we make αˆ f eligible

and end this substage.
3. If θ Be,s

s (t) = 0 for any t ≤ t ′α,s , then we make αˆa eligible and end this
substage.

4. If wα,s is undefined and 0 < θ
Be,s
s (tα,s) < le,s , we choose wα,s+1 to be a

number such that ϕe,s(wx,s+1, le,s)↓≥ θ
Be,s
s (tα,s), let tα,s+1 = tα,s , initialize

every node β ) α, and end the stage by making no node eligible to act at the
next substage. (By the conditions given, such a number wx,s+1 must exist.)

5. If 2Be,s
s � t ′α,s 6= As� t ′α,s , then we end this substage, with αˆa eligible to act at

the next substage.
6. If 2Be,s

s � t ′α,s = As� t ′α,s , but 9 As
s � θ

Be,s
s (t ′α,s) 6= Be,s� θ

Be,s
s (t ′α,s), then we end

this substage, with αˆb eligible to act at the next substage.
7. If tα,s /∈ As (and none of the above cases applies), then we put tα,s into As+1.

Then we make αˆ∞ eligible to act at the next substage. However, we initialize
all nodes of length at least n + lh(α) that extend α, where n is the number of
toggle elements for α that are < tα,s . (Our rule is that these initialized nodes
cannot be eligible later in this same stage.) This completes this substage.

8. Otherwise, we have tα,s ∈ As and 9 As
s � θ

Be,s
s (t ′α,s) = Be,s � θ

Be,s
s (t ′α,s) and

2
Be,s
s � t ′α,s = As� t ′α,s . In this case we set

tα,s+1 =

{
t ′α,s if ϕe,s(wα,s, le,s) > θ

Be,s
s (t ′α,s) > 0

tα,s if not.

We set tα,s /∈ As+1, make αˆa eligible to act at the next substage, and end this
substage.

When we have finished the last eligible substage, we initialize all nodes β such that
some α to the left of β in T was eligible to act at this stage. We also initialize all
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nodes of length s + 1. Any element not mentioned in the foregoing instructions is
preserved at stage s + 1 (so wβ,s+1 = wβ,s , etc.). This completes the construction.

We now describe the basic module for satisfying a requirement Rx via a node α of
length 2x = 2·〈e,2,9〉 on the true path P . The node αˆ f represents the outcome in
which ϕe proves itself not to be a predecessor approximation function. (If this never
occurs, but lims le,s is finite, then again ϕe cannot be a predecessor approximation
function, and f may be the outcome, using Step 2 above.) The node αˆa represents
the outcome in which A 6= 2Be . This can occur either in Step 3, if 2Be simply
fails to converge on a toggle element for α, or in Step 5, in which 2Be converges but
disagrees with A, or in Step 8, where we actively create a disagreement by removing
tα,s from A. If any of these steps holds infinitely often (for some tα = lims tα,s), then
clearly Rx is satisfied. Similarly, the node αˆb represents a disagreement between B
and 9 A.

Apart from these obvious ways to satisfy Rx , the strategy for α is to drive
lims ϕe(wα, s) to infinity. To do so, α waits for 2Be,s

s � t ′α,s = As � t ′α,s and

9
As
s � θ

Be,s
s (t ′α,s) = Be,s � θ

Be,s
s (t ′α,s) and ensures that θ Be,s

α,s (tα,s) < ϕe,s(wα,s, le,s).
Then, by moving its current toggle element tα,s into A in Step 7, α can force Be

to change somewhere below θ
Be,s
α,s (tα,s), meaning that ϕe(wα,s, le,s) must have in-

creased, since ϕe is the predecessor approximation function for Be. (This is the
outcome ∞.) If this change occurs and the functionals 2 and 9 again appear to
compute A and Be from each other, then α removes tα,s from A again in Step 8.

