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Intuitionistic Completeness and Classical Logic

D. C. McCarty

Abstract We show that, if a suitable intuitionistic metatheory proves that con-
sistency implies satisfiability for subfinite sets of propositional formulas rela-
tive either to standard structures or to Kripke models, then that metatheory also
proves every negative instance of every classical propositional tautology. Since
reasonable intuitionistic set theories such as HAS or IZF do not demonstrate all
such negative instances, these theories cannot prove completeness for intuition-
istic propositional logic in the present sense.

1 Introduction

Since the publication of Kreisel [2], we have known that a strictly intuitionistic
metatheory will not suffice for proving even the weak completeness of intuitionistic
predicate logic, the completeness of the deductive apparatus for single formulas or
finite sets of formulas. It was Gödel who first showed that the weak completeness of
intuitionistic predicate logic implies a form of Markov’s Principle that intuitionists
are reluctant to accept. Because well-known intutionistic set theories are consistent
with the statement that Heyting’s first-order intuitionistic arithmetic is categorical,
proved in McCarty [3], validity for intuitionistic first-order predicate logic need not
be arithmetically definable. As for propositional logic, we know from McCarty [4]
that a purely intuitionistic metatheory will not prove validity for propositional logic
(even in a single sentential variable) with respect to standard structures to be arith-
metically definable. It is, however, possible to show intuitionistically that, for finite
sets of formulas, intuitionistic propositional logic is complete for interpretations over
Kripke models in that, if a finite set of propositional formulas is consistent in intu-
itionistic logic, then there is a finite Kripke model that satisfies it. To prove this, one
can employ either a tableaux system for the logic or a countermodel search proce-
dure on the Jaśkowski sequence, as described in Dummett [1]. It then follows that
every propositional formula that is intuitionistically consistent is also satisfiable in
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some standard structure. If a formula is forced at any node in a finite Kripke model,
it is forced at one of the top nodes, and top nodes are standard structures.

In the present article, we settle an issue of completeness for intuitionistic propo-
sitional logic with regard to subfinite sets of formulas, sets that are subsets of finite
sets. We show that, if a suitable intuitionistic metatheory proves that consistency im-
plies satisfiability for subfinite sets of propositional formulas relative either to stan-
dard structures or to Kripke models, then that metatheory also proves every negative
instance of every classical propositional tautology. Since reasonable intuitionistic
set theories, for example, HAS or IZF, do not demonstrate all negative instances of
ϕ ∨ ¬ϕ, these theories will not show that consistency implies satisfiability for subfi-
nite sets of propositional formulas. A fortiori they cannot prove strong completeness
in this sense for intuitionistic propositional logic.

2 Definitions

Definition 2.1

1. A set A is finite whenever there is a natural number n such that A stands in
bijective correspondence to n.

2. A set A is subfinite whenever A is a subset of some finite set.
The claim every subfinite set is finite is equivalent, even over relatively weak intu-
itionistic set theories, to the tertium non datur, ϕ ∨ ¬ϕ.

Definition 2.2

1. A standard structure = for propositional logic is a function from the set of
propositional atoms into the powerset of {0}. With respect to such a function,
= satisfies a propositional formula ϕ (in symbols, = |H ϕ) is defined in the
usual fashion.

2. Intuitionistic propositional logic is strongly complete if and only if, for any
set 8 of propositional formulas, if8 is consistent intuitionistically, then8 is
satisfiable, that is, there is a standard structure = in which = |H 8.

3. Intuitionistic propositional logic is complete for subfinite sets if and only if,
for any subfinite set 8 of propositional formulas, if 8 is consistent intuition-
istically, then 8 is satisfiable in a standard structure.

4. Intuitionistic propositional logic is strongly K-complete if and only if, for any
set 8 of propositional formulas, if8 is consistent intuitionistically, then8 is
satisfiable in a Kripke model, that is, there is a Kripke model for intuitionistic
logic K such that α 
 ϕ, for all nodes α ∈ K and all ϕ ∈ 8.

5. Intuitionistic propositional logic is K-complete for subfinite sets if and only
if, for any subfinite set 8 of propositional formulas, if 8 is consistent intu-
itionistically, then 8 is satisfiable in a Kripke model.

The notions of completeness here defined should be distinguished from the various
forms of the completeness concept “valid if and only if derivable” examined in [4].

Definition 2.3 A formula in the language of a formal theory T is negative just in
case it is equivalent in T to a formula ϕ without ∨ or ∃ and such that every atomic
subformula ψ of ϕ is stable: in T , ¬¬ψ implies ψ .

