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Topological Modal Logics Satisfying Finite
Chain Conditions

BERNHARD HEINEMANN

Abstract We modify the semantics of topological modal logic, a language
due to Moss and Parikh. This enables us to study the corresponding theory of
further classes of subset spaces. In the paper we deal with spaces where every
chain of opens fulfils a certain finiteness condition. We consider both a local
finiteness condition relevant to points and a global one concerning the whole
frame. Completeness of the appearing logical systems, which turn out to be
generalizations of thewell-known modal system G, can be obtained in the same
manner as in the case of the general subset space logic. It isour main purpose
to show that the systems differ with regard to the finite model property.

1 Introduction A certainlogical framework has been introduced recently by Moss
and Parikh [[9], which in particular admits reasoning about knowledge. Complemen-
tarily to earlier approaches to this topic, the authors focus on a certain relationship
between knowledge and topology therein. Let us briefly review the ideas of Moss
and Parikh for convenience.

In computer science the modal system S5 is commonly used to describe knowl-
edge of a single agent formally (see Fagin [Z]). Corresponding frames are equiva-
lence relations and the class containing the actual state represents the agent’s cur-
rent view of the world. Now spending effort generaly results in more knowledge,
asit shrinks the set of states the agent considers possible. For instance, the computa-
tion of an infinite binary sequence gives more knowledge of the computed function
f : N— {0, 1} the more digits are printed, and each output successively halvesthe
set of aternatives. Thus shrinking the set of possible states correspondsto anincreas-
ing of the agent’s knowledge. In this way knowledge acquisition turns out to be a
topological phenomenon, namely, an approximation procedure which is modeled by
descending within a system of sets.

Accordingly, Moss and Parikh have defined a modal language with two opera-
tors, K and 0. These modalities represent knowledge and effort, respectively; how-
ever, their semantics differs from that of ordinary modal operators to alarge extent:
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in the present case underlying frames consist of anonempty set X and adistinguished
set of subsets of X, O caled the opens (although they need not necessarily be open
setsin the sense of topology); K then varies over the elements of an open set, whereas
[ captures the shrinking of an open. While K retains its S5-like character from the
usual logic of knowledge, the [1-modality reflects properties of theinclusion relation
and consequently, is S4-like.

Various systems of thiskind of topological modal logic, TML, have been studied
meanwhile. Sound and complete axiomatizations are available, for example, for the
validities of the basic subset spacelogicinwhich O may be an arbitrary set of subsets
of X (Dabrowski [2]), and for topol ogic where frames actually carry atopology asthe
set of opens (Georgatos [H], [2]). Moreover, the satisfiability problem is shown to be
decidable in both cases.

As afurther topic, the topological modal theory of treelike spaces has been ex-
aminedin[B]. Sincethesestructuresplay acertain partinthe present paper aswell, let
usgivethebasic definition here. A subset frameiscaledtreelike, if andonlyif U C V
orVCUorUnV =g holdsforal U, V € O. Asit is pointed out in Georgatos 5],
treelike spaces are very appropriate to reason about the devel opment of knowledgein
computational contexts; additionally, they generalize the computation-tree structure
of branching-time semantics. In that paper, a corresponding sound and complete ax-
iom system as well as adecidahility proof for the set of derivable theoremsis given;
actually the finite model property holds for the logic of treelike spaces.

The semantics of TML has been changed slightly in the note Heinemann [[7],
which is a predecessor of this paper. There it has been assumed that an investment
of computational resources is always provided with success, that is, yields properly
more knowledge of the computed object. Assuming this seems to be quite reason-
able for several applications, for exapmle, reasoning about programs which output
0-1-streams. The well-known Cantor space of al infinite O-1-sequences may serve
as the underlying computational model then. This model and those programs based
on it occur in effective analysis (for example, see Weihrauch [[L1]). In fact, it has
been our original motivation investigating the systems of topological modal logic to
eventually provide a framework that is suitable for reasoning about the behavior of
effective approximations to (the) infinite objects (occurring in analysis).