Of course, α cannot move tα,s into and out of A infinitely often, since A must be
10

2. So α always tries to switch its current toggle element to a larger one (at the start
of Step 8). We know that α succeeds in making ϕe(wα, le,s) larger and larger, but
it must also ensure that θ Be (t ′α,s) does not go to infinity as well, so that eventually
it will be able to switch from tα,s to t ′α,s . This is where α uses the assumption that
Be = 9 A: by preserving A up to ψ A(θ Be(t ′α,s)), it forces Be to return to its original
configuration up to θ Be(t ′α,s) so that the use of 2Be (t ′α,s) does indeed stay bounded.
In fact, α does not even begin toggling tα,s until2Be has converged on t ′α,s . Thus, by
alternately toggling and restoring A, α guarantees that it can keep switching to new
toggle elements so that lims As converges.

The requirements fit together very much in the usual way for a tree construction.
The true path P contains the leftmost node α at each level of T such that α is eligible
at infinitely many stages and all predecessors of α lie on P . Lemma 3.13 below
shows that P is indeed an infinite path through T .

We now give the formal proof that A is 10
2 and satisfies every Rx and Pe. We

write wα = lims wα,s ; this exists for all α ∈ P . We also write tα = lims tα,s when
this limit exists, but it will fail to exist when αˆ∞ ∈ P (and also for all nodes to the
right of P). The key to the proof is the very first lemma.

Lemma 3.12 If αˆ∞ ∈ P, then there are infinitely many stages s at which
tα,s+1 > tα,s .

Proof Clearly, α has even length, say 2x . Suppose the statement is false, and let s0
be the last stage at which either initialization or Step 8 changes tα = tα,s0 . (Notice
that the construction never makes tα,s+1 < tα,s ; equality and increase are the only
possibilities.) Let n be the number of toggle elements for α that are < tα , and let
m = n+lh(α). We prove by induction on n that if every γ ⊃ α with lh(γ)−lh(α) ≥ n
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is initialized at every α-stage, and αˆ∞ ∈ P , then tα,s+1 > tα,s at infinitely many
stages s.

Let s + 1 be any αˆ∞-stage > s0. Step 7 applies, so we enumerate tα into As+1.
Before it can be enumerated into A again, Step 8 must apply at a subsequent α-stage
s′

+ 1 in order for it to be removed from A. When this happens, we must have
ϕe,s′(wα, le,s′) ≤ θ

Be,s′

s′ (t ′α), since otherwise tα,s′+1 > tα,s′ .
Now when αˆ∞ is eligible at s + 1, we initialize all nodes to its right. The same

process at the next αˆ∞-stage s′′
+ 1, along with the enumeration of tα back into

As′′+1, restores As′′+1(t) = As+1(t) for all t except possibly t = tβ,s+1 for some
nodes β in the set

S = {β : αˆ∞ ⊆ β and lh(β) < m},

because α also initializes all nodes γ ⊃ α of length ≥ m at each αˆ∞-stage. Consider
a node β ∈ S and t = tβ,s+1. If β does not lie on P , then it is either initialized
infinitely often or eligible only finitely often, so t enters A only finitely often. If
β ∈ P but βˆ∞ /∈ P or lh(β) is odd, then t only enters A finitely often, because
Step 7 only applies to an R-node β at finitely many β-stages. Finally, if βˆ∞ ∈ P ,
then tβ,s+1 must increase infinitely often, by our inductive hypothesis, because every
node γ ⊇ β with lh(γ)− lh(β) ≥ n − 1 satisfies lh(γ)− lh(α) ≥ n, so is initialized
(by α) at every β-stage.

Now finitely many nodes β ∈ S may have a permanent toggle element tβ . (Such
β either lie to the left of P or lie on P but have odd length or βˆ∞ /∈ P .) Fix an
αˆ∞-stage s1 > s0 at which all these nodes β have already moved tβ into or out of
A for the last time.

