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Invariant Version of Cardinality Quantifiers
in Superstable Theories

Alexander Berenstein and Ziv Shami

Abstract We generalize Shelah’s analysis of cardinality quantifiers from Chap-
ter V of Classification Theory and the Number of Nonisomorphic Models for a
superstable theory. We start with a set of bounds for the cardinality of each for-
mula in some general invariant family of formulas in a superstable theory (in
Classification Theory, a uniform family of formulas is considered) and find a set
of derived bounds for all formulas. The set of derived bounds is sharp: up to a
technical restriction, every model that satisfies the original bounds has a suffi-
ciently saturated elementary extension that satisfies the original bounds and such
that for each formula the set of its realizations in the extension has arbitrarily
large cardinality below the corresponding derived bound of the formula.

1 Introduction

Cardinality quantifiers in stable theories were studied by Shelah in Chapter V, Sec-
tion 6 of [3]. Roughly, Shelah’s setting is as follows. Let T be a stable theory
in a language L and C a large saturated model of T . Let W be a set of triples
(ϕ(x̄, ȳ), ψ(ȳ), χ+), where ϕ(x̄, ȳ), ψ(ȳ) ∈ L , and χ ≥ |T | is a cardinal such that
T is stable in χ (in general, χ satisfies more technical assumptions). The collection
W is called a set of demands. A model M |H T is said to be W -good if, for any tuple
ā of M and triple (ϕ(x̄, ȳ), ψ(ȳ), χ+) ∈ W , if M |H ψ(ā), then |ϕ(M, ā)| < χ+.
In this case the model M is said to satisfy the demands W .

Given W , Shelah introduced, for each ϕ(x̄, ā) ∈ L(C), a cardinal C(ϕ(x̄, ā))
called a derived bound. On the one hand, the derived bounds must be proper bounds,
in the sense that any a-model M that is W -good also satisfies |ϕ(M, ā)| < C(ϕ(x̄, ā)).
Secondly, they are minimal in the following sense. Let h : Car → Car be a function
such that h(λ) < λ for all λ. An a-model M is said to be h-bounded if for any
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formula ϕ(x, ā) ∈ L(M) we have |ϕ(M, ā)| ≥ h(C(ϕ(x, ā))). Shelah proved the
following.

Theorem 1.1 (Theorem V.6.7 in [3]) Let W be a set of demands. Let M be an
a-model which is W -good. Let h : Car → Car be nondecreasing with h(λ) < λ for
all λ. Then there is an a-model N � M such that N is W -good and h-bounded.

The condition that h is nondecreasing is not stated in [3], but was meant to be added
by Shelah (as pointed out to the second author in discussions with him). Note that
the set of demands W in Shelah’s setting is required to satisfy a continuity condition;
that is, for any given ϕ(x, y) ∈ L if we require that the cardinality of ϕ(x, a) is less
than χ+ in a model, then we must require that the cardinality of ϕ(x, a′) is less than
χ+ for all a′ in some formula of tp(a).

The goal in this paper is to generalize the theorem stated above to the context of a
general Aut(C)-invariant set of demands W on a general Aut(C)-invariant collection
of formulas. That is, we remove the continuity condition and consider instead a set
W of triples (ϕ(x̄, ȳ), p(ȳ), χ+), where p(ȳ) is a complete type. We succeed in
generalizing the theorem when the theory is superstable. To prove our results we
introduce a new set of derived bounds. In fact, for his result (Theorem 1.1) Shelah
had to prove the type-definability of the relations C(ϕ(x̄; b̄)) ≥ κ , for any fixed L-
formula ϕ and cardinal κ . The type-definability of these relations cannot be proved
in our setting even for any proper set of derived bounds C ; this can be shown by a
simple example. In our work, in order to refine the derived bounds for formulas, we
define new derived bounds for all small types.

This paper is organized as follows. In Section 2 we recall mostly basic results
about stable theories proved in [3]. We also need two technical results from [3],
namely, Facts 2.7 and 2.8. The basic facts that we list also appear in [1] and [2]. In
Section 3 we introduce the derived bounds and prove the main result.

