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Equivalence of Syllogisms

Fred Richman

Abstract We consider two categorical syllogisms, valid or invalid, to be equiv-

alent if they can be transformed into each other by certain transformations, go-

ing back to Aristotle, that preserve validity. It is shown that two syllogisms are

equivalent if and only if they have the same models. Counts are obtained for

the number of syllogisms in each equivalence class. For a more natural devel-

opment, using group-theoretic methods, the space of syllogisms is enlarged to

include nonstandard syllogisms, and various groups of transformations on that

space are studied.

Happy families are all alike; every

unhappy family is unhappy in its

own way. (Leo Nikolaevich Tolstoi.

Anna Karenina)

1 Categorical Syllogisms

Studies of categorical syllogisms typically focus on the valid ones: which syllogisms

are valid, why they are valid, how the valid ones are classified, how to derive valid

ones from other valid ones. As Lear [4] put it, “Our principal interest in invalid

inferences is to discard them.” But the valid syllogisms exist in the context of all

syllogisms, just as tautologies exist in the context of all propositional forms. To

understand them and the ways we manipulate them, we need to consider this context.

In this paper we examine the structure on the set of all syllogisms induced by the

traditional methods for transforming one valid syllogism into another.

Categorical syllogisms are inferences of the form p ∧ q ⇒ r where p, q , and r

are statements about pairs of classes. The statements p and q are the premises, the

statement r is the conclusion. Each statement is of one of the four types:
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Axy All x are y

Exy No x are y

I xy Some x are y

Oxy Some x are not y

Note that O is the negation of A and E is the negation of I . The terms x and y refer

to classes. The term x is called the subject, y the predicate. A typical example of a

statement is ‘all dogs are animals’. The traditional syllogism contains precisely three

terms each of which occurs in two of the three statements. The term common to the

two premises is called the middle term. The subject and predicate of the conclusion

are the subject term and the predicate term of the syllogism. The premise containing

the predicate term is the major premise, the other is the minor premise. The major

premise is traditionally written first (so p is the major premise).

With this structure there are exactly four ways for the statements to share terms.

These are the traditional figures, described by the following table, where s denotes

the subject term, p the predicate term, and m the middle term.

Major Minor Conclusion Figure

mp sm sp 1

pm sm sp 2

mp ms sp 3

pm ms sp 4

We can represent the figures by triangles, as is done in Richards [7]. The vertices of

the triangles correspond to the terms, the sides to the statements. We put an arrow

on each side from the subject to the predicate. The base of the triangle represents

the conclusion, and we take that arrow from left to right, so the major premise is the

right side of the triangle and the minor premise is the left side.
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Here are the triangles for the four figures:
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A form of a syllogism is obtained taking a figure and assigning one of the four state-

ment types, A, E , I , and O, to each side of the triangle. This assignment is called

the mood of the syllogism. Thus there are 256 forms, 64 in each figure. We denote

the forms by symbols like E I O-2, which means the major premise has type E , the

minor premise has type I , the conclusion has type O, and the figure is 2. To get a

syllogism from a form, we assign a class to each vertex. For example, E I O-2 is

exemplified (or instantiated) by the argument,

No dogs are cats.

Some carnivores are cats.

Therefore, some carnivores are not dogs.

This is a valid syllogism, an instantiation of a valid form: if we replace the terms

‘dogs’, ‘cats’, and ‘carnivores’, by terms denoting any classes whatsoever, the con-

clusion will be true if the premises are. This form, E I O-2, is traditionally called

Festino, a mnemonic whose vowels are EIO. Its triangular representation is
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Here are the traditional mnemonic names of 24 of the forms, arranged by figures:

1 2 3 4

Barbara Cesare Darapti ∗ Bramantip ∗

Celarent Camestres Felapton ∗ Camenes

Darii Festino Disamis Dimaris

Ferio Baroco Datisi Fesapo ∗

Barbari † Camestrop † Bocardo Fresison

Celaront † Cesaro † Ferison Camenop †

The 15 unmarked forms are the valid ones. The 9 marked forms are valid if Axy

is interpreted as ‘all x are y, and there are some x’. This is known as attributing

existential import to A. The 5 forms marked with a dagger come from other forms

of the same figure by weakening the conclusion (assuming existential import). For

example, the conclusion of Barbari is that some x are y, while the conclusion of

Barbara is that all x are y.

Having pointed out the distinction between forms and their instantiations, the

reader is warned that we will tend to use the terms “syllogism” and “form” inter-

changeably.
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2 Transformations and Nonstandard Syllogisms

The classical transformations, used by Aristotle [1], are conversion and indirect re-

duction (reductio ad impossibile). In conversion the subject and predicate of an E or

I statement are interchanged, and the two premises are then interchanged, if neces-

sary, so that the major one comes first. Applying conversion to the major premise of

E AE-1, Celarent, we get E AE-2, Cesare. In terms of triangles, this transformation

corresponds to reversing the arrow on the right side:
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Applying conversion to the conclusion of E AE-1, we get AE E-4, Camenes, after

interchanging premises:
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In indirect reduction, one of the premises and the conclusion are interchanged and

negated, that is, we pass from p ∧ q ⇒ r to p ∧ ¬r ⇒ ¬q or to ¬r ∧ q ⇒ ¬p,

and then interchange the two premises, if necessary. In this way we go from AAA-1,

Barbara, to AO O-2, Baroco and back. Geometrically, we are flipping the triangle

around one of the base vertices and changing the letters on the adjacent sides:
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With conversion and indirect reduction the 15 valid forms can be obtained from just

two: Barbara and Celarent.

