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Ontologies for Plane,
Polygonal Mereotopology

IAN PRATT and OLIVER LEMON

Abstract  Several authors have suggested that a more parsimonious and con-
ceptually elegant treatment of everyday mereological and topological reasoning
can be obtained by adopting aspatial ontology in which regions, not points, are
the primitive entities. This paper challenges this suggestion for mereotopol ogi-
cal reasoning in two-dimensional space. Our strategy is to define a mereotopo-
logical language together with afamiliar, point-based interpretation. It is pro-
posed that, to be practically useful, any aternative region-based spatial ontol-
ogy must support the same sentencesin our language asthis familiar interpreta-
tion. This proposal hasthe merit of transforming avague, open-ended question
about ontologies for practical mereotopological reasoning into a precise ques-
tion in model theory. We show that (a version of) the familiar interpretation is
countable and atomic, and therefore prime. We conclude that useful aternative
ontologies of the plane are, if anything, less parsimonious than the one which
they are supposed to replace.

1 The problem One of the many achievements of coordinate geometry has been
to provide a conceptually elegant and unifying account of the nature of geometrical
entities. According to this account, the one primitive spatial entity is the point, and
the one primitive geometrical property of pointsis coordinate position. All other ge-
ometrical entities—lines, curves, surfaces, and bodies—are nothing but collections
of points; and all properties and relations involving these entities may be defined in
terms of the relative positions of the points which make them up. The success and
power of this reduction is so great that the identification of spatial regions with the
sets of pointsthey contain has come to seem virtually axiomatic.

Yet various authors have sought to reverse this order of rational reconstruction,
treating regions as primary, and admitting points, if at all, as logical constructions
out of them. The best known of these approaches is perhaps Tarski’s [[35] axiom-
atization of Euclidean geometry, taking spheres to be the primitive entities. But the
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policy of taking regionsas primitiveis most attractive when considering problemsin-
volving mereological (part-whole) and topological notions—that is, where no metric
information is to hand. If regions are first-class entities and points are logical con-
structions based on them, then who knows what interesting new ways of considering
spatial entities and relations there might be? Clarke [[L1], [12], following an idea of
Whitehead [[39]], sought to reconstruct mereotopology in terms of aprimitiverelation
of connection holding between regions. Following this work, Biacino and Gerla [5]
have studied models of Clarke's theory. More recently, and partially as a response
to debates concerning temporal reasoning and knowledge representation (for exam-
ple, Allen [[]), Clarke's mereotopology has received attention from several research
groupsin Al, working with the loosely defined area of qualitative spatial reasoning,
for example, Gotts, Gooday and Cohn [[L7], Asher and Vieu [2], and Borgo, Guarino,
and Masolo [B]. For a treatment of region-based topology in a general setting, see
Roeper [B1].

Motivationsfor these developmentsvary, and we do not intend to provide acom-
prehensive account of them here. However, one common recurring themeis the sus-
picion that the familiar, point-based view of space generates a richer ontology than
is needed for mereotopological reasoning in practical situations. For example, Eu-
clidean space contains not only the sorts of regionswewant to recognize for everyday
purposes, but also strange, physically unrealizable regions of the kind that populate
point-set topol ogy textbooks. Such regions seem to be mere artifacts of the Euclidean
model of space—useless for describing, and reasoning about, the world we inhabit.
If, on the other hand, we regard regions as primitive entities, perhaps we can be more
selective as to what regions we take to exist and what mereotopological properties
we take them to have. Perhaps—so some researchers in mereotopology suggest—
treating regions as primary opens up the prospect of simpler and more parsimonious
spatial ontologies than the familiar model based on points in the real plane.

The present paper examines this suggestion for the specia case of plane mereo-
topology. We show that, under certain reasonable assumptions as to what practical
mereotopol ogical reasoning might involve, taking regions rather than points as prim-
itive cannot lead to a more parsimonious spatial ontology.

2 Polygonal mereotopology To get anideaof what practical mereotopological rea-
soning might involve, consider computer systems specialized for representing plane
spatial data, such as Geographic Information Systems (GISs). Virtualy all such sys-
tems represent regions of space by means of boundaries consisting of finitely many
straight lines and straight-line segments. In effect, then, al plane regions recognized
by such systems are polygons. Experience has shown that such a spatial ontology,
whatever its philosophical shortcomings, is certainly equal to the task of describing
everyday planar spatial arrangements such as those found on maps and charts, since
any arrangement of regions oneislikely to encounter can be approximated by poly-
gons with arbitrarily high accuracy.

Suppose we take as our spatial ontology the set P of polygons in the plane. We
discuss the formal construction of P later; for the present, al that mattersis that al
members of P are plane regions bounded by finitely many straight lines as shown in
FigurdIa (Asexplained below, wetakethese regionsnot toincludetheir boundaries.)
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Figure 1. Polygonal mereotopol ogy

Note that we alow polygonsto consist of more than one piece, to be unbounded, and
to contain holes, aslong as those holes have straight-line boundaries; however, poly-
gons are not allowed to contain “ cracks,” as shown in Figure[l. In addition, we con-
sider the empty set and the whol e plane to be polygons.

It turnsout that P forms aBoolean algebra. I1nthis Boolean algebra, the product
of two polygonsistheir intersection; the complement of a polygon isthat part of the
plane lying outside it and its boundary; and the sum of two polygonsis the polygon
formed by taking their union and “rubbing out” any internal boundaries that result.
Figure[ld illustrates the sum-operation. Accordingly, our mereotopological language
will be equipped with functions-symbols -, —, and + to denote these operations, as
well asthe constants 0 and 1 to denotethe empty set and thewhole plane, respectively.
Notethat the formulax - y = x statesthat x is a subset of y. Hence the Boolean func-
tions can express various mereological properties and relations involving polygons.