Definition 2.4 Unless otherwise indicated,8 ` ϕ designates the formal derivabil-
ity of ϕ from the set of formulas 8 in intuitionistic propositional logic. 8 `cl ϕ

designates formal derivability in classical propositional logic.
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3 Completeness for Subfinite Sets

Let T be an intuitionistic theory extending PRA, primitive recursive arithmetic. We
ask that T be powerful enough to define standard structures for propositional for-
mulas and to prove basic results about them. For example, T should prove that,
whenever = is a standard structure in which propositional formula α ∧ β holds, both
α and β hold in = as well, and similarly for the other connectives. T should also be
able to define Kripke and Beth models for propositional logic and to prove funda-
mental results about them. We assume further that T can show that, whenever A and
B are finite sets, and ϕ and ψ statements in the language of T , such sets as

{x ∈ A | ϕ}

and
{x ∈ A | ϕ} ∪ {x ∈ B | ψ}

exist and have their usual simple properties. The formal theories HAS, which is
second-order Heyting arithmetic, and IZF, intuitionistic Zermelo-Fraenkel set the-
ory, could serve as metatheories of this sort.

Fix some language L for propositional logic with p, q and perhaps other propo-
sitional variables. We assume that L and the language of T employ the same propo-
sitional connective symbols.

Definition 3.1 Let ϕ(p, q) be a formula in L whose sole propositional variables
are p and q, which are distinct. For any statements ψ and χ in the language of T ,
ϕ(ψ, χ) is the formula of the latter language obtained by simultaneously substituting
ψ for p and χ for q in ϕ(p, q).

That ϕ should contain two, rather than ninety-nine, propositional variables is
inessential throughout.

Definition 3.2 For any object a and formula ϕ in the language of T , {a | ϕ} is the
set {x | x = a ∧ ϕ}.

Theorem 3.3 Let T be an intuitionistic metatheory as specified above. If T proves
that intuitionistic propositional logic is complete for subfinite sets, T proves every
negative instance of every classical propositional tautology.

Proof Let T be a suitable metatheory, ϕ(p, q) a classical propositional tautology,
and ψ and χ negative formulas in the language of T . Consider this subfinite collec-
tion 8 of propositional formulas

{ϕ(p, q)} ∪ {p | ψ} ∪ {q | χ} ∪ {¬p | ¬ψ} ∪ {¬q | ¬χ}.

First, T proves 8 to be consistent intuitionistically, that is, T proves that 8 0 ⊥.
Working in T , assume that 8 ` ⊥. Since T extends PRA, T knows that 8 `cl ⊥. It
follows, in T , that the set 9

{p | ψ} ∪ {q | χ} ∪ {¬p | ¬ψ} ∪ {¬q | ¬χ}

is classically inconsistent, that is, 9 `cl ⊥. Now, assume in T that both ψ and χ
hold. In that case, 9 is just the set {p, q}. This set cannot be classically inconsistent
and T suffices to prove that. If, on the other hand, we assume that both ψ and ¬χ

hold, then 9 reduces to the set {p,¬q}. And it would be equally absurd to think
that this set is classically inconsistent, as T also recognizes. The same result, that
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9 is not classically inconsistent, follows in T from either of the remaining available
assumptions: that both ¬ψ and χ hold, and that both ¬ψ and ¬χ hold.

Now, the intuitionistic metatheory T proves

¬¬[(ψ ∧ χ) ∨ (ψ ∧ ¬χ) ∨ (¬ψ ∧ χ) ∨ (¬ψ ∧ ¬χ)].

Hence, T recognizes that 9 `cl ⊥ is absurd. Therefore, T proves 8’s consistency:
8 0 ⊥.

Second, suppose in T that intuitionistic propositional logic is complete for sub-
finite sets. It follows that, since 8 is consistent, there is a standard propositional
structure = such that = |H 8. Given the definition of 8, if ψ holds, then p belongs
to 8 and = |H p. Similarly, if ψ fails to hold, then = 2 p. Since ψ is negative, we
can combine these facts and conclude that ψ holds if and only if = |H p. Parallel
reasoning shows that χ holds just in case = |H q.

Finally, because ϕ(p, q) ∈ 8, = |H ϕ(p, q). T treats standard structures in
the usual way. This means that, in T , the predicate ‘= |H’ commutes with all the
connectives. So, ϕ(ψ, χ) holds. �

Corollary 3.4 With T as above, if T proves that intuitionistic logic is strongly
complete, then T proves every negative instance of every classical tautology.

Corollary 3.5 For T as above, if some negative instance of the tertium non datur
is independent of T , then T neither proves that intuitionistic propositional logic is
strongly complete nor proves that it is complete for subfinite sets.

Corollary 3.6 Neither HAS nor IZF proves that intuitionistic propositional logic
is strongly complete. Neither theory proves propositional completeness for subfinite
sets.