It’s quite indisputable, for

I’ll prove it with singular ease,

You shall have it in ‘Barbara’ or

‘Celarent’—whichever you please.

W. S. Gilbert, The Force of Argument
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The interchange of premises, to insure that the major premise comes first, seems a

little hokey. However, no interchange is necessary if we think of a syllogism as be-

ing a major premise, a minor premise, and a conclusion, rather than a first premise,

a second premise, and a conclusion. A more serious objection is that the transfor-

mations are not one-to-one, hence do not form a group. For example, both AAA-1,

Barbara, and AO O-2, Baroco, are transformed to O AO-3, Bocardo, by applying

indirect reduction to the major premise and the conclusion.

To get around this, we can enlarge the definition of a syllogism slightly. Allow-

ing the major premise to appear in the second position, rather than just in the first,

necessitates four more figures, which we denote by 1′, 2′, 3′, and 4′, in which the

major premise comes second. We will call these figures nonstandard. For example,

I E O-2′ is exemplified by the argument,

Some carnivores are cats.

No dogs are cats.

Therefore, some carnivores are not dogs.

In the triangle representation, we simply flip the E I O-2 triangle, Festino, around its

vertical axis of symmetry so the premises are interchanged:
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We might call this form Festino′. Note that the arrow on the base goes from right

to left for nonstandard figures if we keep the convention that the statements on the

sides of the triangles are read in order: right side, left side, base. Now, when we

apply indirect reduction to the major premise and the conclusion of AO O-2, Baroco,

we get AO O -3′, Bocardo′, rather than O AO-3, Bocardo, and the transformation is

one-to-one.

The nonstandard figures seem to provide the right setting for indirect reduction—

we get a space of 512 syllogisms with a natural group action on it. The group

may be thought of as the group D3 of symmetries of an equilateral triangle. The

two flips about the vertices of the base generate this six-element group. There

are 84 orbits of this group action of size six, and four of size two. The latter are

{AAO-4, AAO-4′}, {E E I -4, E E I -4′}, {I I E-4, I I E-4′}, and {O O A-4, O O A-4′}.

Each orbit is composed half of standard figures and half of nonstandard figures.

It is less clear that this is the right setting for conversion. We can only convert

statements of type E and I . If we want a transformation on the space that corre-

sponds, say, to conversion of the conclusion, then we have to define it also when the

conclusion is not of type E or I . We could, of course, say that conversion leaves

statements of type A or O unaffected, but that goes against the basic meaning of

“conversion”, which is to interchange subject and predicate. More natural would be

to interchange subject and predicate, and change the type of the statement, if nec-

essary, so that the resulting statement is equivalent to the original one. This would

require a type of statement that “quantifies the predicate.” De Morgan [3] introduced
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the statement types a and o in such a way that axy is equivalent to Ayx , and oxy is

equivalent to Oyx . With these additional statement types, we can define conversion

of the conclusion to reverse the arrow on the base and interchange the letters A and

a, and the letters O and o.

A third transformation, not used systematically by Aristotle, is obversion. The

obverse of the statement Axy is Ex ȳ; the obverse of the statement I xy is Ox ȳ. Here

x̄ denotes the complement of the class denoted by x . Each statement is equivalent to

its obverse—to say that all dogs are animals is to say that no dogs are nonanimals.

We can apply obversion to a syllogism provided that some term appears only as a

predicate, that is, in every figure except the fourth. If we apply it to the predicate of

Celarent we get Barbara, and vice versa.

As with conversion, we would like to obvert at any term in a syllogism not just at

those that are double predicates. So, for example, we would like a sentence type that

is equivalent to Ax̄ y, like Exy is equivalent to Ax ȳ. De Morgan [3] called this type

e. He considered nonstandard types a, e, i , and o defined by

axy = Ax̄ ȳ = Ex̄ y

exy = Ex̄ ȳ = Ax̄ y

i xy = I x̄ ȳ = Ox̄ y

oxy = Ox̄ ȳ = I x̄ y

(Boole [2] also considered these as four of “the eight fundamental types of proposi-

tions.”) Note that axy = Ayx and oxy = Oyx , so adding the types a and o enables

arbitrary arrow reversals (there never was a problem reversing arrows with E and I

statements). Thus any syllogism with a standard figure can be put into any standard

figure by arrow reversals on the top sides. For example, the second figure version of

Barbara is a AA-2, which comes from Barbara by reversing the right arrow. Forms

with nonstandard conclusion types, such as Aaa-2, do not correspond so directly to

standard syllogisms. No form containing e or i corresponds to a standard syllogism

just by arrow reversals and interchanging premises.

While a and o can be viewed as simply quantifying the predicate, and thus do not

differ essentially from A and O, the statement types e and i are essentially different.

Unlike the other six types, they involve unbounded quantification. For example, the

i statement ‘there is something that is neither a cat nor a dog’, requires considering

objects outside the two classes in question.