Let β0 be the greatest node in S such that β0ˆ∞ ∈ P . Then we eventually reach a
β0ˆ∞-stage r +1 > s1 after which no t < ϕAs1 (θ Be,s1 (t ′α)) ever again enters or leaves
A. (If there is no such β0, then let r + 1 = s1.) Now stage r + 1 is a βˆ∞-stage for
every β ∈ S such that βˆ∞ ∈ P , and so tβ,r /∈ Ar for all such β. Fix a stage s2 > r
such that tβ,s2 > ϕAr (θ Be,r (t ′α)) for all β ∈ S with βˆ∞ ∈ P . Then for each stage
s + 1 ≥ s2, we have As � ϕAr (θ Be,r (t ′α)) = Ar � ϕAr (θ Be,r (t ′α)), since every β ∈ S
with βˆ∞ ∈ P has left all its previous toggle elements out of A when it switched to
larger ones or when it was initialized. Therefore, for all α-stages s +1 ≥ s2 at which
Step 7 or 8 applies, we have

Be,s�u = 9 As�u = 9 Ar�u = Be,r�u

where u = min(θ Be,r (t ′α), θ
Be,s (t ′α)). Hence θ Be,s

s (t ′α) = θ
Be,r
r (t ′α). But as Step 7

continues to apply at infinitely many α-stages s + 1, ϕe(wα, le,s) must eventually
grow larger than θ Be,r (t ′α), by the argument given in the basic module. When this
happens, Step 8 will choose tα,s+1 to be > tα , contradicting our hypothesis. �

Lemma 3.13 The true path P is infinite.

Proof We induct on the length of nodes on P , starting with the empty node, which
is eligible at every stage, and showing that every node on P has a successor that is
eligible infinitely often and initialized only finitely often. Since every node has at
most four immediate successors, we need only worry about stages s + 1 at which
the construction either makes fewer than s + 1 nodes eligible or initializes its own
successors. Steps 4 and 7 for R-nodes do create such cases. However, by induction
on the length of the node, each node α ∈ P will go through Step 4 only finitely many
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times, after which wα,s will remain unchanged. Moreover, initializations by α using
Step 7 are a concern only if αˆ∞ is eligible infinitely often. In this case αˆ∞ ∈ P , so
Lemma 3.12 shows that lims tα,s = ∞. Hence the number n in Step 7 grows without
bound at αˆ∞-stages, and each node β ⊇ αˆ∞ on P is initialized by α only finitely
many times. �

Lemma 3.14 For every t ∈ ω, lims As(t) converges.

Proof A toggle element for a P -node π can enter A at most once; it might later
leave A due to initialization, but it will never again be chosen as tπ,s .

For R-nodes α, notice that α moves only its own current toggle element tα,s into
or out of A at any stage (and then only in Step 7 or 8). Of course, no number is a
toggle element for more than one node. Say that t is a toggle element for the R-
node γ. If γ lies to the left of the true path, then γ is eligible at only finitely many
stages, so lims As(t) must converge. If γ lies to the right of the true path, then it is
initialized infinitely often, with tγ,s being chosen large each time, so every tγ,s enters
A only finitely often before γ is initialized again. Finally, suppose γ lies on P . If
γ ˆ∞ ∈ P , then, by Lemma 3.12, tγ,s increases infinitely often, so each individual
toggle element for γ enters A only finitely often. If γˆ∞ /∈ P , then there are only
finitely many γˆ∞-stages, and these are the only stages at which γ enumerates any
element into A. �

Lemma 3.15 Every requirement Pe is satisfied by this construction.

Proof Let π ∈ P be a node of length 2e + 1, and let tπ = tπ,s0 , where s0 is a stage
after which π is never initialized. If ϕe were the characteristic function of A, then
ϕe,s(tπ )↓ for some s > s0. But π puts tπ into A precisely if ϕe(tπ ) = 0, so this is
impossible. �

Lemma 3.16 Every requirement R〈e,2,9〉 is satisfied by this construction.

