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Irrevocable Belief Revision
in Dynamic Doxastic Logic

KRISTER SEGERBERG

Abstract In this paper we present a new modeling for belief revision that is
what we term irrevocable. This modeling is of philosophical interest since it
captures some features of suppositional reasoning, and of formal interest since
it is closely connected with AGM, yet provides for iterated belief revision. The
analysis is couched in terms of dynamic doxastic logic.

1 Introduction There seems to be a need to distinguish actual belief revision from
belief revision that is merely hypothetical. Letϕ andψ be two logically incompati-
ble propositions. If an agent, engaged in actual belief revision and withϕ among his
current beliefs, decides to acceptψ as a new belief, then according to all reasonable
theories of belief revision he will at the same time give up his old belief inϕ; only
if he does will the resulting set of beliefs remain consistent. Suppose, however, that
the agent, in conversation with another agent, has agreed to acceptϕ “for the sake of
argument” and that he now agrees also to acceptψ “for the sake of argument.” In this
case, the resulting set of beliefs is just inconsistent. Since the result is consistent in
one case and inconsistent in the other, the two cases must be different.

Ordinary theories of belief change do not seem suited to handle the sort of hy-
pothetical belief change that goes on, for example, in debates where the participants
agree, “for the sake of argument,” on a certain common ground on which possibilities
can be explored and disagreements can be aired. One need not actually believe what
one accepts in this way. Nevertheless such acceptance amounts to what may be called
a doxastic commitment, one that cannot be given up within the perimeter of the de-
bate. Someone who no longer wishes to honor such a commitment may be described
as in effect abandoning the debate, perhaps in order to initiate another debate with a
different set of doxastic commitments.

Semantically speaking, a modeling of belief revision can be built as follows.
Consider a logical space, the points of which represent all the possible states of the
world (from some point of view). Any (relevant) proposition about the world may be
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identified with a certain subset of the space—with the whole space if the proposition
is logically true, with the empty set if it is logically false, otherwise with a subset in
between those two extremes. By the same token, a theory may be identified with a
subset of the space that is the intersection of a set of propositions. In particular, the
set of propositions believed by an agent to be true forms a theory in this sense, the
belief set. The belief state of the agent, however, is something more complicated.
The author’s suggestion, based on the work of Lewis and Grove, is that belief states
can be thought of ashypertheories, that is, nonempty sets of theories for which Lind-
ström and Rabinowicz [5] have suggested the termfallbacks (see also Segerberg [8]).
A doxastic action is a binary relation over the set of hypertheories. A belief change
(due to a doxastic action) is a change from one hypertheory (belief state) to another.
The intuition is that in order to describe an agent’s doxastic state it is not enough to
describe his beliefs about the world (the belief set); one must also describe his dox-
astic dispositions, how he would respond to new information about the world. The
fallbacks are theoretical positions with the help of which the agent is able to work out
anew belief set if new information forces him to give up his current one.

In this paper we describe a modeling for belief revision (IR) which accommo-
dates the intuitions about hypothetical reasoning described above. In the minimal
version presented here it is a rather special modeling that is probably too wasteful
in its treatment of old information to be of much practical interest, but it should be
possible—and perhaps not so difficult—to combine it with other, more general mod-
elings. Its theoretical interest is that it highlights doxastic commitment, a feature
that has received little attention before but which is a component in many cases,
for example, in default reasoning. On the technical side it may be noted that IR is
closely related to the classic theory of belief revision due to Alchourrón, G̈ardenfors,
and Makinson (AGM) as supplemented by the semantic representation of Grove (Al-
chourŕon, G̈ardenfors, and Makinson [1], Grove [3]). One important difference is that
IR specifically provides for iterated belief change. Iteration seems not to have been
of great interest to the creators of AGM, which in effect is a “one-shot” theory, and it
has proven surprisingly difficult to give an iterative extension of AGM that is natural.

Many ideas in this paper—and in the model theory of AGM type belief revision
generally—go back to Lewis’s pioneering work [4].

2 Semantics and syntax Let A be a Boolean algebra of subsets of a given setU;
the elements ofA are calledpropositions in A and the setU = UnivA theuniverse of
A. Wewrite PropA for the set of propositions; thusA = (Prop A,∩,∪,−,U,∅). A
nonempty subsetT ⊆ U is called atheory (in the semantical sense) if there is a subset
S ⊆ Prop A such thatT = ⋂

S.
A hypertheory inA is a special kind of subset ofPU; the exact definition will

vary from case to case. In this paper we require ahypertheory H to be nonempty
(NE), to be linearly ordered by inclusion (LIN), and to satisfy the Limit Condition
(LIM):

(NE) H �= ∅.

(LIN) For all X, Y ∈ H, eitherX ⊆ Y or Y ⊆ X.
(LIM) Suppose thatC = {X ∈ H : X ∩ P �= ∅}, whereP is any propo-

sition inA. If C �= ∅ then
⋂

C ∈ C.



IRREVOCABLE BELIEF REVISION 289

A hypertheory every element of which is a theory is said to beclosed. A hypertheory
H is inconsistent if ∅ ∈ H. A propositionP is inaccessible to H if

⋃
H ∩ P = ∅.

A doxastic action is a binary relation over some set of hypertheories. In this
paper all doxastic actions are of the type *P whereP is a proposition:irrevocable
revision by P. We say that a hypertheoryH ′ is obtained from a hypertheoryH by
irrevocable revision byP if either

(i) P is inaccessible toH andH ′ = {∅}, or
(ii) H ′ consists of all nonempty intersectionsY ∩ P such thatY ∈ H, plus ∅ if

∅ ∈ H.