Also presently it ispresupposed that we get aproper shrinking of the actual open
in each computation step. This amounts to a K4-like modal operator [J in the for-
mal theory. However, we now take into account the limitedness of resources, com-
putation time in particular. According to this we impose finiteness conditions on the
trees modeling program executions. Such finiteness requirements read as finite de-
scent conditions on the set of opens and those are emphasized in the given paper. We
study two appropriate logics. The first system, D1, corresponds to frames sharing
the following property of O: every descending chain containing a given point X is of
bounded length, where the bound depends on x; this constraint on the opensis called
weak bounded chain condition (wbcc). We give schemes axiomatizing the topologi-
cal modal theory of spaces satisfying whcc and prove a corresponding soundness and
completeness result. Our proceeding here is similar to that for the subset-space logic
in the paper [[2]: since whcc does not hold on the canonical model of the system we
will construct an “abstract” space satisfying this property and falsifying a given non-
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derivable formula; in fact, we can even adapt the construction of [[2] to a certain ex-
tent. The second system, D2, is characterized by the class of spaces where the so-
called bounded chain condition (bcc) isvalid. For these spaces every chain of opens
is of bounded length by definition. The class of finite irreflexive computation trees
occurring in [[5] appears as a special case. Again we propose a sound and complete
axiomatization. However, our main concern is to establish the finite model property
for the system D2. This property does not hold for D1. Finally, we prove that even a
certain small model property isvalid for D2. This can be done with the aid of filtra-
tions with respect to suitable Kripke structures associated with D2.

Asin both systems the class of semantical structures coincides with a class of
trees which satisfy a certain finiteness condition we actually obtain two generaliza-
tions of the well-known modal system G to the context of topological modal logic;
compare Smorynski [[L0], 4.9.

The paper is organized as follows. We first define the basic logical languagein
Section 2. In Section 3 we treat the system D1. The main result there is complete-
ness of the given list of axioms. Section 4 represents the core of the paper and therein
the finite model property for the system D2 is proved. The small model property an-
nounced aboveis shown in the final section. In Sections 3 and 5 some proofs are not
carried out completely. Because of similaritieswith corresponding proofsin Sections
2.2 and 2.3 of the paper [2], only ideas are sketched, and different proceedings are
pointed out. Consequently, the present paper is not completely self-contained, but
acquaintance of the reader with §2 of [[2] is assumed. As to the basic notions from
(multi)modal logic we like to cite Goldblatt [[6], but they can clearly be found else-
where aswell, for example, in Chellas [1].

2 Thelogical language In this section we define a logical language called topo-
logical modal tree language, TMTL. Thisisdonein the following way. The syntax of
TMTL is based upon a suitable a phabet, which containsin particular symbolsin or-
der to define arecursive set of propositional variables, PV. Thentheset F of TMTL-
formulas is defined by the following clauses:

1L PVC T
2. a0, F—=— —a, Ka,Uo, (A B) € T;
3. no other strings belong to 7.

We omit brackets whenever possible, and we use the following abbreviations besides
the usual ones from propositional logic:

Lo for =-K—«, and
Sa for =0O—a.

The semantical domains of TMTL are generdly triples (X, O, o), where X is a
nonempty set, O isaset of nonempty subsets of X (specified further if need be), and
o: PV x X — {0, 1} isamapping called X-valuation. The pair § = (X, O) isnamed
a subset frame from now on. The elements of O mostly are called the opens of S.

We concentrate on some special types of subset frames presently, which are in-
troduced in the subsequent definition.

Definition 2.1 (Chain conditions) Let §= (X, O) be asubset frame.
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1. §satisfiestheweak bounded chain condition (whcc), if and only if for all x € X
thereisan n € N such that every descending C-chain of opens containing x is
at most n in length; here*C’ means proper inclusion.

2. S satisfiesthefinite chain condition (fcc), if and only if every c-chain of opens
isof finite length.

3. S satisfies the bounded chain condition (bcc), if and only if thereisann e N
such that every c—chain of opensisat most nin length.

4. Let o be an X-valuation. Then M = (X, O, o) is caled a subset space or a
model (based on §). If S satisfies whbcc (fce, bee), then this attribute is also
attached to every model based on .

We now definevalidity of TMTL-formulasin models based on subset frames. Asmo-
tivated in theintroduction, our definition differsslightly from the usual onein [[9], [i],

[E], and [2].

Definition 2.2 (Semanticsof TMTL) Let § = (X, O) be a subset frame and let
M = (X, O, ) beamodel based on S.

1 X®0:={(x,U)|U €0, xeU}iscdledthe set of neighborhood situations
of S; subsequently we designate elements of X ® O simply without brackets.

2. Thevalidity of aTMTL-formulain M at a neighborhood situation x, U is de-
fined by recursion on the structure of formulas:

X, U kg A o(A,X)=1

X, U kg~ — XUFEya

X UEyanpf x,U|=Mo¢andx,U|=Mﬁ
X, U E=qr Ka = yeU)yUkEya

X, U Eqs Do — MVeOlVcUadxeV

= X,V Eqs ]

|

forall Ae PV andformulasa, 8 € 7.