2 Preliminaries

Throughout this paper T is assumed to be a stable theory and C a large saturated
model of T . We use capital letters such as A, B,C, . . . for subsets of C and whenever
we say that A is a set, we mean that |A| < ‖C‖. We will denote partial types by p(x̄);
if the variables of the partial type p(x̄) are clear from context we may just write p.
We will assume the reader is familiar with basic results in stability theory that appear
in [1], [2], and [3]. We will also use the following definitions and facts.

Definition 2.1 ([3], Definition 1.1, Chap. IV) Let λ ≥ κr (T ). By an Fa
λ -saturated

model M we mean a model M |H T such that for any A ⊂ M of cardinality less
than λ, every type over acleq(A) is realized in M . An a-model is an Fa

κr (T )-saturated
model.

If B is a set and λ ≥ κr (T ) is a regular cardinal, there is a prime Fa
λ -saturated model

over B that is unique up to isomorphism over B. We denote it by PrFa
λ
(B). If

λ = κr (T ), we denote the prime a-model as Pra(B).

Fact 2.2 ([3], Theorem 2.8, Chap. I) Assume T is λ-stable and let I , A be sets such
that |I | > λ ≥ |A|. Then there is I ′

⊂ I of cardinality greater than λ, which is an
indiscernible sequence over A.
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Fact 2.3 (Folklore) Let A, B, I be sets and assume that I is an indiscernible se-
quence over A. Then there is I ′

⊂ I of cardinality ≤ |B| + κ(T ) such that I \ I ′ is
an indiscernible sequence over A ∪ B ∪ I ′.

Fact 2.4 ([2], Lemma 4.5.9, Chap. 1) Let M be a model, ā ∈ M , p ∈ S(M), and
ϕ(x̄, ā) a formula in p. Then p �ϕ(M,ā)

⋃
ā |H p.

Fact 2.5 ([2], Lemma 4.1.2, Chap. 1) Assume T is λ-stable. Then T has a λ-
saturated model of power λ.

Fact 2.6 ([3], Theorem 4.9, Chap. IV) Let A be a set and suppose cf(λ) ≥ κr (T ).
Let M = PrFa

λ
(A) be an Fa

λ -prime model over A. Then every A-indiscernible
sequence I ⊆ M is of size ≤ λ.

We also need some more technical results.

Fact 2.7 ([3], Lemma 6.2, Chap. V) Let p ∈ S(A) be a stationary type and
ψ(x̄, b̄) ∈ L(C). Then the following conditions are equivalent (and we denote them
by p 6⊥ ψ).

1. For every κ ≥ |A|
+

+ κr (T ) and Fa
κ -saturated model M , if b̄ ∪ A ⊆ M then

dim(p,M) < |ψ(M, b̄)|+ + ℵ0.
2. For every κ ≥ κr (T ) there is an Fa

κ -saturated model (eq. for all Fa
κ -saturated

model) M such that b̄ ∪ A ⊆ M and there is a nonforking extension
tp(c̄/M) of p such that any Fa

κ -prime model N = PrFa
κ
(M ∪ c̄) satisfies

ψ(N , b̄) ' ψ(M, b̄).
3. For every infinite indiscernible sequence I based on p, I is not indiscernible

over ψ(C, b̄) ∪ b̄.
4. Not every infinite indiscernible sequence J ⊆ ψ(C, b̄) is orthogonal to p.

Fact 2.8 ([3], Lemma 6.8(iii), Chap. V) Let M |H T , ϕ(x̄, ā), ψ(ȳ, b̄) ∈ L(M),
d̄1 |H ϕ(x̄, ā), d̄2 |H ψ(ȳ, b̄) and assume that d̄1 6 |^M d̄2. Let θ(x̄, m̄, d̄2) be a
formula in tp(d̄1/M ∪ d̄2) that forks over M and such that θ(x̄, m̄, d̄2) ` ϕ(x̄, ā).
Then there exists an equivalence relation E ∈ L(ϕ(M, ā) ∪ ā) such that
|{c/E : c ∈ M}| ≤ |ψ(M, b̄)| and d̄ ′

1/E /∈ Meq for all d̄ ′

1 |H θ(x̄, m̄, d̄2).

3 The Main Theorem

In this section, T is assumed to be a stable theory.

Notation 3.1

1. Let W = {(ϕi (x̄, ȳ), pi (ȳ), χ+

i ) | i ∈ I }, where ϕi (x̄, ȳ) ∈ L(∅), pi ∈ S(∅),
χi ≥ |T |, T is stable in χi , and I is an index set.

