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Four Problems Concerning Recursively
Saturated Models of Arithmetic

ROMAN KOSSAK

Abstract The paper presents four open problems. One concerns a possible
converse to Tarski’s undefinability of truth theorem, and is of a general char-
acter. The other three are more specific. The questions are about some special
ω1-like models, initial segments of countable recursively saturated models of
PA, and about extendability of automorphisms. In each case a partial answer is
given. All partial solutions are based on applications of inductive satisfaction
classes.

1 Introduction A partial satisfaction class for a modelM |= PA is a subset of
Form(M ) × M , satisfying Tarski’s inductive definition of the satisfaction relation.
Here Form(M ) is the set of formulas in the sense ofM given by an arithmetization
of the language, see Definition2.1below.

Although most results on satisfaction classes indicate that there is no reasonable
way of defining a “nonstandard semantics” for nonstandard formulas, still one can
hope to develop a kind of “nonstandard model theory.” This hope is based on the
possibility of approximating second order model-theoretic notions (definability, type,
indiscernibility) by their natural nonstandard extensions defined in terms of induc-
tive satisfaction classes. A good example is the proof of Theorem3.4below. In fact
this approach to recursively saturated models of PA has been used often, however no
comprehensive study has been done yet. We will not do it here either. The purpose
of this note is to present four problems concerning model theory of recursively satu-
rated models of PA. The main problems,3.3, 4.9, and6.2, ask about the existence of
some special structures, which we call weakly Jónsson models, free cuts and abso-
lutely nonextendible automorphisms, respectively. Partial answers to the problems,
presented here, can be given in cases when techniques of “nonstandard model the-
ory” can be applied, due to the availability of suitable inductive satisfaction classes.
Moreover solutions in these cases are rather simple. On the other hand the problems
in their full generality seem difficult, and standard model theoretic methods together
with well-known specifically arithmetical tools (like the arithmetized completeness
theorem) have not provided answers so far.
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Problem2.2is of a much more general nature. It asks whether a certain converse
to Tarski’s theorem on undefinability of truth holds.

The paper is not self-contained. I will assume that the reader is familiar with
concepts concerning recursively saturated models of PA; all necessary information
can be found in Kaye [2]. Definitions of semiregular and strong initial segments of a
model of PA are given in Kirby and Paris [5]; the best reference for Gaifman’s mini-
mal types is Gaifman’s important paper [1].

2 Defining nondefinability Let L be the language of PA. ByQn we will denote
the closure of all�n formulas ofL under negation, conjunction, and bounded quan-
tification. Q∞ is the set of all formulas ofL . If M is a model of PA, ande ∈ M
or e = ∞, then Qe(M ) is the set ofQe formulas in the sense ofM (under a fixed
arithmetization). The set of standard nonnegative integers will be denoted byN.

Definition 2.1 Let M be a model of PA, and lete be an element ofM or e = ∞.
A subsetS of M is a Qe-satisfaction class for M if S consists of (codes) of pairs of
the form(ϕ, a), whereϕ ∈ Qe(M ) anda is a (code of) valuation forϕ, andthe fol-
lowing Tarski’s conditions are satisfied (in this definition and later on we will identify
formulas ofM with their Gödel numbers):

1. If ϕ = vi + v j = vk then(ϕ, a) ∈ S iff ai + a j = ak, and similarly for multi-
plication;

2. For all ϕ,ψ ∈ Qe(M ) and for alla ∈ M : (ϕ & ψ, a) ∈ S iff (ϕ, a) ∈ S and
(ψ, a) ∈ S;

3. For allϕ ∈ Qe(M ) and for alla ∈ M : (¬ϕ, a) ∈ S iff (ϕ, a) �∈ S;
4. For all∃viψ ∈ Qe(M ) and for alla ∈ M : (∃viψ, a) ∈ S iff (ψ, a�(i, m)) ∈ S

for somem ∈ M .

See [2] and [12] for a discussion and a survey of results on satisfaction classes.
The first problem I want to pose concerns satisfaction classes directly. The def-

inition of a satisfaction class is a single sentence in the language of PA with an extra
predicate symbolS and one parametere (or no parameters ife = ∞). Let Sate(S) be
this sentence. Thus ifM is a model of PA andS ⊂ M , thenS is a Qe-satisfaction
class forM iff (M , S) |= Sate(S).

