
406

Notre Dame Journal of Formal Logic
Volume 39, Number 3, Summer 1998

Topological Modal Logics Satisfying Finite
Chain Conditions

BERNHARD HEINEMANN

Abstract We modify the semantics of topological modal logic, a language
due to Moss and Parikh. This enables us to study the corresponding theory of
further classes of subset spaces. In the paper we deal with spaces where every
chain of opens fulfils a certain finiteness condition. We consider both a local
finiteness condition relevant to points and a global one concerning the whole
frame. Completeness of the appearing logical systems, which turn out to be
generalizations of the well-known modal system G, can be obtained in the same
manner as in the case of the general subset space logic. It is our main purpose
to show that the systems differ with regard to the finite model property.

1 Introduction A certain logical framework has been introduced recently by Moss
and Parikh [9], which in particular admits reasoning about knowledge. Complemen-
tarily to earlier approaches to this topic, the authors focus on a certain relationship
between knowledge and topology therein. Let us briefly review the ideas of Moss
and Parikh for convenience.

In computer science the modal system S5 is commonly used to describe knowl-
edge of a single agent formally (see Fagin [3]). Corresponding frames are equiva-
lence relations and the class containing the actual state represents the agent’s cur-
rent view of the world. Now spending effort generally results in more knowledge,
as it shrinks the set of states the agent considers possible. For instance, the computa-
tion of an infinite binary sequence gives more knowledge of the computed function
f : N −→ {0, 1} the more digits are printed, and each output successively halves the
set of alternatives. Thus shrinking the set of possible states corresponds to an increas-
ing of the agent’s knowledge. In this way knowledge acquisition turns out to be a
topological phenomenon, namely, an approximation procedure which is modeled by
descending within a system of sets.

Accordingly, Moss and Parikh have defined a modal language with two opera-
tors, K and �. These modalities represent knowledge and effort, respectively; how-
ever, their semantics differs from that of ordinary modal operators to a large extent:
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in the present case underlying frames consist of a nonempty set X and a distinguished
set of subsets of X, O called the opens (although they need not necessarily be open
sets in the sense of topology); K then varies over the elements of an open set, whereas
� captures the shrinking of an open. While K retains its S5-like character from the
usual logic of knowledge, the �-modality reflects properties of the inclusion relation
and consequently, is S4-like.

Various systems of this kind of topological modal logic, TML, have been studied
meanwhile. Sound and complete axiomatizations are available, for example, for the
validities of the basic subset space logic in which O may be an arbitrary set of subsets
of X (Dabrowski [2]), and for topologic where frames actually carry a topology as the
set of opens (Georgatos [4], [2]). Moreover, the satisfiability problem is shown to be
decidable in both cases.

As a further topic, the topological modal theory of treelike spaces has been ex-
amined in [5]. Since these structures play a certain part in the present paper as well, let
us give the basic definition here. A subset frame is called treelike, if and only if U ⊆ V
or V ⊆ U or U ∩ V = ∅ holds for all U, V ∈ O . As it is pointed out in Georgatos [5],
treelike spaces are very appropriate to reason about the development of knowledge in
computational contexts; additionally, they generalize the computation-tree structure
of branching-time semantics. In that paper, a corresponding sound and complete ax-
iom system as well as a decidability proof for the set of derivable theorems is given;
actually the finite model property holds for the logic of treelike spaces.

The semantics of TML has been changed slightly in the note Heinemann [7],
which is a predecessor of this paper. There it has been assumed that an investment
of computational resources is always provided with success, that is, yields properly
more knowledge of the computed object. Assuming this seems to be quite reason-
able for several applications, for exapmle, reasoning about programs which output
0-1-streams. The well-known Cantor space of all infinite 0-1-sequences may serve
as the underlying computational model then. This model and those programs based
on it occur in effective analysis (for example, see Weihrauch [11]). In fact, it has
been our original motivation investigating the systems of topological modal logic to
eventually provide a framework that is suitable for reasoning about the behavior of
effective approximations to (the) infinite objects (occurring in analysis).

Also presently it is presupposed that we get a proper shrinking of the actual open
in each computation step. This amounts to a K4-like modal operator � in the for-
mal theory. However, we now take into account the limitedness of resources, com-
putation time in particular. According to this we impose finiteness conditions on the
trees modeling program executions. Such finiteness requirements read as finite de-
scent conditions on the set of opens and those are emphasized in the given paper. We
study two appropriate logics. The first system, D1, corresponds to frames sharing
the following property of O: every descending chain containing a given point x is of
bounded length, where the bound depends on x; this constraint on the opens is called
weak bounded chain condition (wbcc). We give schemes axiomatizing the topologi-
cal modal theory of spaces satisfying wbcc and prove a corresponding soundness and
completeness result. Our proceeding here is similar to that for the subset-space logic
in the paper [2]: since wbcc does not hold on the canonical model of the system we
will construct an “abstract” space satisfying this property and falsifying a given non-
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derivable formula; in fact, we can even adapt the construction of [2] to a certain ex-
tent. The second system, D2, is characterized by the class of spaces where the so-
called bounded chain condition (bcc) is valid. For these spaces every chain of opens
is of bounded length by definition. The class of finite irreflexive computation trees
occurring in [5] appears as a special case. Again we propose a sound and complete
axiomatization. However, our main concern is to establish the finite model property
for the system D2. This property does not hold for D1. Finally, we prove that even a
certain small model property is valid for D2. This can be done with the aid of filtra-
tions with respect to suitable Kripke structures associated with D2.