2. We write |HW ∃
<χ x̄ϕ(x̄, ā) if there is (ϕ(x̄, ȳ), p(ȳ), χ) ∈ W such that

|H p(ā).
3. Let Car(W ) = {χ | (ϕ(x̄, ȳ), p(ȳ), χ) ∈ W for some ϕ(x̄, ȳ), p(ȳ)}.

Definition 3.2 Let ϕ(x̄, ȳ) ∈ L , let χ be a cardinal, and let p ∈ S(∅). We say
that M is ϕ, p-good in χ if whenever b̄ ∈ M realizes p, then |ϕ(M, b̄)| ≤ χ . We
say M |H T is W -good if for all ā ∈ C, whenever |HW ∃

<χ x̄ϕ(x̄, ā) we have
|ϕ(M, ā)| < χ .

We will define a set of derived bounds on partial types, that is, a set of consequences
of |HW ∃

<χ x̄ϕ(x̄, ā). For doing this, we need to restrict ourselves to partial types
over small sets.
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Definition 3.3 A partial type p over a set A is said to be small if |A| ≤ |T |. A
cardinal λ is said to be a stability bound if λ = χ+ and T is stable in χ .

Definition 3.4 Let C : {partial small types} → Car. We say that C is a derived set
of bounds if it satisfies the following properties:

1. If |HW ∃
<χ x̄ϕ(x̄, ā) then C(ϕ(x̄, ā)) ≤ χ . If ϕ(x̄, ā) is algebraic of multi-

plicity n, then C(ϕ(x̄, ā)) ≤ n + 1.
2. If F is a definable function defined on ϕ1(x̄, ā), then C(F(ϕ1(x̄, ā))) ≤

C(ϕ1(x̄, ā)).
3. Let E be a definable equivalence relation, p(x̄) a small type, and λ a regular

cardinal. If C({x̄/E | all x̄}) ≤ λ and C(p(x̄) ∧ E(x̄, c̄)) ≤ λ for every c̄,
then C(p(x̄)) ≤ λ.

4. C(p1) ≤ C(p2) for small p1 and p2 such that p1 ` p2.
5. Let λ be a stability bound and let p be a small partial type over a set A (so

|A| ≤ |T |) such that all its completions p+ over A satisfy C(p+) ≤ λ. Then
C(p) ≤ λ.

For any two derived sets of bound C,C ′, write C ′
≤ C if for all partial small types

p, C ′(p) ≤ C(p). To build a derived set of bounds C maximal with respect to ≤ we
proceed as follows. We define a decreasing sequence (Cα : α ≤ λ) where λ is large
enough. Define C0(p) to be ∞ for each small partial type p. Then, for every α < λ,
Cα is obtained from the Cβs, for β < α, by first taking the minimum of its previous
values (i.e., at each p we take the minimum of Cβ(p) for β < α) and then applying
one of the rules (1) to (5). We continue this process until each of the Cα(p) does not
decrease. Clearly, Cλ is a derived set of bounds and it is maximal. From now on we
fix C to be a maximal derived set of bounds.

Remark 3.5 Let M |H T be W -good. Then for every formula ϕ(x̄, ā) ∈ L(M) we
have that C(ϕ(x̄, ā)) > |ϕ(M, ā)|.

Lemma 3.6 Assume T is stable in χ , M |H T is ω-saturated, ϕ(x̄, ȳ) ∈ L, and
p ∈ S(∅). If for all ā ∈ M realizing p we have |ϕ(M, ā)| ≤ χ , then for all b̄ ∈ C

realizing p we also have |ϕ(C, b̄) ∩ M | ≤ χ .

Proof Let b̄ ∈ C be a realization of p and assume, as a way to a contradiction, that
χ < |ϕ(C, b̄) ∩ M |. Since T is stable in χ , by Fact 2.2 there is an indiscernible
sequence I ⊆ ϕ(C, b̄) ∩ M of cardinality greater than χ . Since T is stable, there is
n = n(ϕ(x, ȳ)) < ω such that for every indiscernible sequence I ′ and for every b̄′,
|{ē′

∈ I ′
: ϕ(ē′, b̄′)}| < n ∨ |{ē′

∈ I ′
: ¬ϕ(ē′, b̄′)| < n.

