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Four Problems Concerning Recursively
Saturated Models of Arithmetic

ROMAN KOSSAK

Abstract The paper presents four open problems. One concerns a possible
converse to Tarski's undefinability of truth theorem, and is of a general char-
acter. The other three are more specific. The questions are about some special
w1-like models, initial segments of countable recursively saturated models of
PA, and about extendability of automorphisms. In each case a partial answer is
given. All partial solutions are based on applications of inductive satisfaction
classes.

1 Introduction A partial satisfaction class for a mod@{ = PA is a subset of
Form(M) x M, satisfying Tarski’s inductive definition of the satisfaction relation.
Here ForniM) is the set of formulas in the sense®f given by an arithmetization
of the language, see Definiti@allbelow.

Although most results on satisfaction classes indicate that there is no reasonable
way of defining a “nonstandard semantics” for nonstandard formulas, still one can
hope to develop a kind of “nonstandard model theory.” This hope is based on the
possibility of approximating second order model-theoretic notions (definability, type,
indiscernibility) by their natural nonstandard extensions defined in terms of induc-
tive satisfaction classes. A good example is the proof of Thel@dinelow. In fact
this approach to recursively saturated models of PA has been used often, however no
comprehensive study has been done yet. We will not do it here either. The purpose
of this note is to present four problems concerning model theory of recursively satu-
rated models of PA. The main problers3]i.9] and6.2] ask about the existence of
some special structures, which we call wealdngson models, free cuts and abso-
lutely nonextendible automorphisms, respectively. Partial answers to the problems,
presented here, can be given in cases when techniques of “nonstandard model the-
ory” can be applied, due to the availability of suitable inductive satisfaction classes.
Moreover solutions in these cases are rather simple. On the other hand the problems
in their full generality seem difficult, and standard model theoretic methods together
with well-known specifically arithmetical tools (like the arithmetized completeness
theorem) have not provided answers so far.
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Problen2.2lis of a much more general nature. It asks whether a certain converse
to Tarski’s theorem on undefinability of truth holds.

The paper is not self-contained. | will assume that the reader is familiar with
concepts concerning recursively saturated models of PA; all necessary information
can be found in Kayed). Definitions of semiregular and strong initial segments of a
model of PA are given in Kirby and Parl[§][ the best reference for Gaifman’s mini-
mal types is Gaifman’s important papéy.[

2 Defining nondefinability  Let £ be the language of PA. B, we will denote
the closure of alk, formulas of £ under negation, conjunction, and bounded quan-
tification. Q. is the set of all formulas of.. If M is a model of PA, ané ¢ M

or e = oo, then Qe(M) is the set ofQe formulas in the sense ¥/ (under a fixed
arithmetization). The set of standard nonnegative integers will be denot¥d by

Definition 2.1 Let M be a model of PA, and letbe an element o/ or e = co.
A subsetSof M is a Qe-satisfaction class for M if Sconsists of (codes) of pairs of
the form (g, a), wherep € Qe(M) andais a (code of) valuation fop, andthe fol-
lowing Tarski’s conditions are satisfied (in this definition and later on we will identify
formulas of M with their Gddel numbers):
1. If ¢ = v +vj = v then(g, a) e Siff a + a; = ax, and similarly for multi-
plication;
2. Forallg, v € Qe(M) and for alla € M: (¢ & v, a) € Siff (¢,a) € Sand
(@) €S
For allp € Qe(M) and for allae M: (—¢, a) € Siff (p,a) ¢S,
4. For all3vjyr € Qe(M) and for alla e M: (vjy, a) € Siff (v,a~(i,m)) €S
for somem e M.

w

SeelP] and [IZ] for a discussion and a survey of results on satisfaction classes.

The first problem | want to pose concerns satisfaction classes directly. The def-
inition of a satisfaction class is a single sentence in the language of PA with an extra
predicate symbaband one parameter(or no parameters g = oo). Let Sag(S) be
this sentence. Thus i# is a model of PA and ¢ M, thenSis a Qe-satisfaction
class forM iff (M, S) = Sat(S).

The proof of Tarski’s theorem easily gives the followinge it Nand(M, S) =
Sat(S), thenSis undefinable im\f. Our first question asks whether there is a con-
verse to this version of Tarski’s theorem.

Let PA* denote the Peano axioms in the language with extra set parameters. If
e> Nore=ooand(M, S k= Sat(S) + PA* then we say thaSis aninductive
satisfaction class for M.