A system of hypertheories in A is a structureH = (S, R) whereS is a set of hyper-
theories inA and R = {R∗P : P ∈ Prop A & R∗P is irrevocable revision byP over
S}. Note that ifH andH ′ are hypertheories, then

(H, H ′) ∈ R∗P iff H ′ = {∅ : ∀Y ∈ H(Y ∩ P = ∅)} ∪
{X : X �= ∅ & ∃Y ∈ H(X = Y ∩ P)} ∪ {∅ : ∅ ∈ H}.

Weoffer the following informal motivation for this conceptual edifice.Prop A con-
tains the propositions about the world that are in principle expressible (on a certain
occasion, in a certain context). A hypertheory represents a possible belief state of
a rational agent; the relationR∗P models the change the agent’s belief state under-
goes if he revises his beliefs by the propositionP. Revision is to be understood in
the sense of irrevocable revision: onceP has been accepted (perhaps “for the sake of
argument”) it cannot be given up later. Notice that the action of irrevocable revision
is always possible to carry out, even though the result may be inconsistent; this is in
accord with the intuition that even a rational agent should be able to investigate the
logical consequences of any hypothesis.

What is a suitable language in which to discuss these structures? Among several
possibilities, for this paper we choose the language of dynamic doxastic logic (DDL).
This is a language containingterms as well asformulas. There are no primitive terms;
the primitive formulas are a denumerable set of propositional letters. The operators
taking formulas to formulas include a truth-functionally complete set of Boolean op-
erators as well as the unary,doxastic operators B andK and the binaryplausibility
operator ≤. Therevision operator ∗ takes formulas to terms; in fact, in this paper, the
only terms are of the form∗ϕ, whereϕ is a formula. Finally, the binarydynamic op-
erator [ ] may be thought of as operating in two steps: applying it to a term∗ϕ results
in a unary operator [∗ϕ] which can then be applied to a formula to yield a formula. To
complete this description of our language we add an important restriction. A formula
not containing any non-Boolean operator but built exclusively from propositional let-
ters and Boolean operators is calledpurely Boolean. Throughout the paper B and K
and ≤ and ∗ operate only on purely Boolean formulas. Readers are warned that they
will not always be reminded of this restriction.

To guide the informal understanding of our symbolism we offer the following
unofficial translations:

Bϕ the agent believes thatϕ,

Kϕ the agent knows thatϕ (alternatively, has a doxastic
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commitment toϕ),

[∗ϕ]χ necessarily, after revision of the agent’s beliefs byϕ,
it is the case thatχ,

ϕ ≤ ψ ϕ is at least as plausible (according to the agent’s belief) asψ.

Wewill also find the following defined operators useful:

bϕ =df ¬B¬ϕ,

kϕ =df ¬K¬ϕ,

〈∗ϕ〉χ =df ¬[∗ϕ]¬χ,

ϕ < ψ =df (ϕ ≤ ψ) ∧ ¬(ψ ≤ ϕ).

The following unofficial readings are suggested:

bϕ it is consistent with what the agent believes thatϕ,

kϕ it is consistent with what the agent knows (alternatively, it is
consistent with his doxastic commitments) thatϕ,

〈∗ϕ〉χ possibly, after revision of the agent’s beliefs byϕ, it is the case
thatχ,

ϕ < ψ ϕ is more plausible (according to the agent) thanψ.

The informal translations are given only for heuristic purposes; whenever questions
of interpretation of the modeling arise, it is to the formal definitions one should turn.
In particular, readingK for knowledge may not be a good idea; better perhaps to re-
gard bothB andK as doxastic operators and take the following slogan to heart:B for
belief and K for kommitment.

A final comment on the purely-Boolean-formula restriction, which is adopted
mostly for technical reasons. A consequence of this restriction is that we are only able
to model the agent’s beliefs about the world. In extensions of the present modeling
one could allow nestings ofB andK as a first step—beliefs about beliefs—and as a
second step unrestricted nesting of all operators—beliefs about anything.

3 Truth-value conditions Let A be a given algebra of sets. Avaluation in A is a
function from the set of propositional letters toProp A. The structure (A, V) is called
a model (on A). Let M = (A, V) be amodel. Any purely Boolean formulaϕ has
an intension ||ϕ||M defined in the usual way (we omit the subscript “M” whenever
clarity allows):

||π|| = V (π), if π is a propositional letter,

||ϕ ∧ ψ|| = ||ϕ|| ∩ ||ψ||, etc.

Notice that||ϕ|| ∈ Prop A for all purely Booleanϕ. Let H = (S, R) be a system
of hypertheories inA. The truth—in symbolsH |=u ϕ (with respect toA andH)—
of a formulaϕ with respect to any hypertheoryH ∈ S and any pointu ∈ Univ A

can be given as follows (we omit the qualification “with respect toA andH” which
henceforth is regarded as implicit):
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H |=u ϕ iff u ∈ ||ϕ||, if ϕ is a purely Boolean formula,

H |=u ϕ ∧ ψ iff H |=u ϕ andH |=u ψ,

H |=u ¬ϕ iff not H |=u ϕ,

and similarly for other Boolean connectives:

H |=u Bϕ iff
⋂

H ⊆ ||ϕ||;
H |=u Kϕ iff

⋃
H ⊆ ||ϕ||;

H |=u [∗ϕ]χ iff for all H ′ such that(H, H ′) ∈ R∗||ϕ||, H ′ |=u χ;
H |=u ϕ ≤ ψ iff for every X ∈ H, if X ∩ ||ϕ|| = ∅ thenX ∩ ||ψ|| = ∅.