Choose ē1, . . . , ēn ∈ I different from each other; then

C |H

n∧
i=1

ϕ(ēi , b̄) ∧ p(b̄).

By ω-saturation of M , there is b̄′
∈ M such that

M |H

n∧
i=1

ϕ(ēi , b̄′) ∧ p(b̄′).

From the definition of n, n ≤ |{ē ∈ I : ϕ(ē, b̄′)}| implies |{ē ∈ I : ϕ(ē, b̄′)}| > χ ,
which contradicts the assumption. �
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Proposition 3.7 Assume T is χ -stable; let ϕ(x̄, ȳ) ∈ L and p ∈ S(∅). Let δ be a
cardinal such that cf(δ) ≤ χ and let (Mi : i < δ) be a sequence of models such that
Mi � M j for i < j < δ. Assume that each Mi is an a-model which is ϕ, p-good in
χ . Then for any set A such that |A| ≤ χ , Pra(∪i<δMi ∪ A) is ϕ, p-good in χ .

Proof Since T is χ -stable, κr (T ) ≤ χ . Let M = ∪i<δMi and let MA = Pra(M∪A).
Let b̄ ∈ MA be a realization of p. To prove the proposition we will show

(a) there exists a model M ∪ b̄ ⊆ M∗
� C such that |ϕ(M∗, b̄)| ≤ χ ;

(b) if there is M∗ as in (a) then |ϕ(MA, b̄)| ≤ χ .
We start with the second part.

(b) Suppose there is M∗
� C such that M ∪ b̄ ⊆ M∗ and |ϕ(M∗, b̄)| ≤ χ . Assume,

in order to get a contradiction, that χ+
≤ |ϕ(MA, b̄)|. Since T is stable in χ , by

Fact 2.2 there exists I ⊆ ϕ(MA, b̄) of cardinality χ+ which is indiscernible over
ϕ(M∗, b̄)∪b̄. Thus all elements in I have the same strong type over ϕ(M∗, b̄)∪b̄. By
Fact 2.4, I |^ϕ(M∗,b̄)∪b̄ M∗, so the sequence I is indiscernible over M∗. In particular,
I is indiscernible over M . Since |A| ≤ χ , T is stable in χ , and |I | = χ+, by Fact 2.3
there is I ′

⊂ I of cardinality χ+ such that I ′ is indiscernible over M ∪ A. Since
I ′

⊂ MA and MA is Fa
κr (T )-prime over M ∪ A, this contradicts Fact 2.6.

(a) We now prove that there exists M ∪ b̄ ⊆ M∗
� C that satisfies |ϕ(M∗, b̄)| ≤ χ .

Our strategy to build M∗ will be the following: first, we build a chain of length
less that χ+ of models that contain b̄ and that collect all elements in M that depend
on ϕ(x̄, b̄) over the previous elements in the chain. M∗ will be the a-prime model
containing the supremum of the chain and M .

Notice that T is stable in χ , M j is ω-saturated, and ϕ, p-good in χ , so Lemma 3.6
implies χ ≥ |ϕ(C, b̄)∩ M j |. Since cf(δ) ≤ χ , we also get χ ≥ |ϕ(C, b̄)∩ M |. Since
T is stable in χ , by Fact 2.5 there is N0 a saturated model of cardinality χ such that
(ϕ(C, b̄) ∩ M) ∪ b̄ ⊆ N0.

We define by induction a sequence of pairs ((Ni , āi ) : i < χ+), where Ni is a
model and āi is a finite sequence of elements in M as follows:

1. Assume that (N j : j ≤ i) and (ā j : j < i) have been defined. If there is ā in
M such that tp(ā/Ni ) 6⊥ ϕ(x̄, b̄) let āi = ā and let Ni+1 = Pra(Ni ∪ āi ).

2. When i is a limit and (N j : j < i) are defined, let Ni =
⋃

j<i N j .
3. If any of the cases above does not hold, we define Ni+1 = Ni and āi = ā j

for any j < i .
Note that |N0| ≤ χ , so |Ni | ≤ χ for all i < χ+.

Claim 3.8 There is α < χ+ such that Nα+i = Nα for all i < ω (this means the
process above stabilizes in less than χ+ steps).