Problem 2.2 Suppose tha¥(X) is a sentence of the language of PA with a set pa-
rameterX, such that for every modél = PA, and everyX ¢ M, if (M, X) = ¥(X)
thenX is undefinable if\/. Is it true then, that for every modall and everyX c M

if (M, X) = W(X) + PA*, then there is a nonstandaede M and there isSc M
such that M, S) = Sat.(S) andSis definable in(M, X)?

Thus we ask whether Tarski's theorem is essentialy the only source of “definable”
nondefinability. The assumptioff/, X) = PA* is necessary to eliminate trivial
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counterexamples liké (X) saying thatX is a proper initial segment ¥/ .

Notice that¥(X) = Sat,(X) satisfies the assumptions of ProblBm2 We
could have fomulated proble|m_2lo include examples of the form Q&x), for non-
standarce. The difference seems to be of technical nature only. The same remark
applies to the formulation of Theordindland Probler2.Sbelow.

There is a very general theorem of Harrington which yields the solution of the
analogue of Problefd.2] formulated for the standard model. Harrington’s result is
unpublished. It can be found in handwritten notes titled “MacLaughlin’s Conjecture,
dated September 1976.

Theorem 2.3 (Harrington) Thereisa nonarithmetic arithmetical singleton A€ N
such that 0’ is not arithmeticin A.

It is well known that if a modefM = PA has a subse®such thatM, S) = Sat(S)
for some nonstandare then M is recursively saturated. We will show that, in a
certain sense, SaiX) is the only formula with this property.

Theorem 2.4  Suppose that W (X) isatheory in the language of PA with a set pa-
rameter X, such that for every model M = PAifthereis X ¢ M suchthat (M, X) =
W(X) + PA*, then M isrecursively saturated. Then for every M = PA and every
X C M suchthat (M, X) = W(X) + PA* thereisa nonstandard e € M and there
isSC M suchthat (M, S) = Sat(S) and Sisdefinablein (M, X).

Proof: SupposgM, X) = W(X) + PA*. By the MacDowell-Specker theorem for
PA* (M, X) has a conservative elementary end extension, so théf.i¥) such
that(M, X) <e (A, Y), and every subset aM which is coded in\( is definable in
(M, X). Thus(N,Y) = ¥(Y), hence \| is recursively saturated. We can assume
that cf(\) = Rg. Thus there isS” C A\ such that( A/, S") = Sat/(S’) + PA*, for
some nonstandam € A/, this is obvious if9\ is countable, for an argument in the
case that\ is uncountable see KossdK][ Let S = S’ N M. Since(N\,Y) is a
conservative extension of\/, X), S is definable i, X). The problem is tha
might not be a satisfaction class f@f. The only obstacle is the existential quantifier
case in Tarski’s conditions. BUf\M, S) = PA*, hence we can apply overspill to the
following formula®(x, A),

Vo € Quva ([Qvip(vi, @) € A< v (p,a (i, v)) € A).

For everyn € N, S agrees with the universal truth predicate @y formulas of PA,
thus we haveM, S) = O(n, S). Hence(M, S) = O(e, S) for some nonstandard
e < €. Now, if Sis the restriction ofS to Qe formulas, then M, S) = Sat(S). O

Notice that Theoref@.4Feduces Problef@.2lto the following.

Problem 2.5 Suppose tha¥(X) is a sentence of the language of PA with a set pa-
rameterX, such that for every modél = PA, and everyX ¢ M, if (M, X) = ¥(X)
thenX is undefinable i\ Is it true then, that for every mod@l if there isX ¢ M
such that M, X) = W(X) + PA*, then M is recursively saturated?
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3 Weakly Jonsson models A model M is aJonsson model if for every K < M if
card K) = card M) thenK = M. A linearly ordered model ig-like if card(‘M) = «
and every proper initial segment 81 is of power smaller than.
It is well known (cf. Knight []) that there arevs-like Jonsson models of PA.
But, as the next proposition shows, none of these models can be recursively saturated.

Proposition 3.1  If arecursively saturated M = PA* isof power «, and k isareg-
ular cardinal, then M has proper elementary submodels of cardinality «.

Proof: First, if M is notk-like, then it is easy to see thaf has a proper elementary
initial segment of cardinality, and the result follows.

