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Definable Types Over Banach Spaces

José Iovino

Abstract We study connections between asymptotic structure in a Banach

space and model theoretic properties of the space. We show that, in an asymp-

totic sense, a sequence (xn) in a Banach space X generates copies of one of the

classical sequence spaces ℓp or c0 inside X (almost isometrically) if and only

if the quantifier-free types approximated by (xn) inside X are quantifier-free

definable. More precisely, if (xn) is a bounded sequence X such that no normal-

ized sequence of blocks of (xn) converges, then the following two conditions

are equivalent. (1) There exists a sequence (yn) of blocks of (xn) such that

for every finite dimensional subspace E of X , every quantifier-free type over

E + span{yn | n ∈ N} is quantifier-free definable. (2) One of the following

two conditions holds: (a) there exists 1 ≤ p < ∞ such that for every ǫ > 0

and every finite dimensional subspace E of X there exists a sequence of blocks

of (xn) which is (1 + ǫ)-equivalent over E to the standard unit basis of ℓp ; (b)

for every ǫ > 0 and every finite dimensional subspace E of X there exists a

sequence of blocks of (xn) which is (1 + ǫ)-equivalent over E to the standard

unit basis of c0. Several byproducts of the proof are analyzed.

1 Introduction

A central question in Banach space theory has been to identify the class of Banach

spaces that contain the classical sequence spaces ℓp or c0 almost isometrically. In

this paper we show that there is a tight connection between this property and a model

theoretic condition, namely, definability of types.

Our context is restricted to quantifier-free types. This allows us to present the

arguments so that they are accessible not only to the reader versed in model theory,

but also to the mathematician who does not have a background in mathematical logic.

Nonetheless, throughout the paper we have included remarks indicating how the

ideas at hand are related to ideas from model theory.
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In their famous paper [18], Krivine and Maurey introduced a concept of type for

Banach spaces inspired by the concept of type studied in model theory. Since then,

analysts have studied and applied the Krivine-Maurey concept of type in a variety of

contexts (see, for example, Chaatit [5], Farmaki [7], Guerre [8], Haydon and Maurey

[9], Maurey [21], Odell [22], Raynaud [24], [23], and [25], and Rosenthal [27] and

[28]). This concept corresponds to a particular case of the model theoretic notion

of quantifier-free type over a Banach space. Suppose that X is a Banach space and

a1, . . . , an are elements of a Banach space ultrapower of X . From the perspective

of model theory of Banach spaces, the quantifier-free type of (a1, . . . , an) over X is

determined by the values of all the norms

‖λ1a1 + · · · + λnan + x‖,

where λ1, . . . , λn are scalars and x ∈ X . In particular, if a is an element of a Banach

space ultrapower of X , the quantifier-free type of a over X is determined by the

norms ‖a + x‖, where x ∈ X ; we may thus identify the quantifier-free type of a over

X with the real-valued function

x 7→ ‖a + x‖, (x ∈ X).

Under this identification, the connection between types in the sense of Krivine-

Maurey and (model theoretic) quantifier-free types becomes transparent. (See Sec-

tion 2.)

Since all the types considered in this paper are quantifier-free, the word “type”

will be used to refer to quantifier-free types, and tp(a1, . . . , an/X) will denote the

(quantifier-free) type of (a1, . . . , an) over X . Since tp(a1, . . . , an/X) is determined

by the family of types of the form tp(a/X), where a ∈ span{ a0, . . . , an }, for most

purposes in this context it suffices to consider types of single elements rather than

types of finite tuples.

Suppose that X is a Banach space and a is an element of a Banach space ultra-

power of X . Following terminology from Banach space model theory, we will say

that the type tp(a/X) is quantifier-free definable if for every ball B around a, the

set B ∩ X can be approximated at will by finite Boolean combinations of balls in X .

(For the precise kind of approximation required, see Definition 4.3.)

The goal of this paper is to expose the connection between quantifier-free defin-

ability and the following concept. Let X be a Banach space, let E be a subspace of

X , and let ǫ be a positive number. If 1 ≤ p < ∞, a sequence (xn) is said to be

(1 + ǫ)-equivalent over E to the standard unit basis of ℓp if whenever x ∈ E and

λ0, . . . , λn are scalars,
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The sequence (xn) is (1 + ǫ)-equivalent over E to the standard unit basis of c0 if

whenever x ∈ E and λ0, . . . , λn are scalars,
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If (xn) is a sequence in a Banach space, a sequence (yn) is a sequence of blocks of

(xn) if there exist finite subsets F0, F1, . . . of N such that max Fn < min Fn+1 and

yn ∈ span{ xk | k ∈ Fn } for every n ∈ N.
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Theorem 1.1 Let (xn) be a bounded sequence in a Banach space X such that no

normalized sequence of blocks of (xn) converges. Then the following conditions are

equivalent.

1. There exists a sequence (yn) of blocks of (xn) such that for every finite dimen-

sional subspace E of X, every type over E + span{yn | n ∈ N} is quantifier-

free definable.

2. One of the following two conditions holds:

(a) there exists 1 ≤ p < ∞ such that for every ǫ > 0 and every finite

dimensional subspace E of X there exists a sequence of blocks of (xn)

which is (1 + ǫ)-equivalent over E to the standard unit basis of ℓp;

(b) for every ǫ > 0 and every finite dimensional subspace E of X there

exists a sequence of blocks of (xn) which is (1 + ǫ)-equivalent over E to

the standard unit basis of c0.

The argument combines the approach to type definability introduced in Iovino [14]

with the ideas about Banach space stability and ℓp-types introduced by Krivine and

Maurey in [18]. However, it does not suffice to invoke results from these papers,

since we work with general Banach spaces rather than stable ones. We develop a

“local” approach to stability, that is, we study stability of types rather than stability

of spaces. For instance, the space c0 is unstable, but it has a stable type, namely, the

type determined by its standard unit basis.

The proof has several byproducts:

1. We prove that quantifier-free definable types determine a spreading model

uniquely. (See Proposition 6.1.) Equivalently, a quantifier-free definable type

τ can be extended uniquely to a strong type in the sense of Maurey [21] (and

a convolution operation in the sense of Maurey [21] can be defined uniquely

on the scalar multiples of τ ).

2. We characterize stability of spreading models in terms of quantifier-free de-

finability. We show that for this characterization, the definition of quantifier-

free definable type can be strengthened in various ways, for example, by im-

posing restrictions on the geometry of the balls or on the form of the Boolean

combinations used for the approximating sets. (See Corollary 8.8.)

3. The background material on spreading models of Banach spaces (Section 2)

is presented so as to emphasize to the model theorist the connection between

spreading models and important model theoretic concepts such as indiscerni-

bility as well as Shelah’s concepts of semidefinability and average of a se-

quence. (Section VII-4 of [29].)

The only general prerequisite is some familiarity with the definition of Banach space

ultrapower, which can be found in virtually any Banach space theory textbook writ-

ten after 1980, for example, Beauzamy [2]. More thorough expositions of applica-

tions of this concept can be found in Heinrich [10] and Sims [30]. A general concept

of ultraproduct for structures of functional analysis and a study of the connections

between the model theory of these structures and their ultraproducts is presented

in Henson and Iovino [11]. We refer the reader to [11] for an introduction to the

model theory of structures of functional analysis.

Aside from the concept of Banach space ultrapower, the background material,

including a discussion of the connections among spreading models, types (in the

sense of [18]), and ultrapowers (in the sense considered by functional analysts) is
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given in Section 2. To our knowledge these connections are not exposed elsewhere

in the literature.

In Section 3 we introduce the notion of heir of a type, and in Section 4 we in-

troduce the central notion of the paper, that of quantifier-free definable type. These

two concepts are then connected in Section 5: we prove that quantifier-free definable

types are those which determine a unique heir. In Section 6 we observe that every

quantifier-free definable type determines a spreading model (and hence a convolu-

tion) uniquely. In Section 7 we introduce a concept of stability for spreading models.

The connection between quantifier-free definability and spreading model stability is

then established in Section 8. (This is the most technical section of the paper; the

proof of Proposition 8.3 is particularly involved.) The final section, Section 9, is

devoted to the proof of the main theorem.

All Banach spaces considered in this paper are over the real field R. If X is

a Banach space and M is a nonnegative real number, the closed ball of radius M

around 0 in X will be denoted B(M), or BX (M), depending on whether the ambient

space needs to be emphasized.

2 Background, Notation, and Terminology

Note to the logician. In this section we present a very brief introduction to quantifier-

free types over Banach spaces and the connection between types and spreading mod-

els. The material is exposed so that logicians and specialists in nonstandard analysis

can immediately see the connection with notions that are familiar to them. How-

ever, knowledge of logic is not required, not least because we deal only with the

quantifier-free case, and moreover, with 1-types. Types are defined through Banach

space ultrapowers.

The ultraproduct construction is widely used in functional analysis. We remind

the logic-oriented reader, however, that an analytic ultrapower is not an ultrapower

in the usual algebraic sense. From the point of view of model theory (or nonstandard

analysis), a Banach space ultrapower is the result of performing two transformations

in a regular ultrapower: first, excluding all the elements of infinite norm, and sec-

ond, identifying any two elements which differ by an element of infinitesimal norm.

(Thus, this is a particular case of Luxemburg’s nonstandard hull construction [20].)

In first-order model theory, if one regards formulas as {0, 1}-valued functions,

then the Stone topology on types can be naturally seen as a product topology (the

product being taken over all finite disjunctions of formulas in the specified language

and list of free variables). In analytic model theory the counterpart of the Stone

topology can also be seen as a product topology, but the difference is that formu-

las should then be viewed as real-valued functions, rather than {0, 1}-valued func-

tions. In the quantifier-free Banach space context (on which we focus here) this is

easy to see, since the only quantifier-free formulas are norm estimates, so the real-

valued functions corresponding to atomic formulas are translates of the norm. The

non-quantifier-free case will not be needed here; we refer the reader to Iovino [13]

or Iovino [15] and [16], and to [11].

From the point of view of model theory, a spreading model can be viewed nat-

urally as follows. One starts with a quantifier-free type p over a Banach space X

and constructs a sequence (an)n<ω of realizations of p (in the monster model) such

that tp(an+1/X + span{ a0, . . . , an }) extends tp(an/X + span{ a0, . . . , an−1 }) and
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is finitely realized in X . The sequence (an) is quantifier-free indiscernible. The sub-

space of the monster model spanned by X and { an | n < ω} is called a spreading

model over X .

Logicians use partition theorems routinely to construct indiscernible sequences,

so it is not surprising that a form of the basic Ramsey Theorem plays an important

role in the ideas presented here. We will make heavy use of a simple but powerful

lemma that in [28] Rosenthal called the Ramsey principle for analysts.