The proof of Tarski’s theorem easily gives the following: ife > N and(M , S) |=
Sate(S), thenS is undefinable inM . Our first question asks whether there is a con-
verse to this version of Tarski’s theorem.

Let PA* denote the Peano axioms in the language with extra set parameters. If
e > N or e = ∞ and(M , S) |= Sate(S) + PA* then we say thatS is an inductive
satisfaction class for M .

Problem 2.2 Suppose that�(X) is a sentence of the language of PA with a set pa-
rameterX, such that for every modelM |= PA, and everyX ⊂ M , if (M , X) |= �(X)

thenX is undefinable inM . Is it true then, that for every modelM and everyX ⊂ M
if (M , X) |= �(X) + PA*, then there is a nonstandarde ∈ M and there isS ⊂ M
such that(M , S) |= Sate(S) andS is definable in(M , X)?

Thus we ask whether Tarski’s theorem is essentialy the only source of “definable”
nondefinability. The assumption(M , X) |= PA* i s necessary to eliminate trivial
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counterexamples like�(X) saying thatX is a proper initial segment ofM .

Notice that�(X) = Sat∞(X) satisfies the assumptions of Problem2.2. We
could have fomulated problem2.2to include examples of the form Sate(X), for non-
standarde. The difference seems to be of technical nature only. The same remark
applies to the formulation of Theorem2.4and Problem2.5below.

There is a very general theorem of Harrington which yields the solution of the
analogue of Problem2.2, formulated for the standard model. Harrington’s result is
unpublished. It can be found in handwritten notes titled “MacLaughlin’s Conjecture,”
dated September 1976.

Theorem 2.3 (Harrington) There is a nonarithmetic arithmetical singleton A ⊆ N

such that 0(ω) is not arithmetic in A.

It is well known that if a modelM |= PA has a subsetS such that(M , S) |= Sate(S)

for some nonstandarde, thenM is recursively saturated. We will show that, in a
certain sense, Sate(X) is the only formula with this property.

Theorem 2.4 Suppose that �(X) is a theory in the language of PA with a set pa-
rameter X, such that for every model M |= PA if there is X ⊂ M such that (M , X) |=
�(X) + PA*, then M is recursively saturated. Then for every M |= PA and every
X ⊂ M such that (M , X) |= �(X) + PA* there is a nonstandard e ∈ M and there
is S ⊂ M such that (M , S) |= Sate(S) and S is definable in (M , X).

Proof: Suppose(M , X) |= �(X) + PA*. By the MacDowell-Specker theorem for
PA*, (M , X) has a conservative elementary end extension, so there is(N , Y ) such
that(M , X) ≺e (N , Y ), and every subset ofM which is coded inN is definable in
(M , X). Thus(N , Y ) |= �(Y ), henceN is recursively saturated. We can assume
that cf(N ) = ℵ0. Thus there isS′′ ⊂ N such that(N , S′′) |= Sate′ (S′′) + PA*, for
some nonstandarde′ ∈ N , this is obvious ifN is countable, for an argument in the
case thatN is uncountable see Kossak [7]. Let S′ = S′′ ∩ M . Since(N , Y ) is a
conservative extension of(M , X), S′ is definable in(M , X). The problem is thatS′

might not be a satisfaction class forM . The only obstacle is the existential quantifier
case in Tarski’s conditions. But(M , S′) |= PA*, hence we can apply overspill to the
following formula�(x, A),

∀ϕ ∈ Qx∀a
(
(∃viϕ(vi, a)) ∈ A ↔ ∃v (ϕ, a�(i, v)) ∈ A

)
.

For everyn ∈ N, S′ agrees with the universal truth predicate forQn formulas of PA,
thus we have(M , S′) |= �(n, S′). Hence(M , S′) |= �(e, S′) for some nonstandard
e < e′. Now, if S is the restriction ofS′ to Qe formulas, then(M , S) |= Sate(S). �

Notice that Theorem2.4reduces Problem2.2to the following.