Proof Assume, in order to get a contradiction, that the sequence (Ni : i < χ+)
is increasing. Let S be the set of (limit) ordinals i such that cf(i) = κr (T ). S is a
stationary set of cardinality χ+. For each i ∈ S, let δi < i be such that tp(āi/Ni ) is
strongly based on Nδi . By Födor, there is a stationary set S∗

⊆ S for which δi = δ∗

for all i ∈ S∗. Since |S| = χ+, we also have |S∗
| = χ+.

For every i ∈ S∗ we have āi |^Nδ∗
Ni , so whenever i, j ∈ S∗ and j < i ,

āi |^Nδ∗
ā j and the sequence (āi : i ∈ S∗) is independent over Nδ∗ . As |Nδ∗ | ≤ χ ,
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by Fact 2.4 there is S∗∗
⊆ S∗ of cardinality χ+ such that I = (āi : i ∈ S∗∗) is an

indiscernible sequence over Nδ∗ . Thus I ⊆ M is a Morley sequence of some type q
over Nδ∗ , q 6⊥ ϕ(x, b̄), and |I | = χ+. Since I ⊂ ∪ j<δM j and cf(δ) ≤ χ , there is
j < δ such that |I ∩ M j | ≥ χ+. Thus, by exchanging I for a subsequence, we may
assume that I ⊂ M j . Let I0 ⊆ I be countably infinite, so I +

= I \ I0 a Morley
sequence over I0.

Let q+
= Av(I +/I0). Then q+ is parallel to q and therefore q+

6⊥ ϕ(x, b̄).
Since M j is κr (T )-saturated, there is b̄∗

∈ M j such that tp(b̄∗/I0) = tp(b̄/I0).
In particular, b̄∗

|H p. Then q+
6⊥ ϕ(x, b̄∗); so by Fact 2.7, part 1, we get that

dim(q+,M j ) ≤ |ϕ(M j , b̄∗)|, so χ+
≤ |ϕ(M j , b̄∗)|. This contradicts the fact that

M j is ϕ, p-good in χ . �

Let α be as in the claim and let N+
= Nα , so N0 � N+, |N+

| ≤ χ , and
tp(M/N+) ⊥ ϕ(x, b̄). Define M∗

= Pra(N+
∪ M).

Claim 3.9 ϕ(N+, b̄) = ϕ(M∗, b̄).

Proof Suppose not, so assume there is d̄ ∈ ϕ(M∗, b̄) \ ϕ(N+, b̄). Then M 6 |^N+
d̄

and there is c̄ ∈ M such that c̄ 6 |^N+
d̄ . On the other hand, tp(M/N+) ⊥ ϕ(x̄, b̄), so

c̄ |^N+
d̄ , a contradiction. �

Clearly, |ϕ(N+, b̄)| = |ϕ(M∗, b̄)| ≤ χ and M ∪ b̄ ⊂ M∗ to finish the proof of
(a). �

Lemma 3.10 Assume T is superstable and suppose that M is an a-model. Then
for any ϕ(x̄, ā) ∈ L(M) there exists a complete type pM over M containing ϕ(x̄, ā),
which is orthogonal to all ψ(ȳ, b̄) ∈ L(M) with C(ψ(ȳ, b̄)) < C(ϕ(x̄, ā)).

Proof

Claim 3.11 There is a finite set A ⊂ M with ā ⊂ A and a type pA ∈ S(A) such
that

1. C(pA) = C(ϕ(x̄, ā));
2. for any small B ⊃ A (in C) and forking extension pB ∈ S(B) of pA,

C(pB) < C(pA).

Proof We define by induction an increasing chain of finite sets (Ai : i < ω) con-
tained in M and complete types pi over Ai such that pi+1 is an extension of pi and
C(pi ) = C(ϕ(x̄, ā)). For i = 0, let p0 be any extension of ϕ(x̄, ā) to a complete
type over a finite set A0 with ā ⊂ A0 and such that C(p0) = C(ϕ(x̄, ā)). The type
p0 exists by Definition 3.4, part 5.

Assume we have defined Ai and pi . If there is a formula ψ(x̄, b̄) ∈ L(M) with
C(pi ∪ ψ(x̄, b̄)) ≥ C(pi ) that forks over Ai , let Ai+1 ⊃ Ai be a finite subset of
M such that b̄ ⊂ Ai+1 and let pi+1 ⊃ pi be a complete type over Ai+1 containing
ψ(x̄, b̄) satisfying C(pi+1) = C(pi ). Since T is superstable this process stops in
fewer than ω steps. Let A = ∪Ai , so |A| < ω and let pA = ∪pi .