With De Morgan’s extended set of 8 statement types, we can construct 83 = 512

forms, each in the second figure. The 6 · 6 · 4 = 144 forms not containing e or i and

having a standard conclusion type correspond to the standard syllogisms. Because

of the phenomenon that E AA-1 and E AA-2 are associated with the same second

figure form, the number 144 undercounts the number of standard syllogisms. The

undercount is

3(2 · 2 · 4)+ 2(4 · 2 · 4) = 112.

The 2 · 2 · 4 in the first term counts those forms that contain I or E in both premises;

the second term counts those forms that contain an I or E in one premise.
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3 The Syllogism Group

If we include the four nonstandard figures and the four nonstandard statement types,

we get a space of 84 = 4096 syllogistic forms. This is convenient for theoretical

purposes because it is closed under obversion at each vertex, conversion at each side,

and indirect reduction at each base vertex. So it is acted on naturally by the group

G generated by obversions, conversions, and indirect reductions. Note that each of

these generators of G has order two. We denote the identity of G by 1.

What is the structure of G as an abstract group (as opposed to a permutation

group)? To fix the notation, number the sides of a triangle as follows,
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using the same numbers for the opposite vertices. The conclusion goes on side 3,

and if the arrow on side 3 goes from left to right, then the premise on side 1 is the

major premise. Of the 4096 syllogisms, 512 involve only standard types and 256 of

those have the major premise on side 1, that is, the arrow on side 3 goes from left to

right. These are the 256 traditional forms. The generators of G are the following:

Conversion ci reverses the arrow on side i and changes the case of the

letters A, a, O, and o on that side.

Obversion oi changes the letters on each side adjacent to vertex

i . With the arrow toward the vertex, the permutation is

(AE)(I O)(ae)(io). With the arrow away from the vertex,

the permutation is (Ae)(Io)(Ea)(Oi).

Indirect reduction τi flips the triangle around vertex i and negates the letters

on the adjacent sides. Here i = 1, 2. For τ3 we don’t

want to negate the letters, and τ3 is not an indirect reduc-

tion but simply the interchange of premises. In any event

τ3 = τ1τ2τ1 = τ2τ1τ2.

Indirect reduction (reductio ad impossibile) does not consider the internal structure

of the statements p, q , and r . It is part of propositional calculus rather than predi-

cate calculus. Starting from the syllogism p ∧ q ⇒ r , the operation τ1 takes it to

p ∧¬r ⇒ ¬q , the operation τ2 takes it to ¬r ∧ q ⇒ ¬p, and the operation τ3 takes

it to q ∧ p⇒ r .

What are the relations among the generators of G? Note that changing the case

of A, O, a, and o commutes with negating. The following relations hold:

o2
i = c2

i = τ 2
i = 1

(τ1τ2)
3 = 1

ci c j = c j ci oi o j = o j oi ci o j = o j ci

ciτi = τi ci oiτi = τi oi

c3 = τ1c2τ1 = τ2c1τ2 o3 = τ1o2τ1 = τ2o1τ2
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The τi generate a subgroup T isomorphic to S3, the symmetric group on three letters.

The oi and the ci generate commuting eight-element Abelian normal subgroups O

and C of type (2, 2, 2). Each element in G can be written uniquely as a product τoc

with τ ∈ T , o ∈ O, and c ∈ C , so G has order 6 · 8 · 8 = 384 = 273.

The groups OT and CT are isomorphic. The group C is a normal subgroup of

order 8 in CT . This subgroup is the kernel of the map from CT onto the group

of permutations of the terms. The subgroup CT can be thought of as the group

of symmetries of the cube by associating the sides of the triangles with the three

principal axes of symmetry of the cube. The case changes and negations can be

ignored because the relations are right. The order of CT is 48 = 243 (this result

appears in [7]). The same analysis applies to the subgroup OT .

The subgroup OC , which is Abelian of type (2, 2, 2, 2, 2, 2), is the kernel of the

map from G onto the group of permutations of the three terms, the symmetries of

the (undecorated) triangle. Clearly G is a semidirect product of OC by T , the latter

subgroup mapping isomorphically onto the symmetries of the triangle.

The group G has exactly three Sylow 2-subgroups: 〈OC, τ1〉, 〈OC, τ2〉, and

〈OC, τ3〉. Thus OC , their intersection, is a natural subgroup of G. Conjugation

by c1c2c3 or o1o2o3 fixes τ1 and τ2, while conjugation by τ1 or τ2 interchanges τ2τ1

and τ1τ2. These elements generate a 24-element subgroup fixing the three-element

subgroup 〈τ1τ2〉 under conjugation. It is not hard to show that this subgroup is the

normalizer of 〈τ1τ2〉, that is, it contains all elements that fix 〈τ1τ2〉 under conjuga-

tion. Thus there are 384/24 = 16 conjugates of 〈τ1τ2〉, which constitute the Sylow

3-subgroups of G.

4 Equivalence of Syllogistic Forms

We have a syntactic notion of when two syllogisms are equivalent: when they can be

transformed into each other by an element of G. We will show that the syntactic no-

tion corresponds to a semantic notion. This will not only endow the syntactic notion

with meaning, but will provide a convenient method for showing that two syllogisms

are inequivalent. The semantic notion comes from considering instantiations.