Proof Let α be the node on P of length 2x = 2 · 〈e,2,9〉, and assume α is never
initialized after stage s0. Suppose that ϕe is a predecessor approximation function for
a set Be and 9 A

= Be and 2Be = A. Then wα must eventually be chosen by α us-
ing Step 4 and never again changed, since le,s grows arbitrarily large and 2Be (tα,s0)
must converge. Thereafter, Steps 1, 2, 3, and 4 never again apply. Also, Steps 5
and 6 may apply at some α-stages, but since neither of them ever changes tα,s , even-
tually we will get 2Be,s

s � t ′α,s = As � t ′α,s and 9 As
s � θ

Be,s
s (t ′α,s) = Be,s � θ

Be,s
s (t ′α,s),

at which stages Steps 7 and 8 will apply in alternation (since Step 7 puts tα,s into
As+1 and Step 8 either removes it or redefines tα,s+1 to be a new toggle element
not yet in A). Thus αˆ∞ ∈ P . But we have seen that then tα,s increases at in-
finitely many α-stages via Step 8. Therefore, there are infinitely many s for which
ϕe,s(wα, le,s) > θ Be,s (t ′α,s). But since ϕe is a predecessor approximation function for
Be, we know that lims ϕe,s(wα, le,s) must be finite. Call this limit u. Now for every
t ∈ ω there is a stage s such that Be�θ Be (t) = Be,s�θ Be (t) and so θ Be,s (t) = θ Be (t).
But use functions are by definition nondecreasing, so θ Be,s (t) ≤ θ Be,s (t ′α,s) < u,
assuming we choose s large enough that t ≤ t ′α,s . Thus A = 2Be is actually a
computable set, being equal to 2Be�u , and Rx is satisfied. (Of course, Lemma 3.15
excludes the possibility of A being computable, so in fact lims ϕe,s(wα, le,s) = ∞.)

This completes the proof of Lemma 3.16, and also of Theorem 3.11. �
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A close reading of the preceding proof yields more information. Our thanks go to the
referee of this paper for pointing out this corollary, which shows that Theorem 2.7 is
best possible.

Corollary 3.17 The degree a from Theorem 3.11 is (ω+ 1)-c.e. Hence there exists
an (ω + 1)-c.e. set which is not Turing-equivalent to any order-computable set.

Proof We show that the set A constructed in Theorem 3.11 is (ω+1)-c.e. The only
elements t to enter A are the toggle elements, say t = tα,s , in Step 7 of the construc-
tion. At that stage s we know the use θ Be,s (t ′α,s), of course, and the restoration of Be
keeps this use fixed right from the first time t enters A. So we don’t know a bound on
the number of moves of t in and out of A until that first entrance of t into A, but as
soon as it takes place, we can say with certainty that 2+θ Be,s (t ′α,s)−ϕe,s(wα,s, le,s) is
a bound, because the putative predecessor approximation function ϕe must increase
on wα,s each time t enters or leaves A, and as soon as it becomes > θ Be,s (t ′α,s), Step
8 will switch from t = tα,s to t ′α,s and t will never enter A again. Of course, if α is
injured before or after this happens, then after initialization the new toggle element
for α will be chosen much larger than t , so t will never enter A again. �

Corollary 3.18 There exists a 10
2 set B such that each of B and B is the range of

a limitwise monotonic function, yet B is not order-computable.

Proof Choose any set A from the degree a constructed in Theorem 3.11. Let

B = E ⊕ A = {2n : n ∈ E} ∪ {2n + 1 : n ∈ A},

where as usual E is the set of even numbers (though used here for an unusual pur-
pose). Then B and B both lie in degree a, hence cannot be order-computable. How-
ever, it is simple to build a limitwise monotonic function with range B. First set
f (4x, s) = 4x for all x and s. Then, whenever an element n enters the computable
approximation As , we choose a fresh x and set f (x, t) = 2n + 1 for t = s, s + 1, . . .
as long as n ∈ At . If we find some t > s with n /∈ At , we set f (x, t) = 4n. If later
n reenters A, a new x is assigned to it. Then lims f (·, s) is total with range B. A
similar construction works for B. �

Notice that in the proof of Corollary 3.18, the only property of A used in the con-
struction of B was that A ≤T ∅′. Thus this proof also establishes that every 10

2
degree contains the range of some limitwise-monotonic function.