Problem 2.5 Suppose that�(X) is a sentence of the language of PA with a set pa-
rameterX, such that for every modelM |= PA, and everyX ⊂ M , if (M , X) |= �(X)

thenX is undefinable inM . Is it true then, that for every modelM if there isX ⊂ M
such that(M , X) |= �(X) + PA*, then M is recursively saturated?
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3 Weakly Jónsson models A modelM is aJónsson model if for every K ≺ M if
card(K) = card(M ) thenK = M . A linearly ordered model isκ-like if card(M ) = κ

and every proper initial segment ofM is of power smaller thanκ.
It is well known (cf. Knight [6]) that there areω1-like Jónsson models of PA.

But, as the next proposition shows, none of these models can be recursively saturated.

Proposition 3.1 If a recursively saturated M |= PA* is of power κ, and κ is a reg-
ular cardinal, then M has proper elementary submodels of cardinality κ.

Proof: First, if M is notκ-like, then it is easy to see thatM has a proper elementary
initial segment of cardinalityκ, and the result follows.

Now, let us assume thatM is κ-like. If p(v) is a type, then bypM we denote the
set of elements realizingp(v) in M . It is easy to prove that ifM is κ-like and p(v)

is realized by an element ofM that is greater that all definable elements ofM , then
card(pM ) = κ.

Let p(v), q(v) be independent minimal types realized inM (cf. [1]). Let K be
the elementary submodel ofM generated bypM . ThenqM ∩ K = ∅, and the result
follows. �

Definition 3.2 Wewill say that a recursively saturated modelM weakly Jónsson if
for every recursively saturated modelK ≺ M if card(K) = card(M ), thenK = M .

Problem 3.3 Are thereω1-like recursively saturated weakly Jónsson models of
PA?

Suppose a modelM |= PA*, of regular cardinalityκ, has an inductive satisfaction
classS. Then Proposition3.1, applied to the structure(M , S), shows thatM has a
proper elementary recursively saturated submodel of powerκ. Thus such models are
not weakly J́onsson. The next theorem shows that the assumption on the cardinality
of M is not necessary. The idea of the proof of this theorem is due to Kotlarski.

Theorem 3.4 If M |= PA has an inductive satisfacion class, then M is not weakly
Jónsson.

Proof: Let S ⊂ M be such that(M , S) |= Sate(S) + PA*, for some nonstandard
e ∈ M . As in the proof of Proposition3.1, let p(v), q(v) be independent minimal
types realized inM . For n ∈ N let

An = {a ∈ M : ∀ϕ < n M |= ϕ(a) ⇐⇒ ϕ ∈ p(v)}.

(Recall that we identify formulas with their G̈odel numbers.) The sequence〈Ax :
x < e〉 is definable in(M , S). For everyn ∈ N, An is unbounded inM , hence there
is c > N such that, for everyc′ < c, Ac′ is unbounded inM . Notice that ifc > N,
then Ac ⊂ pM .

Now, for everyx ∈ M let Bx be the set of (codes of) all increasing sequences of
elements ofAc whose length isx. For a ∈ M andn ∈ N let

Kn(a) = {t(a) : t is a Skolem term andt < n}.

The sequence〈Kx(a) : x < e〉 is definable in(M , S). Notice that if c > N, then
K(a) ⊂ Kc(a), whereK(a) is the Skolem closure ofa in M .
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Let b be an element ofqM . If a0, . . . , ai is a finite sequence of elements ofpM

then for everyn ∈ N we haveb �∈ Kn(a0, . . . , ai). Thus in(M , S) the following holds
for everyn ∈ N

∀s
(
Seq(s) & len(s) = n & ∀i < len(s) (s)i ∈ Bn

) → b �∈ Kn(s).

Again, by overspill, there isd > N such that the above holds for all sequences of
lengthd′ < d whose terms are inBd′ . Let B = Bd′ for some nonstandardd′ < d. We
can assume thatd′ is small enough so thatBd′ is unbounded inM .