Now, let us assume thatf is «-like. If p(v) is a type, then byp™ we denote the
set of elements realizing(v) in M. Itis easy to prove that if\f is «-like and p(v)
is realized by an element ¥ that is greater that all definable elements¥f then
card pM) = «.

Let p(v), g(v) be independent minimal types realized’fi (cf. []). Let K be
the elementary submodel 8f generated bpM. Theon N K = @, and the result
follows. O

Definition 3.2 Wewill say that a recursively saturated modélweakly Jonsson if
for every recursively saturated mod¢€l< M if card(K) = card M), thenK = M.

Prablem 3.3 Are therew;-like recursively saturated weaklypdsson models of
PA?

Suppose a modeM = PA*, of regular cardinalityx, has an inductive satisfaction
classS. Then Propositio@ applied to the structuréM, S), shows thatV has a
proper elementary recursively saturated submodel of pewEnus such models are

not weakly dnsson. The next theorem shows that the assumption on the cardinality
of M is not necessary. The idea of the proof of this theorem is due to Kotlarski.

Theorem 3.4 If M = PA hasan inductive satisfacion class, then A is not weakly
Jonsson.

Proof: LetSc M be such thatM, S) = Sat(S) + PA*, for some nonstandard
e € M. As in the proof of PropositioR.]] let p(v), q(v) be independent minimal
types realized irfM. Forn e N let

Ah={aeM: Yo <nM=gpa) < ¢e pl)l.

(Recall that we identify formulas with their@lel numbers.) The sequen¢Ay :
X < €) is definable in(M, S). For everyn € N, A, is unbounded i/, hence there
is ¢ > N such that, for everg’ < ¢, Ac is unbounded irfM. Notice that ifc > N,
thenAc c pM.

Now, for everyx e M let By be the set of (codes of) all increasing sequences of
elements ofA; whose length ix. Fora € M andn € N let

Kn(a) = {t(a) : tis a Skolem term antl< n}.

The sequenceKy(a) : X < €) is definable in(4, S). Notice that ifc > N, then
K(a) c K¢(a), whereK (a) is the Skolem closure ain M.
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Letb be an element af™. If ay, ..., & is a finite sequence of elementswt’
then for everyn e Nwe haveb ¢ K (@, . . ., a). Thusin(M, S) the following holds
for everyn e N

vs(Seqs) & len(s) = n& Vi < len(s) (s)i € By) = b & Kn(s).

Again, by overspill, there isl > N such that the above holds for all sequences of
lengthd’ < d whose terms are iBy . Let B = By for some nonstandad < d. We
can assume thal is small enough so tha&y is unbounded i\

Let K be the Skolem hull oBin 4. We know thatb ¢ K, and, sinceB is defin-
able in(M, S) and unbounded ifi/, card K) = card ). It remains to show that
K is recursively saturated. To this end notice that for ewesyM there iss € B such
thata < (S)g. Forse Bletus defineKy(s) tobe{y e K: Ji e Ny < (9);}. Itis arou-
tine to verify thatky () is a recursively saturated structure (the crucial pointis that the
terms ofs form an increasing sequence of elements suchKl{és);) < K((S)i11),
and we can ussto define inK asatisfaction class foKy (s)). ThusK is a union of
its recursively saturated elementary substructures, so it is recursively saturaied.

A direct attempt to construct am -like recursively saturated weaklpdsson model
using¢$ quickly leads to the following question.

Problem 3.5 SupposeM is a countable recursively saturated model of PA Knd
is a cofinal recursively saturated elementery submodé¥ofls there a countable
recursively saturated mod@( such thatM < A\ and for every recursively saturated
model N\’ < A/, if K < A/, thenK is a proper submodel of’ N M?

| would like to conjecture that the answer to Prob[Brlis positive, and, conse-
quently, that there are,-like recursively saturated weaklpdsson models (at least
whenJ is available).

4 Freecuts Notion of a free cut originated from the study of automorphisms of
recursively saturated models of PA.

Definition 4.1  Wesay that an initial segmeihtof M = PAisfreeifforall a,b e |
if tp(a) = tp(b) then tpa, I) = tp(b, |), where tgx, ) denotes the type of over
(M, 1) in the language of PA with an additional set parametel for

Some simple observations on free sets in general model-theoretic context are pre-
sented in Kossalg].