3. Wesay that aformulaa € # holdsin M and denotethisby (=4, «, if and only
if it holdsin M at every neighborhood situation.

If there is no ambiguity, we omit theindex M in the following. Examples of various
subset frames and valid formulas with respect to the usual semantics are givenin [5]
and [2].

3 ThesystemD1 Givingalist of axiomsand ruleswe present afirst logical system
D1 whichisan extension of the system G from ordinary modal logic. Our aiminthis
section isto show that the D1-theorems are precisely the TM T'L-formulas holding in
every model which satisfies whbcc.

AXxioms

1. All F-instances of propositional tautologies
2. (A->OAA(—A—-DO-A

3. K(a— B)— (Ka— Kp)

4 Ka — (ax A KKa)
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Lo — KLa

O(a — B) —» (o — 0OP)
U - o) — Qo

8. Ko — OKa,

foral AePVanda, B e 7.

N o o

Rules
oa— B«
B (modus ponens)
o
Ko (K-necessitation)
o
Oo (O-necessitation)

Some remarks on the axioms seem to be convenient. All but axiom 7 appear in the
list of Moss and Parikh axiomatizing the subset space logic. Asto comments on the
interesting axioms 2 and 8, which go beyond the standard systems involved in the
present one, we refer the reader to Moss and Parikh [[9]. Two schemes of that list are
missing here:

Oo — 00« and Oa — a.

Itiswell known that thefirst one can be derived from (6) and (7) with theaid of modus
ponens and [J-necessitation (see [[6], p. 26, for example); the second scheme is can-
celled without compensation because of the modified semantics. (7) is the famous
scheme W from common modal logic which represents the essential ingredient of
the Lob system G = KW. The latter system plays an important part in investigations
relating modal logic to the notion of provability; for acloser explanation see Smoryn-
ski [[L0]. Currently it correspondsto the fact that only bounded descent of the subset-
component of a neighborhood situation is possible.

Soundness of the axioms with respect to the intended structures can rather easily
be established.

Proposition 3.1  Axioms 1 -8 hold in every model satisfying whbcc.

Proof: Weonly show thevalidity of (7). Let asubset space M = (X, O, o) that sat-
isfieswhbcc and a neighborhood situation x, U of (X, O) be given. Moreover, assume
that

X, U E 0 a — a)

holds. We haveto prove that x, U = O« holds, that is, that X, V = « isvalid for al
opensV C U containing x. So let V be such an element of O. Since the subset space
satisfieswhbcc, xiscontained in certain opens W € V which areminimal among those
elements of O which contain x and are properly contained in U. For these W,

X, WEUx - «o

holds by assumption. The minimality of W aso implies x, W = Ca. Hence x, W =
«. Now the boundedness of every chain of opens between W and V allows usto lift
the validity of « to each neighborhood situation x, V' such that W € V' C V. Con-
sequently, X, V = «. This proves soundness of the scheme 7. O
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As to completeness, we proceed via the canonical model Mp; of D1. Although we
do not have closure of the system under substitution its canonical model can be built
upin the usual way (see[i6], §5). That isin particular, the carrier set C of Mp; equals
the set of al maximal D1-consistent sets of formulas, and the accessibility relations
corresponding to the modal operators K and [J are defined by

L
s—t < {aeF|Kaes Ct
si>t < {ae F|UQaes}Ct,

forall s, t € C, respectively. Notethat every s € C containsall axioms, and if Lo € S,

then there existst € C such that s —L>t and o € t (analogously for ¢w); to show
the latter already the properties of the basic modal logic K are sufficient, which are
present for both modalities.

With the aid of Mp; one can now construct a subset space validating all of the
above axioms, but falsifying a given formula « which is not D1-derivable. For this
purpose the construction of [2], Section 2.2, can be adapted with only minor modifi-
cations concerning the relation of proper containment. (Note that no chain condition
is demanded at the moment.) Especially, acorresponding truth lemmaisvalid (com-
pare [2], Lemma 2.5), so that we in fact get the following theorem.

Theorem 3.2 Leta € F beaformulawhichisnot derivableinthesystemD1. Then
there exist a subset space X = (X, 0¥, 0)anda point x € X such that

1. all axiomsof D1 holdin X,
2. Xe 0Yandx, X j~a.