2.1 Ramsey’s Theorem We will use a form of Ramsey’s Theorem that was intro-

duced by Brunel and Sucheston in [3].

Proposition 2.1 Let

( am1,m2,...,md | (m1, m2, . . . , md) ∈ N
d )

be a family of real numbers such that the iterated limits

lim
m1

· · · lim
md

am1,m2,...,md

exist. Then there exist k(0) < k(1) < · · · such that

lim
i1<i2<···<id

ak(i1),k(i2),...,k(id ) = lim
m1

· · · lim
md

am1,m2,...,md .

The proof is an exercise.

2.2 Types If X is a Banach space and X̂ is a Banach space ultrapower of X , then

X̂ is finitely represented in X over any finite dimensional subspace of X , that is, for

every finite dimensional subspace E of X , every ǫ > 0, and every a1, . . . , an ∈ X̂

there exist x1, . . . , xn ∈ X such that E+span{ a1, . . . , an } and E+span{ x1, . . . , xn }

are isomorphic via a (1 + ǫ)-isomorphism that maps ai to xi and fixes E pointwise.

Conversely, if Y is a Banach space which contains X and is finitely represented in X

over any finite dimensional subspace of X , then there exists an ultrapower X̂ of X

and an embedding of Y into X̂ which fixes X pointwise.

If X̂ is an ultrapower of X and a is an element of X̂ , the type of a over X is the

function tp(a/X) : X → R defined by

tp(a/X)(x) = ‖a + x‖.

We say that a function τ : X → R is a type over X if there exists an ultrapower X̂

of X and a ∈ X̂ such that τ = tp(a/X). In this case, we say that a realizes τ . The

set of types over X is regarded as a topological space with the topology of pointwise

convergence.

If a and a′ are realizations of the same type over X (possibly in different ultra-

powers), then the spaces X + span{a} and X + span{a′} are isometric via an isometry

that maps a to a′ and fixes X pointwise. Thus, the particular choice of ultrapower

where we realize types is to a large extent irrelevant, and often we refer to a real-

ization of a type without mentioning the extension where the realization lives. Also,

it is easy to see that given any family of types (τi )i∈I over X we can always take a

single ultrapower of X where all the τi s are realized.

The norm of a type τ over X is the norm of a realization of τ , that is, τ (0). We de-

note the norm of τ by ‖τ‖. If M > 0 and (τi )i∈I is a family of types over X of norm

less than or equal to M and ai realizes τi in a space X i , then limi,U τi = tp(a/X),

where a is the element of the U-ultraproduct of (X i )i∈I represented by the family
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(ai )i∈I . Hence, the set of types over X of norm less than or equal to any given

constant is compact, so the space of types over X is σ -compact.

If λ,µ are nonnegative real numbers and ǫ > 0, we write λ
1+ǫ
∼ µ if

(1 + ǫ)−1µ ≤ λ ≤ (1 + ǫ)µ. If τ is a type over X , then for every ǫ > 0

and every finite dimensional subspace E of X there exists x ∈ X such that

tp(x/E)
1+ǫ
∼ τ ↾ E . Hence, if X is separable, there exists a sequence (xk) in

X such that limk tp(xk/X) = τ . Conversely (since the set of types of norm less than

or equal to a given constant is compact), every bounded sequence (xn) in X has a

subsequence (xnk ) such that limk tp(xnk /X) exists. Thus, if the space X is separable,

a function τ : X → R is a type if and only if there exists a bounded sequence (xk)

in X such that

(†) τ (x) = lim
k

‖xk + x‖.

This is actually the original definition of “type” in functional analysis, introduced

in [18] (where the context is restricted to separable spaces).

If (†) holds, we say that (xk) is an approximating sequence for τ or that (xk)

approximates τ .

2.3 Spreading models and convolutions Let (yk) be a bounded sequence in a

separable Banach space X and assume that (yk) has no convergent subsequence (so

(yk) does not approximate a type realized in X). Inductively, we construct a sequence

(an) (in some extension of X) and subsequences (yn
k ) of (yk) as follows:

(i) (y0
k ) is a subsequence of (yk);

(ii) (yn+1
k ) is a subsequence of (yn

k );

(iii) (yn
k ) approximates tp(an/X + span{ a0, . . . , an−1 }).

Let

τ =
⋃

n

tp(an/X + span{a0, . . . , an−1}).

Then τ is a type over X + span{ an | n ∈ N }, approximated by the diagonal sub-

sequence (xk) of (yk) defined by xi = yi
i . If x ∈ X and λ0, . . . , λn are scalars, we

have

‖x + λ0a0 + · · · + λnan‖ = lim
kn

· · · lim
k0

‖x + λ0xk0
+ · · · + λn xkn ‖.

By Ramsey’s Theorem (Proposition 2.1) and further diagonalization, we can refine

(xk) so that

‖x + λ0a0 + · · · + λnan‖ = lim
kn<···<k0

‖x + λ0xk0
+ · · · + λn xkn ‖

for x ∈ X and scalars λ0, . . . , λn .

The space X + span{an | n ∈ N } is traditionally called the spreading model

of the sequence (yk). However, the spreading model is not uniquely determined by

(yk). It is uniquely determined by the sequence (xk) (and hence by the type τ ), so

it would be more appropriate to call it the spreading model of the sequence (xk) (or

the spreading model of the type τ ), although we will not use this terminology. The

sequence (an) is called the fundamental sequence of the spreading model.1 We will

also say that (an) is a fundamental sequence for the type τ ↾ X .
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Notice that a fundamental sequence (an) for a type τ is 1-subsymmetric over X ,

that is, if x ∈ X and n1 < · · · < nk ,

‖x + λ0a0 + · · · + λkak‖ = ‖x + λ0an0
+ · · · + λkank ‖.

If τ is a type over a Banach space X realized by an element a (in some extension of

X) and λ is a scalar, we define λτ to be the type of λa over X .

Every fundamental sequence (an) for a type τ induces a function ∗ on finite tuples

of scalar multiples of τ as follows. If λ0, . . . , λk are scalars, we define

(‡) λ0τ ∗ · · · ∗ λkτ (x) = ‖x + λ0a0 + · · · + λkak‖.

We refer to the function ∗ as the convolution induced on the scalar multiples of τ

by the fundamental sequence (an). The set of all types of the form λ0τ ∗ · · · ∗ λnτ ,

where λ0, . . . , λn are scalars, will be denoted

span(τ, ∗).

If we are given convolution ∗ on the scalar multiples of τ and a sequence (an) (in

some extension of X) that satisfies (‡) above, we will say that (an) is a fundamental

sequence corresponding to span(τ, ∗).

The closure of span(τ, ∗) with respect to the pointwise convergence topology will

be denoted

span(τ, ∗).

If σ ∈ span(τ, ∗), by the 1-subsymmetry of (an) there exists a sequence (bn) of

blocks of (an) such that σ = limn tp(bn/X). Furthermore, (bn) can be taken so

that if ◦ is a convolution on the scalar multiples of σ , then for x ∈ X and scalars

λ0, . . . , λk we have

λ0σ ◦ · · · ◦ λkσ(x) = lim
nk<···<n0

‖x + λ0bn0
+ · · · + λkbnk ‖,

and hence there exists a sequence (yn) of blocks of (xn) such that

λ0σ ◦ · · · ◦ λkσ(x) = lim
nk<···<n0

‖x + λ0 yn0
+ · · · + λk ynk ‖.

Let τ be a type and let ∗ be a convolution on the scalar multiples of τ . We will say

that span(τ, ∗) is 1-unconditional if given scalars λ1, . . . , λn , one has

λ0τ ∗ · · · ∗ λnτ (x) = ±λ0τ ∗ · · · ∗ ±λnτ,

that is, if any fundamental sequence corresponding to span(τ, ∗) is 1-unconditional.

Let us prove that 1-unconditional types exist. Suppose that τ is a type over a sep-

arable Banach space X , the sequence (xn) is approximating sequence for τ , the se-

quence (an) is fundamental for τ , and d1, . . . , dk ∈ X + span{an | n ∈ N }. Then

the Borsuk-Ulam antipodal map theorem ensures that for every finite set of indices

n1 < · · · < nk there is an element s in the unit sphere of span{ xn1
, . . . , xnk } such

that ‖s − di‖ = ‖s + di‖ for i = 1, . . . , k. This in fact proves that there exist

σ ∈ span(τ, ∗) and a convolution ◦ on the scalar multiples of σ such that span(σ, ◦)

is 1-unconditional.

Remark 2.2 Using standard model theoretic ideas, it is possible to define a binary

operation ∗ on all types over X such that for every type τ over X , the operation ∗

acts as a convolution on scalar multiples of τ . This is convenient in many settings,

but will not be needed here. We refer the reader to Iovino [12] for the details.
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2.4 ℓ p- and c0-types

Definition 2.3 Let X be a Banach space and let X̂ be an extension of X . We say

that a sequence (an) in X̂ is isometric over X to the standard unit basis of ℓp if for

x ∈ X and scalars λ0, . . . , λn ,

∥

∥

∥

∥

∥

x +

n
∑

i=0

λi ai

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

x +
(

n
∑

i=0

|λi |
p
)1/p

a0

∥

∥

∥

∥

∥

.

We say that (an) is isometric over X to the standard unit basis of c0 if for x ∈ X and

scalars λ0, . . . , λn ,

∥

∥

∥

∥

∥

x +

n
∑

i=0

λi ai

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

x +
(

max
0≤i≤n

|λi |
)

a0

∥

∥

∥

∥

.

Let τ be a type and let ∗ be a convolution on the scalar multiples of τ (induced by

some fundamental sequence for τ ). If 1 ≤ p < ∞, we say that τ is an ℓp-type with

respect to ∗ if for every pair of scalars µ, λ we have

λτ ∗ µτ =
(

|λ|p + |µ|p
)1/p

τ.

Similarly, we say that τ is a c0-type with respect to ∗ if for every pair of scalars µ, λ

we have

λτ ∗ µτ = max(|λ|, |µ|)τ.

Proposition 2.4 Suppose that X is a separable Banach space, τ is a type over

X, and ∗ is a convolution on the scalar multiples of τ such that span(τ, ∗) is 1-

unconditional. Then, if (an) is a fundamental sequence for span(τ, ∗) and p is a

positive real number, the following conditions are equivalent:

1. 1 ≤ p < ∞ and τ is an ℓp-type with respect to ∗;

2. 1 ≤ p < ∞ and (an) is isometric over X to the standard unit basis of ℓp;

3. for every x ∈ X and every natural number k,

∥

∥

∥

∥

∥

∥

x +

m−1
∑

i=0

λi ai + (k + 1)1/pam +

n
∑

i=m+1

λi ai

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

x +

m−1
∑

i=0

λi ai +

m+k
∑

i=m

ai +

n
∑

i=m+1

λi ai+k

∥

∥

∥

∥

∥

∥

.