Let M = (A, V) be amodel andH = (S, R) asystem of hypertheories inA. A set�
of formulas is said to besatisfiable (in M with H) if there is some pointu ∈ Univ A

and some hypertheoryH ∈ S such that, for all formulasϕ ∈ �, H |=u ϕ. A formula
ψ is valid in a class of models with systems of hypertheories if true with respect to
all relevant points and hypertheories.

Several observations are in order. First, there are the derived conditions for the
defined operators:

H |=u bϕ iff
⋂

H ∩ ||ϕ|| �= ∅.

H |=u kϕ iff
⋃

H ∩ ||ϕ|| �= ∅.

H |=u 〈∗ϕ〉χ iff there is someH ′ such that(H, H ′) ∈ R∗||ϕ|| and
H ′ |=u χ;

H |=u ϕ < ψ iff there is someX ∈ H such thatX ∩ ||ϕ|| �= ∅ but
X ∩ ||ψ|| = ∅.

Second, notice that in our definition we might have introduced two binary relations
RB

H andRK
H overUniv A—strictly speaking, ternary, since they depend on the hyper-

theoryH—stipulating that

RB
H = {(u, v) : v ∈ ⋂

H},
RK

H = {(u, v) : v ∈ ⋃
H}.

If so, we could then have replaced the official truth-conditions forB andK by the
(here unofficial) conditions

H |=u Bϕ iff for all v such that(u, v) ∈ RB
H, H |=v ϕ,

H |=u Kϕ iff for all v such that(u, v) ∈ RK
H, H |=v ϕ.

To have done so would have been clumsy, but the observation reveals thatB andK
are modal, Kripke/Hintikka type operators (although restricted by our rules for well-
formedness).

By contrast—a third remark—we might quite profitably rewrite the rules for the
dynamic operators:

H |=u [∗ϕ]χ iff H ∗ ||ϕ|| |=u χ,

where

H ∗ ||ϕ|| =df {∅ :
⋃

H ∩ ||ϕ|| = ∅} ∪
{X ∩ ||ϕ|| : X ∈ H & X ∩ ||ϕ|| �= ∅} ∪ {∅ : ∅ ∈ H}.
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Thus H ∗ ||ϕ|| is inconsistent if and only if||ϕ|| is inaccessible toH or H is incon-
sistent.

Fourth, notice thatH seems to play no role in the definition of||ϕ|| andu none in
the (official) truth-conditions of the non-Boolean operators. This is becauseu repre-
sents the actual world which (in this modeling) is assumed not to change. All actions
in this paper are doxastic and purely doxastic actions do not change the state of the
world. “Real” actions do. It is a virtue of the present modeling that it is easy—or at
least possible—to extend it by the addition of terms for “real” actions.

4 Heuristic remarks Readers are encouraged to familiarize themselves with the
semantics by drawing diagrams. The general picture of a revision is obtained by two
diagrams giving the belief state before and after the change, as in Fig. 1. The shaded
areas indicate belief sets; notice that the belief sets (but of course not the belief states)
delivered by IR are the same as AGM would give (provided, in the latter case, that
the whole space is regarded as a fallback).

Fig. 1

ϕ✽

ϕ ϕ

Notice also that revision by a proposition can change the belief state of an agent even
if the proposition is already believed by the agent (Fig. 2). This fact, surprising at
first, becomes intelligible as soon as one distinguishes mere belief in a proposition
from doxastic commitment to a proposition—one effect of revising byϕ is that belief
in ϕ becomesirrevocable.

Fig. 2

ϕ✽

ϕ ϕ

It is helpful to consider an example given by McGee [6]. Consider California on the
eve of the elections of 1980 and the following sentences:
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(α) Anderson will win.
(γ) Carter will win.
(ρ) Reagan will win.
(π) A Republican will win.

As the example is given, it would have been rational for a well-informed, rational
agent to believe (1) “A Republican will win,” and (2) “If a Republican will win, then
if Reagan does not win then Anderson will win” but not believe (3) “If Reagan will
not win, then Anderson will win.” In other words, the argument

π

π =⇒ (¬ρ =⇒ α)

∴ ¬ρ =⇒ α

fails. McGee offered this example as a case in which modus ponens (with respect to
the conditional=⇒) fails. It is interesting that our modeling suits the doxastic version
of McGee’s argument: also the argument

Bπ

[∗π][∗¬ρ]Bα

∴ [∗¬ρ]Bα

fails. A formal proof of this claim is given by definingU = {0,1,2}, V (α) =
{2}, V (γ) = {1}, V (ρ) = {0}, V (π) = {0,2}, and H = {{0}, {0,1}, {0,1,2}}. As is
readily checked,(H ∗ ||π||) ∗ ||U − ρ|| = {{2}} and H ∗ ||U − ρ|| = {{1}, {1,2}}.
Thus with respect toH and the actual state of the world, whether it be 0,1, or
2, Bπ and [∗π][∗¬ρ]Bα are true while [∗¬ρ]Bα is false.

5 An axiom system

(TF) τ, if τ is a truth-functional tautology.
(MP) If � ϕ and� ϕ ⊃ ψ then� ψ.

If ◦ is B or [∗θ], for any purely Booleanθ:

(01) ◦(ϕ ⊃ ψ) ⊃ (◦ϕ ⊃◦ψ).
(02) If � ϕ then � ◦ϕ.