Let K be the Skolem hull ofB in M . Weknow thatb �∈ K, and, sinceB is defin-
able in(M , S) and unbounded inM , card(K) = card(M ). It remains to show that
K is recursively saturated. To this end notice that for everya ∈ M there iss ∈ B such
thata < (s)0. Fors ∈ B let us defineKN(s) to be{y ∈ K : ∃i ∈ N y < (s)i}. It is a rou-
tine to verify thatKN(s) is a recursively saturated structure (the crucial point is that the
terms ofs form an increasing sequence of elements such thatK((s)i) < K((s)i+1),

and we can uses to define inK asatisfaction class forKN(s)). ThusK is a union of
its recursively saturated elementary substructures, so it is recursively saturated.�
A direct attempt to construct anω1-like recursively saturated weakly Jónsson model
using♦ quickly leads to the following question.

Problem 3.5 SupposeM is a countable recursively saturated model of PA andK
is a cofinal recursively saturated elementery submodel ofM . Is there a countable
recursively saturated modelN such thatM ≺e N and for every recursively saturated
modelN ′ ≺ N , if K ≺ N ′, thenK is a proper submodel ofN ′ ∩ M ?

I would like to conjecture that the answer to Problem3.5 is positive, and, conse-
quently, that there areω1-like recursively saturated weakly Jónsson models (at least
when♦ is available).

4 Free cuts Notion of a free cut originated from the study of automorphisms of
recursively saturated models of PA.

Definition 4.1 Wesay that an initial segmentI of M |= PA is free if for all a, b ∈ I
if tp(a) = tp(b) then tp(a, I) = tp(b, I), where tp(x, I) denotes the type ofx over
(M , I) in the language of PA with an additional set parameter forI.

Some simple observations on free sets in general model-theoretic context are pre-
sented in Kossak [8].

For I ⊆e M |= PA, the cofinality ofI in M , cf(I), is the initial segment defined
by:

cf(I) = inf{a ∈ M : ∃b ∈ M , len(b) < a

& ∀i < a − 1 (b)i < (b)i+1 & ∀x ∈ I∃i < a x < (b)i ∈ I}.

Notice that cf(I) is first-order definable in(M , I).
A cut I is semiregular in M if cf (I) = I. If I is not semiregular inM and there

area, b ∈ I, suchthat tp(a) = tp(b), anda ∈cf(I) < b, thenI is not free inM . Thus,
every recursively saturated model of PA has many nonfree cuts.
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Our first task will be to show that every countable recursively saturated model of
PAhas many free cuts. To do this we will apply the machinery of definable types. The
property of the minimal types that we will need is given in Proposition4.2. Proposi-
tion 4.2 is a straightforward consequence of basic results concerning minimal types
(see [1]). Let us introduce some more notation first.

If M is a model of PA anda ∈ M , thenK(a) is the Skolem closure ofa in M .
Also

M (a) = supK(a) = {x ∈ M : ∃y ∈ K(a) x < y};
M [a] =

⋃
{K ≺e M : K < a}.

G = Aut(M ) is the automorphism group ofM , for a, b ∈ M Ua,b = { f ∈ G : f (a) =
b}, alsoG(a) = Ua,a. If X is a subset ofM , thenG{X} = Aut(M , X) is the setwise
stabilizer ofX.

For a typep(v), pM denotes the set of elements realizingp(v) in M .

Proposition 4.2 Let p(v) be a minimal type realized in a recursively saturated
model M |= PA. Then for all 〈a1, . . . an〉, 〈a′

1, . . . a′
n〉 ∈ [ pM ]<ω, and all b, b′ ∈

M [min(a1, a′
1)] if tp(b) = tp(b′), then tp(b, a1, . . . an) = tp(b′, a′

1, . . . a′
n).

Corollary 4.3 If M is a countable recursively saturated model of PA, and a ∈ M
realizes a minimal type, then M [a] is free in M .

Proof: If b, c ∈ M [a] realize the same type, then, by Proposition4.2, tp(b, a) =
tp(c, a). Hence, there isf ∈ Aut(M ) such thatf (b) = c, and f (a) = a. But then
f ′′M [a] = M [a], and the result follows. �
Let us note that for everya ∈ M , if a > M (0), thenM (a) is not free inM . To prove
it first show thatM [a] is definable in(M , M (a)) (see Smorýnski [13]), and then use
Proposition4.4to getb ∈ M [a] such that tp(a) = tp(b).