Proof (1) ⇒ (2) We prove by induction on n that the first equality in Defini-

tion 2.3 holds. If n ≤ 1, the equality is immediate. Assume n ≥ 1. Let (xν) be a

sequence in X such that

‖x + λ0a0 + · · · + λnan‖ = lim
νn

· · · lim
ν0

‖x + λ0xν0
+ · · · + λn xνn ‖,
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for every choice of x ∈ X and scalars λ0, . . . , λn . Then,
∥

∥

∥

∥

∥

x +

n
∑

i=0

λi ai

∥

∥

∥

∥

∥

= lim
νn

· · · lim
ν2

∥

∥

∥

∥

∥

x + λ0a0 + λ1a1 +

n
∑

i=2

λi xνi

∥

∥

∥

∥

∥

= lim
νn

· · · lim
ν2

∥

∥

∥

∥

∥

x + (|λ0|
p + |λ1|

p)1/pa0 +

n
∑

i=2

λi xνi

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

x + (|λ0|
p + |λ1|

p)1/pa0 +

n
∑

i=2

λi ai

∥

∥

∥

∥

∥

= lim
ν0

∥

∥

∥

∥

∥

x + (|λ0|
p + |λ1|

p)1/pxν0
+

n
∑

i=2

λi ai

∥

∥

∥

∥

∥

= lim
ν0

∥

∥

∥

∥

∥

x + (|λ0|
p + |λ1|

p)1/pxν0
+

(

n
∑

i=2

|λi |
p
)1/p

a2

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

x + (|λn−1|
p + |λn |p)1/pa0 +

(

n
∑

i=2

|λi |
p
)1/p

a2

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

x +
(

n
∑

i=0

|λi |
p
)1/p

a0

∥

∥

∥

∥

∥

.

(2) ⇒ (1) and (2) ⇒ (3) are immediate.

We prove (3) ⇒ (2). Fix scalars λ0, . . . , λn . Since span(τ, ∗) is 1-unconditional,

we can also assume λ0, . . . , λn ≥ 0. Furthermore, by density considerations, we

may assume without loss of generality that λ
p
i is rational, for i = 0, . . . , n. We can

therefore fix a positive integer M such that Mλ
p

i is an integer, for i = 0, . . . , n.

Since (an) is subsymmetric over X , for every x ∈ X we have

∥

∥

∥

∥

∥

M1/px +

n
∑

i=0

(Mλ
p
i )1/pa0

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

M1/px +

n
∑

i=0

Mλ
p
i −1

∑

j=0

ai+ j

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

M1/px +
(

n
∑

i=0

Mλ
p
i

)1/p
ai

∥

∥

∥

∥

∥

.

Dividing by M1/p , we obtain the desired result. �

Proposition 2.5 Suppose that X is a separable Banach space, τ is a type over

X, and ∗ is a convolution on the scalar multiples of τ such that span(τ, ∗) is 1-

unconditional. Then, if (an) is a fundamental sequence for span(τ, ∗) and p is a

positive real number, the following conditions are equivalent:

1. τ is a c0-type with respect to ∗;

2. (an) is isometric over X to the standard unit basis of c0;

3. for every x ∈ X and every natural number k,
∥

∥

∥

∥

∥

∥

x +

m−1
∑

i=0

λi ai + am +

n
∑

i=m+1

λi ai

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

x +

m−1
∑

i=0

λi ai +

m+k
∑

i=m

ai +

n
∑

i=m+1

λi ai+k

∥

∥

∥

∥

∥

∥

.
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Proof Similar to the proof of Proposition 2.4. �

Remark 2.6 The equivalence (2) ⇔ (3) in Propositions 2.4 and 2.5 holds for

arbitrary (an). (The assumption that (an) is fundamental is not needed in the proof.)

2.5 Krivine’s Theorem The following result was proved by Krivine in [17].

Theorem 2.7 Let τ be a type over a Banach space X which is not realized in

X and let ∗ be a convolution on the scalar multiples of τ such that span(τ, ∗) is

1-unconditional. Then there exists a sequence (en) such that

1. (en) is isometric over X to the standard unit basis of c0 or ℓp , for some p

with 1 ≤ p < ∞;

2. there exists a sequence of types (σl) in span(τ, ∗) such that for scalars

λ0, . . . , λn ,

tp(λ0e0 + · · · + λnen/X) = lim
l

(λ0σl ∗ · · · ∗ λnσl).

Krivine’s Theorem is not usually stated in terms of types and convolutions but in

terms of block finite representability of ℓp (1 ≤ p ≤ ∞) in an arbitrary sequence

(xn) in Banach spaces. The original statement in [17] required a permutation of

(xn) in the c0 case. Rosenthal [26] analyzed Krivine’s proof and showed that the

permutation in the c0 case was unnecessary. The argument was further clarified by

Lemberg [19].

3 Heirs of Types

Suppose that X is a Banach space and f is a real-valued function on X which is

uniformly continuous on every bounded subset of X . If U is an ultrafilter on a set I ,

the U-ultrapower of the structure (X, f ) is defined as the pair (X̂ , f̂ ), where

1. X̂ is the U-ultrapower of X ;

2. f̂ is the real-valued function defined on X̂ as follows: If x ∈ X̂ and (xi )i∈I is

a representative of x in X I , we have

f̂ (x) = lim
i,U

( f (xi )).

The fact that f is uniformly continuous on every bounded subset of X ensures that

f̂ is well defined.

An ultrapower (X̂ , f̂ ) of (X, f ) has the property that it is finitely represented

in (X, f ); this means that whenever E is a finite dimensional subspace of X̂ and

M, ǫ > 0, there exists a finite dimensional subspace F of X such that (E, f̂ ↾ E)

and (F, f ↾ E) are (1 + ǫ)-isomorphic in the sense that there exists a (1 + ǫ)-

isomorphism ϕ : E → F satisfying | f (ϕ(x)) − f̂ (x)| ≤ ǫ for every element x ∈ E

of norm at most M .

Proposition 3.1 Suppose that X is a Banach space and f is a real-valued function

on X which is uniformly continuous on every bounded subset of X. Then for every

ultrapower X̂ of X there exists a real-valued function f̂ on X such that (X̂ , f̂ ) is an

ultrapower of (X, f ). Furthermore, if f is a type over X, then f̂ is a type over X̂ .

Proof We prove only the “furthermore” part of the statement, since the first one is

immediate from the definitions. Suppose that f is a type over X . Then, for every

ǫ > 0 and any every subset A of X there exists an element x A ∈ X such that
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|‖x A + x‖ − f (x)| ≤ ǫ for every x ∈ A. Since (X̂ , f̂ ) is finitely represented in

(X, f ), for every ǫ > 0 and every finite subset B of X̂ there exists an element

yB ∈ X̂ such that |‖yB + x‖ − f̂ (x)| ≤ ǫ for every x ∈ B . Thus, there exists an

element a of an ultrapower of X̂ such that tp(a/X̂) = f̂ . �

Definition 3.2 Let X be a Banach space and let Y be a superspace of X which is

finitely represented in X . If τ is a type over X and σ is a type over Y extending τ ,

we will say that σ is an heir of τ if (Y, σ ) is finitely represented in (X, τ ).

Proposition 3.3 Let X be a Banach space and let Y be a superspace of X which is

finitely represented in X. If τ is a type over X and σ is a type over Y extending τ ,

then the following conditions are equivalent:

1. σ is an heir of τ ;

2. there is an ultrapower (X̂ , τ̂ ) of (X, τ ) and an isometric embedding

ϕ : Y → X̂ such that ϕ fixes X pointwise, and ϕ(σ)(y) = τ̂ (ϕ(y)) for

every y ∈ Y .

4 Quantifier-free Definable Functions

Note to the logician. In this section we introduce the concepts of definable set and

definable type. We need only their quantifier-free version.

A quantifier-free definable set in a Banach space X is a finite Boolean combi-

nation of balls with centers in X . In Banach space model theory, the approach to

definability is as follows. One generally does not talk about definable sets but defin-

able real-valued relations. An m-ary real-valued relation on a Banach space structure

X is a function R : Xm → [−∞,∞] which is bounded and uniformly continuous

on every bounded subset of Xm .

If X is a Banach space and R : Xm → [−∞,∞] is an m-ary real-valued relation

on X , we say that R is definable if the following condition holds. For every choice of

M, ǫ > 0 and every interval I there exists a formula θ(x1, . . . , xm) with parameters

in X and δ > 0 such that for every x̄ = (x1, . . . , xm) in Xm with supi ‖xi‖ ≤ M ,

1. R(x̄) ∈ I implies θ(x̄),

2. θδ(x̄) implies R(x̄) ∈ I + [−ǫ, ǫ],

where θδ is the result of relaxing all the norm estimates present in θ by a factor of

1 + δ (see [13] for the precise definitions).

A real-valued relation is quantifier-free definable exactly when for every choice

of M, ǫ, I , the formula θ above can be found so that it is quantifier-free. This is the

“right” notion of definability in Banach space model theory, in the sense that it plays

a role analogous to that played by the usual notion of definability in first-order model

theory (for example, Beth’s definability lemma holds, a complete theory is stable if

and only if every type is definable and so on).

If X is a Banach space, the norm estimate ‖x‖ ≤ 1 determines a subset of X ,

namely, the closed unit ball of X . If x0 ∈ X , the norm estimate α ≤ ‖x − x0‖ ≤ β

also determines a subset of X , namely, an annulus around x0. In general, we have

the following concept.

Definition 4.1 Suppose that X is a Banach space, x1, . . . , xm ∈ X , and I1, . . . , In

are closed intervals. A quantifier-free expression C with parameters in X is a
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Boolean combination of syntactic norm estimates of the form

‖x + λ1x1 + · · · + λm xm‖ ∈ Ii , (i = 1, . . . , n).

The elements x1, . . . , xm are called the parameters of C . We express the dependence

of C on x1, . . . , xm and I1, . . . , In by writing

C(x1, . . . , xm; I1, . . . , In).

If I1, . . . , In = I , we write C as

C(x1, . . . , xm; I ).

If the Boolean combination is positive (that is, if it includes ∧ and ∨, but not ¬), we

say that C is a positive quantifier-free expression.

Note that if C(x1, . . . , xm; I1, . . . , In) is a quantifier-free expression with param-

eters in X , then C(x1, . . . , xm; I1, . . . , In) determines a subset of X , namely,
{

x ∈ X
∣

∣ C(x1, . . . , xm; I1, . . . , In)
}

.

We denote this set by

(∗) [ C(x1, . . . , xm; I1, . . . , In) ]X .

We will call a subset of X quantifier-free definable if it is of the form (∗). When the

ambient space X is clear from the context, we omit the subindex X in the preceding

notation and write simply

[C(x1, . . . , xm; I1, . . . , In)].