For | Ce M = PA, the cofinality ofl in A, cf(l), isthe initial segment defined
by:

cf(l) = inflaeM:3Ibe M, lenb) <a
&Vi<a—-1(b)< (Di1&Vxeldi<ax< (b)el}.

Notice that cfl) is first-order definable i/, I).

A cut | is semiregular in M if cf(1) = I. If | is not semiregular it and there
area, b e I, suchthat tp(a) = tp(b), anda ecf(l) < b, thenl is not free inM. Thus,
every recursively saturated model of PA has many nonfree cuts.
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Ouir first task will be to show that every countable recursively saturated model of
PA has many free cuts. To do this we will apply the machinery of definable types. The
property of the minimal types that we will need is given in Proposiidll Proposi-
tion[&-2lis a straightforward consequence of basic results concerning minimal types
(seelD). Let us introduce some more notation first.

If M is a model of PA an@ € M, thenK (a) is the Skolem closure afin M.
Also

M@ = supK(@)={xeM:3Iye K@ X<y}
Mla] = [ J(K=<eM:K<al

G = Aut(M) is the automorphism group i, fora,be MU, , ={f € G: f(a) =
b}, alsoGa) = Uaa. If X is a subset ofif, thenGx; = Aut(M, X) is the setwise
stabilizer ofX.

For a typep(v), p* denotes the set of elements realizipng)) in M.

Proposition 4.2 Let p(v) be a minimal type realized in a recursively saturated
model M = PA. Then for all (ay,...an), (aj,...ay) € [pM]<‘”, and all b, b’ €
M[min(ay, a))] if tp(b) = tp(b'), thentp(b, ay, ... a,) =tp(b', &, ... a)).

Corollary 4.3 If M isa countable recursively saturated model of PA, and a € M
realizes a minimal type, then M[a] isfreein M.

Proof: If b,c e M[a] realize the same type, then, by Proposifiodl tp(b, a) =
tp(c, a). Hence, there if e Aut(M) such thatf (b) = ¢, and f (a) = a. But then
f”M[a] = M[a], and the result follows. O

Let us note that for everg e M, if a > M (0), thenM (a) is not free inM. To prove
it first show thatM[a] is definable in(M, M (a)) (see Smorgiski [L3]), and then use
Propositiod&4lto getb € M[a] such that tga) = tp(b).

To exhibit a greater variety among free cuts we will use sequences of skies. We
will say thata € M = PA codes aequenceof skiesifforall i, j < len(a) if i # j, then
M((a)i) # M((a)j). Cuts determined by coded sequences of skies were introduced
and studied by Smofski [L3],[[L4]. In particular, Smorfiski considered ascending
sequence of skiesa € M codes arascending sequence of skies, a € ASS(M), if
a codes a sequence of skies of a nonstandard length, and, fot &in(a), (a); <
(@it1-

If a e M codes a sequence of skies aXd: N, then

la(X) = (JiM(@i):ieX}
12 = [(Ml@i:ieX).
We will show that if {(a); : i € X} has no maximum element, thég(X) is free in

M, and if {(a); : i € X} has no minimum element, theA(X) is also free inM.
The next proposition is an easy exercise in recursive saturation.

Proposition 4.4 If M = PAisrecursively saturated, a,b € M, M(a) < b, and
p(v) is an unbounded type realized in M, then thereis c € p™ such that M (a) <
ce M[b].
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Corollary 45 Let M be arecursively saturated model of PA, and let p(v) be an
unbounded type realized in M. If a € M codes a sequence of skies, then there is
b € M such that:

1. For everyi € N (b); € p™;

2. For every X C N thereare Y1, Yo € N such that if {(a); : i € X} has no maxi-
mum element, then 15(X) = lp(Y1), and, if {(a); : i € X} hasno minimum ele-
ment, then 12(X) = 1°(Yy).

Proof: Leth: N2 — N be a recursive pairing function. Consider the tyfie, v):

{e((Wnij) 1, JeNi# j, o) e pv)} U
{(@i < Wi j) < @V @< Whaj < @i:i, jeNi#j}L

By Propositio.Z] I' (a, v) is finitely realizable iV, and sincd™ (w, v) is recursive
in p(v), there ish € M thatrealizes (a, v). Itiseasy to verify thab has the required
property. U

Theorem 4.6  Let M be a countable recursively saturated model of PA. If ae M
codes a sequence of skies, and {(a); : i € X} hasho maximum element, then 1,(X) is
freein M. Also, if {(a)i : i € X} has no minimum element, then 12(X) isfreein M.