In point-set topology, it is usual to define an open set as being connected if it is
not the union of two digjoint, nonempty, open sets. Intuitively, connected setsarejust
that—they consist of one piece. Accordingly, our language will be equipped with a
one-place predicate c(x) to expressthe property of being aconnected polygon. (Inci-
dentally, since we take polygons not to include their boundaries, the right-most poly-
gonin Figure[Tais not connected.) If x and y are disjoint, connected and nonempty,
then it is possible to show that the formulac(x + y) issatisfied if and only if xand y
share one or more proper straight line segments on their boundaries. In other words,
the formula c(x + y) can be used to express the relation of external contact along an
edge. Hence, the predicate c(x), together with the Boolean functions, can express
various topological properties and relations involving polygons.
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Thus, wetake our mereotopological language L to be afirst-order language with
equality and nonlogical constants +, -, —, O, 1, and c(x). The set P of polygons
will form the domain over which the variables of £ range, and the interpretation of
the nonlogical constants of £ given above defines amodel 3 on the domain P. The
sentences Th(P) true in this model represent, asit were, the facts of mereotopology
according to the the polygonal ontology employed in most computer systems for rep-
resenting plane spatial data.

We propose to take Th(3) to be the facts of practical mereotopological reason-
ing. After all, the polygonal model 3 is relatively simple, admits no pathological
regions, and yet is mereotopologically nontrivial and finds use in many practical ap-
plications without apparent loss of useful representational power. Moreover, it will
turn out in Section Blthat B can be considerably liberalized without changing the
resulting theory. We further propose that an aternative spatial ontology for practi-
cal mereotopological reasoning is ssimply an alternative model of Th(3)—that is, a
model 2 suchthat 2 = B but A 2 3. Thedomain A of 2 will form the set of regions
of space and the relations and properties needed to interpret the termsin £ will give
this space its mereotopol ogical structure.

Note that the domain P contains only polygonal regions, and not the points and
lines of which they are made up. Thus, we employ alanguage which can talk, in the
first instance, only about regions, in keeping with the spirit of mereotopology. On the
other hand, our model 3 is fundamentally Euclidean, in that polygons are objectsin
the Euclidean plane defined in terms of the pointsthey contain or the lines that bound
them. Thus, B is, asit were, our familiar ontology—one constructed in the familiar
way from pointsin the Euclidean plane. A general model of Th(]3), by contrast, may
have any sorts of objectsin its domain, either primitive or constructed in some other
way. The problem we face in the sequdl is to identify such general models, and to
determine whether any of them constitute a more elegant and parsimonious spatial
ontology than 3.

It may be objected that this strategy is too conservative. After all, who says
that the facts of practical mereotopological reasoning—the facts that we would want
any alternative spatial ontology to support—are the facts that are true of the polyg-
ona data-structures employed in many computer systems? Perhaps we could find
a better theory of space by revising this “computer-mereotopology.” To some ex-
tent, this criticism is justified: we have little to say in favor of the polygona the-
ory, except that it is familiar, easily formalized and seemsto be widely and success-
fully used in avast range of practical applications. (Proponents of other theories of
mereotopol ogical reasoning should be so lucky.) Nevertheless, our strategy doeshave
thevirtue of transforming avague and open-ended question about ontol ogiesfor prac-
tical mereotopological reasoning into a precise, technical question in model theory.
To be sure, we do not regard the solution of this problem to be the last word on the
metaphysics of space; but at |east we now have a definite question to address.

The plan of the rest of the paper is as follows. Section Bloutlines the construc-
tion of the polygonal ontology, Section [4]establishes some preliminary topological
features of this ontology and Section[Elises these results to prove the model -theoretic
results which form the core of the paper. Finally, Section[Glgeneralizes these resuilts
beyond the polygonal case.
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3 Thepolygonal models Our first task in formalizing the polygonal ontology isto
resolve the issue of whether regions include their boundary points. We adopt an ap-
proach, based on regular open sets, which has become reasonably standard in discus-
sions of spatial description languages.

Definition 3.1 Let X be a topologica space and x € X. Then the set
U{y € X] yopen, yn x = @} isan open set in X called the pseudocomplement of
X, written X'. We say that x € X isregular if x = x".

Note, for brevity, we use the term “regular” where most authors would use “regular
open”. We shall never have occasion to refer to regular closed sets.

The following well-known theorem underlies the importance of the regular sets
to mereotopology. We state it here without proof.

Theorem 3.2 Let X beatopological space. Then the set RO(X) of regular setsin
X forms a Boolean algebra with top and bottom defined by 1 = X and 0 = &, and
Boolean operationsdefined by x- y = xNy, x+y= (xUy)” and —x = X'.

Infact, RO(X) isacomplete Boolean algebra, and moreover, every complete Boolean
algebraisisomorphic to RO(X) for some topological space X; however, we will not
be concerned with these facts about regular sets. (See, e.g., Koppelberg [22], pp. 26
and 60.) Accordingly, we shall sometimes use the term regular Boolean algebra of
atopological space X to refer to RO(X). When dealing with the elements of such a
Boolean algebra, we shall write x -y, X+ y, —x and instead of xN'y, (xU y)”, and
X', respectively.

Theorem[3.2 khowsthat the part-whol e rel ationship, restricted to theregular sets,
till obeysthe axiomsof aBoolean algebra, so that confining our attention to such sets
will result in amathematically manageabl e theory. Actually, some mereotopologists
think it important that the empty set not count as aregion, and be eschewed from the
domain of quantification of mereotopological theories. We see no reason for such a
restriction, but readers who disagree can easily adapt the results below to ontologies
from which the empty set is excluded.

If Xisatopological spaceand y C X, we denoteinterior of y (the largest open
set contained in y) by y°, and the closure of y (the smallest closed set containing )
by [y]. (Wereservethe more usual notation y for n-tuples.) Theset [x] \ [X]®iscalled
the frontier of x, and is denoted by 7 (x). The following facts about regular sets are
well known.

Lemma3.3 Let X beatopological spaceand x C X. Thenx' = X\ [X] and X" =
[X°.

Lemmal3.3]shows that restricti ng attention to regular setsis a sensible means of ig-
noring boundary points, because no two regular regions differ only with respect to
their boundary points. Asusual intopology, we say that an open set x is connected if
there do not exist two nonempty, disjoint open sets whose union is X. The maximal
connected subsets of a set x are called the components of x. The next two results are
again so straightforward we state them without proof.

Lemma3.4 Leta;, ay beconnected, regular setswitha; - ap # 0. Thena; + ay is
connected.
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Lemma3.5 Anycomponent of a regular setisregular.

Let X be any topological space and M be any Boolean subalgebra of RO(X). If A
is afinite subset of M and the elements of A are pairwise digoint, nonempty, and
sumtoac M, wecal Aapartition of ain M. If, in addition, every element of Ais
connected, wecall A aconnected partitionof ain M. Inthecasea =1, wereferto A
simply as a (connected) partition in M. The following (rather technical) lemma will
be useful later.