To turn the theorem to good account we must have a somewhat closer look at the
construction involved in its proof. Nevertheless, we need not be too detailed here,
but report the main issuesonly. In order to obtain the structure X one defines suitably
a set of points X, and an order-reversing injection i from a certain partialy ordered
set (P, <) into the set of nonempty subsets of X (ordered by inclusion). Thereisa
least element L of the partial order (P, <), and the mapping i satisfiesi(Ll) = X.
A further property of (P, <) isthat theset {q | q < p} islinearly ordered, for every
p € P. Then atriple (X, P, i) isyielded as the limit of a sequence (X, Pn, in) of
finite approximations satisfying for all n e N

1. Xpn € Xne1 and Xpyp1 \ X, contains at most one point,

2. Py.1isanend extension of P, by at most one point,

3. inp1(P) N Xy =in(p) foral pe P,
Moreover, an element t(y, p) € C of the canonical model is associated to every pair

(Y, p) € X x P during the construction. Thisis done by realizing every existential
formula <8 and LB, respectively, such that

foral ye F:yet(y,p) iff yi(p)Ey

holds in the final model X, which is based on the frame (X, i(P)). Providing in-
stancesin thisway in fact causes the creation of a“new” open U € i(P) in case of a
‘&’ -formulad, which depends on thisformulaaswell as on some aready constructed
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point X. So, the pair (X, §) may be called thereason for U; in particular, we designate
x=r(U). Itisimportant to note that one proceedsin accordance with the requirement
that no point chosen before x is contained in U; consequently, r iswell defined.

Aswe show by the subsequent theorem it is possible to single out suitable opens
then so that aspace satisfying wbcc results. Welet sf («) denotethe set of subformulas
ofx e .

Theorem 3.3 Aformulaa € ¥ isderivableinthe system D1, if and only if o holds
in all subset spaces satisfying whcc.

Proof: The'only if’ part isanimmediate consequence of Proposition 3.1. Now et
a be not D1-derivable. Consider the model X and the neighborhood situation x, X
from Theorem 3.2. The model we are looking for has carrier X and X-valuation o,
as.X. Its set of opens O is constructed inductively in stages with the aid of P:

stage O:
Let Py:={Ll} < P.

stagen+ 1:

For every p € P,, y € i(p), and subformula O of « such that &—8 €
t(y, p), choosean element g € P, q > p, satisfying =8 A8 € t(y, q). Let
P.+1 be the collection of all those g.

Note that the existence of the elements q is dways guaranteed by axiom 7 and the
model construction described above. Now define

P:= U P.,, O:=i(P).
neN
Furthermore, let M := (X, O, o). Then M satisfies whcc.

This can be seen in the following way: enumerating the points of X asthey are
obtained, that is, in “chronological” order, X = {Xg, X1, X2, ..., X, . . .}, ONE Proves
by induction on k that there is some m € N such that every descending chain Ug D
U; D Uy D --- of opens containing x, has length at most m. In the induction step
one uses the remark concerning the reason of an open immediately preceding this
theorem. Accordingly, and due to the induction hypothesis, thereissome| € N such
that x; ¢ U, for 0 < i < k, and all members of the chain below U, have reason x,. We
observe that there is only afinite number of subformulas 8 of «, and each of these
can contribute at most one set to the chain because of the definition of O. Thuswbcc
isin fact satisfied.

We now prove by induction on the structure of formulas:

For dl B € F and neighborhood situations y, U of (X, O) :
Besta)=[y.UExB < y.UEqaBl.
Thecase g apropositional variableisclear fromthedefinitions. If ==y, 8=y A,
or 8 = Ky, theinduction hypothesis directly applies. Theimplication ‘ =" in case

B = Oy follows easily from the induction hypothesis, since O € 0. In order to
prove the reverse direction let y, U be a neighborhood situation of (X, O) such that



TOPOLOGICAL MODAL LOGICS 413

y, U &x Oy (Oy asubformulaof «). By construction of M, thereissomen € N and
some p € P, € Psuchthat U =i(p). Sincey, U x Oy impliesy, U =x ¢ —y,
weget & —y e t(y, p). Butinstep n+ 1 of the above constructionaq € P, g > p,
was chosen satisfying —y A Ly € t(y, q). Moreover, V :=i(q) € O,andV Cc U
because of q > p. Thusweobtainy, V ~x y. By induction hypothesis, y, V g, v.
Consequently, y, U =4, Oy. Thisends the induction.

Since x, X F=x o by Theorem 3.2, the assertion just proved yields x, X &4/ «,
as desired. O

For later purposes it isimportant to remark once again (and more explicitly) a prop-
erty of the partia order (P, <) mentioned above already: for every two points p, g €
P which are not comparable with respect to < theredoesnot existanr € P satisfying
p <randq <r. For theassociated set of subsets O this meansthat no two elements
U, V € O which areincomparablewith respect to set inclusion can contain acommon
W € O. Let us call subset spaces sharing this property pseudo-tree-like.