As in both systems the class of semantical structures coincides with a class of
trees which satisfy a certain finiteness condition we actually obtain two generaliza-
tions of the well-known modal system G to the context of topological modal logic;
compare Smorynski [10], 4.9.

The paper is organized as follows. We first define the basic logical language in
Section 2. In Section 3 we treat the system D1. The main result there is complete-
ness of the given list of axioms. Section 4 represents the core of the paper and therein
the finite model property for the system D2 is proved. The small model property an-
nounced above is shown in the final section. In Sections 3 and 5 some proofs are not
carried out completely. Because of similarities with corresponding proofs in Sections
2.2 and 2.3 of the paper [2], only ideas are sketched, and different proceedings are
pointed out. Consequently, the present paper is not completely self-contained, but
acquaintance of the reader with §2 of [2] is assumed. As to the basic notions from
(multi)modal logic we like to cite Goldblatt [6], but they can clearly be found else-
where as well, for example, in Chellas [1].

2 The logical language In this section we define a logical language called topo-
logical modal tree language, TMTL. This is done in the following way. The syntax of
TMTL is based upon a suitable alphabet, which contains in particular symbols in or-
der to define a recursive set of propositional variables, PV. Then the set F of TMTL-
formulas is defined by the following clauses:

1. PV ⊆ F ;
2. α, β ∈ F =⇒ ¬α, Kα,�α, (α ∧ β) ∈ F ;
3. no other strings belong to F .

We omit brackets whenever possible, and we use the following abbreviations besides
the usual ones from propositional logic:

Lα for ¬K¬α, and
�α for ¬�¬α.

The semantical domains of TMTL are generally triples (X,O, σ), where X is a
nonempty set, O is a set of nonempty subsets of X (specified further if need be), and
σ : PV × X → {0, 1} is a mapping called X-valuation. The pair S = (X,O ) is named
a subset frame from now on. The elements of O mostly are called the opens of S.

We concentrate on some special types of subset frames presently, which are in-
troduced in the subsequent definition.

Definition 2.1 (Chain conditions) Let S = (X,O ) be a subset frame.
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1. S satisfies the weak bounded chain condition (wbcc), if and only if for all x ∈ X
there is an n ∈ N such that every descending ⊂-chain of opens containing x is
at most n in length; here ‘⊂ ’ means proper inclusion.

2. S satisfies the finite chain condition (fcc), if and only if every ⊂-chain of opens
is of finite length.

3. S satisfies the bounded chain condition (bcc), if and only if there is an n ∈ N

such that every ⊂–chain of opens is at most n in length.
4. Let σ be an X-valuation. Then M = (X,O, σ) is called a subset space or a

model (based on S). If S satisfies wbcc (fcc, bcc), then this attribute is also
attached to every model based on S.

We now define validity of TMTL-formulas in models based on subset frames. As mo-
tivated in the introduction, our definition differs slightly from the usual one in [9], [4],
[5], and [2].

Definition 2.2 (Semantics of TMTL) Let S = (X,O ) be a subset frame and let
M = (X,O, σ) be a model based on S.

1. X ⊗ O := {(x,U) | U ∈ O, x ∈ U} is called the set of neighborhood situations
of S; subsequently we designate elements of X ⊗ O simply without brackets.

2. The validity of a TMTL-formula in M at a neighborhood situation x,U is de-
fined by recursion on the structure of formulas:

x,U |=M A : ⇐⇒ σ(A, x) = 1
x,U |=M ¬α : ⇐⇒ x,U 
|=M α

x,U |=M α ∧ β : ⇐⇒ x,U |=M α and x,U |=M β

x,U |=M Kα : ⇐⇒ (∀y ∈ U) y,U |=M α

x,U |=M �α : ⇐⇒ (∀ V ∈ O )[ V ⊂ U and x ∈ V
=⇒ x, V |=M α ]

for all A ∈ PV and formulas α, β ∈ F .
3. We say that a formula α ∈ F holds in M and denote this by |=M α, if and only

if it holds in M at every neighborhood situation.

If there is no ambiguity, we omit the index M in the following. Examples of various
subset frames and valid formulas with respect to the usual semantics are given in [5]
and [2].

3 The system D1 Giving a list of axioms and rules we present a first logical system
D1 which is an extension of the system G from ordinary modal logic. Our aim in this
section is to show that the D1-theorems are precisely the TMTL-formulas holding in
every model which satisfies wbcc.