Remark 4.2 Suppose that X is a Banach space, x1, . . . , xm ∈ X , and I1, . . . , In

are closed intervals.

1. The closure of [C(x1, . . . , xm; I1, . . . , In)]c is quantifier-free definable (us-

ing the same parameters).

2. If δ is a positive real number, we have

(a) [C(x1, . . . , xm; I1, . . . , In)]

⊆ C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ]);

(b) [C(x1, . . . , xm; I1, . . . , In)]

=
⋂

δ>0 C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ]);

(c) [C(x1, . . . , xm; I1, . . . , In)]c

=
⋃

δ>0 [C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ])c.

Definition 4.3 Suppose that X is a Banach space and f is a real-valued function

on X . We will say that f is quantifier-free definable if the following condition holds.

For every choice of M, ǫ > 0 and every interval I there exist a quantifier-free ex-

pression

C(x1, . . . , xm; J1, . . . , Jn)

in X and δ > 0 such that for every x ∈ B(M),

1. f (x) ∈ I implies x ∈ [ C(x1, . . . , xm; J1, . . . , Jn) ];

2. x ∈[C(x1, . . . , xm; J1+[−δ, δ], . . . , Jn+[−δ, δ])] implies f (x)∈ I+[−ǫ, ǫ].
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We will express the fact that the implications (1) and (2) hold for every x ∈ B(M)

by saying that [C(x1, . . . , xm; J1, . . . , Jn)] is (ǫ, δ)-equivalent to f −1[I ] in the ball

B(M).

Suppose that A is a subset of X . If for every choice of M , ǫ, and I , the expression

C(x1, . . . , xm; J1, . . . , Jn) can be taken so that all of its parameters are in given

subset A of X , we say that f is quantifier-free definable over A.

Remark 4.4 A real-valued function f on a Banach space X is quantifier-free de-

finable if and only if it is quantifier-free definable over a dense subset of X .

Proposition 4.5 Suppose that X is a Banach space and f is a real-valued func-

tion on X which is uniformly continuous on every bounded subset of X. If f is

quantifier-free definable and (X̂ , f̂ ) is an ultrapower of (X, f ), then f̂ is quantifier-

free definable. Furthermore, if A ⊆ X and f is quantifier-free definable over A, so

is every heir of f̂ .

Proof Fix an interval I and real numbers M ′, ǫ′, ǫ′′, δ′, δ′′ such that

0 < M < M ′, 0 < ǫ < ǫ′ < ǫ′′, 0 < δ < δ′ < δ′′.

It is easy to verify that if

[ C(x1, . . . , xm; J1, . . . , Jn) ]X

is (ǫ′ − ǫ, δ′′)-equivalent to f −1[I + [−ǫ, ǫ]] in the ball BX (M ′), then

[ C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ]) ]
X̂

is (ǫ′′, δ′ − δ)-equivalent to f̂ −1[I ] in the ball B
X̂
(M). �

Corollary 4.6 Let X be a Banach space and τ a type over X. Then, if τ is

quantifier-free definable, every heir of τ is quantifier-free definable. Furthermore,

if A ⊆ X and τ is quantifier-free definable over A, so is every heir of τ .

Proof By Propositions 3.3 and 4.5. �

5 Quantifier-free Definability and Uniqueness of Heirs

Note to the logician. In this section we prove a Banach space model theoretic analog

of a well-known application of Beth’s definability lemma, namely, if M is a model, a

type p ∈ S(M) is definable if and only if p has a unique heir over any given elemen-

tary extension of M , or equivalently, p has a unique heir over the monster model. We

deal only with the quantifier-free version of this fact. (The full version can be found

in [13].) Since we work in a quantifier-free context, any superstructure of a Banach

space X contained in the monster model serves as an elementary extension of X .

For many purposes it will suffice to consider extensions of the form span
{

X ∪ {a}
}

where a is an element of the monster model.

Proposition 5.1 Suppose that X is a Banach space and f is a real-valued function

on X. The following conditions are equivalent.

1. f is quantifier-free definable.

2. If Y is a superspace of X which is finitely represented in X, then there exists a

unique extension g of f to Y such that (Y, g) is finitely represented in ( f, X).

3. If a is a realization of a type over X and Y = X + span{a}, then there exists a

unique extension g of f to Y such that (Y, g) is finitely represented in ( f, X).
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Proof (1) ⇒ (2) follows from Proposition 4.5.

We prove (3) ⇒ (1). Suppose that f is not quantifier-free definable. Take

M, ǫ > 0 and an interval I such that there do not exist [ C(x1, . . . , xm; J1, . . . , Jn) ]

with x1, . . . , xm ∈ X and δ > 0 such that [ C(x1, . . . , xm; J1, . . . , Jn) ] is (ǫ, δ)-

equivalent to f −1[I ] in the ball BX (M). Without loss of generality, we can assume

that the interval I is bounded.

Let

C =
{

[ C(x1, . . . , xm; J1, . . . , Jn) ]
∣

∣

∣
x1, . . . , xm ∈ X and

x ∈ BX (M) ∧ f (x) ∈ I implies x ∈ [ C(x1, . . . , xm; J1, . . . , Jn) ]
}

.

By our assumption, whenever [ C(x1, . . . , xm; J1, . . . , Jn) ] ∈ C and δ > 0, there

exists x ∈ BX (M) such that

x ∈ [ C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ]) ] and f (x) /∈ I + [−ǫ, ǫ].

Since C is closed under finite intersections, there exists an ultrapower (X̂ , f̂ ) of

(X, f ) and an element a ∈ B
X̂
(M) such that

a ∈
⋂

[C(x1,...,xm ;J1,...,Jn)]∈C

[ C(x1, . . . , xm; J1, . . . , Jn) ] and f̂ (a) /∈ I + [−ǫ/2, ǫ/2].

Now notice that if x1, . . . , xm ∈ X , J1, . . . , Jn are closed intervals, and

a ∈ [ C(x1, . . . , xm; J1, . . . , Jn) ],

then for every δ > 0 there exists x ∈ BX (M) such that

f (x) ∈ I and x ∈ [ C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ]) ]

(otherwise, the closure of [ C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ]) ]c is in C

and then a is in the closure of [ C(x1, . . . , xm; J1 + [−δ, δ], . . . , Jn + [−δ, δ]) ]c,

which is impossible). Hence, there exists an ultrapowrer (X̂ ′, f̂ ′) of (X, f ) and an

element a′ ∈ B
X̂ ′(M) such that

f̂ ′(a′) ∈ I, and a′ ∈
⋂

a∈ C(x1,...,xm ;J1,...,Jn) ]

[ C(x1, . . . , xm; J1, . . . , Jn) ].

Since

a′ ∈
⋂

a∈[ C(x1,...,xm ;J1,...,Jn) ]

[ C(x1, . . . , xm; J1, . . . , Jn) ],

the spaces X + span{a} and X + span{a′} are isometric via an isometry that maps

a to a′ and fixes X pointwise. However, f̂ (a) /∈ I + [−ǫ/2, ǫ/2] and f̂ ′(a′) ∈ I .

Thus, by taking Y = X + span{a}, we contradict (3). �

Proposition 5.2 Suppose that X is a Banach space and τ is a type over X. The

following conditions are equivalent.

1. τ is quantifier-free definable.

2. If Y is a superspace of X which is finitely represented in X, then τ has a

unique heir over Y .

3. If a is a realization of a type over X and Y = X + span{a}, then τ has a

unique heir over Y .
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6 Quantifier-free Definability and Uniqueness of Spreading Models

Proposition 6.1 Let τ be a type over a separable Banach space X and suppose

that τ is definable. Then, if (an) and (bn) are fundamental sequences for τ , we have

‖x + λ0a0 + · · · + λnan‖ = ‖x + λ0b0 + · · · + λnbn‖,

for every choice of x ∈ X and scalars λ0, . . . , λn .

Remark 6.2 By the definitions introduced in Section 2, the conclusion of Proposi-

tion 6.1 means that a convolution on the scalar multiples of τ can be defined uniquely.

Proof of Proposition 6.1 Suppose that (an) and (bn) are fundamental sequences

for τ and that there exists x ∈ X and scalars λ0, . . . , λn−1 such that

‖x + a0 + · · · + λn−1an−1 + λnan‖ 6= ‖x + b0 + · · · + λn−1bn−1 + λnbn‖.

We may assume that n is minimal with this property. (Note that n > 0.) The types

tp(a0/X + span{a1, . . . , an}),

tp(b0/X + span{b1, . . . , bn})

are heirs of tp(a0/X) = tp(b0/X) = τ .

By the minimality assumption of n, for k = 1, . . . , n we have

tp
(

ak/X + span{ai | 1 ≤ i ≤ k − 1}
)

= tp
(

bk/X + span{bi | 1 ≤ i ≤ k − 1}
)

.

Therefore there exists an isometry

ϕ : X + span{a1, . . . , an} −→ X + span{b1, . . . , bn}

such that ϕ fixes X pointwise and ϕ(ak) = bk , for k = 1, . . . , n.

We have that tp(ϕ(a0)/X + span{b1, . . . , bn}) and tp(b0/X + span{b1, . . . , bn})

are both heirs of τ . However,

‖x + ϕ(a0) +

n
∑

i=1

λi bi‖ = ‖x + a0 +

n
∑

i=1

λi ai‖ 6= ‖x + b0 +

n
∑

i=1

λi bi‖,

so these two heirs are distinct. Hence, τ is not quantifier-free definable, by Proposi-

tion 5.2. �

7 Stable Types

Note to the logician. In this section we introduce spreading model analogs of the

concept of stable type from model theory. Definition 7.2 corresponds to the failure

of the order property. Proposition 7.3 is a counterpart of the well-known character-

ization of stability in terms of the algebraic properties of forking (symmetry, finite

character and so on).

Definition 7.1 Let τ be a type over a separable Banach space X and let ∗ be a con-

volution on the scalar multiples of τ . We say that a sequence (xk) in X approximates

span(τ, ∗), or is an approximating sequence for span(τ, ∗), if for arbitrary x ∈ X

and scalars λ0, . . . , λn we have

λ0τ ∗ · · · ∗ λnτ = lim
kn<···<k0

‖x + λ0xk0
+ · · · + λn xkn ‖.
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Definition 7.2 Let X be a separable Banach space, let τ be a type over X which is

not realized in X , and let ∗ be a convolution on the scalar multiples of τ . We will say

that span(τ, ∗) is stable if the convolution ∗ has an extension to span(τ, ∗) which is

commutative and separately continuous.

Proposition 7.3 Let X be a separable Banach space, let τ be a type over X which

is not realized in X, and let ∗ be a convolution on the scalar multiples of τ . Then the

following conditions are equivalent.

1. span(τ, ∗) is stable.