We finish this section by showing that for the logic of spaces satisfying whbcc
the finite model property is not valid; that is, there are nonderivable formulas which
cannot be falsified in afinite model of the axioms.

Proposition 3.4 Thelogic of subset spaces satisfying whcc lacks the finite model
property.

Proof: Let X:=N. Foreveryi e N letU; :=N\{0,...,i}, and define O := {U; |
i € N}. Then (X, O) obvioudy satisfieswhbcc. Definean X-valuationo by o (A, j) :=
1,foral Ae PV and j € N. Thefollowing formulac, inwhich A € PV isarbitrarily
chosen, holdsin M = (X, O, 0):

LAAK(A— LOA) A KO(A— LOA).

Clearly, thisformula cannot hold at any neighborhood situation of some finite subset
space. It follows that —« holds in every finite model. This implies the lack of the
finite model property, as =4/ «. O

4 Thesystem D2  Subsequently we introduce the system D2, for which we want
to have soundness and compl eteness with respect to subset spaces satisfying bce. It
turns out that even the finite model property holds for D2.

The system D2 is essentially determined by the following scheme:

9. KOKOy — a) > KOa (xe F).

This axiom corresponds to that stronger finiteness condition on the set of opens, bcc.
The scheme (7) from thelist presented in Section 3 may now be weakened to itstran-
sitivity part; that is,

7. Oa— 0O0x (xe ¥F)
substitutes the former scheme 7. The remaining axioms are retained. So, let D2 con-
sist of the axiom schemes 1 -6, 7/, 8, 9, and the previous rule schemes.

First we show that (7) can actually be derived with the aid of (9). Formal deriv-
ability is designated I, indexed by the system (if need be).
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Lemmad.l ‘tp, 0o — o) — Oa.

Proof: We omit the index D2 during the proof of the lemma. According to [10],
2.11, it suffices to establish the so-called Unformalized Lob Theorem

o — o

(07
asaderived D2-rule. So let - Do — «o bevalid. Dueto

F (o — o) > (Ko — a),

which can be seen with the aid of axiom scheme 4 and propositional reasoning, we
obtain
F KOy - «o

by assumption. Necessitation with respect to each modality yields
FKO(KDx — a).
Applying modus ponens to this and the scheme 9 gives
F KOg;

hence, again by (4),
F Do

follows. Now the assumption comesinto play a second time proving
F o,

as desired. O

The proceeding in the above proof utilizes the presence of axiom 7. This schemeis
also used implicitly below when we proceed as we did in connection with Theorem
3.2. Soundnesswith respect to the target structuresis again easy to see. Thusacorre-
sponding proof is omitted here. The completeness proof for the new system starts as
inthe case of D1, see Theorem 3.2; there is only one modification concerning the no-
tion of consistency, which is now understood with respect to D2. However, we obtain
a subset space initially that only satisfies fcc, but not necessarily bec.

Theorem 4.2 Everyformulax € F whichisnot D2-derivable can befalsifiedina
subset space satisfying fcc.

Proof: Tobeginwith, werepeat the model construction underlying the proof of The-
orem 3.2, but consider the canonical model Mp, instead of Mp;; later onin the proof
we also take up some notations introduced in Section 3. In thisway we obtain a sub-
set space X = (X, 0%, o) and apoint x € X such that all D2-axioms hold in X and
X, X b= «; here a denotes the given non-D2-derivable formula.

We now select suitable opens from O to get the desired space satisfying fcc.
Let

O = {(UeOX|3OBesf(a)@yeU)y,Uk=x KOBA-E}, and
0O = {(Veod¥|AUeO)UCV)}
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Then every c-chainin O’ aswell asin O isfinite. Thefirst finiteness-condition fol-
lows easily from the definition of O’ and the fact that there are only finitely many sub-
formulasof «. Thelatter holdsbecause of thefollowing reason: p € P corresponding
toU € O’ (by meansof i) hasbeen chosenin step k of themodel construction for some
k € N, and no q € P has been inserted below pinastep| > k since P71 isanend
extension of P, for every n e N. Thus M := (X, O, o) isamodel satisfying fcc. The
following assertion can be proved by astructural induction (seethe proof of Theorem
3.3).

For al g € F and neighborhood situations y, U of (X, O) :
Best(a) =[y.UExB < V.U Bl.