Lemma3.6 Let X beatopological space, M a Boolean subalgebra of RO(X) and
ai,...,apapartitionin M. Let mbe suchthat 1 < m < n. Then

a+--t+am=aU---UanU{p| pe F(a) for somei (1 <i <m),
p& F(aj) forany j (m< j<n)

Proof: Denote the right-hand side of the above equation by x. Suppose p € [a;] for
somej(m< j<n). Thenpe ¥(aj)orpe [aj]O = aj by LemmalB3] If p € a,
then p&[a] foranyi (1 <i < m)bythedigointnessof a, ..., ay. Either way, then,
P& X

Suppose p ¢ [a;] forany j (m < j < n). Thencertainly p ¢ #(a;j) for any j
(m< j <n). Moreover, &, ...,a,sumtol, so[a] U---U[ay] = 1. Hence p € [&]
for somei (1 <i <m), soagain, pe F(a) or p € [a]° = a by Lemmal3.3] Either
way, p € X. Hencex = (1\ [ami1]) N---N(1\ [an]). By thefirst part of Lemmal3.3]
X=(=8mt1) - -~ - (—a) =a+---+am U

Having dealt with the very general notions of regular sets and their Boolean algebras,
weturnto the definition of polygonal regions. Any lineinR? cuts R? into two residual
domains, which we shall call half-planes. It is easy to see that these sets are regular,
with each being the pseudocomplement of the other. Hence, we can speak about the
sums, products, and complements of half-planesin RO(R?).

Definition 3.7 A basic polygon is the intersection of finitely many half-planesin
R2. A polygon isthe sum, in RO(R?), of any finite set of basic polygons.

We denote the set of polygons by R, and will sometimes refer to it as the polygonal
domain. Thus, the elements of R are simply polygons as introduced in the previous
section.

Of course, Ris not the only well-behaved spatial domain we might choose. If a
lineisdefined by an equation ax + by + ¢ = 0, wherea, b, and c arerational numbers,
wecal it arational line; and if a half-planeis bounded by arational line, we call it a
rational half-plane.

Definition 3.8 A rational basic polygon is the intersection of finitely many ratio-
nal half-planesin R?. A rational polygon isthe sum, in RO(R?), of any finite set of
rational basic polygons.

We denote the set of rational polygons by Q, and will sometimes refer to it as the
rational polygonal domain. Thus, R, or perhaps, more modestly, Q, is the spatial
ontology recognized by computer systems such as GlSs—both domains provide a
simple view of space from which any remotely pathological behavior has been ex-
cluded. Clearly, R is uncountable, whereas Q is countable; so R and Q are differ-
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ent structures. Nevertheless, these ontologies are very similar, and share many basic
properties. For brevity, we use the symbol P to denote either Ror Q.

Theorem 3.9 P isa Boolean subalgebra of RO(R?).

Proof: We need only show that P is closed under the Boolean operations. But this
is obvious given the distribution laws for RO(R?) and the fact that the pseudocom-
plement of a haf-planeisahalf-plane. O

Now that we have defined the polygonal domain (or more precisely, domains) of
guantification, P, we introduce our mereotopological language L. Let £ bethefirst-
order language with signature (c(x), +, -, —, 0, 1), where c(x) isa1-place predicate,
+ and - are binary function symbols, — isaunary function symbol, and 0 and 1 are
individual constants. Informally, c(x) denotes the property of connectedness (in the
usual topologica sense), the function-symbols +, -, and — denote the obvious op-
erations in the Boolean algebra RO(R?), and 0 and 1 denote the empty set and R?,
respectively. Thus, £ hasamereological component in the form of Boolean connec-
tives representing operations on regular sets, and atopol ogical component intheform
of a connectedness predicate.

Formally, we give L two “familiar” interpretations, 2R and £, corresponding to
the domains R and Q, respectively.

Definition 3.10 We define the polygonal model R to have the domain R and the
following interpretations of the predicate, constant, and function symbolsin L:

1. c(x)® = {a € R|a isconnected)}

2. 0% =g2; 1M =R?

3. Fordlae R —%(a)=—a

4. Fordla,be R +%(a,by=a+band -R(a,by=a-b

We definetherational polygonal model $Q exactly asfor R but with 93 and Rreplaced
throughout by Q and Q, respectively.

Again, in view of the similarities between R and 9, we write 3 to refer indetermi-
nately to either. Thus, the domain of 3 is P. Anticipating aresult of the next section,
it turns out—unsurprisingly—that 7 and £ make the same sentences of £ true. That
is, the ontologies £ and R are indistinguishable for the mereotopological language
L. Hence we may write Th(3) to denote Th(R) = Th(£2). Our main task in this
paper isto find alternative models of Th(]3).

We finish this section on the familiar modelsfor £ with an exampleto show that
the pains we took to define our domain of interpretation were not in vain. Consider
the following formula of L:

VX1V X2V X3 (( /\ C(X) AC(X1+ Xo+ Xg)) —> (C(X1 + X2) V C(X1 + 03))> .

1<i<3

Thisformulaassertsthat, if the sum of three connected regionsis connected, then the
first must be connected to at least one of the other two. It istrue in the model 3; but
it would be false in a model whose domain extended to all regular sets of the plane.



232 PRATT and LEMON

Figure 2: Three regular setsin the plane

For consider theregions a;, a, and ag defined by

a = {(XY|l-1<x<0; -1-x<y<1l+x}
a = {(xy0<x<1l; -1-—x<y<sin(l/x)}
a3 = {(x,yY0<x<1;s8nl/x)<y<1l+x},

and depicted in Figure[2] (Note: in this figure, the x-axis has been dilated.) It is
not difficult to show that a;, ap, and az are regular, that a; + a, + ag is the inte-
rior of the large triangle in Figure[2land so is connected, but that neither a; + a, nor
a; + az is connected. This example demonstrates the importance of having a pre-
cise characterization of the regions our mereotopol ogical languagetalksabout. When
looking for models elementarily equivalent to 3 as alternative ontologies for practi-
cal mereotopological reasoning, we are making some very specific choices about the
facts of mereotopology that we want to support.