Now let B ⊂ C be small; suppose that A ⊂ B and that pB ∈ S(B) is a forking
extension of pA. Then there is B0 ⊂ B finite with the same properties. Since M is
an a-model, we may assume B0 ⊂ M , so C(pB0) < C(pA). �
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Claim 3.12 Let B ⊃ A be small (subset of C) and pB ∈ S(B) be a nonforking
extension of pA. Then C(pB) = C(pA).

Proof Let pB ∈ S(B) be a nonforking extension of pA. Let N ⊃ A be a model
such that |N | ≤ |T |. By Definition 3.4, part 5, there is pN ⊃ pA a complete type
over N such that C(pN ) = C(pA). By Claim 3.11, pN is a nonforking extension of
pA. Let 9 ∈ Aut(C/A) be such that 9(pB) is parallel to pN ; let B ′

= 9(B); and
let pB′ = 9(pB).

By Claim 3.11, all small types q which are forking extensions of pN satisfy
C(q) < C(pN ). Since pN is stationary and pN ∪ pB′ is a nonforking extension of
pN , we must have C(pN ∪pB′) = C(pN ). Thus, C(pB) = C(pB′) ≥ C(pN ∪pB′) =

C(pN ) = C(pA). �

Let e ∈ M realize pA, let A+
= A ∪ {e}, and let p+

A be the nonforking extension of
stp(e/A) to A+. Then p+

A is stationary and by the previous claim C(p+

A ) = C(pA).
Let pM = p+

A |M be the nonforking extension of p+

A to M . Now we will show that
pM satisfies the conclusion of the lemma.

Claim 3.13 pM is orthogonal to any ψ(ȳ, b̄) ∈ L(M) with C(ψ(ȳ, b̄)) <
C(ϕ(x̄, ā)).

Suppose not. Then there is ψ(ȳ, b̄) ∈ L(M) such that C(ψ(ȳ, b̄)) < C(ϕ(x̄, ā)))
with pM nonorthogonal to ψ(ȳ, b̄). Since M is an a-model, there are d̄ |H ψ(ȳ, b̄)
and c̄ |H pM such that tp(c̄/Md̄) forks over M . Let θ(x̄, m̄, d̄) be a formula in
tp(c̄/M ∪ d̄) which forks over M , where m̄ ⊂ M . Let D = A+

∪ m̄ ∪ b̄ and let pD be
an extension of p+

A such that C(pD) = C(p+

A ). By Claim 3.11, pD is a nonforking
extension of p+

A . Thus pD ⊂ pM and θ(x̄, m̄, d̄) is a formula in tp(c̄/D ∪ d̄) which
forks over D.

Now let E ∈ L(D) be the equivalence relation defined by

E(x̄1, x̄2) = ∀ȳ
(
ψ(ȳ, b̄) H⇒ (θ(x̄1, m̄, ȳ) ⇐⇒ θ(x̄2, m̄, ȳ))

)
.

To finish the proof it suffices to show
1. there is c̄′′

∈ C such that C(pD(x̄) ∧ E(x̄, c̄′′)) ≥ C(pD(x̄));
2. If c̄′′ is as in (1), then E(x̄, c̄′′) ∧ pD(x̄) forks over D.

Then pD ⊃ pA and C(pD) = C(pA), so (1) and (2) contradict Claim 3.11.
We first show (2) assuming (1). Let c̄′′

∈ C be as in (1). Let c̄′
∈ C real-

ize pD(x̄) ∧ E(x̄, c̄′′) and d̄ ′
∈ C be such that tp(c̄, d̄/D) = tp(c̄′, d̄ ′/D). Since

θ(x̄, m̄, d̄) forks over D, then θ(x̄, m̄, d̄ ′) forks over D. Notice that pD(x̄)∧E(x̄, c̄′′)
implies E(x̄, c̄′) and thus also θ(x̄, m̄, d̄ ′). Thus C(pD(x̄)∧ E(x̄, c̄′′)) forks over D.