To exhibit a greater variety among free cuts we will use sequences of skies. We
will say thata ∈ M |= PAcodes asequence of skies if for all i, j < len(a) if i �= j, then
M ((a)i) �= M ((a) j). Cuts determined by coded sequences of skies were introduced
and studied by Smorýnski [13],[14]. In particular, Smorýnski considered ascending
sequence of skies:a ∈ M codes anascending sequence of skies, a ∈ ASS(M ), if
a codes a sequence of skies of a nonstandard length, and, for alli < len(a), (a)i <

(a)i+1.
If a ∈ M codes a sequence of skies andX ⊆ N, then

Ia(X) =
⋃

{M ((a)i) : i ∈ X};
Ia(X) =

⋂
{M [(a)i] : i ∈ X}.

We will show that if {(a)i : i ∈ X} has no maximum element, thenIa(X) is free in
M , and if {(a)i : i ∈ X} has no minimum element, thenIa(X) is also free inM .

The next proposition is an easy exercise in recursive saturation.

Proposition 4.4 If M |= PA is recursively saturated, a, b ∈ M , M (a) < b, and
p(v) is an unbounded type realized in M , then there is c ∈ pM such that M (a) <

c ∈ M [b].
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Corollary 4.5 Let M be a recursively saturated model of PA, and let p(v) be an
unbounded type realized in M . If a ∈ M codes a sequence of skies, then there is
b ∈ M such that:

1. For every i ∈ N (b)i ∈ pM ;
2. For every X ⊆ N there are Y1, Y2 ⊆ N such that if {(a)i : i ∈ X} has no maxi-

mum element, then Ia(X) = Ib(Y1), and, if {(a)i : i ∈ X} has no minimum ele-
ment, then Ia(X) = Ib(Y2).

Proof: Let h : N
2 → N be a recursive pairing function. Consider the type	(a, v):

{ϕ((v)h(i, j)) : i, j ∈ N, i �= j, ϕ(v) ∈ p(v)} ⋃

{(a)i < (v)h(i, j) < (a) j ∨ (a) j < (v)h(i, j) < (a)i : i, j ∈ N, i �= j}.
By Proposition4.4, 	(a, v) is finitely realizable inM , and since	(w, v) is recursive
in p(v), there isb ∈ M that realizes	(a, v). It iseasy to verify thatb has the required
property. �

Theorem 4.6 Let M be a countable recursively saturated model of PA. If a ∈ M
codes a sequence of skies, and {(a)i : i ∈ X} has no maximum element, then Ia(X) is
free in M . Also, if {(a)i : i ∈ X} has no minimum element, then Ia(X) is free in M .

Proof: By Corollary4.5, we can assume that all elements(a)i : i ∈ N realize the
same minimal typep(v). Now, takec, d ∈ Ia(X) such that tp(c) = tp(d). Without
loss of generality we can assume that, for alli ∈ N, c, d ∈ M [(a)i]. Let h be a recur-
sive pairing function. Consider the recursive type
(a, v):

{(a)i < (v)h(i, j) < (a) j ∨ (a) j < (v)h(i, j) < (a)i : i, j ∈ N, i �= j} ⋃

{ϕ(c, v) ⇐⇒ ϕ(d, v) : ϕ(w, v) ∈ L}.
By Propositions4.2 and 4.4, 
(a, v) is finitely realizable inM . Let e ∈ M be
a realization of
(a, v). Then, there isY ⊂ N such thatIa(X) = Ie(Y ). Since
tp(c, e) = tp(d, e), there is f ∈ Aut(M ) such thatf (c) = d and f (e) = e. But then
f ′′ Ie(Y ) = f ′′ Ie(Y ), and the result follows. The proof forIa(X) is similar. �
Theorem4.6implies that for every countable recursively saturated model of PA there
are continuum many nonisomorphic structures of the form(M , I), whereI is a free
elementary cut ofM . To draw this conclusion we need to know that there are con-
tinuum many nonisomorphic structures of the form(M , Ia(X)), wherea codes a se-
quence of skies, but this has already been done in [14], see Theorem 3.6 there.