Proof: By Corollary[Z.5] we can assume that all elemen@); : i € N realize the
same minimal typg(v). Now, takec, d € 15(X) such that tpc) = tp(d). Without
loss of generality we can assume that, foii &N, ¢, d € M[(a)i]. Let hbe a recur-
sive pairing function. Consider the recursive typéa, v):

{@i < Wi j <@jVv@j<@nij<@i:i,jeNizj} U
{p(c,v) < ¢(d,v) : p(w,v) € L}.

By Proposition$4.2land[4.4] A(a, v) is finitely realizable in. Lete € M be
a realization ofA(a, v). Then, there isY C N such thatla(X) = le(Y). Since
tp(c, e) =tp(d, ), there isf € Aut(M) such thatf (c) = d and f (e) = e. But then
f71e(Y) = f”1¢(Y), and the result follows. The proof fdf(X) is similar. O

TheorenfZ.6]mplies that for every countable recursively saturated model of PA there
are continuum many nonisomorphic structures of the faivh 1), wherel is a free
elementary cut of\. To draw this conclusion we need to know that there are con-
tinuum many nonisomorphic structures of the faii, 1,(X)), wherea codes a se-
quence of skies, but this has already been dorgdh §ee Theorem 3.6 there.

Yet an interesting problem remains open.|lfs any of the free cuts oM ex-
hibited above, thei has only countably many automorphic image$in

Problem 4.7 SupposeM = PAis countable and recursively saturated. Is there a
free elementary cut <¢ M such that cargdf”(1) : f € Aut(M)} = 28o?

The free cuts discussed above have a property that is a priori stronger than freeness
itself. Namely ifK is a free cut of the form,(X), 12(X) or M[a], wherea realizes
aminimal type inM, andb, ¢ € K are such that tfb) = tp(c), then there isf € Up, ¢

such thatf fixes K setwise. This property can be used to prove the following (see
Kossak, Kotlarski and Schmel(] Theorem 2.3 and Lemma 5.1).
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Proposition 4.8 If M isa countable recursively saturated model of PAand K isa
free cut such that either for some a coding an infinite sequence of skies K = 15(X),
or K =12(X) or K = M[a] for some a realizing a minimal typein M, then G, is
a maximal subgroup of G.

If K is one of the cuts mentioned in Propositi®@ thenG,k, is an open subgroup

of G, i.e., Gk, containsG ) for somea € M. Very little is known about cuts whose
setwise stabilizers are not open, therefore it would be interesting to know the answer
to the next question.

Problem 49 Assume thaf\/ = PAis countable and recursively saturated. Is there
acutK <e M such that M, K) is recursively saturated arlis free inM?

Notice that ifK is a cut of M and (M, K) is recursively saturated théByk, in not
an open subroup d@b, on the other hand iK is also free infM, then it is not difficult
to prove thaiGk; is maximal.

Let us note that the affirmative answer to Problé®@would also provide the
affirmative answer to Problefa7]

5 Uniformity and nonuniformity  The question we will consider in this section is:
what are (naturally defined) class&sof cuts in a recursively saturated model of PA,
suchthat, foralKy, Ko...,Kp, Ly, Lo .., LneKif Ky <Ky... <Ky, L1 <Ly <

. < Lp, then

(M’ Klv K2’~--’ Kn) = (M7 Ll! L27---9 Ln)

We will give examples of classes that have this property and an example of a class
that does not. Our examples are some special classes of free cuts considered in the
previous section. The positive answer to Prodiediwould provide other examples
promising interesting applications.

Nonuniformity in the title of this section refers to the class we are about to define.
A similar example will also allow us to show that a strong combinatorial property
(superstrength) does not imply freeness.

For a countable recursively saturated madi€l= PA let,

Ko = ({Mla]: arealizesp(v) in M};
K = {la(N):aecASS(M)};
Ko = {I1*%(N):aeDSSM)},

where, in the definition of>, DSS(M) is the set of codes afescending sequences
of skies, i.e., codesa of sequences of skies of nonstandard length such that, for all
I <len(a), (a)i > (a)i+1. All cuts in X7 and%k; are free, as are all the cuts 4, if
p(v) is a minimal type realized ifif.
The proof of Propositiok.1lis based on Propositidazland Theorerf.5l(and
its proof), details are left to the reader.