4 Topological analysis Our next step is to establish some basic topologica prop-
ertiesof P. All theresultsin this section are routine and, in one form or another, well
known. The development isin some places perhaps more explicit than is necessary;
however, thiswill prove useful when we generalize our resultsin Section Bl The most
important results for our purposes are Theorem [£.9]and Lemmas[Z.13]and [4.14] the
rest are ancillary. We begin with alemma on which much of the subsequent analysis
depends.

Lemma4.l Anyelement of P isthe sum of finitely many connected elements of P.

Proof: Sincehalf-planesare convex, basic polygonsare convex, and so arecertainly
connected. O

It easy to see that this property does not hold for all Boolean subalgebras of RO(R?),
even where the elements are relatively well behaved. For example, even when x
and y are Jordan domains, the intersection x - y may have infinitely many discon-
nected parts. It is precisely to prevent this possibility that we shall restrict attention
to the domains R and Q. To be sure, the polygons are not the only regions satisfying
LemmalZT] as we shall seein Section[g] but they are the simplest.
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Figure 3: A graph* with two nodeless edges

Lemma4.2 Letae Pandlet cbeacomponent of a. Then c € P. Moreover, a
equals the sum of its components.

Proof: By Lemmald.1]letc, ..., ¢, beconnected elementsof P suchthata=c; +
.-+ cp. Forali(1<i<n),ifc-c # O0then, by LemmaB.4]c; + cisconnected. If,
in addition, (—c) - ¢; # 0, then ¢ < ¢+ ¢, contradicting the maximality of ¢. Thus,
if c- ¢ #£ 0, then (—c) - ¢; = 0. Hence ¢ can be expressed as the sum of various ¢;
(1 <i=<n),andce P. Theremainder of the lemmaistrivial. O

Lemma4.3 Let Abeafinite subset of P. Then there exists a connected partition
Cin P such that each a € A isexpressible as a sum of zero or more elements of C.

Proof: If A={as,...,an}, let C bethe set of all components of all nonzero prod-

ucts of theform +a; - --- - +a,. By Lemmal4.2] these components are elements of
P, and form aconnected partition such that every a; can be expressed asasum of zero
or more elements of C. O

Furthermore, it should come as no surprise that we can picture connected partitions
in P by thinking in terms of plane graphs.

Definition 4.4 A graph* Gisaplanegraphintheclosed real plane having no nodes
of degree 0, together with a (possibly empty) set of nodeless edges. These nodeless
edgesare all Jordan curvesintersecting no other edge of G (nodelessor otherwise). A
graph* ispiecewiselinear if al of itsedgeslie onfinitely many straight lines; agraph*
isrational piecewiselinear if al of itsedgeslieonfinitely many rational straight lines.
A graph* issaid to have an isthmusif there is one edge whose removal increases the
number of its connected components.

Figure[3khowsa piecewise linear graph* (wherethe page represents the whole closed
plane) with two nodeless edges. This specimen aso has no isthmuses and no nodes
of degree 2. We note also that Euler’s formula for a k-component graph, namely
n—e+ f = k+ 1, applies also to a k-component graph*, where nodeless edges do
not count as components.

If Gisagraph*, we denote by |G| the set of pointsin the edges and vertices of
G, ignoring the point at infinity. It makes sense to talk about the faces of G in the
open plane—that is, the components of R? \ |G|. Henceforth, if G isagraph*, when
we speak of ‘the faces of G, we mean ‘the faces of G in the open plane.’

The following basic theorem establishes the importance of piecewise linear and
rational piecewise linear graphs.
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Theorem 4.5 Let A bea connected partitionin R; then there exists a finite piece-
wise linear graph* with no isthmuses whose faces are precisely A. Conversely, let
G be afinite piecewise linear graph* with no isthmuses; then the faces of G forma
finite connected partition in R. The above equivalence also holdsif “ R’ isreplaced
by “ Q" and “ piecewise linear” by “ rational piecewise linear” .

Proof (The symbol « isfor later reference): Suppose that ag, ..., a, form a con-
nected partition in R. Consider all the half-planes involved in the construction of
elements ay, ..., a,. Thelines bounding these half-planes form a finite graph* G*
in the obvious way, and the faces of G* must form a connected partition consisting
of basic polygons, say, by, ..., bn. Moreover, each g (1 < i < n) can certainly be
expressed as asum of variousb; (1 < j < N).

* By renumbering if necessary, leta; = by + - - - + by, for somem(1 < m < N). Now
remove from G all nodes p suchthat p ¢ | J{ 7 (bx)|m < k < N} and all edges e such
that e Z | J{F(bx)|m < k < N}. The result will be a graph* G; in which the faces
by, ..., bm are merged into a number of faces fq, ..., fy forsomen’ (1 <n’ < m).
The union of these faces will then be the set

biU---UbnhU{pe|G|:pe F(b) forsomei (1 <i <m),
pg F(bj) forany j (m< j < N)}.

By Lemmal3.6this setisjust by + - - - + bm = &;. Since a; is connected, n’ = 1 and
G contains the face f; = a;. Proceeding in the same way for ay, ..., a, yields a
graph* G = G, withfacesay, ..., ay. That G hasno isthmusesfollowsfrom the fact
that each face of G isregular.

Conversely, supposethat G isafinite piecewiselinear graph* ; thenthe edgesof G lie
on finitely many straight lines. Consider the graph G* made up of all of these lines
(extended in both directions). Each face of G* is a basic polygon; hence each face
f; of G will be divided into afinite number of basic polygons, say, b 1, ..., bim by
afinite number of straight lines. Since G has no isthmuses, f isaregular set, and it

is easy to check that no smaller regular set contains b 1, ..., b m. In other words,
f=Dbi1+---+bim € R Thecorresponding proof for Q isidentical except for the
obvious changes. O

Next we come to some topological results concerning P which, aswe shall seein the
next section, will have a significant effect on possible alternative models of Th(3).
We say that an end-cut in an open set x isa Jordan arc lying in x except for one end-
point, which lieson F(x).

Lemma4.6 Letae Rand pe F(a). Thenthereisa piecewise linear end-cut «
inawithendpoint p. If a e Q, and p hasrational coordinates, then « may be chosen
so asto berational piecewise linear.