Axioms

1. All F -instances of propositional tautologies
2. (A → �A) ∧ (¬ A → �¬A)

3. K(α → β) → (Kα → Kβ)

4. Kα → (α ∧ K Kα)
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5. Lα → K Lα

6. �(α → β) → (�α → �β)

7. �(�α → α) → �α

8. K�α → �Kα,

for all A ∈ PV and α, β ∈ F .

Rules
α → β, α

β (modus ponens)
α

Kα (K-necessitation)
α

�α (�-necessitation)

Some remarks on the axioms seem to be convenient. All but axiom 7 appear in the
list of Moss and Parikh axiomatizing the subset space logic. As to comments on the
interesting axioms 2 and 8, which go beyond the standard systems involved in the
present one, we refer the reader to Moss and Parikh [9]. Two schemes of that list are
missing here:

�α → ��α and �α → α.

It is well known that the first one can be derived from (6) and (7) with the aid of modus
ponens and �-necessitation (see [6], p. 26, for example); the second scheme is can-
celled without compensation because of the modified semantics. (7) is the famous
scheme W from common modal logic which represents the essential ingredient of
the Löb system G = KW. The latter system plays an important part in investigations
relating modal logic to the notion of provability; for a closer explanation see Smoryn-
ski [10]. Currently it corresponds to the fact that only bounded descent of the subset-
component of a neighborhood situation is possible.

Soundness of the axioms with respect to the intended structures can rather easily
be established.

Proposition 3.1 Axioms 1 – 8 hold in every model satisfying wbcc.

Proof: We only show the validity of (7). Let a subset space M = (X,O, σ) that sat-
isfies wbcc and a neighborhood situation x,U of (X,O ) be given. Moreover, assume
that

x,U |= �(�α → α)

holds. We have to prove that x,U |= �α holds, that is, that x, V |= α is valid for all
opens V ⊂ U containing x. So let V be such an element of O . Since the subset space
satisfies wbcc, x is contained in certain opens W ⊆ V which are minimal among those
elements of O which contain x and are properly contained in U. For these W ,

x, W |= �α → α

holds by assumption. The minimality of W also implies x, W |= �α. Hence x, W |=
α. Now the boundedness of every chain of opens between W and V allows us to lift
the validity of α to each neighborhood situation x, V ′ such that W ⊆ V ′ ⊆ V . Con-
sequently, x, V |= α. This proves soundness of the scheme 7. �
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As to completeness, we proceed via the canonical model MD1 of D1. Although we
do not have closure of the system under substitution its canonical model can be built
up in the usual way (see [6], §5). That is in particular, the carrier set C of MD1 equals
the set of all maximal D1-consistent sets of formulas, and the accessibility relations
corresponding to the modal operators K and � are defined by

s
L−→t : ⇐⇒ {α ∈ F | Kα ∈ s} ⊆ t

s
�−→t : ⇐⇒ {α ∈ F | �α ∈ s} ⊆ t,

for all s, t ∈ C, respectively. Note that every s ∈ C contains all axioms, and if Lα ∈ s,

then there exists t ∈ C such that s
L−→ t and α ∈ t (analogously for �α); to show

the latter already the properties of the basic modal logic K are sufficient, which are
present for both modalities.

With the aid of MD1 one can now construct a subset space validating all of the
above axioms, but falsifying a given formula α which is not D1-derivable. For this
purpose the construction of [2], Section 2.2, can be adapted with only minor modifi-
cations concerning the relation of proper containment. (Note that no chain condition
is demanded at the moment.) Especially, a corresponding truth lemma is valid (com-
pare [2], Lemma 2.5), so that we in fact get the following theorem.

Theorem 3.2 Let α ∈ F be a formula which is not derivable in the system D1. Then
there exist a subset space X = (X,OX , σ) and a point x ∈ X such that

1. all axioms of D1 hold in X ,
2. X ∈ OX and x, X 
|= α.

To turn the theorem to good account we must have a somewhat closer look at the
construction involved in its proof. Nevertheless, we need not be too detailed here,
but report the main issues only. In order to obtain the structure X one defines suitably
a set of points X, and an order-reversing injection i from a certain partially ordered
set (P,≤) into the set of nonempty subsets of X (ordered by inclusion). There is a
least element ⊥ of the partial order (P,≤), and the mapping i satisfies i(⊥) = X.
A further property of (P,≤) is that the set {q | q ≤ p} is linearly ordered, for every
p ∈ P. Then a triple (X, P, i) is yielded as the limit of a sequence (Xn, Pn, in) of
finite approximations satisfying for all n ∈ N

1. Xn ⊆ Xn+1 and Xn+1 \ Xn contains at most one point,
2. Pn+1 is an end extension of Pn by at most one point,
3. in+1(p) ∩ Xn = in(p) for all p ∈ Pn.