It will be convenient to think of a syllogism as an implication rather than an in-

ference. That is, we think of p ∧ q ⇒ r as a statement that is either true or false.

(Łukasiewicz [5] claims that Aristotle himself thought of syllogisms as implications

rather than inferences.) When we say that a syllogism is true, we are saying that the

statement of the implication is true. A syllogism is valid, on the other hand, if its

form is valid. A syllogistic form, like E I O-2, gives rise to a function from ordered

triples of sets to truth values—a ternary relation among sets. If α is a form we denote

its ternary relation by Rα . By Rα(x, y, z) we mean the truth value of the syllogism

that instantiates α when x is the class referred to by the subject term, y by the middle

term, and z by the predicate term. The form α is valid if Rα(x, y, z) is true for all

sets x , y, and z.

We will consider three increasingly weaker notions of equivalence of syllogistic

forms α and β. The third one will be our definition of equivalence.

Definition 1 Rα = Rβ .

Definition 2 Rα = Rβ ◦ π , where π is a permutation of the variables.
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Definition 3 Rα = Rβ ◦ π , where π permutes the variables and may also

complement some of them.

Definition 1, which we will ignore, gives a fairly restrictive equivalence although it

is nontrivial. The forms E AI -1 and E AI -2 are equivalent because of the symmetry

of E . That is, the two implications

Eyz ∧ Axy ⇒ I xz and

Ezy ∧ Ayz ⇒ I xz

are logically equivalent. The forms α = E AI -1 and β = AE I -4 are not equivalent

because Rα(∅, ∅, {0}) is false and Rα(∅, ∅, {0}) is true, whereas we might expect

equivalence because the symmetry of I results in the logical equivalence of the two

implications

Eyz ∧ Axy ⇒ I xz and

Axy ∧ Eyz ⇒ I zx .

For these two forms to be equivalent, we must allow a permutation of the inputs into

the ternary relations. That is, we must pass to Definition 2.

Definition 2 respects conversion and indirect reduction. By indirect reduction we

go from α = AAA-1 to β = AO O-2, and we see that Rα(x, y, z) = Rβ (x, z, y).

Definition 3 respects obversion in addition to conversion and indirect reduction. In

Definition 2 we act on the ternary relations by permuting the inputs—a six-element

group isomorphic to the symmetry group of an equilateral triangle. In Definition 3,

where we also allow the inputs to be complemented, we act on the relations with a

48-element group isomorphic to the symmetry group of a cube: we can think of the

inputs as the (directed) major axes of the cube with complementation occurring if

the directions get reversed.

Clearly any form equivalent to a valid form is also valid. More generally, if α is

equivalent to β, and S is any set, then the number of triples of subsets of S making

Rα true is equal to the number of triples of subsets of S making Rβ true.

5 Orbits of the Syllogism Group G

An orbit of G is a set of the form {gα : g ∈ G} for some syllogism α. Two syllogisms

are in the same orbit of G if some element of G transforms the one into the other. If

two syllogisms are in the same orbit of G, then we can transform one into the other

by a sequence of conversions, obversions, and indirect reductions.

Question 5.1 If two standard syllogisms are in the same orbit of G, can we trans-

form one into the other by a sequence of conversions, obversions, and indirect re-

ductions without leaving the subspace of standard syllogisms?

We will also want to answer the corresponding question with G replaced by CT ,

the group of classical transformations. The point is that the syllogism space was

enlarged for convenience, not so that a standard syllogism could be transformed into

more standard syllogisms than it could before.

We need to clarify this question a bit. Even the classical transformations take you

out of the standard space of 256 forms, but the identification of α with τ3α, where the

major and minor premises are interchanged, is so strong that they are thought of as
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the same syllogism. Indeed they are the same syllogism if we think of a syllogism as

consisting of a major premise, a minor premise, and a conclusion, rather than a first

premise, a second premise, and a conclusion, as we have been doing. For example, if

we convert the conclusion of Celarent, E AE-1, then we get E AE-4′, a nonstandard

form. But simply writing the major premise first, we get AE E-4, Camenes. So,

to stay within the subspace of standard syllogisms, we really need only stay within

the space of 512 forms, that include nonstandard figures but only standard statement

types, in which we allow the minor premise to come first.

The main reason for allowing nonstandard figures, and enlarging the standard

space to 512, is that the transformations generated by indirect reduction form a group

on that space—each transformation has an inverse. If we restrict ourselves to stan-

dard figures by writing the major premise first in the transformed syllogism, then τ2

takes both AAA-1, Barbara, and AO O-2, Baroco, to O AO-3, Bocardo. As far as

the computation of orbits is concerned, that doesn’t really matter; we can operate

just as well with a monoid of functions that are not one-to-one. What is important

is that the functions be locally invertible: if f (α) = β, then there exists g so that

g(β) = α. Then we can still talk about orbits.

If two syllogisms are in the same orbit of G, then they are equivalent in the sense

of Section 4. Our second question is about the converse.

Question 5.2 If two syllogisms are equivalent, are they in the same orbit of G?