Proposition 5.1 Let M = PA be countable and recursively saturated. If K; <
Kr <...<Kp L1 < Ly < ... < Ly are two sequences of cuts of M, all in one
of the classes X, X1, or X3, where p(v) isaminimal type realized in M, then

(M’ Kla K27"'v I‘<I"I) = (M7 Lla LZa"'? I—n)
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Are there other naturally defined classes of cuts with the above property? A candidate
for such a class is suggested by Snitki’'s Theorem 2.7 if14].
Fora e ASS(M) and a semiregular cut< len(a) define

Ml a) = J(M (@) :iel).

Smonyhski's theorem says that il/ = PA is countable and recursively saturated,
a, b e ASS(M), | < len(a), len(b) is semiregular, antl < (a)o, (b)o, then

(M, M(1,a) = (M, M(,Db)).

However, our Propositidi.Jprovides a counterexample to this statement. Theorem
2.7 was stated iffl4] without a proof. The proof of Propositidg3was born in a
conversation with Schmerl.

Definition 5.2 For M = PA andX <e M we define
S(K) =supee M :Jaec M an K is a Qe-satisfaction class faif}.

Observe thas(X) is definable in 4, X) and, if X is not recursively saturated, then
S(K) =N.

Proposition 5.3  For every countable recursively saturated model M of PA there
isasemiregular cut | and a,b e ASS(M) such that | < (a)o, (b)o, len(a), len(b),
and (M, M (1, a)) # (M, M(l,b)).

Proof: Consider the theory in £ with parameters, b and with set parameters
N1, Ao, |, axiomatized by:

1. | is semiregular] < (a)g, (b)o, len(a), len(b);

2. Ni = supg (@)i, Ao = sup, (b);;

3. Vi <len(@Vj < len(b) t((a)i) < (@)i+1 & t((b)j) < (b)j1, for all Skolem
termst;

4.5 =1, 5(2) > .

Let U be an inductive satisfaction class f&f such that(/, U) is recursively satu-
rated. Letb code an ascending sequence of skiegdt U) of a nonstandard length,
and letk, = M (N, b). Since(K,, KoNU) < (M, U) K, NU is a nonstandard sat-
isfaction class foKy, thus S(Ky) > N. Let us note that since, by Propositi
(M, Ky) = (M, M(N, d)) for everyd e ASS(M), we have shown that for every
suchd we haveS(M (N, d)) > N.

Let ¢ be any nonstandard element @f and letk; = M (c). ThenS(Ky) =
N. If Ty is a finite fragment off, then, since only finitely many Skolem terrnare
involved, we can finéh e M such that M, Ky, Ko, N, a, b) = Tp. This proves thal
is consistent. By chronic resplendencydf(seell] for the definition and properties)
there are\;, N>, |, a, b such that the structuréM, A;, As, 1, a, b) is a model of T
and is recursively saturated. In particulas N. To finish the proof notice that, since
| is semiregular] =cf(A}) =cf(A>) is definable in boti M, Ap) and(M, AL), and
the result follows. O
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The strongest known combinatorial property of a cut in a model of PA is super-
strength, and it was defined in Kirbif][as follows. If M = PAandl C M then
| is n-Ramsey in M if every coded partitiorf : [I]" — a, a € | has a homogeneous
set that is coded ifif and is unbounded in ", where unboundedness iH is de-
fined by induction in a natural way.is said to besuperstrongin 9 if | has the above
property with respect to all coded partitiohs[1]° — a, a € |, for some nonstandard
ce M. Thus, ifl C¢ M isn-Ramsey, for every standangand(4/, 1) is recursively
saturated, thehis superstrong if\/. It isalso shown in4] that if | is strong in\/,
thenl is n-Ramsey, for every standand

Our last result in this section shows that superstrength does not imply freeness.

Proposition 5.4 Let M = PA be countable and recursively saturated. There is
| <e M suchthat | issuperstrong but not freein M.

Proof: Let Sbe aQ. inductive satisfaction class fo¥(, for somee > N. By taking
asmallere, if necessary, we can assume that thereaabesuch that tjga) = tp(b)
anda<e<b<2e

Using the results of Kossak and Schmfd]Jwe can selecS such that all el-
ements ofM are definable inNM, S). Let (A, S) be a conservative elementary
end extension of M, S). Then M is isomorphic toA/, M is strong inA/, and
S(M) < M (whereS(M) is computed ir\). The last claim follows from the fact
that every satisfaction class ff coded in%\ is definable in(M, S), and the min-
imality of Simplies that, ifU is a Qg satisfaction class foMf definable in(M, S),
thene’ < e+ N (see[LI)).