We do not carry out this induction here except the direction ‘<’ in case g = [y.
So let y, U be aneighborhood situation of (X, O) suchthat y, U & Oy. Then there
existsaset V e OF satisfyingV c U and y,V =x —y. If y,V =x KOy holds
additionally, then V belongsto O’ according to the definition of O’, and we are done
because of the induction hypothesis. Otherwise, y, V =x LO =y isvalid. With the
aid of axiom 9 we conclude that

Y, VEx LOKOy A—=y)
holds. Thus, in particular, there exists an open W C V such that
v, W =x KOy A —y for somev € W.

Hence W € O’ follows. Consequently, we get V € O. So the induction hypothesis
appliesagain. Thismeansthat y, V =4, — y isimplied, and weare donein the present
case aswell.

Since we have X, X & x «, the above assertion yields X, X 4, . This proves
Theorem 4.2. O

Note that the model M constructed in the proof of Theorem 4.2 not only satisfiesfcc,
but is pseudo-tree-like additionally (seethe remark following Theorem 3.3 in Section
3).

Next we want to construct a model falsifying « which is even treelike (see Sec-
tion 1).

Lemma4.3 Let M = (X, O, o) be a pseudo-tree-like subset space satisfying fcc,
andlet X € O. Thenthere exist atreelike model M’ = (X', O', o’) satisfying fcc and
asurjection ¢ : X’ — Xwhichinducesaninclusion-preserving bijection from O’ onto
O such that

(VBe PILY. U Ea B = oY), oU") =4 B]
holds for all neighborhood situations y’, U’ of (X', O").

Proof: Theidea of the proof isto separate overlapping opens. For this purpose we
index every element of X by the open sets containing it. Since the structure M we
start with is a pseudo-tree-like subset space our approach will be successful.
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Letyy :=(y,U)and X' :={yu |ye X; y,U € X® O}. Weclamthat X" isthe
carrier set of the desired model. For every openU € Olet U := {yy | y € U}. Now
define

u:=0u ]V

andlet O’ :={U’ | U € 0}. Then (X', O') isatreelike subset frame because (X, O)
is pseudo-tree-like.

To compl ete the specification of amodel it remains to define an appropriate X'-
valuation ¢’. But the definition of ¢’ is canonical:

o (A, yu) i=0(Ay)

foral Ae PVandyy € X.
The mapping ¢ islikewise defined in a natural manner:

e(y) = yforal yy e X.

Surjectivity of ¢ holds due to the construction of M’; note that X € 0. We get
p(U)=UandV cUifandonlyif V' C U’ forall U,V € O. Thus M’ in particular
satisfies fcc.

Sofar we have defined M’ and . Thefinal assertion of thelemmacan be proved
by induction on the structure of 8. Asthe details are routine they are not carried out
here. O

Note that ¢ reminds one of what is called a p-morphismin ordinary modal logic [[].
We now provide for finite ramification of the tree obtained right now. We proceed as
follows.

Let M = (X, O, o) be any treelike model satisfying fcc and X € O. Then, ac-
cording to the distance of an open V from X with respect to proper reverse inclusion,

apartition
o=]Jo
ieN
of O isinduced such that for all x € X thereisat most one V} € O satisfying x € V};
especidly, Op = {X}. If V € G, thenwecall i thelevel of V.
Let « € F begiven. With respect to « we introduce the following equivalence
relation on the set of opens:

Vg W: &=  (YKBesf(a)(YxeV, yeW)
X, VEKB < y, Wk Kg.

Clearly, ~, iswell defined and there is only a finite number of equivalence classes.
Theclassof V € Oisdesignated [V],, and welet U bethe set of all such equivalence
classes.

We now define inductively afinite partition fl,— of O; forall 0 < j.

j=0:
Let Uy = {{X}}.
j=n+1
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Let 7, be already defined. If Uy, # @, then take any element ¥ € T, and
let
Vi1 :={We€ On1 | WcC VforsomeV e V}.

If 7)1 isempty, then nothing has to be done. Otherwise consider
V' :={[VleN 1| [V]e € W\ {2}

If the cardinality of 7" is>2or JUY’ c U, then let tentatively 7"
be a subset of @nﬂ. Otherwise choose a nontrivial partition {74, 15} of the
single class belonging to 97, and let {1}, 1} U1 likewise tentatively.
(Such a partition {14, 75} exists whenever the present case occurs.) Now
look at level n+ 2. Split up each of the temporary members of @nH into
two sets such that all elements of the first one intersect with O, and none
of the second does. Eliminate {@} if need be. Proceeding in this way for
every V € U, yields U, 1 definitely.