Proof: Obvious. (]
Lemmad4.7 Thereexists afunction e: N — N such that, for all n > 0, if Gisa

graph* whose n faces form a connected partition in P, then there exist at most e(n)
points lying on the boundaries of more than two of these faces.
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Proof: We supposethat pi1, p2, ps aredistinct pointsall lying on the boundaries of
distinct faces a;, ay, ag of G, and we derive a contradiction. The result then follows
by putting e(n) = n(n—1)(n— 2)/3. Let p1, p2, p3 and a;, ay, ag be as described.
Choose points ¢, 0, gz such that ¢ € & (i = 1, 2, 3). By Lemmal4.6] draw three
end-cutsin a;, say «; 1, 2, and «; 3 from the point g; to the points p;, py, and ps,
respectively. Since we can easily choose «; 1, o 2 and «; 3 SO that they intersect only
at q;, this gives us a planar embedding of the graph Ks 3, which is well known to be
nonplanar. O

Lemma4.8 Thereexistsafunction f : N — N suchthat, for all n > 0,if Gisa
graph* with n faces forming a connected partitionin P, and G has no isthmuses and
no nodes of degree 2, then the size of G isbounded by f (n).

Proof: It is easy to show that, in a plane graph* with no isthmuses, any node of
degree greater than two must lie on the boundary of at least three faces. Then, by
Lemmal.7] the number of nodesin G is bounded by afunction of n. The result then
follows from Euler’s formula. O

We then have the following theorem.

Theorem 4.9 Thereexistsafunctiong: N — N suchthat, for all n > 0, thereexist
at most g(n) n-element connected partitionsin P up to homeomorphism.

Proof: By Theorem[4.5] any such partition is the set of faces of some finite piece-
wise linear graph* with no isthmuses, hence of some graph* with no isthmuses and
no nodes of degree 2, since the nodes of degree 2 can be removed without changing
the faces of G. By Lemmal4.8] all such graphs* are of size bounded by f(n). As-
suming the result that every abstract graph can be embedded in the closed plane in
only finitely many homeomorphically distinct ways, the result follows immediately.

O

Note that Theorem[4.9]is limited to partitions in P. The corresponding result fails
to hold, for example, for arbitrary partitions in the Boolean algebra RO(R?). (It is
easy to find counterexamples using constructions such asthat illustrated in Figurel2])
Moreover, the result aso fails for partitions in RO(R®), even when we confine our-
selvesto polyhedral objects.

Thefollowing lemmas are concerned with showing that P is, in a sense that will
become clear below, topologically homogeneous. It is standard to show, given the
first part of Lemmal4.6] that for every finite plane graph* G, there is a homeomor-
phism of the open plane onto itself taking G to a piecewise linear plane graph* G'.
Moreover, the homeomorphism can be chosen so that points in faces bounded only
by piecewiselinear edgesin G are unaffected. In effect, finite plane graphs* can have
their curved edges“ straightened out” by ahomeomorphism. If visahomeomorphism
of the open plane onto itself and a a subset of the open plane, we write v|, to denote
the restriction of v to a.

Lemma4.10 Let a, b be connected e ements of R such that there is a homeomor-
phism p of the open plane onto itself taking ato b. Let ay, ..., a, be a connected
partition of ain R. Then there exists a connected partitionb,, ..., b,of bin Randa
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homeomor phism v of the open plane onto itself suchthat v|_5 = u|_aandv(a) = by
foralli(1<i<n).

Proof: Let the components of —a be ty,...,tn. Sincety,....tm, a1, ..., a, IS
a connected partition, Theorem [£.5]guarantees that we can find a piecewise linear
graph* G with no isthmuses having these elements as faces. Now  maps a to b,
hence the components of —a to the componentsto —b, hence G to agraph* G’ with
facesus, ..., Um, f1,..., fn, say, where f; +--- + f, = b. But then we can find a
a homeomorphism u” of the closed plane onto itself which takes G’ to a piecewise
linear graph* G” without affecting any pointsin —b or its frontier. Hence, the faces

of G” will beuy,...,um, bs,..., by, say. Since G’ clearly contains no isthmuses,
Theorem[4 5 ljuarantees that the faces of G” will bein R, so that v = i’ o u isthe
required homeomorphism. O

Lemma4.11 Let a, b be connected elements of R such that there is a homeomor-
phism u of the open plane onto itself takingatob. Let @’ € Rsatisfyinga’ < a. Then
there exists b’ € R and a homeomor phism v of the open plane onto itself such that
V|l_a=ul_gandv(@) =b'.

Proof: By Lemmal4.3] we can find a connected partition of a in R some of whose
elements sum to &'. The result then follows from Lemmal2.10] O

Definition 4.12 Letay,...,an, by, ..., bybedementsof P. Wesay thatay, ..., a,
and by, ..., by, are similarly situated, written a;, ..., a, ~ by, ..., by, if thereisa
homeomorphism w mapping the open plane onto itself such that w(a;) = b; for all i
(l=<i=zn).

Now we can state the |lemma guaranteeing homogeneity of P.

Lemma4.13 Letag,...,an,by,...,bh,ae Psuchthatay,...,an~bq,..., bn.
Thenthereexistsb € Psuchthata;,...,a,,a~ by, ...by, b.

Proof: Assumefirst that P is R. Let u be a homeomorphism of the closed plane

onto itself mapping a1, ...,a,toby, ..., by Letcy, ..., cy beal the components
of all nonzero productsof theform+a; - --- - a, andletdy, ..., dy beal the com-
ponents of all products of theform +by - --- - £b,,. Then, by Lemmald2]c, ..., cn
and dy, ..., dy are connected partitions in R, and by renumbering if necessary, u
MmapsCy,...,Cnt0dg, ..., dy. It sufficestofindab e Rsuchthatcy,...,cn,a~
dg,...,dn, b

Foral j (1< j<N),letc=a-cj. By Lemmaldil]thereexistsad; e Rand
ahomeomorphism v; mapping c’j to d’j and equal to . outside ¢j. Then the mapping

v=Jwile 11=§ = NYUulgepu-ugen

is a homeomorphism of the open plane onto itself mapping cj tod; forall j (1< j <
N) and mappinga=c;+---+cytob=d; +---+dye R

Finaly if Pis Q, we note that it is possible to show, using the second part of
Lemmal4.G]that any piecewiselinear graph can be homeomorphically “tweaked” into
a rational piecewise linear graph, without affecting any nodes with rational coeffi-
cients or the edges which join them (considered as sets). This easily guarantees the
existence of the required element b of Q. O
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Finally, we address the embedding of Q in R. Similar considerations to those above
yield the following lemma.