To answer both questions, we first show that every orbit of G contains a standard

syllogism. Then we consider the (not necessarily invertible) transformations o∗i , c∗i ,

and τ ∗i , taking standard syllogisms to standard syllogisms, defined as follows. For

i = 1, 2, 3, if oi (α) is standard, then o∗i (α) = oi (α), otherwise o∗i (α) = α, and the

same for c∗i (α). For i = 1, 2, if τi (α) is standard, then τ ∗i (α) = τi (α), otherwise

τ ∗i (α) = τ3τi (α). These are the traditional obversions, conversions, and indirect

reductions, extended in a harmless manner to standard syllogisms where they don’t

apply. Let G∗ be the monoid generated by these functions. To show that G∗ is locally

invertible, it suffices to show that the generators are. Clearly o∗i and c∗i are their own

inverses, and, for i and j distinct elements of {1, 2}, if τi (α) is nonstandard, then

τ ∗j τ
∗
i (α) = α, while if τi (α) is standard, then τ ∗i τ ∗i (α) = α. We will calculate the

orbits of G∗ and verify that elements of different orbits are inequivalent. This last

step is computer assisted.

To see that every orbit of G contains a standard syllogism, start with a syllogism

α. By passing to τ3(α), if necessary, we may assume that the figure is standard. By

applying conversions, we may assume that the only nonstandard statement types that

appear in α are i and e. If α has two nonstandard statement types, then by applying

conversion we can point their arrows away from each other and obvert the subjects,

giving standard types. If there are three nonstandard types, we can reduce to one

nonstandard type in the same way. If there is exactly one nonstandard type, we can

bring it to the conclusion with τ1 or τ2. If one of the top edges points to the base,

we can convert the nonstandard sentence so that it points away and obvert. So we

need only consider Figure 2. These forms are transformed to a standard form by the

sequence of transformations o2, o3, c1, c3, τ3. For example, AAe-2 is transformed

as follows:

AAe-2, eAa-2, a Ea-2, AEa-1, AE A-4′, E AA-4 .
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It is interesting to note that the much maligned Figure 4 is the only standard figure

that appears with standard statement types in each orbit of G. Indeed, AAO-4 is the

unique standard form in its orbit.

The full negation symmetry on the space of syllogisms, or standard syllogisms,

replaces each statement type by its negation and leaves the figures alone. Elements

of G and G∗ commute with the full negation symmetry: It’s easy to see that if the

form α is transformed to β by one of the generating transformations, then its full

negation ᾱ is transformed to β̄ by that same transformation. Moreover, a standard

form α cannot be equivalent to its full negation ᾱ. If there is a triple of classes that

makes α false, then ᾱ is true for that triple. Otherwise, α is a valid syllogism and ᾱ

cannot also be valid because of the rules “there can be at most one negative premise”

and “if one premise is negative, the conclusion must be negative” (see the rules for

valid antilogisms below: there must be two positive statements and one negative

statement in a valid antilogism). So the orbits come in pairs, one orbit being the full

negation of the other.

The monoid G∗ has 20 orbits: four each with 9 and 15 points, and two each with

1, 3, 7, 18, 21 and 30 points. Barbara, AAA-1, is in a 15-orbit consisting of the

valid syllogisms; Barbari, AAI -1, is in a 9-orbit consisting of those syllogisms that

are true for all nonempty classes (these are valid syllogisms if we assume existential

import: Axy entails there exist xs).

Here are the 20 orbits of G∗, paired by the full negation symmetry, with the sizes

of the orbits given on the left, and the first syllogism in the orbits on the right.

1 AAO-4 OOA-4

3 AAA-4 AOA-4

7 AAI-2 IIE-1

9 AAE-3 AIA-2

9 AAI-1 IOA-1

15 AAA-1 AOA-3

15 AAO-1 IIA-1

18 AAE-1 AOE-3

21 AAE-2 AIA-1

30 AAA-2 AIE-1

It remains to verify that no two of the syllogisms listed in the table are equivalent.

This is a different kind of calculation—a semantic rather than a syntactic one. We

choose a finite universe, say {1, 2, . . . , n}, and look at all triples of subsets of it.

Fortunately we can get by with a small value of n. However, there are 48 ways to

hook up two syllogisms by permuting and complementing inputs in order to test for

equivalence.

There is a test for inequivalence that avoids head-to-head comparison of syllo-

gisms, but it doesn’t quite do the job. If two syllogisms are equivalent, then they will

be false on the same number of triples of subsets. Here are those counts for n = 3.
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Number of triples of subsets that

make a syllogism false

AAO-4 8 OOA-4 48

AAA-4 56 AOA-4 96

AAI-2 64 IIE-1 175

AAE-3 98 AIA-2 115

AAI-1 27 IOA-1 90

AAA-1 0 AOA-3 30

AAO-1 64 IIA-1 114

AAE-1 37 AOE-3 54

AAE-2 61 AIA-1 30

AAA-2 61 AIE-1 91

We still need to compare AAA-2 with AAE-2, AO A-3 with AI A-1, and AAI -2

with AAO-1. One might hope that a bigger universe would distinguish these, but

this is not the case, as we now demonstrate.

It is not hard to see that the counts will always be 4n for AAI -2 and AAO-1. The

syllogism AAI -2 is false only if m contains the disjoint sets s and p. This happens

4n times. The syllogism AAO-1 is false only if s contains m and m contains p,

which also happens 4n times. The correspondence is s = m, m = s ∪ p, and p = p.