Let O:={UV |V e ‘ZlJ for some j > 0}. Given any open V € O there exists a
unique j € N such that for exactly one Ve ‘Zl, it holdsthat V € /. Consequently,
the function ¢ : O — O determined by

y(V) =V

iswell defined. Furthermore, v is surjective and preserves (strict) inclusions; even
U c Vifandonlyif y(U) C (V) isvdlid.
Using these notations we get the following lemma.

Lemma4.4 LetM = (X, 0,0) beanytreellke/s\pacewchthatfcc|ssat|sf|ed and
X € O. Furthermore, let o € F begiven, and let M := (X, 0, o) be the model con-
structed from M and « in the way just described. Then, for all subformulas B of «,
V € 0,and x € V, it holds that

X, Vl=ar BIfE X, ¥(V) =57 B

Proof: The proof isby induction on the structure of theformulas. The propositional
cases are evident.

p="Uy: Wefirstprove' =". Letx, Y/(V) 5, Uy. ThenthereisanopenW e
O such that x, W =57 v- Because of the surjectivity of ¢ it follows that W = (V')
for some V' € O. As our above construction respects the levels of opens, V' may be
chosen suchthat V' C V. According to theinduction hypothesis, x, V' (=4, v. Hence
X, V g Oy. Thereversedirection is clear by the induction hypothesis and the fact
that v preserves proper containment.

B = Ky: In this case the assertion follows because ~,, was defined adequately
and the above defined partitions @j respect the equivalence classes. O

Applying the above construction to the non-D2-derivable formula « we started with
and the model M’ satisfying fcc which we obtained by Lemma 4.3, we have actually
reduced the number of opensto only finitely many. In fact, thisis a consequence of
Konig's Lemma. Thus we can state our desired completeness result right now.
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Theorem 45 Aformulax € ¥ isderivableinthesystemD2, if and only if o holds
in all subset spaces satisfying bcc.

Weintroduce afurther equivalence relation depending on «, thistime on the set X of
points. Our aimisto arrive at afinite model falsifying « in thisway.

X~Yy:<= (YU e O)(YAe PV occurringin )
[xeU < yeU]and[oc(A,X) =1 < o(Ay) =1]

Let [X]~ denote the equivalence class of x with respect to the relation ~. Define a
model [M] = ([X],[O], [o]) in the following manner:

1 [X]:={[{~ | xe X},
2. [0] :={[U] | U € O}, where[U] := {[X]~ | x € U},
3 [06](A[X~) =1 < Qye[x-) oAy =1,

foral A e PV and [X]~ € [X], where (X, 0, o) is the model M from Lemma 4.4.
Then [M] is atreelike space, too, and [ X] is obvioudly finite.
We omit the straightforward induction proving the following lemma.

Lemma4.6 For all subformulas g of o and every neighborhood situation x, U €
X ® O we have that

X, Uz B < [X,[VU] Fpg 8

Combining the results obtained by Theorem 4.5 and Lemma 4.6 yields the finite
model property of the system D2.

Proposition 4.7 Leta € ¥ begiven. Then « isD2-derivableif and only if & holds
in all finite models of the axioms.

As a corollary of the proof of the finite model property we get that the system D2
is also sound and complete with respect to the smaller model class of finite treelike
spaces.

Corollary 48 Aformulax € ¥ isderivableinthesystemD2 if and only if o holds
in all finite treelike spaces.

We conclude this section with two remarks concerning the system D2.

1. Since every space satisfying bcc in particular satisfies whcc, all D1-derivable
formulas are D2-derivable as well. Thisfollows from Theorem 3.3 and Theo-
rem 4.5. Especidly, 0o — «a) — O« is D2-derivable, as we have shown
in Lemmad4.1.

2. The system D2 strongly resembles the above-mentioned system G of usual
modal logic. Thelatter system is complete with respect to finite trees (see [[10],
4.9, e.q.), whereas D2 is complete with respect to finite treelike spaces, as we
proved above. Thus (9) seemsto be the appropriate generalization of W to the
context of topological modal logic (and not simply adopting that scheme as it
was done in Section 3).
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5 Small model property  Sincewe used acompactness argument in the proof of the
finite model property, we did not obtain a bound of the model size depending on the
given formula « which determines the number of structures that have to be checked
in order to validate or falsify «. In this section we show that thisis nevertheless pos-
sible, athough only with respect to certain bimodal Kripke structures associated with
spaces satisfying bcc.
Definition 5.1 (D2-frame, D2-model)

1 Let R =W, {R, S}) beabimoda frame (i.e., Wisanonempty setand R, S

are binary relations on W). Then R iscaled a D2-frame, if and only if

(@ Risanequivaencerelationon W,

(b) Sisirreflexive and transitive;

(© (vs,t,ue W)(sSt AtRU=— (v e W)[SRv A v Su];
(d) thereisan n € N such that every S-chain haslength < n.