We now briefly consider randomness issues. For a finite binary string σ , let K (σ )
be the prefix-free Kolmogorov complexity of σ . (See [7] for more on Kolmogorov
complexity.) Recall that a set A is 1-random if and only if there is a c such that
K (A� n) ≥ n − c for all n. We will need the following well-known result (often
known as the “Kraft-Chaitin Theorem”). (See [1] for a proof of this result and more
on the interaction between algorithmic randomness and computability theory.)

Theorem 3.19 Let {〈ni , σi 〉 : i ∈ ω} be a c.e. set of pairs (which we call axioms)
consisting of a natural number and a binary string such that

∑
i 2−ni ≤ 1. Then

there is a d such that K (σi ) ≤ ni + d for all i .

From this we derive the following proposition, which was also proven independently
by Nies (unpublished result).

Proposition 3.20 No 1-random set is order-computable.
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Proof Let (ω,≺) be a computable ordering of type ω and let A be the set order-
computed by (ω,≺, E). Let ≺s be ≺ restricted to 0, . . . , s, and for n ≤ s let the
binary string σ n

s of length n + 1 be defined by

σ n
s (i) =

{
0 if the i th element of ≺s is odd
1 if the i th element of ≺s is even.

There are two cases to consider. The first is handled by the following lemma.

Lemma 3.21 Suppose there is a c such that every n has at most n + c predecessors
in ≺. Then A is computable.

Proof For each n simultaneously, proceed as follows. Let a be the last element of
≺n . Since a ≤ n, we know that a has at most n + c predecessors, so the c.e. set Sn
of all σ n

s for s ≥ n has size at most c + 1. Note that Sn contains A�(n + 1).
Let k be the greatest number such that |Sn| = k for infinitely many n and let m

be such that |Sn| ≤ k for n > m. Build a computable tree T as follows. Start with
2<ω. Whenever an n > m is found with |Sn| = k, prune the tree to remove all paths
extending 2n+1

− Sn . Since T is a computable tree of finite width, all paths of T are
computable. But A�(n + 1) is in every Sn , so A is a path of T . �

Now suppose that for every c there is an n with more than n + c many predecessors
in ≺. Enumerate axioms as follows. For all c > 0 simultaneously, look for n > c
and s such that n has k > n+c predecessors in ≺s . Enumerate an axiom 〈n, σ k

s 〉. For
every t > s, if n has j − 1 predecessors in ≺t−1 but j predecessors in ≺t (in other
words, if t ≺ n), enumerate an axiom 〈n + j − k, σ j

s 〉. Note that if l is the number of
predecessors of n in ≺ then we eventually enumerate an axiom 〈n+l −k, A�(l +1)〉,
and n + l − k < l − c.

The total measure corresponding to all axioms enumerated for c is less than∑
i≥n 2−i

= 2−n+1
≤ 2−c (since n > c). So the total measure corresponding to

all enumerated axioms is less than
∑

c>0 2−c
= 1, and hence by Theorem 3.19 there

is a d such that for all enumerated axioms 〈m, σ 〉 we have K (σ ) ≤ m + d. But,
as noted above, for every c there is an l and an i < l − c such that we eventually
enumerate an axiom 〈i, A� (l + 1)〉, whence K (A� (l + 1)) < l − c + d. Thus A
cannot be 1-random. �

We note that this lemma probably does not follow automatically from the fact that
every order-computable set is the range of a limitwise-monotonic function. Indeed,
we believe that there do exist 1-random sets that are themselves the ranges of such
functions.

4 Other Results and Open Questions

In [2], Downey, Khoussainov, J. Miller, and Yu consider questions about order-
computability from a somewhat different standpoint. Recall the definition of the
degree spectrum of a relation R (of arbitrary arity) on a computable structure A:

DgSpA(R) = {deg(S) : (∃B ≤T ∅)(B, S) ∼= (A, R)}.