In addition we have the rule

(03) If � ϕ ≡ ψ then� [∗ϕ]χ ≡ [∗ψ]χ.

as well as the following axiom schemata:

(#11) χ ≡ [∗ϕ]χ, if χ is purely Boolean.
(#12) 〈∗ϕ〉χ ≡ [∗ϕ]χ.

(#13) [∗(ϕ ∧ ψ)]χ ≡ [∗ϕ][∗ψ]χ.

(#21) bϕ ⊃ ([∗ϕ]Bχ ≡ B(ϕ ⊃ χ)).

(#22) 〈∗ϕ〉bψ ⊃ 〈∗ψ〉b�.

(#23) B⊥ ⊃ [∗ϕ]B⊥.

(#24) 〈∗ϕ〉b� ≡ kϕ.
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(#25) [∗ϕ]Kϕ.

(#26) Kϕ ⊃ Bϕ.

(#31) ((ϕ ≤ ψ) ∧ (ψ ≤ θ)) ⊃ (ϕ ≤ θ).

(#32) (ϕ ≤ ψ) ∨ (ψ ≤ ϕ).

(#33) (ϕ ≤ ψ) ≡ (〈∗(ϕ ∨ ψ)〉b� ⊃ 〈∗(ϕ ∨ ψ)〉bϕ).

(#34) (ϕ < ψ) ⊃ ([∗(ϕ ∨ ψ)]Bχ ≡ [∗ϕ]Bχ).

(#35) (ϕ ≤ ψ) ⊃ (〈∗ψ〉b� ⊃ 〈∗ϕ〉b�).

Thus(#24) is in effect a definition of the operatorK in terms of the operatorsB and [ ];
we might have refrained from includingK among the primitive operators and instead
introduced it by abbreviation:

Kϕ =df [∗¬ϕ]B⊥.

Similarly, (#33) may be regarded as a definition of the operator≤; we could have
dispensed with it as a primitive operator at the expense of a less transparent axiom
system.

It is easy to prove the following soundness result.

Theorem 5.1 All formal theorems derivable in our axiom system are valid. Con-
sequently, if a formula set is satisfiable, then it is consistent.

Proof: The first part of the theorem is proved by checking that the axioms are valid
and that the rules preserve validity. The second part follows from this and from the
fact that our logic is finitary, that is, the rules—(MP), (02), and (03)—have only
finitely many premises. �

The axiom system is strong enough to make, not onlyB and [∗θ], for all purely
Booleanθ, normal operators, but alsoK and≤ . This is an important fact that might
be worth proving. In fact it is enough to prove the following.

Lemma 5.2 The following schemata and rules are derivable in our system:

(i) K(ϕ ∧ ψ) ≡ (Kϕ ∧ Kψ),

(ii) K�,

(iii) if � ϕ ≡ ψ then � Kϕ ≡ Kψ;
(iv) ((ϕ ∨ ψ) ≤ θ) ⊃ ((ϕ ≤ θ) ∨ (ψ ≤ θ)),

(v) if � ϕ ⊃ ψ then � ψ ≤ ϕ.

Proof: We provide outlines of the formal proofs. By ‘ML’ we mean reasoning de-
pending on (TF), (MP), and (01 – 03). We begin with (iv).
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1. ¬(((ϕ ∨ ψ) ≤ θ) ⊃ ((ϕ ≤ θ) ∨ (ψ ≤ θ))) premise
2. ¬(ϕ ≤ θ) ML: 1
3. ¬(〈∗(ϕ ∨ ψ)〉b� ⊃ 〈∗(ϕ ∨ ψ)〉bϕ) ML: (#33), 2
4. 〈∗(ϕ ∨ ψ)〉b� ML: 3
5. [∗(ϕ ∨ ψ)]B¬ϕ ML: 3
6. ¬(ψ ≤ θ) ML: 1
7. [∗(ϕ ∨ ψ)]B¬ψ similarly
8. [∗(ϕ ∨ ψ)]B¬(ϕ ∨ ψ) ML: 5, 7
9. [∗(ϕ ∨ ψ)]B(ϕ ∨ ψ) ML: (#25,#26)

10. [∗(ϕ ∨ ψ)]B⊥ ML: 8, 9
11. ⊥ ML: 4, 10

Since premise 1 leads to contradiction, we have established (iv). Next we turn to (i).
Thanks to the result (iv) just proved and(#32) and ML,

� (ϕ ≤ (ϕ ∨ ψ)) ∨ (ψ ≤ (ϕ ∨ ψ)).

Hence by(#35)

� (〈∗(ϕ ∨ ψ)〉b� ⊃ 〈∗ϕ〉b�) ∨ (〈∗(ϕ ∨ ψ)〉b� ⊃ 〈∗ψ〉b�),

� 〈∗(ϕ ∨ ψ)〉b� ⊃ (〈∗ϕ〉b� ∨ 〈∗ϕ〉b�).