Conversely, m = s, s = m \ p, and p = p.

To see that the counts for AAA-2 and AAE-2 are always the same, look at the

correspondence s = s, m = m, and p = m \ p—a sort of relative obversion. The

count, which is 5n − 4n , is gotten by choosing 4 disjoint sets, which can be done in

5n ways, then subtracting the 4n ways that this is done with the first set empty.

What about AI A-1 and AO A-3? The first is false if p contains m, and s intersects

m and is not contained in p. The second is false if p contains m, and s does not

contain m and is not contained in p. In short, both conditions say p contains m but

not s. The first says also that m intersects s, the second that m intersects p − s. So

letting s = (s \ p) ∪ (p \ s), gives a correspondence. By exclusion-inclusion the

count is 6n − 2 · 5n + 4n .

To show that none of these three pairs are equivalent, a program was written to try

all 48 possibilities on each of the three pairs. They all failed. So we have answered

the two questions in the affirmative.

Here are the counts for a few other syllogisms. The syllogism AAO-4 is false

only if s = p = m. This happens 2n times, once for each subset of the universe. The

syllogism AAE-3 is false only if m is contained in s and p, and s intersects p. The

count is 5n − 3n . The syllogism AAI -1, Barbari, is false only if p is empty and m

is contained in s. This happens 3n times. (Because Barbari is true for all nonempty

classes, it is sometimes considered valid. The only reason that it was not part of the

standard list of 19 valid syllogisms, or 14 excluding Figure 4, was because it was

thought that one should always use the stronger Barbara instead.)

It turns out that if two orbits of G contain the same number of standard syllogisms,

then they have the same size. This was ascertained by a program that computed the

orbits. The following table shows the number of standard syllogisms for each of

the 20 orbits of G, the corresponding size of the orbit, and the number of orbits

containing that number of standard syllogisms.
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standard syllogisms 1 3 7 9 15 18 21 30 256

syllogisms 64 192 64 192 192 384 192 384 4096

number of orbits 2 2 2 4 4 2 2 2 20

Note that the size of four of the orbits is 384, the order of G. Of course, all of

the sizes divide the order of G, the quotient being the number of symmetries of a

syllogism in that orbit. For example, the syllogism AAO-4 is left invariant by the

six-element subgroup T , so the size of its orbit is 384/6 = 64.

6 Orbits of Subgroups of G

By restricting the allowable transformations, we get different notions of equivalence

of syllogisms. The equivalence classes are the orbits of various subgroups of G. In

this section we study those orbits and the corresponding orbits in the space of 256

standard syllogisms.

How many orbits are there in the space of 256 standard syllogisms if we just allow

conversion? Let c∗i (α) = ci (α), if ci (α) is standard, and c∗i (α) = α otherwise (that

is, if you are trying to convert an A or an O). This generates a group, C∗, of order 8.

So the sizes of the orbits can only be 1, 2, 4, or 8. There are 114 orbits which break

down as follows:

size of orbit 1 2 4 8

number of orbits 40 44 28 2

Of the 1-orbits (fixed points) 32 are boring: those syllogisms in which all sentence

types are A or O, so conversion doesn’t really ever apply. The 8 interesting fixed

points are X XY -m where X ∈ {A, O}, Y ∈ {I, E}, and m ∈ {2, 3}. To construct an

element of a 2-orbit, there are 3 choices for where the I or E goes, then 23 choices

for the mood (the other sides must have A or O) and 4 choices for the figure. Finally

you must subtract the 8 interesting fixed points, resulting 3 ·8 ·4−8 = 88 elements in

2-orbits. There are four 4-orbits with just Es and I s, containing one syllogism from

each figure: E E I -n, I I E-n, I I I -n, and E E E-n. In addition, there are 3 · 23 = 24

moods in which exactly one statement is of type A or O, and each of these gives a 4-

orbit. One 8-orbit is I E I -1, I E I -2, I E I -3, I E I -4, E I I -1, E I I -2, E I I -3, E I I -4.

The other 8-orbit is gotten by interchanging Es and I s.

As for the orbits of C itself, in the space of all 4096 syllogisms, each contains 8

elements and there are 512 of them. Clearly each C∗ orbit is contained in a C orbit,

and no C orbit contains more than one C∗ orbit.

The indirect-reduction submonoid T ∗, which acts on the space of standard syllo-

gisms, has 84 orbits of 3, and 4 fixed points: AAO-4, E E I -4, I I E-4, and O O A-4.

Twenty of the 3-orbits involve only fourth figure syllogisms, the other 64 contain one

syllogism from each of the other three figures. These 64 orbits are what make G∗

fail to be a group. Each orbit looks like

XY Z -1
τ∗1
←→ X Z̄ Ȳ -2

τ∗2
⇆

τ∗1

Z̄Y X̄-3
τ∗2
←→ XY Z -1,

while the fourth-figure orbits look like

XY Z -4
τ∗2
⇆

τ∗1

Z̄ XȲ -4
τ∗2
⇆

τ∗1

Y Z̄ X̄ -4
τ∗2
⇆

τ∗1

XY Z -4.
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(In Patzig [6], for example, it is noted that the 24 valid forms group into triples by

indirect reduction.)