Lemma4.14 Leta;,...,ap, € Qandb € R Then there exists a € Q such that
ai,...,an,b~ay, ..., ay a

The details are routine and we omit them.

5 Mode-theoretic analysis This section contains the main technical result of this
paper, Theorem[5.11] Aswe shall see, thistheorem has negative consequences for the
search for alternative spatial ontologies. Throughout this section, we use the notation
a to denote an ordered n-tuple ay, . . ., an.

Let us begin by establishing the promised elementary equivalence of £ and 1.
First, areminder from model theory. A type I'(X) in variables X isamaximal consis-
tent set of formulashaving X astheir only freevariables. Givenamodel 2, we say that
atuple a (of theright arity) belongsto type I'(X) if 2 = ¢[d] for every ¢(X) € I'(X).

Lemmab5.l1 Letaandb betuplesin P such that & ~ b. Then & and b are of the
sametypein ‘B.

Proof: It is straightforward to show that ¢ = ¢[a] if and only if P = ¢[b] by in-
duction on the complexity of ¢, and using Lemmal4.13] O

Lemmab.2 9 <.

Proof: According to the Tarski-Vaught Lemma (Hodges [20], p. 55), if Q € %t
and, for any n-tuple & of £ and any formula ¢(X) of the form 3y (X, y) such that
R E ¢[d], thereexistsb € Q such that R = ¥[4a, b], then Q < R.

By construction, Q C fR. Let a be an n-tuple of elements of £, and let ¢(X) be
any formulaof £ of theform Iy (X, y) suchthat R = ¢[d]. Thenthereexistsa € R
suchthat R |= y[a, a]. By Lemmal4.14]there existsb € Q suchthat & a ~ &, b. By
LemmalET]applied to R, R = ¥[4a, b]. O

It follows from Lemmal[5.2lthat Th(Q) = Th(R). We have already agreed to denote
this set of formulas by Th(3).

Clearly, £ contains a formula pn(X) expressing the notion of being an N-
element connected partition.

Lemmab.3 Forall N> 0,let un(zq, ..., 2zN) betheformula

N\ c@nrzzon N zz=0n ) z=1.

1<i<N l<i<j<N 1<i<N

For any N-tuplecCin P, 8 &= un[C] if and only if C is a connected partitionin P.

We will continue to use the abbreviation . in the sequel. 1n addition, when M = 0,
we interpret the expression ) °; _;_ z asthe L-term 0.

Lemmab5.4 Let a be any n-tuple of elements of P; and let X = Xxq, ..., X, be
an n-tuple of variables. Then B = [a] for some formula v of the form
3z1---3Azn(uNn(2) A (X, 2)), where Z = zg,...,zy and (X, Z) is of the form
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Ai<ien = D _1-j<n, %,j) such that, for all i (1 <i <n), Ni > 0, and the 7
(1 < j £ N) are chosen from among the variables z.

Proof: Immediate from Lemmasl4.3]and[5.3] O

Having set up our mereotopol ogical language and its countablefamiliar interpretation
1, the proof that £ constitutes a “minimal” ontology proceeds quite smply using
standard techniques from model theory. First, we must make more precise the claim
that £ isminimal. The relevant concept here isthat of a prime model.

Definition 5.5 A model 2( issaid to be prime if, for any model 8, 2 = B implies
that 21 can be elementarily embedded in 5.

We show that 9 is prime. It follows that any alternative spatial ontology making the
same sentences of our mereotopol ogical language true must contain a copy of £, to-
gether with some additional elements which make no difference to the formul as sat-
isfied by the elementsin that copy of 2. The technique we use employs the notion of
an atomic model.

Definition 5.6 A formula ¢(X) is said to be complete in atheory T if, for al for-
mulas 6(X), exactly oneof TE¢ — 6and T = ¢ —> —6 hold. A model 2 is
said to be atomic if any n-tupleain A satisfiesaformula ¢(X) in 2l such that ¢(X) is
completein Th(2().

Then we have the following standard result from Chang and Keisler [[10].
Theorem 5.7 ([[10], 2.3.4) A model is countable atomic if and only if it is prime.

Our task, then, isto show that 9 isatomic. The following results will also featurein
the sequel.

Theorem 5.8 (0], 2.3.3) If 2 and 9B are countable atomic models and 2 = B,
then 2 =~ 8.

Theorem 5.9 ([[0], 2.3.13) Let T be a complete theory. Then T is w-categorical
if and only if, for each n, T has only finitely many typesin X, ..., Xn.

The following lemma contains the main idea of the proof of Theorem[5.11]

Lemmab5.10 Every finite connected partition in P satisfies a complete formulain
Th(P). In fact, for each N, there exist complete formulas y1(2), ..., (2) (k de-
pending in N) such that Th(R) &= Vz(un(2) <— (y1(2) V -+ V w(2)).

Proof:  Any connected partition satisfies .y (Z) in 33 for some N > 0 by Lemmal5.3]
And, conversely, any N-tuplein P satisfying wun (2) isan N-element connected par-
tition. By Theorem[4.9] there are only finitely many of these up to homeomorphism.
Moreover, by Lemmals.1)any two similarly situated N-tuples belong to the sametype
I'(2). Hence, any N-tuple satisfying wn (Z) must belong to one of afinite number of
types, I'1(2), ..., T'k(2) in the variables z. Now simply select pairwise inconsi stent
Si(z) fromeach T (1 <i<k)andsety; = un A §i. O

Theorem 5.11 ‘B isan atomic model.
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Proof: By Lemmal5.4] every n-tupleain P satisfies a formula of the form:
3z - Fzn(uN(D) AT (X, 2)) -

So let € be an N-tuple such that a, € satisfies 7 and C satisfies . Thus, € form a
finite connected partitionin P. By Lemmal.10] let y beacompleteformulain Th(Q)
satisfied by €. Thena satisfies3z; - - - Azn (¥ (2) A (X, 2)), whichisvisibly complete.

O

Hence, thefamiliar model constitutesa“minimal” ontology for practical mereotopol-
ogy in the following sense.

Corollary 5.12  If 2 = Th(*3), then 9 can be elementarily embedded in .

The question of course arises as to whether the familiar model 9 is strictly minimal
among countable models of Th(R), in that there are countable models of Th(3) not
isomorphic to . The answer is. yes and no.

Theorem 5.13 Th(3) is not w-categorical.