Now we show (1). Assume, as a way to a contradiction, that for all c̄′′
∈ C,

C(pD(x̄)∧E(x̄, c̄′′)) < C(pD). Since c̄′′/E ∈ dcleq(ψ(ȳ, b̄), b̄, m̄) by compactness
there is a function f (x̄, b̄, m̄) such that c̄′′/E = f (ē, b̄, m̄) for some ē |H ψ(ȳ, b̄).
By Definition 3.4, part 2, C({c̄′′/E : c̄′′

∈ C}) ≤ C(ψ(ȳ, b̄)) < C(ϕ(x̄, ā)) and by
Definition 3.4, part 3, C(pD(x)) < C(ϕ(x̄, ā)), a contradiction. �

Definition 3.14 Let ϕ(x̄, ā), ψ(ȳ, b̄) ∈ L(C). We say that ϕ(x̄, ā) is strongly
foreign to ψ(ȳ, b̄) and we write ϕ(x̄, ā) ⊥

st ψ(ȳ, b̄) if, for all types q(x̄) containing
ϕ(x̄, ā), we have q(x̄) ⊥ ψ(x̄, ā).

Finally we are ready to prove our main result: the bounds C(ϕ(x̄, ā)) are optimal
when T is superstable.
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Theorem 3.15 Assume T is superstable and let M |H T be an a-model which
is W -good. Let h : L(C) → Car be such that sup{h(ψ(ȳ, b̄)) : ψ(ȳ, b̄) ∈ L(C),
C(ψ(ȳ, b̄)) ≤ C(ϕ(x̄, ā)), ψ(ȳ, b̄) 6⊥

st ϕ(x̄, ā)} < C(ϕ(x̄, ā)) for all ϕ(x̄, ā)
∈ L(C). Then there is an a-model N � M such that N is W -good and
|ϕ(N , ā)| ≥ h(ϕ(x̄, ā)) for all ϕ(x̄, ā) ∈ L(N ).

Proof For ϕ(x̄, ā) ∈ L(C), let H(ϕ(x̄, ā)) = sup{h(ψ(ȳ, b̄)) : ψ(ȳ, b̄) ∈ L(C),
C(ψ(ȳ, b̄)) ≤ C(ϕ(x̄, ā)), ψ(ȳ, b̄) 6⊥

st ϕ(x̄, ā)}. Assume that H(ϕ(x̄, ā)) <
C(ϕ(x̄, ā)) for all ϕ(x̄, ā) ∈ L(C). Given M W -good, we will show that there is N
an a-model such that N � M , N is W -good, and |ϕ(N , ā)| ≥ H(ϕ(x̄, ā)) for all
formulas ϕ(x̄, ā) ∈ L(N ).

We construct inductively a chain of a-models (M j : j ≤ α) such that each M j is
W -good and Mi � M j for all i < j . Assume we have constructed Mi for i < j .

Suppose that j = i + 1 and that |ϕ(Mi , ā)| < h(ϕ(x̄, ā)) for some formula
ϕ(x̄, ā) ∈ L(Mi ). By Lemma 3.10, there is c̄ ∈ C \ Mi realizing ϕ(x̄, ā) and such
that tp(c̄/Mi ) ⊥ ψ(ȳ, b̄) for all formulas ψ(ȳ, b̄) with C(ψ(ȳ, b̄)) < C(ϕ(x̄, ā)).
Let Mi+1 = Pra(Mi ∪ c̄). By Proposition 3.7, if Mi is W -good, Mi+1 is also W -
good. If there is no formula ϕ(x̄, ā) as above, let Mi+1 = Mi . If j is a limit, let M j
be ∪i< j Mi .

Now we show this process ends. Let µ = 2|M | sup{h(ψ)|ψ∈L}.

Claim 3.16 The chain (Mi : i < µ+) stabilizes.

Proof Suppose the process continues through µ+ steps. Let S consist of the set
of limit ordinals which are less than µ+. So |S| = µ+. If the chain does not
stabilize, then for each s ∈ S there is i < s and a formula ψs(ȳ, b̄s) ∈ L(Mi )
such that |ψs(Mi , b̄s)| < h(ψs(ȳ, b̄s)). By Födor’s lemma, we can find ν < µ+ and
S∗

⊂ S such that |S∗
| = µ+ and ψs(ȳ, b̄s) ∈ L(Mν) for all s ∈ S∗. Since T is

superstable, |Mi | ≤ µ for each i < µ+, so |Mν | ≤ µ. Since |S∗
| = µ+, there is a

subset S∗∗
⊂ S∗ such that |S∗∗

| = µ+ and ψs(ȳ, b̄s) = ψ(ȳ, b̄) for some formula
ψ(ȳ, b̄) ∈ L(Mν). Thus we have increased ψ(ȳ, b̄) µ+ times, so there is j < µ+

such that |ψ(M j , b̄)| ≥ µ and |ψ(M j , b̄)| ≥ h(ψ(ȳ, b̄)), a contradiction. �

Let k < µ+ be the first limit ordinal after which the chain (Mi : i < µ+) is constant.