The orbits of the indirect-reduction subgroup T , in the big space, have size 6

except for the eight 2-orbits

AAO-4 EEI-4 IIE-4 OOA-4 aao-4 eei-4 iie-4 ooa-4

AAO-4
′
EEI-4

′
IIE-4

′
OOA-4

′
aao-4

′
eei-4

′
iie-4

′
ooa-4

′

That gives (4096− 16)/3 = 1360 orbits of size 6. (It’s easier to see this in terms of

antilogisms.)

Using both indirect reduction and conversion we get 44 orbits. The only fixed

points are AAO-4 and O O A-4. There are two 1-orbits, eighteen 3-orbits, two 4-

orbits, twelve 6-orbits, and ten 12-orbits.

2 · 1+ 18 · 3+ 2 · 4+ 12 · 6+ 10 · 12 = 256,

for a total of 2 + 18 + 2 + 12+ 10 = 44 orbits. Of the 104 orbits of CT in the big

space, 44 contain standard syllogisms.

Standard Orbit Orbits

syllogisms size

0 8 2

0 24 18

0 48 40

1 16 2

3 24 8

3 48 10

4 8 2

6 48 12

12 24 2

12 48 8

Barbara is in an orbit of size 48 containing the three standard syllogisms, Barbara,

Baroco, and Bocardo. Celarent is in an orbit of size 48 containing the remaining

twelve valid standard syllogisms.

Using just obversion we get 160 orbits: 64 fixed points (Figure 4) and 96 orbits

of 2. Figures 1, 2, and 3 each admit a unique obversion.

Using indirect reduction and obversion we get 56 orbits: four fixed points (same

as for indirect reduction alone), thirty two 6-orbits, and twenty 3-orbits. The 3-orbits

contain the rest of the Figure 4 forms.

Using conversion and obversion we get 42 orbits: eight fixed points (Figure 4 with

As and Os), four 3-orbits, four 5-orbits, ten 6-orbits, four 7-orbits, ten 10-orbits, and

two 14-orbits.

7 Antilogisms

An antilogism is just like a syllogism except that an antilogism says ¬(p ∧ q ∧ r)

rather than p ∧ q ⇒ r . Antilogisms are represented by the same kind of triangles

as syllogisms are. As ¬(p ∧ q ∧ r) is equivalent to p ∧ q ⇒ ¬r , antilogisms

are just another way of looking at syllogisms. Because of the complete symmetry

of the statements p, q , and r in ¬(p ∧ q ∧ r), we view any permutation of those
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statements to be the same antilogism. In terms of triangles, any of the six placements

of a triangle with given arrows and statement types on the sides, is considered the

same antilogism—the antilogism is the decorated triangle itself, independent of its

placement.

We say that the syllogism p ∧ q ⇒ r belongs to the antilogism ¬(p ∧ q ∧ ¬r),

or that the antilogism ¬(p ∧ q ∧ r) contains the syllogism p ∧ q ⇒ ¬r . One virtue

of considering antilogisms is that one antilogism contains many syllogisms. The

antilogism ¬(p ∧ q ∧ r) contains the three syllogisms p ∧ q ⇒ ¬r , p ∧ r ⇒ ¬q ,

and q ∧ r ⇒ ¬p, where we might have to interchange premises to standardize the

syllogism. Thus, indirect reduction is built into the notion of an antilogism.

There are only two antilogism figures—cyclic and acyclic—depending on

whether the arrows are all head to tail or not. We call the cyclic one Figure 4

because it contains the Figure 4 syllogisms. The acyclic antilogism, which contains

the syllogisms in Figures 1, 2, and 3, we call Figure 1. Each standard antilogism

contains exactly 3 syllogisms, except for the four antilogisms of the form X X X-4,

which contain one syllogism apiece and are not valid.

We have seen that there are 84 + 4 orbits of T ∗ consisting of four fixed points,

twenty 3-orbits involving only Figure 4 syllogisms, and sixty-four 3-orbits contain-

ing one syllogism from each of the other three figures. The 88 orbits correspond to

the 88 distinct standard antilogisms. There are 64 = 43 antilogisms in Figure 1 and

24 = 4+ 12+ 8 in Figure 4: The 4 =
(

4
1

)

use one of the letters A, E , I , and O, the

12 = 4 · 3 use two, and the 8 = 2
(

4
1

)

use three. If we also allow obversion, the 64

antilogisms in Figure 1 pair up to give 32+ 24 = 56 orbits.

Rules for testing the validity of (standard) antilogisms are simpler than those for

syllogisms. A term is distributed in a statement if decreasing its class cannot change

the statement from true to false; so x is distributed in Axy and Exy while y is

distributed in Exy and Oxy. The following rules suffice to distinguish the 5 valid

antilogisms (that contain the 15 valid syllogisms).

1. Each term is distributed in some statement.

2. There are two positive statements and one negative statement.

3. There are two universal statements and one particular statements (or just not

three universal statements).

If a term is not distributed, take proper nonempty sets that make the opposite side

true (one-element sets suffice), then take the third set to be bigger than each of those

two sets. Three positive statements fail with the same one-element set at each vertex.