Moreover, an element t(y, p) ∈ C of the canonical model is associated to every pair
(y, p) ∈ X × P during the construction. This is done by realizing every existential
formula �β and Lβ, respectively, such that

for all γ ∈ F : γ ∈ t(y, p) iff y, i(p) |= γ

holds in the final model X , which is based on the frame (X, i(P)). Providing in-
stances in this way in fact causes the creation of a “new” open U ∈ i(P) in case of a
‘�’-formula δ, which depends on this formula as well as on some already constructed
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point x. So, the pair (x, δ) may be called the reason for U; in particular, we designate
x = r(U). It is important to note that one proceeds in accordance with the requirement
that no point chosen before x is contained in U; consequently, r is well defined.

As we show by the subsequent theorem it is possible to single out suitable opens
then so that a space satisfying wbcc results. We let sf(α) denote the set of subformulas
of α ∈ F .

Theorem 3.3 A formula α ∈ F is derivable in the system D1, if and only if α holds
in all subset spaces satisfying wbcc.

Proof: The ‘only if’ part is an immediate consequence of Proposition 3.1. Now let
α be not D1-derivable. Consider the model X and the neighborhood situation x, X
from Theorem 3.2. The model we are looking for has carrier X and X-valuation σ,
as X . Its set of opens O is constructed inductively in stages with the aid of P:

stage 0:

Let P̄0 := {⊥} ⊆ P.

stage n + 1:

For every p ∈ P̄n, y ∈ i(p), and subformula �β of α such that �¬β ∈
t(y, p), choose an element q ∈ P, q > p, satisfying ¬β ∧ �β ∈ t(y, q). Let
P̄n+1 be the collection of all those q.

Note that the existence of the elements q is always guaranteed by axiom 7 and the
model construction described above. Now define

P̄ :=
⋃
n∈N

P̄n, O := i( P̄).

Furthermore, let M := (X,O, σ). Then M satisfies wbcc.
This can be seen in the following way: enumerating the points of X as they are

obtained, that is, in “chronological” order, X = {x0, x1, x2, . . . , xk, . . .}, one proves
by induction on k that there is some m ∈ N such that every descending chain U0 ⊃
U1 ⊃ U2 ⊃ · · · of opens containing xk has length at most m. In the induction step
one uses the remark concerning the reason of an open immediately preceding this
theorem. Accordingly, and due to the induction hypothesis, there is some l ∈ N such
that xi 
∈ Ul for 0 ≤ i < k, and all members of the chain below Ul have reason xk. We
observe that there is only a finite number of subformulas �β of α, and each of these
can contribute at most one set to the chain because of the definition of O . Thus wbcc
is in fact satisfied.

We now prove by induction on the structure of formulas:

For all β ∈ F and neighborhood situations y,U of (X,O ) :

β ∈ sf(α) =⇒ [ y,U |=X β ⇐⇒ y,U |=M β ] .

The case β a propositional variable is clear from the definitions. If β = ¬γ, β = γ ∧ δ,
or β = Kγ, the induction hypothesis directly applies. The implication ‘=⇒’ in case
β = �γ follows easily from the induction hypothesis, since O ⊆ OX . In order to
prove the reverse direction let y,U be a neighborhood situation of (X,O ) such that
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y,U 
|=X �γ (�γ a subformula of α). By construction of M , there is some n ∈ N and
some p ∈ P̄n ⊆ P such that U = i(p). Since y,U 
|=X �γ implies y,U |=X �¬γ,
we get �¬γ ∈ t(y, p). But in step n + 1 of the above construction a q ∈ P, q > p,
was chosen satisfying ¬γ ∧ �γ ∈ t(y, q). Moreover, V := i(q) ∈ O , and V ⊂ U
because of q > p. Thus we obtain y, V 
|=X γ. By induction hypothesis, y, V 
|=M γ.
Consequently, y,U 
|=M �γ. This ends the induction.

Since x, X 
|=X α by Theorem 3.2, the assertion just proved yields x, X 
|=M α,
as desired. �
For later purposes it is important to remark once again (and more explicitly) a prop-
erty of the partial order (P,≤) mentioned above already: for every two points p, q ∈
P which are not comparable with respect to ≤ there does not exist an r ∈ P satisfying
p ≤ r and q ≤ r. For the associated set of subsets O this means that no two elements
U, V ∈ O which are incomparable with respect to set inclusion can contain a common
W ∈ O . Let us call subset spaces sharing this property pseudo-tree-like.

We finish this section by showing that for the logic of spaces satisfying wbcc
the finite model property is not valid; that is, there are nonderivable formulas which
cannot be falsified in a finite model of the axioms.

Proposition 3.4 The logic of subset spaces satisfying wbcc lacks the finite model
property.