Yet an interesting problem remains open. IfI is any of the free cuts ofM ex-
hibited above, thenI has only countably many automorphic images inM .

Problem 4.7 SupposeM |= PA is countable and recursively saturated. Is there a
free elementary cutI ≺e M such that card{ f ′′(I) : f ∈ Aut(M )} = 2ℵ0?

The free cuts discussed above have a property that is a priori stronger than freeness
itself. Namely ifK is a free cut of the formIa(X), Ia(X) or M [a], wherea realizes
aminimal type inM , andb, c ∈ K are such that tp(b) = tp(c), then there isf ∈ Ub,c

such thatf fixes K setwise. This property can be used to prove the following (see
Kossak, Kotlarski and Schmerl [10] Theorem 2.3 and Lemma 5.1).
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Proposition 4.8 If M is a countable recursively saturated model of PA and K is a
free cut such that either for some a coding an infinite sequence of skies K = Ia(X),

or K = Ia(X) or K = M [a] for some a realizing a minimal type in M , then G{K} is
a maximal subgroup of G.

If K is one of the cuts mentioned in Proposition4.8, thenG{K} is an open subgroup
of G, i.e.,G{K} containsG(a) for somea ∈ M . Very little is known about cuts whose
setwise stabilizers are not open, therefore it would be interesting to know the answer
to the next question.

Problem 4.9 Assume thatM |= PAis countable and recursively saturated. Is there
acut K ≺e M such that(M , K) is recursively saturated andK is free inM ?

Notice that ifK is a cut ofM and(M , K) is recursively saturated thenG{K} in not
an open subroup ofG, on the other hand ifK is also free inM , then it is not difficult
to prove thatG{K} is maximal.

Let us note that the affirmative answer to Problem4.9 would also provide the
affirmative answer to Problem4.7

5 Uniformity and nonuniformity The question we will consider in this section is:
what are (naturally defined) classesK of cuts in a recursively saturated model of PA,
such that, for allK1, K2 . . . , Kn, L1, L2 . . . , Ln ∈ K if K1 < K2 . . . < Kn, L1 < L2 <

. . . < Ln, then

(M , K1, K2, . . . , Kn) ∼= (M , L1, L2, . . . , Ln).

We will give examples of classes that have this property and an example of a class
that does not. Our examples are some special classes of free cuts considered in the
previous section. The positive answer to Problem4.9would provide other examples
promising interesting applications.

Nonuniformity in the title of this section refers to the class we are about to define.
A similar example will also allow us to show that a strong combinatorial property
(superstrength) does not imply freeness.

For a countable recursively saturated modelM |= PA let,

Kp = {M [a] : a realizesp(v) in M };
K1 = {Ia(N) : a ∈ ASS(M )};
K2 = {Ia(N) : a ∈ DSS(M )},

where, in the definition ofK2, DSS(M ) is the set of codes ofdescending sequences
of skies, i.e., codesa of sequences of skies of nonstandard length such that, for all
i < len(a), (a)i > (a)i+1. All cuts in K1 andK2 are free, as are all the cuts inKp, if
p(v) is a minimal type realized inM .

The proof of Proposition5.1 is based on Proposition4.4and Theorem4.5(and
its proof), details are left to the reader.

Proposition 5.1 Let M |= PA be countable and recursively saturated. If K1 <

K2 < . . . < Kn, L1 < L2 < . . . < Ln are two sequences of cuts of M , all in one
of the classes Kp, K1, or K2, where p(v) is a minimal type realized in M , then

(M , K1, K2, . . . , Kn) ∼= (M , L1, L2, . . . , Ln).
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Are there other naturally defined classes of cuts with the above property? A candidate
for such a class is suggested by Smoryński’s Theorem 2.7 in [14].

For a ∈ ASS(M ) and a semiregular cutI < len(a) define

M (I, a) =
⋃

{M ((a)i) : i ∈ I}.

Smorýnski’s theorem says that ifM |= PA is countable and recursively saturated,
a, b ∈ ASS(M ), I < len(a), len(b) is semiregular, andI < (a)0, (b)0, then

(M , M (I, a)) ∼= (M , M (I, b)).

However, our Proposition5.3provides a counterexample to this statement. Theorem
2.7 was stated in [14] without a proof. The proof of Proposition5.3 was born in a
conversation with Schmerl.