Thus we have t@) = tp(b) anda € S(M) < b e M; henceM is not free in\.
The above remarks show that the folowing recursive th@agy b, 1) is consistent:

abel+tp@=tpb) + a<S(l)<b + | <eM + |isstrong

If (M, |)isarecursively saturated modelDfa, b, |) (we are using chronic resplen-
dency here), thehis superstrong, but not free . O

6 Absolutely nonextendible automorphisms  In Kossak and Kotlarskig] we have
considered the following question: given recursively saturated countable nitdels
and A\ such thatM <¢ A, when can an automorphisiof M be extended to an
automorphism of\(? Here | would like to discuss an “absolute” version of this prob-
lem.

Definition 6.1 Let M be a recursively saturated model of PA. We say that
Aut(M) is absolutely nonextendibleif for every recursively saturated mod&{ such
that M <e N/, and for everyg € Aut(\), g does not extend.

Problem 6.2 Are there absolutely nonextendible automorphisms of countable re-
cursively saturated models of PA?

Let us note that the “dual” question: “is there an automorphism of a countable recur-
sively saturated model of PA that can be extended to an automorphism of every count-
able recursively saturated elementary extension of the model?” has a strong negative
answer. Itis shown iiil[T] that every countable recursively saturated mddel= PA
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has a countable recursively saturated elementary end extelsgrch that none of
the nontrivial automorphisms ¥ can be extended to an automorphism\of
A partial answer to Problel2lis given in terms of satisfaction classes.

Proposition 6.3  Let M |= PA be countable and recursively saturated, and let f be
an automorphism of M. If thereis Sc M such that (M, S) = Sat(S) + PA*, for
somee > N, and f € Aut(M, S), then f can be extended to an automorphism of a
recursively saturated elemetary end extension of M.

The proof of Propositiols.2lis based on the following simple lemma concerning de-
finable types (cf[I]).

Lemma6.4 If M = PA*, \ = M(a) isan elementary end extension of M gen-
erated by M and an element realizing a definable type, then every automor phism of
M can be extended to an automor phism of A(.

Proof: The definition of a definable type says that for every fomu(a, v) of the
language of the theory d¥/ there is a formular, (w) such that for every € M,

N [ (b, a) iff M o, (b).

Forc e N\ letg(c) =t(f(b), a), wheret(w, v) is a Skolem term of the language of
the theory ofM such that\| = c =t(b, a).

Let c = t(b, @), and suppose thak/ = ¢(c). Let y(w,v) = o(t(w, v)). SO
we have:\ = ¢(C) iff N = (t(b, @) iff M = oy b)iff M=oy (f(b))iff N =
(t(f(b),a)iff N = ¢(g(c)). Thusgis anautomorphism ok, and, clearlyg(c) =
f(c)forallce M. O

Now, to prove Propositio.3] apply the lemma to the structu¢@/, S), whereSis
such as in the assumptions of the proposition. Not every automorphism satisfies the
assumption of Propositid®.3] Propositiors.Sprovides an example.

Proposition 6.5 If M is countable recursively saturated model of PA and N is
strong in M, then there is f in Aut(M) such that for every inductive satisfaction
class Sfor M f & Aut(M, S).

Proof: Leta be a nonstandard element®f. SinceN is strong inM there isf
Aut(M) such that fix f) = K(a) (cf. Kaye, Kossak and Kotlarsig], Theorem 5.3).
We claim that f has the desired property. L&tbe an inductive satisfaction class
for M. If f e Aut(M, S), then (fix(f),fix(f) N S) is an elementary substructure of
(M, S), here we consider fixf) as a model with the arithmetic structure inherited
from M, thus fix( f) N Sis an inductive satisfaction class for (ik) = K(a). This is
acontradiction sincé (a) is nonstandard and is not recursively saturated. [

We do not know if Propositiol&.Sls true for recursively saturated models in whiéh

is not strong. The argument from the above proof cannot be repeated in this case since
if Nis not strong infM then for everyf € Aut(M) fix ( f) is recursively saturated (in

fact isomorphic tdM); see the proof of Proposition 5.2 {&][
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