Proof: Let X := N. For every i ∈ N let Ui := N \ {0, . . . , i}, and define O := {Ui |
i ∈ N}. Then (X,O ) obviously satisfies wbcc. Define an X-valuation σ by σ(A, j) :=
1, for all A ∈ PV and j ∈ N. The following formula α, in which A ∈ PV is arbitrarily
chosen, holds in M := (X,O, σ):

LA ∧ K(A → L�A) ∧ K�(A → L�A).

Clearly, this formula cannot hold at any neighborhood situation of some finite subset
space. It follows that ¬α holds in every finite model. This implies the lack of the
finite model property, as |=M α. �

4 The system D2 Subsequently we introduce the system D2, for which we want
to have soundness and completeness with respect to subset spaces satisfying bcc. It
turns out that even the finite model property holds for D2.

The system D2 is essentially determined by the following scheme:

9. K�(K�α → α) → K�α (α ∈ F ).

This axiom corresponds to that stronger finiteness condition on the set of opens, bcc.
The scheme (7) from the list presented in Section 3 may now be weakened to its tran-
sitivity part; that is,

7′. �α → ��α (α ∈ F )

substitutes the former scheme 7. The remaining axioms are retained. So, let D2 con-
sist of the axiom schemes 1 – 6, 7′, 8, 9, and the previous rule schemes.

First we show that (7) can actually be derived with the aid of (9). Formal deriv-
ability is designated �, indexed by the system (if need be).
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Lemma 4.1 �D2 �(�α → α) → �α.

Proof: We omit the index D2 during the proof of the lemma. According to [10],
2.11, it suffices to establish the so-called Unformalized Löb Theorem

�α → α

α

as a derived D2-rule. So let � �α → α be valid. Due to

� (�α → α) → (K�α → α),

which can be seen with the aid of axiom scheme 4 and propositional reasoning, we
obtain

� K�α → α

by assumption. Necessitation with respect to each modality yields

� K�(K�α → α).

Applying modus ponens to this and the scheme 9 gives

� K�α;
hence, again by (4),

� �α

follows. Now the assumption comes into play a second time proving

� α,

as desired. �
The proceeding in the above proof utilizes the presence of axiom 7′. This scheme is
also used implicitly below when we proceed as we did in connection with Theorem
3.2. Soundness with respect to the target structures is again easy to see. Thus a corre-
sponding proof is omitted here. The completeness proof for the new system starts as
in the case of D1, see Theorem 3.2; there is only one modification concerning the no-
tion of consistency, which is now understood with respect to D2. However, we obtain
a subset space initially that only satisfies fcc, but not necessarily bcc.

Theorem 4.2 Every formula α ∈ F which is not D2-derivable can be falsified in a
subset space satisfying fcc.

Proof: To begin with, we repeat the model construction underlying the proof of The-
orem 3.2, but consider the canonical model MD2 instead of MD1; later on in the proof
we also take up some notations introduced in Section 3. In this way we obtain a sub-
set space X = (X,OX , σ) and a point x ∈ X such that all D2-axioms hold in X and
x, X 
|= α; here α denotes the given non-D2-derivable formula.

We now select suitable opens from OX to get the desired space satisfying fcc.
Let

O ′ := {U ∈ OX | (∃�β ∈ s f (α))(∃ y ∈ U) y,U |=X K�β ∧ ¬β}, and
O := {V ∈ OX | (∃U ∈ O ′) U ⊆ V}.



TOPOLOGICAL MODAL LOGICS 415

Then every ⊂-chain in O ′ as well as in O is finite. The first finiteness-condition fol-
lows easily from the definition of O ′ and the fact that there are only finitely many sub-
formulas of α. The latter holds because of the following reason: p ∈ P corresponding
to U ∈ O ′ (by means of i) has been chosen in step k of the model construction for some
k ∈ N, and no q ∈ P has been inserted below p in a step l > k since Pn+1 is an end
extension of Pn for every n ∈ N. Thus M := (X,O, σ) is a model satisfying fcc. The
following assertion can be proved by a structural induction (see the proof of Theorem
3.3).

For all β ∈ F and neighborhood situations y,U of (X,O ) :

β ∈ sf(α) =⇒ [ y,U |=X β ⇐⇒ y,U |=M β ] .

We do not carry out this induction here except the direction ‘⇐=’ in case β = �γ.
So let y,U be a neighborhood situation of (X,O ) such that y,U 
|=X �γ. Then there
exists a set V ∈ OX satisfying V ⊂ U and y, V |=X ¬γ. If y, V |=X K�γ holds
additionally, then V belongs to O ′ according to the definition of O ′, and we are done
because of the induction hypothesis. Otherwise, y, V |=X L�¬γ is valid. With the
aid of axiom 9 we conclude that

y, V |=X L�(K�γ ∧ ¬γ)

holds. Thus, in particular, there exists an open W ⊂ V such that

v, W |=X K�γ ∧ ¬γ for some v ∈ W.

Hence W ∈ O ′ follows. Consequently, we get V ∈ O . So the induction hypothesis
applies again. This means that y, V |=M ¬γ is implied, and we are done in the present
case as well.