2. Amodd M := (W, {R, S}, o) based onaD2-frame (W, {R, S}) iscalled aD2-
model, if and only if

(Vs,te W) (VA€ PV)[sSt=> (c(A,9) =1 < o(A 1) =1)].
It is not difficult to see that the axiom system determining D2 is sound and complete
with respect to the just defined structures.
Proposition 5.2 Aformula o € F is D2-derivable if and only if it holds in every
D2-model.
Proof: _Infact, every subset space M = (X, O, o) satisfying bce givesriseto aD2-
model M = (W, {R, S}, &) in the following way:

1. W=X®O0;

2. X, UR(WY,V): <<= U=V,

3. XU)S(Y,V):<— x=yAVCU;
4. ¢(A,x,U) =1 o(AX)=1

An easy induction shows that for all « € ¥ it holds that
VX, UeW)(x,UEgya < MEyua);

here on the right-hand side usual multimodal satisfaction is denoted (see [E], 85).
Now the compl eteness assertion follows with the aid of Theorem 4.5. The soundness
part is easy to see. O

In the next step we show that every formulawhich holdsin the canonical model Mp,
at some point is also satisfied in some finite D2-model. Let C denote the carrier set
of the canonical model, and let o« € T satisfy

Mp> =5 « for somes e C.

Let I" bethe set of al subformulas of « joined with the set of al negated subformulas
of ,

I := T U{B| Bisafinite conjunction of distinct elements of T'},
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and A ;=T U{LB | B € I'}. Then the following filtration lemma is valid.

Lemma5.3 Let M := (W, {R, S}, o) bea A-filtration of Mp, such that Rand S
are the minimal filtrations of the respective accessibility-relations in Mp,. Then M
satisfies all D2-model properties up to the irreflexivity of S, possibly.

Proof:  The A-filtration and the M oss-Parikh filtrationintroduced in [2], Section 2.3,
coincide, and the assertion of the lemma correspondsto that of , Lemma?2.10. The
proofs are similar, too, so we need not give more details here. It should only be men-
tioned that, in particular, thetransitivity of therelation S, which correspondsto theac-
cessibility relation 2, determined by the modal operator ] on the canonical model,
can be established using the completeness of the system with respect to D2-models
(Proposition 5.2). In fact, it is not hard to see that the bimodal structure J @4 K,
which is defined in the same way asin the proof of [2], Lemma 2.10, satisfiesall D2-
frame properties. This showsthe crucial part of thelemmainthe present case. [

AsM = (W, {R, S}, o) isa A-filtration of Mp,, W isafinite set having at most 2/2!
many elements. The carrier W consists of certain equivalence classes S of points s €
C,andfor al g € A and s € C we have that

Mpy =5 B iff M =5 B.

Thus« issatisfied inthefinite model M. Unfortunately, M isnot entirely of the type
we are looking for. But self-referential connections may simply be “forgotten”:
Lemma5.4 Let A and M be as above. Let M’ := (W, {R, S},0), where S =
S\ {(x, X) | xe W}. Then M’ isa D2-model, and

(Ve M(VweW[M [, B <= M =, B].

Proof: We induct on 8. The induction is trivial except for the ‘ <='—direction in
the case B = Oy. Solet v € W be given such that M (=, Oy. Then v isthe class
of some point s of the canonical model and we have Mp, s Cy. Because of the
D2-derivability of (Oy — y) — Oy (seeLemma4.1) we get

Mpz s OOy — ).
Hence there exists a —>—successor t € C of s such that
Moy =t Oy A —y.
Let u be the equivalence class of t. Then
vSuand M =, Oy A=y

holds. Since M =, Oy we get u # v, and since M =, —y we obtain M’ =, =y
by the induction hypothesis. Consequently, M’ (=, Oy. O
Summarizing the above results we obtain the following theorem.

Theorem 5.5 The system D2 fulfils the small model property with respect to D2-
models.
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L et us conclude with two remarks. First, the complexity of deciding D2-satisfiability
should be mentioned. It is presumably high. In fact, one can modify the construction
of Ladner [B], Section 3, to obtain PSPA CE-hardness of this problem. Second, it
should be stated that a decidability proof for the set of D1-validitiesis still missing;
we guessthat it can be done by means of amaodification of the A-filtration considered
above.

Acknowledgments | would like to thank the referee very much for suggesting many im-
provements on an earlier version of this paper. In particular, the first induction in the proof
of Theorem[3:3lis due to him.
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