Proof Soundness for Kleene’s number realizability (as explained in Troelstra [5])
shows that neither theory derives all negative instances of the tertium non datur. Both
theories fail to derive ¬∃nK (m, n) ∨ ¬¬∃nK (m, n), where K (m, n) is the negative
arithmetic predicate ‘Turing machine number m halts in precisely n computation
steps if m is input’. �

I think there are some who would question the significance of the above results, in-
sisting that a proper intuitionistic account of interpretation or structure = for propo-
sitional logic does not require that the associated ‘= |H’ predicate commute with
the connectives, as is standardly the case. For example, they would maintain that,
because intuitionistic negation is to be “stronger" than conventional negation, an in-
tuitionist need not assume that = |H ¬ϕ just in case = 2 ϕ. I must admit that I
have always believed this point of view unsatisfactory. First, the extent to which
the intuitionist has available a notion of truth, rather than some distinct but truth-
like notion, may be gauged by the intuitionist’s willingness to treat the connectives
standardly. Second, when it concerns classical logic and its interpretation, we logic
pedagogues like to inform our students that the familiar interpretative clauses requir-
ing that = |H (ϕ ∨ ψ) just in case either = |H ϕ or = |H ψ , and that = |H ¬ϕ just in
case = 2 ϕ record, at least in part, our intention that ∨ mean ‘or’ and ¬ mean ‘not’.
Doesn’t the committed intuitionist wish to contend much the same: that, in intuition-
istic mathematics, the sign ∨ means (intuitionistic) ‘or’ and ¬ means (intuitionistic)
‘not’? And I would think that a suitable metatheory T , employed by the intuitionist
and treated as adequate, would be a theory in which he or she would wish to interpret
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∨ as ‘or’ and ¬ as ‘not’ and to prove that this interpretation makes sense. Surely,
defining standard interpretative structures for propositional logic so that the familiar
connectives commute with the ‘= |H’ predicate would be one way of ensuring that
∨ mean ‘or’, ¬ mean ‘not’ and so on, and by such means confirming the internal
semantic coherence of the intuitionistic vision.

4 Completeness, Kripke Models, and Subfinite Sets

One may be able to avoid such worries by putting the proof ideas of the current
section to work on Kripke and Beth models.

Theorem 4.1 Let T be an intuitionistic metatheory as specified above. If T proves
K-completeness for subfinite sets, T proves every negative instance of every classical
propositional tautology.

Proof Again, let T be a suitable metatheory, ϕ(p, q) a classical propositional tau-
tology, and ψ and χ negative formulas in the language of T . The definition of8 and
the proof that T shows 8 consistent are the same as in Theorem 3.3.

We now suppose that, in T , intuitionistic propositional logic is K-complete for
subfinite sets. It follows that, since 8 is consistent intuitionistically and this is prov-
able in T , there is a Kripke model K such that K |H 8, that is, the set 8 is forced at
every node α of K. Now, given the definition of8, if ψ holds, then p belongs to the
set 8 and K |H p. Hence, if α is any node of K and if ψ holds, α 
 p. Conversely,
if α 
 p, then ψ holds, thanks to the negativity of ψ . For, if ¬ψ were to hold, then
α 
 ¬p, contrary to the assumption. By parallel reasoning, χ holds just in case
α 
 q.

Since ϕ(p, q) ∈ 8, K |H ϕ(p, q). If we use the definition of Kripke forcing
to work out in full the K-forcing condition D of ϕ(p, q), we can, given the results
of the preceding paragraph, replace each expression of the forms α 
 p or α 
 q
in D, where α is any node, by ψ or χ , respectively. We can certainly assume that
ψ and χ contain no appearance of any variable, such as ‘α’, ranging over nodes
of K. Therefore, since each node α is such that α � α in the order � on K, any
quantification in D over nodes is now redundant and can be dropped without loss.
What remains of D is simply 8(ψ, χ), which holds since D does. �

Corollary 4.2 With T as above, if T proves that intuitionistic logic is strongly K-
complete, then T proves every negative instance of every classical tautology.

Corollary 4.3 For T as above, if some negative instance of the tertium non datur
is independent of T , then T does not prove that intuitionistic propositional logic is
strongly K-complete nor does it prove K-completeness for subfinite sets.

Corollary 4.4 Neither HAS nor IZF proves that intuitionistic propositional logic
is strongly K-complete. Neither theory proves propositional K-completeness for sub-
finite sets.

Since Beth satisfiability and Kripke satisfiability are provably equivalent in T (see
Troelstra and van Dalen [6] and [7]), strictly analogous results hold for completeness
with respect to Beth models.
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