By (#24) and ML, this is half of (i). Now the converse:

1. ¬((ϕ ∨ ψ) ≤ ϕ) premise
2. 〈∗(ϕ ∨ ψ)〉b� ML: (#33), 1
3. [∗(ϕ ∨ ψ)]B¬ϕ ML: (#33), 1
4. ϕ < (ϕ ∨ ψ) ML: (#32), 1
5. [∗ϕB¬ϕ ML: (#34), 3, 4
6. [∗ϕ]Bϕ ML: (#25,#26)
7. [∗ϕ]B⊥ ML: 5, 6
8. 〈∗(ϕ ∨ ψ)〉b� ⊃ 〈∗ϕ〉b� ML: (#35), 4
9. 〈∗ϕ〉b� ML: 2, 8

10. ⊥ ML: 7, 9

This deduction shows that� (ϕ ∨ ψ) ≤ ϕ. Hence by(#35), � 〈∗ϕ〉b� ⊃ 〈∗(ϕ ∨
ψ)〉b�. By asymmetrical argument,� 〈∗ψ〉b� ⊃ 〈∗(ϕ ∨ ψ)〉b�. Hence the desired
result,� (〈∗ϕ〉b� ∨ 〈∗ψ〉b�) ⊃ 〈∗(ϕ ∨ ψ)〉b�. This ends the proof of (i).

For (ii) we have to prove that� [∗¬�]B⊥. This follows readily by ML from
(#25,#26).

(iii)—congruentiality forK—follows readily from congruentiality forB and [ ]
(that is, (02 – 03)).

Finally we turn to (v):

1. � ϕ ⊃ ψ premise
2. � (ϕ ∨ ψ) ≡ ψ ML: 1
3. � 〈∗ψ〉b� ⊃ 〈∗ψ〉bψ ML: (#25,#26)
4. � 〈∗(ϕ ∨ ψ)〉b� ⊃ 〈∗(ϕ ∨ ψ)〉bψ ML: 2, 3
5. � ψ ≤ ϕ ML: (#33), 4

�
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Weend the section with some technical results.

Lemma 5.3 The following theorem schemata are derivable in our axiom system:

(a) 〈∗(ϕ ∧ ψ)〉b� ⊃ 〈∗ϕ〉b�.

(b) 〈∗ϕ〉b� ⊃ 〈∗(ϕ ∨ ψ)〉b�.

(c) 〈∗(ϕ ∧ ψ)〉b� ⊃ [∗ϕ]〈∗(ϕ ∧ ψ)〉b�.

(d) 〈∗ϕ〉bθ ≡ 〈∗ϕ〉b(ϕ ∧ θ).

(e) 〈∗(ϕ ∧ ψ)〉b� ⊃ (〈∗ϕ〉(θ ≤ ψ) ≡ ((ϕ ∧ θ) ≤ (ϕ ∧ ψ))).

Proof: (a) and (b) follow from Lemma5.2. For (c), use(#12,#13), for (d) use
(#23,#25,#26). For (e) we sketch a syntactic proof.

1. 〈∗(ϕ ∧ ψ)〉b� premise
2. 〈∗ψ〉b� Lemma5.3(a): 1
3. 〈∗(θ ∨ ψ)〉b� Lemma5.3(b): 2
4. θ ≤ ψ ≡ 〈∗(θ ∨ ψ)〉bθ ML: (#33), 3

This argument shows that� 〈∗(ϕ ∧ ψ)〉b� ⊃ (θ ≤ ψ ≡ 〈∗(θ ∨ ψ)〉bθ). Hence

� [∗ϕ]〈∗(ϕ ∧ ψ)〉b� ⊃ [∗ϕ](θ ≤ ψ ≡ 〈∗(θ ∨ ψ)〉bθ).

By Lemma5.3(c) and more ML

� 〈∗(ϕ ∧ ψ)〉b� ⊃ (〈∗ϕ〉(θ ≤ ψ) ≡ 〈∗ϕ〉〈∗(θ ∨ ψ)〉bθ).

By (#13)

� 〈∗(ϕ ∧ ψ)〉b� ⊃ (〈∗ϕ〉(θ ≤ ψ) ≡ 〈∗((ϕ ∧ θ) ∨ (ϕ ∧ ψ))〉bθ).

Hence with the help of Lemma5.3(d),

� 〈∗(ϕ ∧ ψ)〉b� ⊃ (〈∗ϕ〉(θ ≤ ψ) ≡ 〈∗((ϕ ∧ θ) ∨ (ϕ ∧ ψ))〉b(ϕ ∧ θ)).

By Lemma5.3(b) and ML,

� 〈∗(ϕ ∧ ψ)〉b� ⊃ 〈∗((ϕ ∧ θ) ∨ (ϕ ∧ ψ))〉b�.

The desired result follows by(#33) and ML.1 �

6 World states, belief sets, hypertheories A small Lindenbaum set is a maximal
consistent set of purely Boolean formulas, abig Lindenbaum set a maximal consis-
tent set of any formulas. (Consistency here is with respect to the axiom system in the
preceding section.) If in the sequel we speak of Lindenbaum sets without specifying
small or big, it is big that we have in mind.

The set of small Lindenbaum sets is denoted byU. If ϕ is a purely Boolean for-
mula, then we write|ϕ| for the set{u ∈ U : ϕ ∈ u}. Let � be a big Lindenbaum set.
Already in [8] we have the following definitions.

Definition 6.1 wst � = {χ ∈ � : χ is purely Boolean}.

Definition 6.2 bst � = {u ∈ U : ∀χ(Bχ ∈ � =⇒ χ ∈ u)}.
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Definition 6.3 �∗ϕ = {χ : [∗ϕ]χ ∈ �}.

Lemma 6.4 Suppose that � and � are big Lindenbaum sets.

(i) bst � ⊆ |ϕ| if and only if Bϕ ∈ �.

(ii) bst � ⊆ bst � if and only if, for all χ, Bχ ∈ � only if Bχ ∈ �.

(iii) �∗ϕ is a big Lindenbaum set.
(iv) wst �∗ϕ = wst �.