Proof: By Theorem[5.9]it suffices to prove that Th(33) has countably many types
inthesinglevariable x. Itiseasy to seethat, for every positiveinteger m, the formula

¥m(X)

azl---azm( N\ c@rzzOn N\ —c@+z)ax= ) a)

1<i<m l<i<j<m 1<i<m

issatisfied in B by all and only those regions having exactly m components. Hence,
the pm(x) are al satisfied in ‘3; so each can be extended to atype I'm(x) of Th(3).
But the pm(x) are also pairwise mutually exclusivein Th(13); so no two of them can
be extended to the same typein Th(3). Hence, Th(P) has countably many typesin
X. O

Thus, there exist countable models of Th()3) nonisomorphicto Q. By Theorem[5.8]
these model s cannot be atomic, and so cannot be prime. Thus £ is, in astrong sense,
strictly minimal. However, it turns out that Th(®]3) satisfies aweakened form of of w-
categoricity. The next theorem shows that the only alternative modelsto 3 are those
containing regions comprising, as we might put it, infinitely many pieces.

Theorem 5.14  Any two countable models of Th(3) omitting the set of formulas

E(x):{—-zlzl‘--EIzN< N c@)ax= > z;) Nzl}

1<i<N 1<i<N
Proof: Let 2l be countable such that 2( = Th(]3) and 2 omits X (x). Since 2l omits
2 (x), for every n-tupleain A, there exists an N-tuple € satisfying . in 21 such that
the elements of a are expressible according to 2l as sums of various elements of C.
(To seethis, simply take all nonzero products of theform +a; - --- - +a, and, using
the fact that 21 omits X (x), express each such atom as a sum of elements of A, each

are isomorphic.
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of which satisfies c(x) in 2. By Lemmal3.4] Th(P) = YXVY((C(X) AC(Y) AX-Y #£
0) — c(x+Y)), so we may sum together any nondigjoint pairs of these elements
until we have elements ¢y, ..., cy satisfying .y in 2L.) By LemmalE.10] any tuple
in Arealizing un(2) realizes a complete formula, whence 2 is clearly atomic, by
identical reasoning to that of Theorem[5.11] By Theorem[5.8] 2 ~ 9. O

6 Liberalizing the polygonal ontology The purpose of this section is to show that
the polygonal ontology with which we have been working can be significantly liberal -
ized without changing the set of truthsexpressiblein L. Asin the polygonal case, the
technical details in this section are routine and, in one form or another, well known
in studies of semialgebraic sets. The reader is referred to Pillay and Steinhorn [[26],
Knight, Pillay, and Steinhorn [2I] and the works cited there.

Definition 6.1 Let £’ bethelanguage with signature (<, +, -, 0, 1), interpreted in
R in the usual way (i.e., with + and - denoting addition and multiplication). A set
A C R" is said to be definable (without parameters) if there exists an £'-formula
(X1, ..., Xn) suchthat A= {(ay,...,an) € R"R = ¢[ay, ..., an]}.

We extend the use of this term in the obvious way: a point & € R" is definable if
the set {3} isdefinable; a partial function f : R — R" isdefinableif it is definable
considered as a subset R"1; and plane graph in R? is definable if all its nodes are
definable points and its edges definable arcs.

Theorem 6.2 Let T be the set of definable, regular setsin R2. Then T forms a
Boolean subalgebra of RO(R?).

Proof: It iseasy to seethat if x is definable, —x = R? \ [X] is aso definable, and
that if yisalso definable, x- y = xN yisdefinable. O

Given this theorem, we define the countable definable model € for our mereotopo-
logical language L by interpreting the primitives of £ over the domain of quantifica-
tion T in the obvious way. The main result of this sectioniis:

Theorem6.3 Q< %.Infact, Q ~%.

It follows of course that Th(¥) = Th(]3), so that the liberalization of the ontology
arising from allowing regions to be described by any formula of £’ makes no differ-
ence to the set of truths expressible in £. We note in passing that the real polygonal
domain Risnot asubset of T, since Risuncountable. A corresponding liberalization
of Rwould involve the use of parameters from R in the defining formulas. We also
note that the results of this section might possibly be generalized to apply to regular
definable sets in two dimensions over any real closed field. However, it is unclear
that such generalizations would have any significance for our current concerns. The
remainder of this section is devoted to proving Theorem[6.3]

To seewherethedifficultieslie, recall our treatment of the polygonal case. Since
basic polygonsare conve, it wastrivial to show that every element of P isthe sum of
finitely many connected elements of P, and hence that any component of an element
of Pisan element of P. But it is not immediately obvious that corresponding facts
apply to T; and that iswhat we must show. Once we have done this, the devel opment
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parallels that of the polygona case. The following result is well known (see, e.g.,
Hodges [20], p. 92 for an explanation).

Theorem 6.4  Any definable subset of R is a finite union of points and open inter-
vals (possibly unbounded); moreover, the endpoints of these intervals are all defin-
able.

Definition 6.5 (Adapted from Knight, Pillay, and Steinhorn) A O-cell isapoint in
R?; al-cell isthegraph {(£1, f(£1)) € R?|&; € 1}, of adefinable, continuousfunction
f : 1 — Rwhere | isadefinable openinterval of R (possibly unbounded); a2-cell is
aset {(&1, &) e R?|&1 € 1; f(&1) < & < g(£1)}, where | isadefinable open interval
of R (possibly unbounded) and f and g are definable, continuous functions from | to
R U {400} suchthat f < gover .

Notethat since 2-cellsarevisibly regular, they areelementsof T. Thecritical theorem
for usisasfollows. (See Knight, Pillay, and Steinhorn [21], §3-5 for a proof of this
theorem.)

Theorem 6.6 ([21])  Every definable set in R2 is a finite union of cells.
Lemma6.7 Anyeement of T isthe sum of finitely many connected elements of T.

Proof: Lett=cyU---Uc,wherethec; are 0- 1- and 2-cells. Sincet isregular,

t=t"=(cpU---Ucy)", and it isroutine to show that, for any setscy, ..., Cn, ¢’ is
alwaysregular (L<i <n)and (cpU---Ucy)"” =c] +---+cp. If ¢ isa0- or 1-cell,
thenc’ =0. If ¢iisa2-cell ¢ = c;. O

The development now parallels that of the polygonal case.

Lemma6.8 Letac T and let c be a component of a. Then c € T. Moreover, a
equals the sum of its components.