2. Given nonprincipal ultrafilters U,V on N, the convolution ∗ on span(τ, ∗)

can be extended to span(τ, ∗) by defining, for every pair of sequences

(σm), (ρn) in span(τ, ∗) with limm σm = σ and limn ρn = ρ,

σ ∗ ρ = lim
U,m

lim
V,n

(σm ∗ ρn),

and this extension is commutative.

3. There do not exist sequences (σm) and (ρn) in span(τ, ∗) and x ∈ X such

that

sup
m<n

(σm ∗ ρn)(x) < inf
n<m

(ρn ∗ σm)(x).

4. If (xν) is an approximating sequence for span(τ, ∗) in X, there do not exist

double sequences (ym,l)m,l and (zn,l)n,l in X satisfying the following proper-

ties:

(a) for each m and n, (ym,k)k and (zn,l)l are sequences of blocks of (xν)

which approximate types in span(τ, ∗),

(b) for some x ∈ X,

sup
m<n

(

lim
k<l

‖ym,k + zn,l + x‖
)

< inf
n<m

(

lim
l<k

‖ym,k + zn,l + x‖
)

.

Proof The implication (1) ⇒ (2) is trivial and the equivalence (3) ⇔ (4) follows

from the definitions.

(2) ⇒ (1) First we note that, in (2), the commutativity assumption allows us to

permute the order of the limits; this will also be used in the proof of (2) ⇒ (1), so,

although it is easy, we record it below:

lim
U,m

lim
V,n

(σm ∗ ρn) = σ ∗ ρ

= ρ ∗ σ

= lim
V,n

lim
U,m

(ρn ∗ σm)

= lim
V,n

lim
U,m

(σm ∗ ρn).

Now we just have to show that the extension of ∗ given by (2) is separately continu-

ous. To this effect, fix σ, ρ ∈ span(τ, ∗) and a sequence (ρn) in span(τ, ∗) such that

limn ρn = ρ. Take sequences (σk), (ρn,l) in span(τ, ∗) such that limk σk = σ and

liml ρn,l = ρn for every n. By Ramsey’s Theorem (Proposition 2.1), we can assume

that limn<l ρn<l = ρ. Hence, after replacing (σn) by a subsequence and (ρn,l ) by an
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(ω × ω)-submatrix if necessary, we have

σ ∗ ρ = lim
k

lim
n<l

(σk ∗ ρn,l )

= lim
n<l

lim
k

(σk ∗ ρn,l )

= lim
n

lim
l

lim
k

(σk ∗ ρn,l)

= lim
n

lim
k

lim
l

(σk ∗ ρn,l)

= lim
n

(σ ∗ ρn).

(2) ⇒ (3) Suppose that (2) is true and (3) is false, and fix sequences (σm), (ρn) in

span(τ, ∗) and element x ∈ X satisfying the inequality given in (3). Since, by (2), ∗

is commutative on span(τ, ∗), we have

sup
m<n

(σm ∗ ρn)(x) < inf
n<m

(σm ∗ ρn)(x).

But this contradicts the fact that the order of the limits in (2) can be exchanged (see

the proof of (2) ⇒ (1) above).

(3) ⇒ (2) Suppose that (2) does not hold. By Ramsey’s Theorem, the operation

defined in (2) is continuous on the first coordinate. Commutativity of the exten-

sion would imply continuity on the second coordinate. Thus, since we are assum-

ing that (2) is not true, the operation defined in (2) cannot be commutative. Take

σ, ρ ∈ span(τ, ∗) and x ∈ X such that (σ ∗ ρ)(x) 6= (ρ ∗ σ)(x). Without loss of

generality, assume

(σ ∗ ρ)(x) < (ρ ∗ σ)(x).

Take sequences (σm), (ρn) in span(τ, ∗) such that limm σm = σ and limn ρn = ρ.

Then,

lim
U,m

lim
V,n

(σm ∗ ρn)(x) < lim
V,n

lim
U,m

(ρn ∗ σm)(x),

which contradicts (3), by Ramsey’s Theorem. �

Definition 7.4 We will refer to the extension of ∗ given by (2) of Proposition 7.3

as the Krivine-Maurey convolution on span(τ, ∗), corresponding to the ultrafilters U

and V.

Example 7.5 For every type τ over the Banach space ℓp (1 ≤ p < ∞) and every

convolution on τ , we have that span(τ, ∗) is stable. To prove this, fix a type τ over

ℓp and let (xn) be an approximating sequence for τ . Since (xn) is bounded, it is

coordinatewise bounded, so there exists x̄ ∈ ℓp such that xn → x̄ coordinatewise.

Let zn = xn − x̄ . Then,

τ (x) = lim
n

‖x̄ + x + zn‖

and zn → 0 coordinatewise. By further extracting a subsequence, we can assume

that there exists a real number λ such that ‖zn‖ → λ as n → ∞. It is an easy

exercise to show that

τ (x) =
(

‖x̄ + x‖p + λp
)1/p

.

Therefore, x̄ and λ are uniquely determined by τ .

If σ is another type over ℓp (not necessarily in span(τ, ∗)) and (yn) is an approx-

imating sequence for σ , we have

σ(x) =
(

‖ȳ + x‖p + µp
)1/p

,
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where yn → ȳ coordinatewise and ‖yn − ȳ‖ → µ. Therefore,

lim
m

lim
n

‖xm + yn + x‖ = lim
m

(

‖xm + ȳ + x‖p + µp
)1/p

=
(

‖x̄ + ȳ + x‖p + λp + µp
)1/p

,

and the same value is obtained if the limits are taken in the opposite order.

Example 7.6 For every type τ over c0 which is approximable over a weakly com-

pact subset of c0 and every convolution on the scalar multiples of τ , span(τ, ∗) is

stable. To prove this, let K be a weakly compact subset of c0 and let τ be a type

approximated by a sequence (xn) in K . Fix x̄ ∈ c0 such that xn → x̄ weakly, let

zn = xn − x̄ , and by taking a subsequence if necessary, assume ‖zn‖ → λ. Then,

τ (x) = max(‖x̄ + x‖, λ).

Arguing as in Example 7.5, we show that if (yn) is another sequence in K ,

lim
m

lim
n

‖xm + yn + x‖ = lim
n

lim
m

‖xm + yn + x‖.

Definition 7.7 A type τ is called symmetric if τ = −τ .

Remark 7.8 Notice that if span(τ, ∗) is stable, then σ = τ ∗ (−τ ) is symmetric

and stable, and hence span(σ, ∗) is 1-unconditional.

Definition 7.9 Let τ be a type over X which is not realized in X and let ∗ be

a convolution on the scalar multiples of τ such that span(τ, ∗) is 1-unconditional.

Given p ∈ [1,∞], we will say that ℓp is block represented in span(τ, ∗) if there

exists a sequence (en) satisfying the following two conditions:

1. (en) is isometric over X to the standard unit basis of ℓp , if 1 ≤ p < ∞, and

to the standard unit basis of c0, if p = ∞;

2. there exists a sequence of types (σl) in span(τ, ∗) such that for any scalars

λ0, . . . , λn ,

tp(λ0e0 + · · · + λnen/X) = lim
l

(λ0σl ∗ · · · ∗ λnσl).

For a type τ , we define

p[span(τ, ∗)] = { p ∈ [1,∞] | ℓp is block represented in span(τ, ∗) }.

Theorem 2.7 says exactly that for every Banach space X , every type τ over X

which is not realized in X , and every convolution on the scalar multiples of τ such

that span(τ, ∗) is 1-unconditional, the set p[span(τ, ∗)] is nonempty.

Lemma 7.10 Suppose that τ is a type over X which is not realized in X and that

span(τ, ∗) is 1-unconditional and stable. Then, if τ ′ ∈ span(τ, ∗), we have

p[span(τ ′, ∗)] ⊆ p[span(τ, ∗)].

Proof Suppose that p ∈ p[span(τ ′, ∗)] and take (en), and (σl) corresponding to p

and τ ′ as in Definition 7.9. Since σl ∈ span(τ ′, ∗), we can write

σl = µl
0τ

′ ∗ · · · ∗ µl
j (l)τ

′,

where µl
0, . . . , µ

l
j (l) are scalars. Also, since τ ′ ∈ span(τ, ∗), there exists a sequence

(ρm) in span(τ, ∗) such that τ ′ = limm ρm . Then for any scalars λ1, . . . , λn we have
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the following equalities. The last one follows from the separate continuity of the
Krivine-Maurey convolution on span(τ, ∗) (Proposition 7.3).

tp(λ0e0 + · · · + λk ek/X) =

lim
l

[

λ0(µl
0τ

′ ∗ · · · ∗ µl
j (l)τ

′) ∗ · · · ∗ λk (µl
0τ ′ ∗ · · · ∗ µl

j (l)τ
′)

]

=

lim
l

[

λ0

(

µl
0 lim

m
ρm ∗ · · · ∗ µl

j (l) lim
m

ρm

)

∗ · · · ∗ λk

(

µl
0 lim

m
ρm ∗ · · · ∗ µl

j (l) lim
m

ρm

) ]

=

lim
l

[

λ0 lim
m0

· · · lim
m j (l)

(µl
0ρm0

∗ · · · ∗ µl
j (l)ρm j (l)

) ∗ · · · ∗ λk lim
m0

· · · lim
m j (l)

(µl
0ρm0

∗ · · · ∗ µl
j (l)ρm j (l)

)
]

.

Now Ramsey’s Theorem allows us to replace each of the iterated limits inside the

square brackets by the same single limit. We conclude that p ∈ p[span(τ, ∗)]. �

Proposition 7.11 Suppose that τ is a symmetric type over a separable Banach

space X and span(τ, ∗) is stable. Then there exists a type τ ′ such that

1. τ ′ ∈ span(τ, ∗);

2. ‖τ ′‖ = 1;

3. p[span(ρ, ∗)] = p[span(τ ′, ∗)] for every type ρ ∈ span(τ ′, ∗).

Proof Suppose that the conclusion of the proposition is false. We construct, induc-

tively, a sequence ( τi )i<(2ℵ0 )+ of types over X such that

1. τ0 = τ ;

2. ‖τi‖ = 1;

3. τi ∈ span(τ j , ∗) for i > j ;

4. p[span(τi , ∗)] ( p[span(τ j , ∗)] for i > j .

This is clearly impossible. We construct τi by induction on i . The case when i is

a successor ordinal is given by assumption. Suppose that i is a limit ordinal. Fix a

nonprincipal ultrafilter U on i . By compactness, there exists a type σ ∈ span(τ, ∗)

such that lim j<i,U τ j = σ . Conditions (1) – (3) are then satisfied by letting τi = σ .

�

8 Quantifier-free Definability and Stability

Note to the logician. In this section we prove an analog of Shelah’s well-known

theorem that every stable type is definable. More precisely, we will prove an analog

of the fact that every quantifier-free type is quantifier-free definable. The proof is a

refinement of the main lemma of [14].