Definition 5.2 For M |= PA andK ≺e M we define

S(K ) = sup{e ∈ M : ∃a ∈ M a ∩ K is a Qe-satisfaction class forM }.

Observe thatS(K ) is definable in(M ,K ) and, ifK is not recursively saturated, then
S(K ) = N.

Proposition 5.3 For every countable recursively saturated model M of PA there
is a semiregular cut I and a, b ∈ ASS(M ) such that I < (a)0, (b)0, len(a), len(b),
and (M , M (I, a)) �≡ (M , M (I, b)).

Proof: Consider the theoryT in L with parametersa, b and with set parameters
N1, N2, I, axiomatized by:

1. I is semiregular,I < (a)0, (b)0, len(a), len(b);

2. N1 = supi∈I (a)i, N2 = supi∈I (b)i;

3. ∀i < len(a)∀ j < len(b) t((a)i) < (a)i+1 & t((b) j) < (b) j+1, for all Skolem
termst;

4. S(N1) = I, S(N2) > I.

Let U be an inductive satisfaction class forM such that(M ,U) is recursively satu-
rated. Letb code an ascending sequence of skies of(M ,U) of a nonstandard length,
and letK2 = M (N, b). Since(K2, K2 ∩ U) ≺ (M ,U) K2 ∩ U is a nonstandard sat-
isfaction class forK2, thusS(K2) > N. Let us note that since, by Proposition5.1,
(M , K2) ∼= (M , M (N, d)) for everyd ∈ ASS(M ), we have shown that for every
suchd we haveS(M (N, d)) > N.

Let c be any nonstandard element ofM and letK1 = M (c). ThenS(K2) =
N. If T0 is a finite fragment ofT , then, since only finitely many Skolem termst are
involved, we can finda ∈ M such that(M , K1, K2,N, a, b) |= T0. This proves thatT
is consistent. By chronic resplendency ofM (see [2] for the definition and properties)
there areN1, N2, I, a, b such that the structure(M , N1, N2, I, a, b) is a model ofT
and is recursively saturated. In particularI > N. To finish the proof notice that, since
I is semiregular,I =cf(N1) =cf(N2) is definable in both(M , N1) and(M , N2), and
the result follows. �
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The strongest known combinatorial property of a cut in a model of PA is super-
strength, and it was defined in Kirby [4] as follows. If M |= PA and I ⊆e M then
I is n-Ramsey in M if every coded partitionf : [ I]n → a, a ∈ I has a homogeneous
set that is coded inM and is unbounded in [I]n, where unboundedness in [I]n is de-
fined by induction in a natural way.I is said to besuperstrong in M if I has the above
property with respect to all coded partitionsf : [ I]c → a, a ∈ I, for some nonstandard
c ∈ M . Thus, if I ⊆e M is n-Ramsey, for every standardn, and(M , I) is recursively
saturated, thenI is superstrong inM . It isalso shown in [4] that if I is strong inM ,
then I is n-Ramsey, for every standardn.

Our last result in this section shows that superstrength does not imply freeness.

Proposition 5.4 Let M |= PA be countable and recursively saturated. There is
I ≺e M such that I is superstrong but not free in M .

Proof: Let S be aQe inductive satisfaction class forM , for somee > N. By taking
a smallere, if necessary, we can assume that there area, b such that tp(a) = tp(b)

anda < e < b < 2e.
Using the results of Kossak and Schmerl [11] we can selectS such that all el-

ements ofM are definable in(M , S). Let (N , S′) be a conservative elementary
end extension of(M , S). Then M is isomorphic toN , M is strong inN , and
S(M ) < M (whereS(M ) is computed inN ). The last claim follows from the fact
that every satisfaction class forM coded inN is definable in(M , S), and the min-
imality of S implies that, ifU is a Qe′ satisfaction class forM definable in(M , S),
thene′ < e + N (see [11]).

Thus we have tp(a) = tp(b) anda ∈ S(M ) < b ∈ M ; henceM is not free inN .
The above remarks show that the folowing recursive theoryT(a, b, I) is consistent:

a, b ∈ I + tp(a) = tp(b) + a < S(I) < b + I ≺e M + I i s strong.