Lemma6.9 Let Abeafinite subset of T. Then there exists a connected partition
Cin T suchthat each a € Aisexpressible asa sum of zero or more elements of C.

The proofs are identical to those for Lemmasl42]land[4.3]

Theorem 6.10 Let A bea connected partitionin T; then there exists a finite defin-
able graph* with no isthmuses whose faces are precisely A. Conversely, let G be a
finite definable graph* with no isthmuses; then the faces of G form a finite connected
partitionin T.

Proof: Supposethatas, ..., a, formaconnected partitionin T. Takeafinite collec-
tion C of 2-cellssuch that each of the a; can be expressed asasum of variouselements
of C. By Theorem[6.4]the boundary of each 2-cell in the closed plane can certainly
be drawn using finitely many definable arcs (possibly passing through the point at
infinity), and together, these arcs form a definable graph* G* in the closed plane in
the obvious way. Again by Theorem[E.4] G* has finitely many nodes and edges, and
hence finitely many faces, say by, ..., by. These faces are the components of finite
intersections of 2-cells and so are regular, whence each a; (1 < i < n) can certainly
be expressed as asum of various bj (1 < j < N). The proof now proceeds exactly as
for Theorem[45From the point marked x.
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Conversely, suppose that G is afinite definable graph*. For each edge of G*,
lying on the arc (£1(t), &x(1)), say, the set of realst corresponding to local maxima
and minima of &1 (t) (including endpoints) is definable and therefore finite by The-
orem[6.4] Similarly, the set of intervals over which the function &, (t) is constant is
finite. Now add to G by drawing vertical lines at al these (obviously definable) val-
ues of &, (t), for each arc in G. The result must be afinite definable graph* G* each
face of which is a 2-cell. If G has no isthmuses, then each face f of G isregular,
and isin fact the smallest regular set containing all the faces of G* (i.e., 2-cells) into
which it isdivided. Hence f isthe sum of these 2-cells, so f € T. O

Lemma6.11 Letae Rand p e ¥(a) bea definable point. Then thereis a defin-
able end-cut « in a with endpoint p.

Proof: Thisisvisibly trueif aisa2-cel. If a=c¢; +---+ ¢, where ¢; isa 2-cell
(1<i=<n)then F(a) C Uliifn F(c), whencethe result followsimmediately. [

Theorem 6.12 Thereexistsa function g : N — N such that, for all n > 0, there
exist at most g(n) n-element connected partitionsin T up to homeomor phism.

The proof proceeds, given lemmal6.11] as for Theorem([2.9nd the preceeding lem-
mas.

Finally, we come to the homogeneity results. The critical observation here is
Lemmal6.11] Using this lemma, isit standard to show that, given any finite graph*
G, we can find ahomeomorphism of the open plane onto itself taking G to adefinable
graph*, whilefixing (setwise) all the definable facesof G. Thefollowing lemmascan
then be proved as for the polygonal case (with minor changes).

Lemma6.13 Leta;,...,an by,...,bp,ae Tsuchthatay,...,an~bq,..., bn.
Thenthereexistsb € T suchthatay, ..., an, a~bq, ... by, b.

Lemma6.14 Leta;,...,an € Qandb e T. Then there exists a € Q such that
ai,...,an,b~ay, ..., ay a

At this point, the conclusion < ¥ follows as for the proof of Lemmal5.2] Thus,
T = Th(P) and by Lemmal6.9] T omits X (x) (as defined in the statement of Theo-
remB.14). Moreover, < is countable, so by TheoremB.14] O ~ <.

7 Related work The results presented here not only have ramifications for mereo-
topological theories (Casati and Varzi [i8], [[Q], Varzi [B6] and referencesin Section[,
but they have connections with more practical disciplines. Various logicians have
sought to give deductive theories of space and space-time (Basri [[4], Carnap [,
Goldblatt [[L6], Henkin, Suppes, and Tarski [[19]), many in terms of modal logics (Bal-
biani et al. [3], Rescher and Garson [29], Rescher and Urquhart [30], Segerberg [32],
Shehtman [[34], von Wright [38]). Recent interest in the analysis of visual languages,
such as maps and diagrams (Haarslev 18], Lemon [24], Lemon and Pratt [25],
Pratt [[27]) has led to the exploration of planar mereotopology in relation to qualita-
tive spatial reasoning, sinceit istheorized that an important aspect of the semantics of
such representations may be given by analysis of spatial relations between represen-
tational tokens in the plane. Another more practical areain which ontological issues
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about the plane are raised is in the construction of computational spatial representa-
tions for robots, and in Geographical Information Systems (Davis [13], Vieu [B7]).
As we have mentioned, GISs use planar polygonal regions to represent geographic
objects. In mobile roboticstoo, it iscommon to represent arobot’sinformation about
itsenvironment as aplanar arrangement of placestogether with their connection rela-
tions (Davis|[[14], Dudek, Freedman, and Hadjres[[15], Kuipers 23], Shanahan [B3]).
A complete axiomatization of Th(3) has been developed in Pratt and Schoop [29].

8 Conclusion Inthispaper, we have investigated the possibility of alternative spa-
tial ontologies for practica mereotopological reasoning. In order to constrain the
problem, we insisted that any such ontology provide a model elementarily equiva
lent to the “familiar” polygonal model 3. Our motivation for taking B as our point
of departure was that many computer packages designed to manipulate spatial data,
such as GISs, restrict themselves to piecewise linear objects, without any apparent
loss of useful representational power.

We identified rational and real “versions’ of 3, namely £ and R, with the for-
mer being countable. The main technical results of this paper statethat, although 9 is
not the only countable countable model of Th(B), itis, inthe sense of elementary em-
bedding, the minimal such model. Thus, the countable alternativesto 9 all contain a
copy of Q—the“familiar” regions, plus some “nonfamiliar” regions which make no
differenceto any properties of the familiar regionsexpressiblein L. Thus, inastrong
sense, they are less parsimonious. Moreover, we found a simple condition on models
of Th(}3) which determinesQ up to isomorphism, and providesauseful characteriza-
tion of the other models of Th(]3). Finally, we showed how 3 could be considerably
liberalized without affecting the truths expressiblein L. Apparently, revisionsto our
ontology of the plane which do not violate the facts of polygona mereotopol ogy—to
the extent they exist at all—must be less parsimonious than the one we started with.
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