Definition 8.1 Let X be a Banach space and let τ be a type over X . We will

say that τ is strongly quantifier-free definable if τ is quantifier-free definable, and

for every choice of M, ǫ > 0 and every interval I , the quantifier-free expression

C(x1, . . . , xn; J1, . . . , Jn) of Definition 4.3 can be taken to be a Boolean combina-

tion of expressions of the form

‖x + xi‖ ∈ J, (i = 1, . . . , n),

where

1. the interval J is arbitrarily close to I ;

2. the norm of the parameters x1, . . . , xn is arbitrarily close to the norm of τ ;

3. the quantifier-free expression C(x1, . . . , xn; J ) is positive (see Defini-

tion 4.1).
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Proposition 8.2 The following conditions are equivalent for a type τ over a Banach

space X.

1. τ is strongly quantifier-free definable;

2. For every choice of M, ǫ > 0 and every interval I of the form [0, α] there

exist a quantifier-free expression C(x1, . . . , xn; [0, β]) in X and δ > 0 such

that

(a) [C(x1, . . . , xn; [0, β])] is (ǫ, δ)-equivalent to τ−1[I ] in B(M);

(b) |β − α| ≤ ǫ and | ‖xi‖ − ‖τ‖ | < ǫ for i = 1, . . . , n.

Proof Immediate. �

Proposition 8.3 Let τ be a type over a separable Banach space X, let ∗ be a con-

volution on the scalar multiples of τ , and let (xν) be an approximating sequence

for span(τ, ∗) in X. Then, if span(τ, ∗) is stable, for every finite dimensional sub-

space E of X, every type over E + span{xν | ν ∈ N} is strongly quantifier-free

definable.

Proof Let Y = span{xν | ν ∈ N} and let σ be a type over E +Y . Fix M, ǫ > 0, and

an interval [0, α]. We will define a quantifier-free expression C(c1, . . . , cr ; [0, β])

and δ > 0 such that for x ∈ BE (M) + BY (M),

(I) σ(x) ∈ [0, α] implies x ∈ [ C(c1, . . . , cr ; [0, β]) ];

(II) x ∈ [ C(c1, . . . , cr ; [0, β + δ]) ] implies σ(x) ∈ [0, α + ǫ].

Since M is arbitrary, this will suffice to show that σ is quantifier-free definable. Let

K be an upper bound for the norms of the projections of BE+Y (M + ǫ) onto E and

Y . We will now construct, by induction on n,

(a) a sequence (en,k)k in E and a sequence (yn,k)k of blocks of (xν) such that

en,k ∈ BE (K ), yn,k ∈ BY (K ), and

|‖en,k + yn,k‖ − ‖σ‖| ≤ ǫ

for every pair n, k;

(b) for i = −1, 0, 1, 2, . . . , n,

(i) sequences ( S(i, k) )k and ( T (i, k) )k of subsets of { 0, . . . , n },

(ii) sequences (us
i+1,k)k in BE (M) + BY (M) for s ∈ S(i, k), and sequences

(vt
i+1,k)k in BE (M) + BY (M) for t ∈ T (i).

(The fact that |‖en,k + yn,k‖ − ‖σ‖| ≤ ǫ for every n together with the fact that β

was chosen arbitrarily close to α will ensure that the quantifier-free definability of σ

is strong, because, toward the end of the proof, we will define C(c1, . . . , cr ; [0, β])

as a positive linear combination of expressions of the form ‖c + x‖ ∈ [0, β], where

c ∈ {c1, . . . , cn}, and each of the parameters c1, . . . , cr will be of the form en,k+yn,k ,

for some n and some k.)

Take β and δ such that

α < β < β + δ < α + ǫ.

Without loss of generality, we can take δ such that

δ < min{ β − α, (α + ǫ) − (β + δ) }.

Take also positive numbers η, η0, η1, . . . such that

δ = η−1 < η0 < η1 < · · · < η < min{ β − α, (α + ǫ) − (β + δ) }.
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Suppose that we have defined

(e0,k)k, (e1,k)k, . . . , (en,k)k,

(y0,k)k, (y1,k)k, . . . , (yn,k)k,

( S(−1, k)
)

k
, . . . ,

(

S(n − 1, k) )k,

( T (−1, k)
)

k
, . . . ,

(

T (n − 1, k) )k,

and

(us
i,k )k, (v

t
i,k )k, for i = 0, . . . , n and s ∈ S(i, k), t ∈ T (i, k).

We now define the sequences ( S(n, k) )k , ( T (n, k) )k and (us
i+1,k)k, (v

t
i+1,k)k . Let

S(n, k) =
{

s ⊆ { 0, . . . , n }
∣

∣

∣
∃x ∈ BE (M) + BY (M)

(

σ(x) ∈ [0, α + ηn] ∧
∧

i∈s
0≤ j≤k

‖ei, j + yi, j + x‖ ∈ [β,∞)
) }

.

For each s ∈ S(n, k), let us
n+1,k ∈ BE (M) + BY (M) be such that

(a) σ(us
n+1,k) ∈ [0, α + ηn];

(b)
∧

i∈s
0≤ j≤k

‖ei, j + yi, j + us
n+1,k‖ ∈ [β,∞);

(c) us
n+1,k = π1(u

s
n+1,k) + π2(u

s
n+1,k), where

(i) π1(u
s
n+1,k) ∈ BE (M),

(ii) π2(u
s
n+1,k) ∈ BY (M),

(iii) ( π2(u
s
n+1,k) )k is a sequence of blocks of (xν),

(iv) ( π2(u
s
n+1,k) )k approximates a type in span(τ, ∗).

Similarly, let

T (n, k) =
{

t ⊆ { 0, . . . , n }
∣

∣

∣
∃x ∈ BE (M) + BY (M)

(

σ(x) ∈ [α + ǫ − ηn,∞) ∧
∧

i∈t
0≤ j≤k

‖ei,k + yi,k + x‖ ∈ [0, β + δ]
) }

,

and for each t ∈ T (n, k) let vt
n+1,k ∈ BE (M) + BY (M) be such that

(a) σ(vt
n+1,k) ∈ [β + ǫ − ηn,∞);

(b)
∧

i∈t
0≤ j≤k

‖ei, j + yi, j + vt
n+1,k‖ ∈ [0, β + δ];

(c) vt
n+1,k = π1(v

t
n+1,k) + π2(v

t
n+1,k), where

(i) π1(v
t
n+1,k) ∈ BE (M),

(ii) π2(v
t
n+1,k) ∈ BY (M),

(iii) ( π2(v
t
n+1,k) )k is a sequence of blocks of (xν),

(iv) ( π2(v
t
n+1,k) )k approximates a type in span(τ, ∗).

We now define en+1,k and yn+1,k . Let

F(k) =
⋃

0≤ j≤k

{ us
i+1, j | −1 ≤ i ≤ n, s ∈ S(i, j) }

∪
⋃

0≤ j≤k

{ vt
i+1, j | −1 ≤ i ≤ n, t ∈ T (i, j) }.
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Since F(k) is finite, there exists a ∈ E + Y with |‖a‖ − ‖σ‖| ≤ ǫ such that

x ∈ F(k) and σ(x) ∈ [0, α + ηn] implies ‖a + x‖ ∈ [0, α + ηn+1]

and

x ∈ F(k) and σ(x) ∈ [α + ǫ − ηn,∞)] implies ‖a + x‖ ∈ [α + ǫ − ηn+1,∞).

We take en+1,k ∈ BE (K ) and yn+1,k ∈ BY (K ) such that a = en,k + yn,k , and so that

the sequence ( yn+1,k )k is a sequence of blocks of (xν) and approximates a type in

span(τ, ∗).

Claim 8.4 Suppose that 0 ≤ i ≤ n, 0 ≤ j ≤ k, and s ∈ S(i −1, j), t ∈ T (i −1, j).

Then

‖en,k + yn,k + us
i, j ‖ ∈ [0, α + ηn]

and

‖en,k + yn,k + vt
i, j ‖ ∈ [α + ǫ − ηn,∞).

Proof Claim 8.4 follows immediately from the definitions. �

Claim 8.5 Suppose that

0 ≤ n(0) < n(1) < · · · < n(N),

0 ≤ k(0) < k(1) < · · · < k(L),

and

∃x ∈ BE (M) + BY (M)
(

σ(x) ∈ [0, α] ∧
∧

0≤i≤N
0≤ j≤L

‖en(i),k( j ) + yn(i),k( j ) + x‖ ∈ [β,∞)
)

.

Then there exist sequences

( f0, j ) j≤L, . . . , ( fN, j ) j≤L

in E and sequences

(z0, j ) j≤L, . . . , (zN, j ) j≤L

in span{xν | ν ∈ N} such that

(a) fi, j ∈ BE (M) and zi, j ∈ BY (M), for 0 ≤ i ≤ N and 0 ≤ j ≤ L;

(b) (zi, j ) j≤L is a finite sequence of blocks of (xν);

(c) ‖en(i),k( j ) + fp,q + yn(i),k( j ) + z p,q‖ ∈ [β,∞), for 0 ≤ i ≤ p ≤ N and

0 ≤ j ≤ q ≤ L;

(d) ‖en(i),k( j ) + f p,q + yn(i),k( j ) + z p,q‖ ∈ [0, α + η], if 0 ≤ p ≤ i ≤ N and

0 ≤ q ≤ j ≤ L.

Furthermore, the correspondence is well behaved under extensions in the following

sense. If 0 ≤ N < N ′, 0 ≤ L < L ′,

0 ≤ n(0) < n(1) < · · · < n(N) < n(N + 1) < · · · < n(N ′),

0 ≤ k(0) < k(1) < · · · < k(L) < k(L + 1) < · · · < k(L ′),
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and

∃x ∈ BE (M) + BY (M)
(

σ(x) ∈ [0, α] ∧
∧

0≤i≤N ′

0≤ j≤L ′

‖en(i),k( j ) + yn(i),k( j ) + x‖ ∈ [β,∞),
)

,

then the list of sequences

( f0, j ) j≤L ′, . . . , ( fN ′ , j ) j≤L ′,

(z0, j ) j≤L ′, . . . , (zN ′ , j ) j≤L ′

given by the proof for the pair N ′, L ′ extends naturally the list of sequences given

for the pair N, L, that is, the entries fi, j and zi, j coincide when 0 ≤ i ≤ N and

0 ≤ j ≤ L.

Proof of Claim 8.5 We construct the sequences ( f p, j ) j≤L and (z p, j ) j≤L by induc-

tion on p. First we note that for every j ≤ L we have

S(n(0) − 1, k( j)) 6= ∅;

in fact, ∅ ∈ S(n(0) − 1, k( j)) since, by the hypothesis of our claim,

∃x ∈ BE (M) + BY (M)
(

σ(x) ∈ [0, α + ηn(0)−1]
)

.