Since we have x, X 
|=X α, the above assertion yields x, X 
|=M α. This proves
Theorem 4.2. �
Note that the model M constructed in the proof of Theorem 4.2 not only satisfies fcc,
but is pseudo-tree-like additionally (see the remark following Theorem 3.3 in Section
3).

Next we want to construct a model falsifying α which is even treelike (see Sec-
tion 1).

Lemma 4.3 Let M = (X,O, σ) be a pseudo-tree-like subset space satisfying fcc,
and let X ∈ O . Then there exist a treelike model M ′ = (X ′,O ′, σ′) satisfying fcc and
a surjection ϕ : X ′ → X which induces an inclusion-preserving bijection from O ′ onto
O such that

(∀β ∈ F )[ y′,U ′ |=M ′ β ⇐⇒ ϕ(y′), ϕ(U ′) |=M β ]

holds for all neighborhood situations y′,U ′ of (X ′,O ′).

Proof: The idea of the proof is to separate overlapping opens. For this purpose we
index every element of X by the open sets containing it. Since the structure M we
start with is a pseudo-tree-like subset space our approach will be successful.



416 BERNHARD HEINEMANN

Let yU := (y,U) and X ′ := {yU | y ∈ X; y,U ∈ X ⊗O}. We claim that X ′ is the
carrier set of the desired model. For every open U ∈ O let Ǔ := {yU | y ∈ U}. Now
define

U ′ := Ǔ ∪
⋃

V⊂U

V̌

and let O ′ := {U ′ | U ∈ O}. Then (X ′,O ′) is a treelike subset frame because (X,O )

is pseudo-tree-like.
To complete the specification of a model it remains to define an appropriate X ′-

valuation σ′. But the definition of σ′ is canonical:

σ′(A, yU ) := σ(A, y)

for all A ∈ PV and yU ∈ X ′.
The mapping ϕ is likewise defined in a natural manner:

ϕ(yU ) := y for all yU ∈ X ′.

Surjectivity of ϕ holds due to the construction of M ′; note that X ∈ O . We get
ϕ(U ′) = U and V ⊆ U if and only if V ′ ⊆ U ′ for all U, V ∈ O . Thus M ′ in particular
satisfies fcc.

So far we have defined M ′ and ϕ. The final assertion of the lemma can be proved
by induction on the structure of β. As the details are routine they are not carried out
here. �
Note that ϕ reminds one of what is called a p-morphism in ordinary modal logic [6].
We now provide for finite ramification of the tree obtained right now. We proceed as
follows.

Let M = (X,O, σ) be any treelike model satisfying fcc and X ∈ O . Then, ac-
cording to the distance of an open V from X with respect to proper reverse inclusion,
a partition

O =
⋃
i∈N

Oi

of O is induced such that for all x ∈ X there is at most one Vi
x ∈ Oi satisfying x ∈ Vi

x;
especially, O0 = {X}. If V ∈ Oi, then we call i the level of V .

Let α ∈ F be given. With respect to α we introduce the following equivalence
relation on the set of opens:

V ∼α W : ⇐⇒ (∀ Kβ ∈ sf(α))(∀x ∈ V, y ∈ W )

x, V |= Kβ ⇐⇒ y, W |= Kβ.

Clearly, ∼α is well defined and there is only a finite number of equivalence classes.
The class of V ∈ O is designated [V]α, and we let U be the set of all such equivalence
classes.

We now define inductively a finite partition Û j of O j for all 0 ≤ j.

j = 0:

Let Û0 := {{X}}.
j = n + 1:
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Let Ûn be already defined. If Ûn 
= ∅, then take any element V ∈ Ûn and
let

Vn+1 := {W ∈ On+1 | W ⊂ V for some V ∈ V }.
If Vn+1 is empty, then nothing has to be done. Otherwise consider

V ′ := {[V]α ∩ Vn+1 | [V]α ∈ U} \ {∅}.

If the cardinality of V ′ is ≥ 2 or
⋃⋃

V ′ ⊂ ⋃
V , then let tentatively V ′

be a subset of Ûn+1. Otherwise choose a nontrivial partition {V1,V2} of the
single class belonging to V ′, and let {V ′

1 ,V ′
2 } ⊆ Ûn+1 likewise tentatively.

(Such a partition {V1,V2} exists whenever the present case occurs.) Now
look at level n + 2. Split up each of the temporary members of Ûn+1 into
two sets such that all elements of the first one intersect with On+2 and none
of the second does. Eliminate {∅} if need be. Proceeding in this way for
every V ∈ Ûn yields Ûn+1 definitely.

Let Ô := {⋃V | V ∈ Û j for some j ≥ 0}. Given any open V ∈ O there exists a
unique j ∈ N such that for exactly one V ∈ Û j it holds that V ∈ V . Consequently,
the function ψ : O −→ Ô determined by

ψ(V ) :=
⋃

V

is well defined. Furthermore, ψ is surjective and preserves (strict) inclusions; even
U ⊂ V if and only if ψ(U) ⊂ ψ(V ) is valid.