Proof: (In accordance with our general policy, it is assumed thatϕ andχ are purely
Boolean formulas.) The proofs are similar to the proofs of similar claims in [8]. Ax-
iom schema(#12) is used for (iii),(#11) for (iv). �
Notice also that�∗⊥ is a big Lindenbaum set even thoughbst �∗⊥ = ∅. Throughout
the remainder of this section let � be a fixed, given big Lindenbaum set.

Definition 6.5 f (ψ,�) = ⋃{bst �∗θ : θ ≤ ψ ∈ �)}.
We shall say thatX ⊆ U is abasic fallback (with respect to�) if, for someψ, X =
f (ψ,�). A basic fallbackf (ψ,�) is proper if 〈∗ψ〉b� ∈ �, otherwiseimproper. A
necessary and sufficient condition forf (ψ,�) to be proper is thatkψ ∈ � or, equiv-
alently,ψ < ⊥ ∈ �.

Lemma 6.6 If B⊥ ∈ � then f (ψ,�) = ∅.

Proof: Suppose thatu ∈ f (ψ,�). Then there is some formulaθ such thatθ ≤ ψ ∈ �

andu ∈ bst �∗θ. If B⊥ ∈ � then [∗θ]B⊥ ∈ � by (#23). HenceB⊥ ∈ �∗θ and so
⊥ ∈ u, which is absurd. �

Lemma 6.7 If ϕ ≤ ψ ∈ � then f (ϕ,�) ⊆ f (ψ,�).

Proof: By (#31). �

Lemma 6.8 Assume that 〈∗(ϕ ∧ ψ)〉b� ∈ �. Then f (ψ,�∗ϕ) = f (ϕ ∧ ψ,�) ∩
|ϕ|.

Proof: Assume that〈∗(ϕ ∧ ψ)〉b� ∈ �. Note that

f (ψ,�∗ϕ) =
⋃

{bst �∗(ϕ∧θ) : θ ≤ ψ ∈ �∗ϕ}.

First suppose thatu ∈ f (ψ,�∗ϕ). Then there is someθ such thatθ ≤ ψ ∈ �∗ϕ and
u ∈ bst �∗(ϕ∧θ). Hence [∗ϕ](θ ≤ ψ) ∈ �. Therefore〈∗ϕ〉(θ ≤ ψ) ∈ � by (#12).
By Lemma5.3(e) thenϕ ∧ θ ≤ ϕ ∧ ψ ∈ �. Hencebst �∗(ϕ∧θ) ⊆ f (ϕ ∧ ψ,�). That
bst �∗(ϕ∧θ) ⊆ |ϕ| is obvious. Consequently,u ∈ f (ϕ ∧ ψ,�) ∩ |ϕ|.

Conversely, suppose thatu ∈ f (ϕ ∧ ψ,�) ∩ |ϕ|. Then there is someθ such that
θ ≤ (ϕ ∧ ψ) ∈ � andu ∈ bst �∗θ andu ∈ |ϕ|. It follows that [∗θ]bϕ ∈ �, so by
(#12,#25,#26) and modal logic〈∗θ〉b(ϕ ∧ θ) ∈ �. Using the fact that(ϕ ∧ θ) ∨ θ

is tautologically equivalent toθ, we infer with the help of(#33) that (ϕ ∧ θ) ≤
θ ∈ �. Consequently,(ϕ ∧ θ) ≤ (ϕ ∧ ψ) ∈ � by (#31). By Lemma5.3(e), then,
[∗ϕ](θ ≤ ψ) ∈ �, whenceθ ≤ ψ ∈ �∗ϕ. Thus in order to be able to conclude that
u ∈ f (ψ,�∗ϕ), all we now need to do is to prove thatu ∈ f (ψ,�∗(ϕ∧θ)). Let χ be
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any formula such thatBχ ∈ �∗(ϕ∧θ); it will be enough to show thatχ ∈ u. Note that
[∗(ϕ ∧ θ)]Bχ ∈ � and so, by(#13) and modal logic, [∗ϕ][∗θ]Bχ ∈ �. By (#21) and
modal logic,

[∗θ]bϕ ⊃ ([∗θ][∗ϕ]Bχ ≡ [∗θ]B(ϕ ⊃ χ))

is a theorem. We already saw that [∗θ]bϕ ∈ �, hence [∗θ]B(ϕ ⊃ χ) ∈ �. Conse-
quently,B(ϕ ⊃ χ) ∈ �∗θ. Sinceu ∈ bst �∗θ, it follows thatϕ ⊃ χ ∈ u. The fact that
u ∈ |ϕ| implies thatϕ ∈ u. Henceχ ∈ u, as wewanted. �
If 〈∗ψ〉b� ∈ �, we refer to f (ψ,�) as thesmallest ψ-fallback (with respect to�),
that is, the smallest basic fallback to intersect|ψ|. To justify this terminology there
is the following result.

Lemma 6.9 f (ψ,�) ∩ |ϕ| �= ∅ implies that 〈∗ϕ〉b� ∈ � and that f (ϕ,�) ⊆
f (ψ,�).

Proof: Assume thatf (ψ,�)∩ |ϕ| �= ∅. Evidently there is someu ∈ f (ψ,�)∩ |ϕ|.
Hence there is someθ such thatθ ≤ ψ ∈ � andu ∈ bst �∗θ. Sinceϕ ∈ u it is clear
that〈∗θ〉bϕ ∈ �. Then〈∗ϕ〉b� ∈ � by (#22). This proves one part of the lemma.