Two negative statements fail by putting the same one-element set on the vertices

of the positive statement, and a different one-element set (the complement) on the

third vertex. Three negative statements fail by putting three different one-element

sets on the vertices. Three universal statements fail by putting the empty set on each

vertex (AAE-1, which contains Barbari, and AAE-4, which contains Bramantip,

and E AA-1, which contains Darapti, are all this rules out, of those that pass the

first two tests). If we eliminate the third rule, we get the 8 antilogisms that are valid

assuming existential import.

Alternatively, the following two rules suffice for the 5 valid antilogisms:

1. Each term is distributed exactly once.

2. There are two positive statements and one negative statement.
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8 Symmetrized Antilogism Figures

We have seen that there are four ways to put arrows on the sides of a triangle corre-

sponding to the four traditional figures of a syllogism.

s

s

s-�
�
�7

�
��S

S
Sw

S
SS

1

s

s

s-�
�
�7

�
��

S
S

So
S

SS

2

s

s

s-

�
�

�/
�

��

S
S
Sw

S
SS

3

s

s

s-

�
�

�/
�

�� S
S

So
S

SS

4

By a symmetrized figure we mean a triangle that has arrows on some (possibly all or

none) of its sides. The idea is that the sides with arrows represent statements of type

A or O, and those without arrows represent statements of type E or I . By consid-

ering antilogisms with symmetrized figures, we build both conversion and indirect

reduction into the picture. There are seven symmetrized antilogism figures, which

may be described as: no arrows, one arrow, two arrows out, Figure 4, two arrows in,

Figure 1, two arrows along:
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To count the number of equivalence classes of antilogisms under indirect reduction

and conversion, we simply count the number of distinct ways we can assign letters

to these figures.

1. For s0 the letters must be I and E and it only matters how many of each. So

there are four classes: E E E , E E I , E I I , and I I I .
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2. For s1 we have two symmetric types around an asymmetric type. There are

eight ways to do this.

3. For s2 we must pick two from {A, O} and one from {E, I }, which can be

done in six ways.

4. For s3, the letters must be A and O, and it only matters how many of each.

So there are four classes: AAA, AAO, AO O, and O O O.

5. For s0′ we must pick two from {A, O} and one from {E, I }, which can be

done in six ways.

6. For s1′ we pick an ordered triple from {A, O}, so there are eight classes.

7. For s2′ we pick an ordered pair from {A, O} and an element of {E, I }, so

there are eight classes.

s0 s1 s2 s3 s0′ s1′ s2′ total

4 8 6 4 6 8 8 44

We can also count and classify the 88 antilogisms from this:

s0 s1 s2 s3 s0′ s1′ s2′ total

2+ 2+ 4+ 2 4 · 8 2 · 4 4 2 · 4 2 · 4 2 · 4 · 4 88

Six of the seven figures are paired by obversion. Each of the primed figures admits

exactly one obversion, which takes it to the corresponding unprimed figure, and any

obversion of the unprimed figure is either itself or the corresponding primed figure.

We can count the equivalence classes of antilogisms under obversion, indirect reduc-

tion, and conversion, by seeing in how many distinct ways we can assign letters to

the unprimed figures. For s0, s2, and s3 the analysis is the same as above. For s1,

there are two pairs that are equivalent under obversion: AI I and O E I , and AI E

and O E E . (We list the asymmetric type first, and the type it points to second.) The

obversion changes AI to O E . So there are six classes.

s0 s1 s2 s3 total

4 6 6 4 20

The valid syllogisms come from the class AE I -s1. This splits into two classes in the

absence of obversion: AE I -s1 and AAO-1, the latter’s symmetrized figure being

s1′.
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The first class consists of the twelve syllogisms Camenes, Camestres, Celarent, Ce-

sare, Darii, Datisi, Dimaris, Disamis, Ferio, Ferison, Festino, and Fresison; the

second consists of Barbara, Baroco, and Bocardo.

The pseudovalid syllogisms, those true for nonempty sets but not in general, are in

the class AAE-s2. This splits into two classes in the absence of obversion: AAE-s2

and AAE-s2′.
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The first class consists of Celaront, Cesaro, and Darapti; the second consists of the

six syllogisms Barbari, Bramantip, Camenop, Camestrop, Felapton, and Fesapo.

The classification of valid and pseudovalid syllogisms into antilogism classes ap-

pears in [7].

9 Recapitulation and Questions

Two definitions of equivalence of syllogisms, one syntactic and one semantic, were

given and shown to be equivalent. The standard space of 256 syllogisms was ex-

tended to a space of 4096 syllogisms acted upon by a group G of transformations

that come from the classical transformations used to generate all valid syllogisms

from Barbara. The number of orbits of G of each size were computed and the struc-

ture of G as an abstract group was ascertained. Antilogisms were suggested as a

more efficient way to analyze equivalence of syllogisms.

What happens if you try to do everything with existential import? In that case, the

space of syllogisms has a more complicated structure. Not only is there an equiv-

alence relation, there is a partial order given by implication: For example, XY A-n

implies XY I -n. How easy is it to describe this partial order, and how interesting

is it? Actually, I haven’t checked whether there are noninvertible implications even

without existential import.

What happens if you try to do everything in the context of intuitionistic logic?

Neither indirect reduction nor obversion is guaranteed, a priori, to produce equivalent

syllogisms, yet the classically valid syllogisms are intuitionistically valid. What are

the proper definitions of syntactic and semantic equivalence?
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