Claim 3.17 The model Mk = ∪i<k Mi is W -good.

Proof We pointed out that if Mi is W -good, then Mi+1 is also W -good. It remains
to show that for limit ordinals j ≤ k, M j is also W -good. So let j ≤ k be a limit
ordinal and assume, as a way to a contradiction, that M j is not W -good. We may
choose j minimal with this property, so whenever i < j , Mi is W -good. Since M j
is not W -good, there is a triple (ϕ(x̄, ȳ), p(ȳ), χ+) ∈ W and ā ∈ M j a realization
of p such that |ϕ(M j , ā)| ≥ χ+. Now we divide the proof by cases.

Case 1 Suppose that cf( j) < χ+. Since each Mi is W -good for i < j , we have
|ϕ(Mi , ā)| < χ+. Thus |ϕ(∪i< j Mi , ā)| < χ+ and |ϕ(M j , ā)| < χ+, so M j is
ϕ, p-good, a contradiction.

Case 2 Suppose that cf( j) ≥ χ+. Since |ϕ(Mi , ā)| < χ+ for each i < j ,
we can find a subsequence (Miα : α < χ+) of (Mi : i < j) such that
ϕ(Miα+1 , ā) ) ϕ(Miα , ā) whenever α < χ+. So for each α < χ+, there is
a formula ψα(ȳ, b̄α) ∈ L(Miα ) such that h(ψα(ȳ, b̄α)) > |ψα(Miα , b̄α)|, and
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c̄α+1 ∈ Miα+1 \ Miα realizing ψα(ȳ, b̄α) such that tp(c̄α+1/Miα ) 6⊥ ϕ(x̄, ā). Let
d̄α+1 ∈ Miα+1 satisfy ϕ(x̄, ā) such that c̄α+1 6 |^Miα

d̄α+1. Let θ(x̄, m̄iα , c̄α+1) be a

formula in tp(d̄α+1/Miα ∪ c̄α+1) which forks over Miα and such that θ(ȳ, m̄iα , c̄α+1)

implies ψα(ȳ, b̄α).
Let Eα be an equivalence relation as in Fact 2.8. Then Eα is over ϕ(Miα , ā) ∪ ā,

|d̄/Eα : d̄ ∈ Miα | ≤ |ψα(Miα , b̄α)| and d̄α+1/Eα 6∈ Meq
iα .

Let S consist of the limit ordinals which are less than χ+. For each α ∈ S,
there is γ < α such that Eα is over ϕ(Miγ , ā) ∪ ā. By Födor’s lemma, there is
δ < χ+ and a subset I of S of cardinality χ+ such that Eα is over ϕ(Mδ, ā) ∪ ā
for all α ∈ I . By hypothesis Mδ is W -good, so |ϕ(Mδ, ā) ∪ ā| < χ+ and there
are less than χ+ many definable equivalence relations over ϕ(Mδ, ā) ∪ ā. Thus, by
reducing further the set I , we may assume that there is a single definable equiv-
alence relation E over ϕ(Mδ, ā) ∪ ā such that Eα = E for all α ∈ I . Since
d̄α+1/E 6∈ Meq

iα for all α ∈ I , the sequence (d̄α+1/E : α ∈ I ) is formed by dis-
tinct elements so |(d̄α+1/E : α ∈ I )| = χ+. This implies that for some α ∈ I ,
|(d̄γ+1/E : γ < α)| ≥ χ . Thus χ ≤ |d̄/Eα : d̄ ∈ Miα+1 | ≤ |ψα(Miα+1 , b̄α)|. This
implies h(ψα(x̄, b̄α)) > χ , so H(ϕ(x̄, ā)) ≥ χ+, a contradiction. �
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