(Normally R is not in the language of the structure A; otherwise, its spectrum con-
tains only the degree 0.) Intuitively, this measures how complex the relation R can
be made. We require that B be computable as a way of guaranteeing that DgSpA(R)
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measure the possible complexity of R uniquely; one is not allowed to make R more
complicated by making the functions and relations of A noncomputable.

Thus a set A is order-computable if and only if the degree 0 lies in the degree
spectrum of A as a unary relation on the structure (ω,<). The paper [2] asks more
general questions about this degree spectrum, for arbitrary c.e. sets A: must it be
upward-closed under ≤T in the 10

2-degrees, must it contain a low degree, etc. One
pleasing result is a strong extension of our Theorem 2.6: the paper shows that a
c.e. degree a is high if and only if a contains a non-order-computable c.e. set.

It would also be possible to ask about the spectrum of the structure (ω,<, A)
for an arbitrary set A. By definition, the spectrum of (the isomorphism type of) a
structure M is the set of all Turing degrees of isomorphic copies of M:

Spec(M) = {deg(N ) : N ∼= M}.

(By our conventions, N ranges only over structures with domain ω.) Intuitively,
this measures the intrinsic difficulty of computing a copy of M: each degree d in
Spec(M) is smart enough to build a structure isomorphic to M. It is immediate that
DgSp(ω,<)(A) ⊆ Spec(ω,<, A) and that the degree 0 lies in one if and only if it
lies in the other, but the reverse inclusion need not hold. (For instance, the spectrum
of any finite set F as a relation on (ω,<) would just be {0}, whereas the spectrum
of the structure (ω,<, F) would contain all Turing degrees, by a result of Knight in
[6].)

Another collection of questions concerns the derived order, as defined on p. 320.
The main questions to be asked about the derived order (for a 10

2 set A that may or
may not be order-computable) involve its order type. If it is of type ω, of course,
then A is order-computable. Indeed, if L has an initial segment of order type ω+ 1,
then A is order-computable, since if y is the rightmost element of this segment, then
({x ≺ y},≺, {x ∈ E : x ≺ y}) is a computable copy of (ω,<, A). In particular,
if the derived order is well-ordered, then A is order-computable. Moreover, a set A
is order-computable if and only if there exists a computable approximation to A for
which the above process builds an order of type ω. (The forward direction follows
by taking the computable approximation given by the predecessor approximation
function for the order that order-computes A.)

We can still ask, for order-computable A, which other order types might be built
using other computable approximations. Of more interest are sets A that are not
order-computable. For such an A, we would like to find a “smallest” linear order
L such that some computable approximation to A gives rise to an order ≺ of type
L. This would measure, in some sense, how close A is to being order-computable.
As noted above, however, this L cannot be an ordinal, which makes it difficult to
define “smallest” rigorously. What (countable) order types are possible? Is there an
order type which would characterize any interesting properties of sets? (For instance,
recall the characterization of the nonhigh c.e. degrees from [2], given above, as those
containing an order-computable c.e. set. For other order types L, what can we say
about the collection of sets (or the collection of their degrees) with a computable
approximation whose derived order is of type L?)

We close with a few other specific questions arising from results in this paper.

Question 4.1 Can the non-order-computable degree in Theorem 3.11 be made
low?
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Question 4.2 Shore has asked whether we can use high permitting to build a non-
computable set A below an arbitrary high set C such that every B ≤T A is order-
computable. (If we restrict our attention to c.e. sets, then the answer is positive,
because deg(C) must have a low noncomputable c.e. degree below it.) Also, what if
C is high but deg(C) is not c.e.?

Question 4.3 Can we do the same below a not-necessarily-high set C?

Question 4.4 Among well-known 10
2 sets, which are order-computable? Simpson

has asked about sets such as K and K0 (as defined in [8]) specifically. Chaitin’s set
� is not order-computable, of course, by Proposition 3.20.
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