Take s ∈ S(n(0)− 1, k( j)). Recall the definition of π1(u
s
n(0),k( j )) and π2(u

s
n(0),k( j )),

and for j ≤ L let

f0, j = π1(u
s
n(0),k( j )),

z0, j = π2(u
s
n(0),k( j )).

By Claim 8.4,

‖en(i),k( j )+ f0,q+yn(i),k( j )+z0,q‖ ∈ [0, α+ηn(i)], if 0 ≤ i ≤ N and 0 ≤ q ≤ j ≤ L.

Assume that we have (z0, j ) j≤L, . . . , (z p, j ) j≤L and ( f0, j ) j≤L, . . . , ( fp, j ) j≤L as de-

sired. Let

s = { n(0), . . . , n(p) }.

By the hypothesis of the claim, for every j ≤ L we have s ∈ S(n(p), k( j)). Let

f p+1, j = π1(u
s
p+1,k( j )),

z p+1, j = π2(u
s
p+1,k( j )).

Then

‖en(i),k( j ) + f p+1,q + yn(i),k( j ) + z p+1,q‖ ∈ [β,∞),

for 0 ≤ i ≤ p and 0 ≤ j ≤ q ≤ L, and by Claim 8.4,

‖en(i+1),k( j ) + f p+1,q + yn(i+1),k( j ) + z p+1,q‖ ∈ [0, α + ηn(i+1)],

for 0 ≤ p ≤ i ≤ N − 1 and 0 ≤ j ≤ q ≤ L. We have proved Claim 8.5. �

Claim 8.6 Suppose that

0 ≤ n(0) < n(1) < · · · < n(N),

0 ≤ k(0) < k(1) < · · · < k(L),
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and

∃x ∈ BE (M) + BY (M)
(

σ(x) ∈ [α + ǫ,∞) ∧
∧

0≤i≤N
0≤ j≤L

‖en(i),k( j ) + yn(i),k( j ) + x‖ ∈ [0, β + δ]
)

.

Then there exist sequences

( f0, j ) j≤L, . . . , ( fN, j ) j≤L

in E and sequences

(z0, j ) j≤L, . . . , (zN, j ) j≤L

in span{xν | ν ∈ N} such that

(a) fi, j ∈ BE (M) and zi, j ∈ BY (M), for 0 ≤ i ≤ N and 0 ≤ j ≤ L;

(b) (zi, j ) j≤L is a finite sequence of blocks of (xν);

(c) ‖en(i),k( j ) + f p,q + yn(i),k( j ) + z p,q‖ ∈ [0, β + δ], for 0 ≤ i ≤ p ≤ N and

0 ≤ j ≤ q ≤ L;

(d) ‖en(i),k( j ) + f p,q + yn(i),k( j ) + z p,q‖ ∈ [α + ǫ − η,∞), if 0 ≤ p ≤ i ≤ N

and 0 ≤ q ≤ j ≤ L.

Furthermore, the correspondence is well behaved under extensions, as indicated in

Claim 8.5.

Proof of Claim 8.6 The proof is analogous to that of Claim 8.5. �

Claim 8.7 There exist m ∈ N satisfying the following property. If n(0), . . . , n(m)

and k(0), . . . , k(m) are indices satisfying

0 ≤ n(0) < · · · < n(m) ≤ (m + 1)2, 0 ≤ k(0) < · · · < k(m) ≤ (m + 1)2,

then neither of the following two conditions holds:

(†) ∃x ∈ BE (M) + BY (M)
(

σ(x) ∈ [0, α] ∧
∧

0≤i≤m
0≤ j≤m

‖en(i),k( j) + yn(i),k( j) + x‖ ∈ [β,∞)
)

,

(‡) ∃x ∈ BE (M) + BY (M)

(

σ(x) ∈ [α + ǫ,∞) ∧
∧

0≤i≤m
0≤ j≤m

‖en(i),k( j) + yn(i),k( j) + x‖ ∈ [0, β + δ]
)

.

Proof of Claim 8.7 Suppose that the claim is false. We now define a tree Ŵ. For

each m ∈ N the nodes on the mth level of Ŵ are indexed by the tuples of the form

(∗) ( n(0), k(0), n(1), k(1), . . . , k(m), k(m) )

where

0 ≤ n(0) < · · · < n(m) ≤ (m + 1)2, 0 ≤ k(0) < · · · < k(m) ≤ (m + 1)2

(so each level of Ŵ is finite). The node at level m indexed by the tuple (∗) is the set

of all lists of sequences of the form

( ( f0, j ) j≤m, (z0, j ) j≤m, . . . , ( fm, j ) j≤m, (zm, j ) j≤m )



Definable Types Over Banach Spaces 43

such that either the conclusion of Claim 8.5 or the conclusion of Claim 8.6 holds

with m in place of L and N . The partial order ⊳ of Ŵ is defined as follows. If ζ, ζ ′

are nodes of Ŵ with

ζ indexed by ( n(0), k(0), . . . , n(m), k(m) ),

ζ ′ indexed by ( n′(0), k ′(0), . . . , n′(m), k ′(m) ),

then ζ ⊳ ζ ′ if and only if m < m′ and ζ is an initial segment of ζ ′.

By Claims 8.5 and 8.6 (and our assumption that Claim 8.7 is false), Ŵ has

height ω. Hence, by König’s Lemma, there exist double sequences

( fi, j )i, j∈N, (zi, j )i, j∈N

such that either the conclusion of Claim 8.5 or the conclusion of Claim 8.6 holds for

all N and L. Since, by construction, the sequences (yn,k)k and (zi, j ) j are sequences

of blocks of (xν) and approximate respective types in span(τ, ∗), either case contra-

dicts the stability of span(τ, ∗), by Proposition 7.3. This proves Claim 8.7. �

Fix m as in Claim 8.7. Let

{ c1, . . . , cr } = { en,k + yn,k | 0 ≤ n, k ≤ (m + 1)2 },

and let C(c1, . . . , cr ; [0, β]) be the following quantifier-free expression:
∨

0≤i≤m

∧

(m+1)·i≤n<(m+1)·(i+1)

∨

0≤ j≤m

∧

(m+1)· j≤k<(m+1)·( j+1)

‖en,k +yn,k +x‖ ∈ [0, β].

Notice that C(c1, . . . , cr ; [0, β]) is positive and its parameters are in E +Y . To finish

the proof, we only have to show that Conditions (I) and (II), stated at the beginning

of the proof, hold.

Condition (II) follows from the fact that (‡) of Claim 8.7 does not hold. To

prove (I), suppose that x ∈ B(M) and x /∈ [C(c1, . . . , cr ; [0, β])]. Then there exist

indices n(0), . . . , n(m) and k(0), . . . , k(m) such that

(m + 1) · i ≤ n(i) < m · (i + 1) for i = 1, . . . , m,

(m + 1) · j ≤ k( j) < m · ( j + 1) for j = 1, . . . , m,

and
∧

0≤i≤m

∧

0≤ j≤m

‖en(i),k( j ) + yn(i),k( j ) + x‖ /∈ [0, β].

Since (†) of Claim 8.7 does not hold, we must have σ(x) /∈ [0, α]. �

Proposition 8.8 Let τ be a type over a separable Banach space X, let ∗ be a

convolution on the scalar multiples of τ , and suppose that (xν) is an approximating

sequence for span(τ, ∗) in X. Then the following conditions are equivalent.

1. span(τ, ∗) is stable.

2. For every finite dimensional subspace E of X, every type over

E + span{xν | ν ∈ N}

is quantifier-free definable.

3. For every finite dimensional subspace E of X, every type over

E + span{xν | ν ∈ N}

is strongly quantifier-free definable.
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Proof (1) ⇒ (3) is given by Proposition 8.3. We prove (2) ⇒ (1). Suppose that

span(τ, ∗) is not stable. By Proposition 7.3, there exist double sequences (ym,k),

(zn,l) in span{xν | ν ∈ N}, an element x ∈ X , and real numbers α, β such that

lim
m<n<k<l

‖ym,k + zn,l + x‖ ≤ α < β ≤ inf
n<m<l<k

‖ym,k + zn,l + x‖.

Let

Y = span
{

{x} ∪ {xν | ν ∈ N
}}

.

After replacing (ym,k)k with a subsequence if necessary, we can assume that there is

an element am such that

tp(am/Y ) = lim
k

tp(ym,k/Y ).

Then, by (∗),

(∗∗) lim
m<n<k<l

‖ym,k + zn,l + x‖ ≤ α < β ≤ lim
n<m<l

‖am + zn,l + x‖.

Similarly, by refining (zn,l)l , we find an element bn such that

tp
(

bn/span
{

{am | m ∈ N} ∪ Y
})

= lim
l

tp
(

zn,l/span
{

{am | m ∈ N} ∪ Y
})

.

By (∗∗),

lim
m<n<k

‖ym,k + bn + x‖ ≤ α < β ≤ lim
n<m

‖am + bn + x‖.

Notice that tp
(

am/span
{

{bn} ∪ Y
})

is an heir of tp(am/Y ), for every n. Hence, if a

and b are such that (after adequate refinements)

tp
(

a/span
{

{bn | n ∈ N} ∪ Y
})

= lim
m

tp
(

am/span
{

bn | n ∈ N} ∪ Y
})

tp
(

b/span
{

{a} ∪ Y
})

= lim
n

tp
(

bn/span
{

{a} ∪ Y
})

,

then tp
(

a/span
{

{b} ∪ Y
})

is an heir of tp(a/Y ).

Now, further refinement of (ym,k)k yields an element a′
m such that

tp
(

a′
m/span

{

{bn | n ∈ N} ∪ Y
})

= lim
k

tp
(

ym,k/span
{

{bn | n ∈ N} ∪ Y
})

,

and

lim
m<n

‖a′
m + bn + x‖ ≤ α < β ≤ lim

n<m
‖am + bn + x‖ = ‖a + b + x‖.

Let a′ and b′ be such that (again, after taking refinements)

tp
(

b′/span
{

{a′
m | m ∈ N} ∪ Y

})

= lim
n

tp
(

bn/span
{

{a′
m | m ∈ N} ∪ Y

})

tp
(

a′/span
{

{b′} ∪ Y
})

= lim
m

tp
(

a′
m/span

{

{b′} ∪ Y
})

.

Then

(i) tp(a′/Y ) = tp(a/Y );

(ii) tp(b′/Y ) = tp(b/Y );

(iii) ‖a′ + b′ + x‖ ≤ α.

Consider the structure

Y =
(

Y, tp(a′/Y )
)

.