Let us now address the remaining part. Suppose by absurdity thatϕ ≤ θ �∈ �.
Then [∗(θ ∨ ϕ)]B¬ϕ ∈ � thanks to(#33). Furthermore,θ < ϕ ∈ � by (#31,#32),
hence [∗θ]B¬ϕ ∈ � by (#34). This contradicts the fact, noted above, that〈∗θ〉bϕ ∈
�. Thereforeϕ ≤ θ ∈ �. Sinceθ ≤ ψ ∈ �, (#31) ψ yieldsϕ ≤ ψ ∈ �. Consequently
f (ϕ,�) ⊆ f (ψ,�) by Lemma6.7. �

Lemma 6.10 Suppose that 〈∗ϕ〉b� ∈ �. Then ϕ ≤ ψ ∈ � if and only if, for all θ,

if f (θ,�) ∩ |ϕ| = ∅ then f (θ,�) ∩ |ψ| = ∅.

Proof: Assume that〈∗ϕ〉b� ∈ �. First suppose thatϕ ≤ ψ ∈ �. Let θ be any for-
mula such thatf (θ,�) ∩ |ψ| �= ∅. Then f (ψ,�) ⊆ f (θ,�) by Lemma6.9. But
bst �∗ϕ ⊆ f (ψ,�), and so a fortioribst �∗ϕ ⊆ f (θ,�). Moreover,〈∗ϕ〉b� ∈ �

implies thatbst �∗ϕ �= ∅. Hence f (θ,�) ∩ |ϕ| �= ∅, as we wanted to show.
Conversely, assume thatϕ ≤ ψ �∈ �. Then ψ < ϕ ∈ �, and so by(#35)

〈∗ψ〉b� ∈ �. Then f (ψ,�) ∩ |ψ| �= ∅; thus it will be enough to prove that
f (ψ,�) ∩ |ϕ| = ∅. Suppose there is some elementu ∈ f (ψ,�) ∩ |ϕ|. Then there
exists some formulaθ such thatu ∈ bst �∗θ andθ ≤ ψ ∈ � and〈∗θ〉bϕ ∈ �. If
ϕ ≤ θ �∈ �, then by the same argument as in the proof of Lemma6.9 [∗θ]B¬ϕ ∈ �,
which is impossible; consequently,ϕ ≤ θ ∈ �. Then by (#31) ϕ ≤ ψ ∈ � in contra-
diction with our hypothesis. Hencef (ψ,�) ∩ |ϕ| = ∅. �
We define thecanonical hypertheory induced by �, in symbolshth �, as the clo-
sure under arbitrary union of the set of basic fallbacks. Thus ifB⊥ ∈ �, then by
Lemma6.6 hth � = {∅}. But if b� ∈ �—the nontrivial case—thenhth � is the
closure under arbitrary union of the set{ f (ψ,�) : 〈∗ψ〉b� ∈ �}. In the latter case,
hth � is the smallest setS of subsets ofU such that

(i) if 〈∗ψ〉b� ∈ � then f (ψ,�) ∈ S,

(ii) if T ⊆ S andT �= ∅, then
⋃

T ∈ S.

An element ofhth � that is the union of a set of basic fallbacks but is not itself a basic
fallback is called alimit fallback.
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Lemma 6.11 hth � is a hypertheory.

Proof: If B⊥ ∈ � then∅ ∈ hth �. If b� ∈ � then〈∗�〉b� ∈ � by (#21), and so
f (�,�) ∈ hth �. Hence (NE) is satisfied. (LIN) holds thanks to(#31,#32). (LIM)
follows from Lemma6.9. �

Lemma 6.12
⋃

hth � = ⋃{bst �∗θ : 〈∗θ〉b� ∈ �}.

Proof: First suppose thatu ∈ ⋃
hth �. Then there is someψ such that〈∗ψ〉b� ∈ �

andu ∈ f (ψ,�). Consequently there is someϕ such thatϕ ≤ ψ ∈ � andu ∈ bst�∗ϕ.
By (#35),〈∗ϕ〉b� ∈ �. Thusu ∈ {⋃ bst �∗θ : 〈∗θ〉b� ∈ �}.

Conversely, suppose thatu ∈ bst �∗θ for some formulaθ such that〈∗θ〉b� ∈ �.
By (#32), θ ≤ θ ∈ �, so bst �∗θ ⊆ f (θ,�). But f (θ,�) ⊆ ⋃

hth �, henceu ∈⋃
hth �. �

Lemma 6.13 (
⋃

hth �) ∩ |ϕ| �= ∅ if and only if kϕ ∈ �.

Proof: First suppose that(
⋃

hth �) ∩ |ϕ| �= ∅. Then, by Lemma6.12, there is
some elementu ∈ |ϕ| and some formulaθ such thatu ∈ bst �∗θ and〈∗θ〉b� ∈ �.
Sinceϕ ∈ u we havebϕ ∈ �∗θ, whence [∗θ]bϕ ∈ �. Hence〈∗θ〉bϕ ∈ � by (#12).
By (#22), 〈∗ϕ〉b� ∈ �, thereforekϕ ∈ � by (#24).

Conversely, suppose thatkϕ ∈ �. Then〈∗ϕ〉b� ∈ � by (#24). By Lemma6.12
thereforebst �∗ϕ ⊆ ⋃

hth �. By (#25,#26), bst �∗ϕ ⊆ |ϕ|. Take anyu ∈ bst �∗ϕ

(according to Lindenbaum, such elements exist!). Evidently,u∈(
⋃

hth �)∩|ϕ|. �

Lemma 6.14 hth (�∗ϕ) = (hth �) ∗ |ϕ|.