Using these notations we get the following lemma.

Lemma 4.4 Let M = (X,O, σ) be any treelike space such that fcc is satisfied and
X ∈ O . Furthermore, let α ∈ F be given, and let M̂ := (X, Ô, σ) be the model con-
structed from M and α in the way just described. Then, for all subformulas β of α,
V ∈ Ô , and x ∈ V, it holds that

x, V |=M β iff x, ψ(V ) |=M̂ β.

Proof: The proof is by induction on the structure of the formulas. The propositional
cases are evident.

β = �γ: We first prove ‘=⇒’. Let x, ψ(V ) 
|=M̂ �γ. Then there is an open W ∈
Ô such that x, W 
|=M̂ γ. Because of the surjectivity of ψ it follows that W = ψ(V ′)
for some V ′ ∈ O . As our above construction respects the levels of opens, V ′ may be
chosen such that V ′ ⊂ V . According to the induction hypothesis, x, V ′ 
|=M γ. Hence
x, V 
|=M �γ. The reverse direction is clear by the induction hypothesis and the fact
that ψ preserves proper containment.

β = Kγ: In this case the assertion follows because ∼α was defined adequately
and the above defined partitions Û j respect the equivalence classes. �
Applying the above construction to the non-D2-derivable formula α we started with
and the model M ′ satisfying fcc which we obtained by Lemma 4.3, we have actually
reduced the number of opens to only finitely many. In fact, this is a consequence of
König’s Lemma. Thus we can state our desired completeness result right now.
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Theorem 4.5 A formula α ∈ F is derivable in the system D2, if and only if α holds
in all subset spaces satisfying bcc.

We introduce a further equivalence relation depending on α, this time on the set X of
points. Our aim is to arrive at a finite model falsifying α in this way.

x ∼ y : ⇐⇒ (∀U ∈ Ô )(∀ A ∈ PV occurring in α)

[ x ∈ U ⇐⇒ y ∈ U ] and [ σ(A, x) = 1 ⇐⇒ σ(A, y) = 1 ]

Let [x]∼ denote the equivalence class of x with respect to the relation ∼. Define a
model [M ] = ([X], [O], [σ]) in the following manner:

1. [X] := {[x]∼ | x ∈ X},
2. [O] := {[U] | U ∈ Ô}, where [U] := {[x]∼ | x ∈ U},
3. [σ](A, [x]∼) := 1 ⇐⇒ (∃y ∈ [x]∼) σ(A, y) = 1,

for all A ∈ PV and [x]∼ ∈ [X], where (X, Ô, σ) is the model M̂ from Lemma 4.4.
Then [M ] is a treelike space, too, and [X] is obviously finite.

We omit the straightforward induction proving the following lemma.

Lemma 4.6 For all subformulas β of α and every neighborhood situation x,U ∈
X ⊗ Ô we have that

x,U |=M̂ β ⇐⇒ [x], [U] |=[M ] β.

Combining the results obtained by Theorem 4.5 and Lemma 4.6 yields the finite
model property of the system D2.

Proposition 4.7 Let α ∈ F be given. Then α is D2-derivable if and only if α holds
in all finite models of the axioms.

As a corollary of the proof of the finite model property we get that the system D2
is also sound and complete with respect to the smaller model class of finite treelike
spaces.

Corollary 4.8 A formula α ∈ F is derivable in the system D2 if and only if α holds
in all finite treelike spaces.

We conclude this section with two remarks concerning the system D2.

1. Since every space satisfying bcc in particular satisfies wbcc, all D1-derivable
formulas are D2-derivable as well. This follows from Theorem 3.3 and Theo-
rem 4.5. Especially, �(�α → α) → �α is D2-derivable, as we have shown
in Lemma 4.1.

2. The system D2 strongly resembles the above-mentioned system G of usual
modal logic. The latter system is complete with respect to finite trees (see [10],
4.9, e.g.), whereas D2 is complete with respect to finite treelike spaces, as we
proved above. Thus (9) seems to be the appropriate generalization of W to the
context of topological modal logic (and not simply adopting that scheme as it
was done in Section 3).
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5 Small model property Since we used a compactness argument in the proof of the
finite model property, we did not obtain a bound of the model size depending on the
given formula α which determines the number of structures that have to be checked
in order to validate or falsify α. In this section we show that this is nevertheless pos-
sible, although only with respect to certain bimodal Kripke structures associated with
spaces satisfying bcc.

Definition 5.1 (D2-frame, D2-model)

1. Let R := (W, {R, S}) be a bimodal frame (i.e., W is a nonempty set and R, S
are binary relations on W). Then R is called a D2-frame, if and only if

(a) R is an equivalence relation on W;
(b) S is irreflexive and transitive;
(c) (∀s, t, u ∈ W )(s S t ∧ t R u =⇒ (∃v ∈ W )[ s R v ∧ v S u ];
(d) there is an n ∈ N such that every S-chain has length ≤ n.