If (M , I) is a recursively saturated model ofT(a, b, I) (we are using chronic resplen-
dency here), thenI is superstrong, but not free inM . �

6 Absolutely nonextendible automorphisms In Kossak and Kotlarski [9] we have
considered the following question: given recursively saturated countable modelsM
andN such thatM ≺e N , when can an automorphismf of M be extended to an
automorphism ofN ? Here I would like to discuss an “absolute” version of this prob-
lem.

Definition 6.1 Let M be a recursively saturated model of PA. We say thatf ∈
Aut(M ) is absolutely nonextendible if for every recursively saturated modelN such
thatM ≺e N , and for everyg ∈ Aut(N ), g does not extendf.

Problem 6.2 Are there absolutely nonextendible automorphisms of countable re-
cursively saturated models of PA?

Let us note that the “dual” question: “is there an automorphism of a countable recur-
sively saturated model of PA that can be extended to an automorphism of every count-
able recursively saturated elementary extension of the model?” has a strong negative
answer. It is shown in [11] that every countable recursively saturated modelM |= PA
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has a countable recursively saturated elementary end extensionN such that none of
the nontrivial automorphisms ofM can be extended to an automorphism ofN .

A partial answer to Problem6.2 is given in terms of satisfaction classes.

Proposition 6.3 Let M |= PA be countable and recursively saturated, and let f be
an automorphism of M . If there is S ⊂ M such that (M , S) |= Sate(S) + PA*, for
some e > N, and f ∈ Aut(M , S), then f can be extended to an automorphism of a
recursively saturated elemetary end extension of M .

The proof of Proposition6.3is based on the following simple lemma concerning de-
finable types (cf. [1]).

Lemma 6.4 If M |= PA*, N = M (a) is an elementary end extension of M gen-
erated by M and an element realizing a definable type, then every automorphism of
M can be extended to an automorphism of N .

Proof: The definition of a definable type says that for every fomulaϕ(w, v) of the
language of the theory ofM there is a formulaσϕ(w) such that for everyb ∈ M ,

N |= ϕ(b, a) iff M |= σϕ(b).

For c ∈ N let g(c) = t( f (b), a), wheret(w, v) is a Skolem term of the language of
the theory ofM such thatN |= c = t(b, a).

Let c = t(b, a), and suppose thatN |= ϕ(c). Let ψ(w, v) = ϕ(t(w, v)). So
we have:N |= ϕ(c) iff N |= ϕ(t(b, a)) iff M |= σψ(b) iff M |= σψ( f (b)) iff N |=
ϕ(t( f (b), a) iff N |= ϕ(g(c)). Thusg is an automorphism ofN , and, clearly,g(c) =
f (c) for all c ∈ M . �
Now, to prove Proposition6.3, apply the lemma to the structure(M , S), whereS is
such as in the assumptions of the proposition. Not every automorphism satisfies the
assumption of Proposition6.3; Proposition6.5provides an example.

Proposition 6.5 If M is countable recursively saturated model of PA and N is
strong in M , then there is f in Aut(M ) such that for every inductive satisfaction
class S for M f �∈ Aut(M , S).

Proof: Let a be a nonstandard element ofM . SinceN is strong inM there is f ∈
Aut(M ) such that fix( f ) = K(a) (cf. Kaye, Kossak and Kotlarski [3], Theorem 5.3).
We claim that f has the desired property. LetS be an inductive satisfaction class
for M . If f ∈ Aut(M , S), then (fix( f ),fix( f ) ∩ S) is an elementary substructure of
(M , S), here we consider fix( f ) as a model with the arithmetic structure inherited
from M , thus fix( f ) ∩ S is an inductive satisfaction class for fix( f ) = K(a). This is
acontradiction sinceK(a) is nonstandard and is not recursively saturated. �
Wedo not know if Proposition6.5is true for recursively saturated models in whichN

is not strong. The argument from the above proof cannot be repeated in this case since
if N is not strong inM then for everyf ∈ Aut(M ) fix( f ) is recursively saturated (in
fact isomorphic toM ); see the proof of Proposition 5.2 in [3].
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