By Proposition 3.3, if (Ŷ , f ) is an ultrapower of Y, then f is a type over Ŷ and,

furthermore, an heir of t p(a′/Y ). Thus, using (i) – (iii), we find an ultrapower of Y

and elements a′′, b′′ such that
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1. tp(a′′/Y ) = tp(a′/Y ) = tp(a/Y );

2. tp(b′′/Y ) = tp(b′/Y ) = tp(b/Y );

3. ‖a′′ + b′′ + x‖ ≤ α;

4. tp
(

a′′/span
{

{b′′} ∪ Y
})

is an heir of tp(a′′/Y ).

By taking an isometry that fixes Y pointwise and maps b′′ to b (and relabeling a′′ as

its image under this isometry) we can assume b′′ = b. Thus,

‖a′′ + b + x‖ ≤ α < ‖a + b + x‖.

This means that the types

tp
(

a/span
{

{b, x} ∪ {xν | ν ∈ N}
})

,

tp
(

a′′/span
{

{b, x} ∪ {xν | ν ∈ N}
})

are two distinct heirs of tp
(

a/span
{

{x} ∪ {xν | ν ∈ N}
})

; hence this type cannot be

quantifier-free definable, by Proposition 5.2. �

9 The Main Theorem

Theorem 9.1 Let (xn) be a bounded sequence in a separable Banach space X

such that no normalized sequence of blocks of (xn) converges. Then the following

conditions are equivalent.

1. There exists a sequence (yn) of blocks of (xn) such that for every finite dimen-

sional subspace E of X, every type over E + span{yn | n ∈ N} is quantifier-

free definable.

2. There exists a sequence (yn) of blocks of (xn) such that (yn) determines a

spreading model whose fundamental sequence is isometric over X to the stan-

dard unit basis of either ℓp (1 ≤ p < ∞) or c0.

Let us first observe that (2) ⇒ (1) is easy. Fix (yn) as in (2), and suppose that

(yn) approximates span(τ, ∗) (see Definition 7.1). Then by Propositions 2.4 and 2.5,

either

λτ ∗ µτ =
(

|λ|p + |µ|p
)1/p

τ

or

λτ ∗ µτ = max(|λ|, |µ|)τ.

In either case, for every M > 0 the operation ∗ is commutative and uniformly con-

tinuous on the set of elements of span(τ, ∗) of norm at most M . Hence, span(τ, ∗)

is stable by Proposition 7.3, and Condition (1) of the theorem follows from Proposi-

tion 8.8.

The rest of this section is devoted to the proof of (1) ⇒ (2). We first need to

introduce some terminology.

Definition 9.2 Let X be a Banach space, let E be a subspace of X , and let ǫ be a

positive number. If 1 ≤ p < ∞, a sequence (xn) is said to be (1+ǫ)-equivalent over

E to the standard unit basis of ℓp if whenever x ∈ E and λ0, . . . , λn are scalars,

(1 + ǫ)−1

∥

∥

∥

∥

∥

x +

n
∑

i=0

λi xi

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

x +
(

n
∑

i=0

|λi |
p
)1/p

x0

∥

∥

∥

∥

∥

≤ (1 + ǫ)

∥

∥

∥

∥

∥

x +

n
∑

i=0

λi xi

∥

∥

∥

∥

∥

.
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The sequence (xn) is (1 + ǫ)-equivalent over E to the standard unit basis of c0 if

whenever x ∈ E and λ0, . . . , λn are scalars,

(1 + ǫ)−1

∥

∥

∥

∥

∥

x +

n
∑

i=0

λi xi

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

x +
(

max
0≤i≤n

|λi |
)

x0

∥

∥

∥

∥

≤ (1 + ǫ)

∥

∥

∥

∥

∥

x +

n
∑

i=0

λi xi

∥

∥

∥

∥

∥

.

We will show that (1) of Theorem 9.1 implies one of the following conditions:

(a) there exists 1 ≤ p < ∞ such that for every ǫ > 0 and every finite dimen-

sional subspace E of X there exists a sequence of blocks of (xn) which is

(1 + ǫ)-equivalent over E to the standard unit basis of ℓp;

(b) for every ǫ > 0 and every finite dimensional subspace E of X there exists a

sequence of blocks of (xn) which is (1 + ǫ)-equivalent over E to the standard

unit basis of c0.

Then (2) of the theorem follows by simple diagonalization.

The proof is based on an argument of Bu [4]. However, our argument is com-

pletely elementary. (In [4], Bu reproves the main theorem of [18] by invoking a prin-

ciple from descriptive set theory that Dellacherie in [6] labeled the Kunen-Martin

Theorem.)

Let (6,≤) be a partially ordered set. For an ordinal α we define a set 6α as

follows.

1. 60 = 6.

2. If α = β + 1,

6α+1 = { ξ ∈ 6α | There exists η ∈ 6α with η > ξ }.

3. If α is a limit ordinal,

6α =
⋂

β<α

6β .

The rank of 6, denoted rank(6), is the smallest ordinal α such that

6α+1 = ∅. If such an ordinal does not exist, we will say that 6 has

unbounded rank and write rank(6) = ∞.

Proposition 9.3 Suppose that rank(6) = ∞. Then there exists a sequence (ξn) in

6 such that ξ0 < ξ1 < · · · .

Proof Fix an ordinal α such that 6α = 6β for every β > α. Take ξ0 ∈ 6α . Then

ξ0 ∈ 6α+1, so there exists ξ1 ∈ 6α with ξ1 > ξ0. Now, ξ1 ∈ 6α+1, so there exists

ξ2 ∈ 6α with ξ2 > ξ1. Continuing in this fashion, we find (ξn) as desired. �

Proof of (1) ⇒ (2) of Theorem 9.1 Without loss of generality, we can assume that

(xn) approximates span(τ, ∗), for some type τ over X (see Definition 7.1). Further-

more, by replacing (xn) with the sequence (yn) given by (1) and invoking Propo-

sition 8.8, we can assume that (τ, ∗) is stable. Proposition 7.11 now allows us to

fix a type τ0 ∈ span(σ, ∗) such that p[span(ρ, ∗)] = p[span(τ0, ∗)] for every type

ρ ∈ span(τ0, ∗) of norm 1. By replacing τ0 with τ0 ∗ (−τ0) if necessary, we may

assume that τ0 is symmetric. Fix p ∈ p[span(τ0, ∗)].

Let 6 be the set of finite sequences of blocks of (xn) partially ordered by exten-

sion, that is, if (y0, . . . , yk) and (z0, . . . , zl ) are sequences of blocks of (xn), we have

(y0, . . . , yk) < (z0, . . . , zl ) if and only if k < l and yi = zi for i = 0, . . . , k.
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By Proposition 9.3, it suffices to prove that for every ǫ > 0 and every finite

dimensional subspace E of X , the set

6[ǫ, E] =
{

(y0, . . . , yn) ∈ 6

∣

∣

∣
(y0, . . . , yn) is (1 + ǫ)-equivalent over E

to the standard unit basis of ℓp(n + 1)
}

has unbounded rank.

We construct for every ordinal α a type τα over X such that

1. ‖τα‖ = 1;

2. τα is symmetric;

3. τα ∈ span(τβ , ∗) for every β < α;

4. for every ǫ > 0, every finite dimensional subspace E of X , and every

ρ ∈ (τα, ∗), the set

6[ǫ, E, ρ] =
{

(y0, . . . , yn) ∈ 6

∣

∣

∣
tp(

n
∑

i=0

µi yi/E)
1+ǫ
∼

(

n
∑

i=0

|µi |
p
)1/p

ρ ↾ E

for all scalars µ0, . . . , µn

}

has rank ≥ α.

Note that (4) implies that p ∈ p[span(τα, ∗)] for every ordinal α.

The type τ0 defined above satisfies (1) – (3). Condition (4) is immediate from the

symmetry of τ0 and the fact every type over a finite dimensional space E can be

approximated by types realized in E .

Suppose that τα has been defined, let (σl) be a sequence of types of norm 1

in span(τα, ∗) which witnesses the fact that p ∈ p[span(τα, ∗)], and define

τα+1 = lim σl . Conditions (1) – (3) are clearly satisfied. We prove (4).

Fix ǫ > 0, a type ρ ∈ span(τα+1, ∗), a finite dimensional subspace E of X , and

a finite sequence (y0, . . . , yn) of blocks of (xn). Take real numbers δ1, δ2 such that

0 < δ1 < δ2 < ǫ and (1 + δ2)
2 < 1 + ǫ.

For scalars λ0, . . . , λn , we have

(†)
(

n
∑

i=0

|λi |
p
)1/p

τα = lim
l

(λ0σl ∗ · · · ∗ λnσl ).

Each σl is in span(τα, ∗), so using (†) and the fact that the Krivine-Maurey convolu-

tion is commutative and separately continuous on span(τα, ∗), for every x ∈ X we

find types υ0, . . . , υn ∈ span(τα, ∗) such that

(

n
∑

i=0

|λi |
p
)1/p

ρ(x)
1+δ1
∼ λ0υ0 ∗ · · · ∗ λnυn(x)

for all scalars λ0, . . . , λn . Let b be a realization of υ0. Since E is finite dimensional,

there exists a sequence (z1, . . . , zn) of blocks of (xn) such that

(‡)
(

n
∑

i=0

|λi |
p
)1/p

ρ ↾ E
1+δ2
∼ tp(λ0b +

n
∑

i=1

λi zi / E)

for all scalars λ0, . . . , λn . Furthermore, (z1, . . . , zn) can be taken from any tail

of (xn), and we take it from one whose support is disjoint from the support of
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(y0, . . . , yn). Let

F = span
{

E ∪ {z1, . . . , zn, }
}

.

We now prove that

(y0, . . . , yn) ∈ 6[δ2, F, υ0] implies (y0, . . . , yn, z1, . . . , zn) ∈ 6[ǫ, E, ρ].

Since υ0 ∈ span(tα, ∗), this will conclude the proof of (4).

Fix scalars µ0, . . . , µn, λ1, . . . , λn , and suppose (y0, . . . , yn) ∈ 6[δ2, F, υ0].

Since tp(b/X) = υ0, we have

tp
(

n
∑

i=0

µi yi +

n
∑

i=1

λi zi / E
) 1+δ2

∼ tp
( (

n
∑

i=0

|µi |
p
)1/p

b +

n
∑

i=1

λi zi / E
)

.

Hence, by (‡),

tp
(

n
∑

i=0

µi yi +

n
∑

i=1

λi zi / E
) (1+δ2)

2

∼
(

n
∑

i=0

|µi |
p +

n
∑

i=1

|λi |
p
)1/p

ρ ↾ E .

Since (1 + δ2)
2 < 1 + ǫ, it follows that (y0, . . . , yn, z1, . . . , zn) ∈ 6[ǫ, E, ρ]. If α

is a limit ordinal, we take an ultrafilter U on α and define tα = limβ<α,U tβ . �

Note

1. The term fundamental sequence is extracted from [1].
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