2. A model M := (W, {R, S}, σ) based on a D2-frame (W, {R, S}) is called a D2-
model, if and only if

(∀s, t ∈ W )(∀ A ∈ PV)[ s S t =⇒ (σ(A, s) = 1 ⇐⇒ σ(A, t) = 1) ] .

It is not difficult to see that the axiom system determining D2 is sound and complete
with respect to the just defined structures.

Proposition 5.2 A formula α ∈ F is D2-derivable if and only if it holds in every
D2-model.

Proof: In fact, every subset space M = (X,O, σ) satisfying bcc gives rise to a D2-
model M̃ = (W, {R, S}, σ̃) in the following way:

1. W := X ⊗ O;
2. (x,U) R (y, V ) : ⇐⇒ U = V ;
3. (x,U) S (y, V ) : ⇐⇒ x = y ∧ V ⊂ U;
4. σ̃(A, (x,U)) = 1 : ⇐⇒ σ(A, x) = 1.

An easy induction shows that for all α ∈ F it holds that

(∀ x,U ∈ W )
(
x,U |=M α ⇐⇒ M |=x,U α

) ;
here on the right-hand side usual multimodal satisfaction is denoted (see [6], §5).
Now the completeness assertion follows with the aid of Theorem 4.5. The soundness
part is easy to see. �
In the next step we show that every formula which holds in the canonical model MD2

at some point is also satisfied in some finite D2-model. Let C denote the carrier set
of the canonical model, and let α ∈ F satisfy

MD2 |=s α for some s ∈ C.

Let � be the set of all subformulas of α joined with the set of all negated subformulas
of α,

�̃ := � ∪ {β | β is a finite conjunction of distinct elements of �},
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and 	 := �̃ ∪ {Lβ | β ∈ �̃}. Then the following filtration lemma is valid.

Lemma 5.3 Let M := (W, {R, S}, σ) be a 	-filtration of MD2 such that R and S
are the minimal filtrations of the respective accessibility-relations in MD2. Then M
satisfies all D2-model properties up to the irreflexivity of S, possibly.

Proof: The 	-filtration and the Moss-Parikh filtration introduced in [2], Section 2.3,
coincide, and the assertion of the lemma corresponds to that of [2], Lemma 2.10. The
proofs are similar, too, so we need not give more details here. It should only be men-
tioned that, in particular, the transitivity of the relation S, which corresponds to the ac-

cessibility relation
�−→ determined by the modal operator � on the canonical model,

can be established using the completeness of the system with respect to D2-models
(Proposition 5.2). In fact, it is not hard to see that the bimodal structure J ⊕	 K,
which is defined in the same way as in the proof of [2], Lemma 2.10, satisfies all D2-
frame properties. This shows the crucial part of the lemma in the present case. �
As M |= (W, {R, S}, σ) is a 	-filtration of MD2, W is a finite set having at most 2|	|

many elements. The carrier W consists of certain equivalence classes s̄ of points s ∈
C, and for all β ∈ 	 and s ∈ C we have that

MD2 |=s β iff M |=s̄ β.

Thus α is satisfied in the finite model M . Unfortunately, M is not entirely of the type
we are looking for. But self-referential connections may simply be “forgotten”:

Lemma 5.4 Let 	 and M be as above. Let M ′ := (W, {R, S′}, σ), where S′ =
S \ {(x, x) | x ∈ W}. Then M ′ is a D2-model, and

(∀β ∈ 	)(∀v ∈ W )[ M |=v β ⇐⇒ M ′ |=v β ] .

Proof: We induct on β. The induction is trivial except for the ‘⇐=’–direction in
the case β = �γ. So let v ∈ W be given such that M 
|=v �γ. Then v is the class
of some point s of the canonical model and we have MD2 
|=s �γ. Because of the
D2-derivability of �(�γ → γ) → �γ (see Lemma 4.1) we get

MD2 
|=s �(�γ → γ).

Hence there exists a
�−→–successor t ∈ C of s such that

MD2 |=t �γ ∧ ¬γ.

Let u be the equivalence class of t. Then

v S u and M |=u �γ ∧ ¬γ

holds. Since M |=u �γ we get u 
= v, and since M |=u ¬γ we obtain M ′ |=u ¬γ

by the induction hypothesis. Consequently, M ′ 
|=v �γ. �
Summarizing the above results we obtain the following theorem.

Theorem 5.5 The system D2 fulfils the small model property with respect to D2-
models.
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Let us conclude with two remarks. First, the complexity of deciding D2-satisfiability
should be mentioned. It is presumably high. In fact, one can modify the construction
of Ladner [8], Section 3, to obtain PSPACE-hardness of this problem. Second, it
should be stated that a decidability proof for the set of D1-validities is still missing;
we guess that it can be done by means of a modification of the 	-filtration considered
above.
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