Proof: It follows from a remark at the end of Section 3 that

hth � ∗ |ϕ| = {∅ :
⋃

hth � ∩ |ϕ| = ∅} ∪
{X ∩ |ϕ| : X ∈ hth � & X ∩ |ϕ| �= ∅} ∪ {∅ :∅ ∈ hth �}.

There are two main cases, the first one of which is when [∗ϕ]B⊥ ∈ �.

Case 1: In this case,B⊥ ∈ �∗ϕ. Hence by definition,hth (�∗ϕ) = {∅}. Further-
more, if f (ψ,�) ∩ |ϕ| �= ∅ for some fallbackf (ψ,�) ∈ hth �, then by Lemma6.8
〈∗ϕ〉b� ∈ �, which is absurd; consequently,(hth �) ∗ |ϕ| = {∅}.

Case 2: The other main case is when〈∗ϕ〉b� ∈ �. Note thatb� ∈ � by (#23).
First we prove inclusion from left to right. There are two subcases.

Subcase 1: First the basic case. Suppose thatX ∈ hth (�∗ϕ) and that there is some
ψ such that〈∗ψ〉b� ∈ �∗ϕ and X = f (ψ,�∗ϕ). Assume, for contradiction, that
[∗(ϕ ∨ ψ)]B¬ϕ ∈ �∗ϕ. Then [∗ϕ][∗(ϕ ∨ ψ)]B¬ϕ ∈ �. Hence [∗ϕ]B¬ϕ ∈ � by
(#13) and (03). By(#25,#26) and modal logic then [∗ϕ]B⊥ ∈ �, a result that con-
tradicts the assumption that〈∗ϕ〉b� ∈ �. This argument shows that〈∗(ϕ ∨ ψ)〉bϕ ∈
�∗ϕ. It follows from(#33) thatϕ ≤ ψ ∈ �∗ϕ. But thenbst �∗ϕ ⊆ f (ψ,�∗ϕ). Since
the fact that〈∗ϕ〉b� ∈ � implies thatbst �∗ϕ �= ∅, this shows thatX �= ∅. Now, let
Y = f (ϕ ∧ ψ,�). With the help of(#12,#13) and the fact that〈∗ψ〉b� ∈ �∗ϕ it is
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readily shown that〈∗(ϕ∧ψ)〉b� ∈ �; henceY ∈ hth �. By Lemma6.8, X = Y ∩|ϕ|.
HenceX ∈ (hth �) ∗ |ϕ|.
Subcase 2: Now the limiting case. Suppose thatX ∈ hth (�∗ϕ) and thatX = ⋃{Xi :
i ∈ I}, whereI is some nonempty index set and eachXi is a basic fallback in�∗ϕ. By
the argument presented in the preceding paragraph, for eachi ∈ I there is someYi ∈
hth � such thatXi = Yi ∩|ϕ|. But sincehth � is closed under union,Y = ⋃{Yi : i ∈ I}
is a fallback inhth �. Moreover,X = Y ∩ |ϕ|. HenceX ∈ (hth �) ∗ |ϕ|. This ends
the proof of inclusion from left to right.

For the converse direction—inclusion from right to left—suppose thatX ∈
(hth �)∗ |ϕ|. ThenX �= ∅. Moreover, there is someY ∈ hth � such thatX = Y ∩ |ϕ|.
Let Z denote the set

⋃
{ f (ϕ ∧ θ,�) : bst �∗(ϕ∧θ) ∩ X �= ∅}.

Weclaim thatX = Z ∩ |ϕ|. First suppose thatu ∈ X. Note thatu ∈ |ϕ|. Furthermore,
u ∈ Y . Hence there are someθ andτ such that f (τ,�) ⊆ Y andu ∈ bst �∗θ and
θ ≤ τ ∈ �. This implies that [∗θ]bϕ ∈ �, whence [∗θ]b(ϕ ∧ θ) ∈ � by (#25,#26),
and so on. Hence〈∗θ〉b(ϕ ∧ θ) ∈ � by (#12) and so〈∗(ϕ ∧ θ)〉b� ∈ � by (#22).
By (#32), θ ≤ θ ∈ �∗ϕ, whencebst �∗θ ⊆ f (θ,�∗ϕ). Lemma6.8applies, yielding
u ∈ f (ϕ ∧ θ,�) ∩ |ϕ|. The conclusion is thatu ∈ Z. Conversely, suppose thatu ∈
Z ∩ |ϕ|. Then there is someθ such thatu ∈ f (ϕ ∧ θ,�) andbst �∗(ϕ∧θ) ∩ X �= ∅.
Note thatY ∩ |ϕ ∧ θ| �= ∅. Hence f (ϕ ∧ θ,�) ⊆ Y since by Lemma6.9 f (ϕ ∧ θ,�)

is the smallest fallback intersectingϕ ∧ θ. Thereforeu ∈ Y . We also haveu ∈ |ϕ|.
Henceu ∈ X. This ends the proof of the claim thatX = Z ∩ |ϕ|.

By distribution, therefore,

X =
⋃

{ f (ϕ ∧ θ,�) ∩ |ϕ| : bst �∗(ϕ∧θ) ∩ X �= ∅}.

But wheneverθ is such thatbst �∗(ϕ∧θ) ∩ X �= ∅ we have〈∗(ϕ ∧ θ)〉b� ∈ �. Hence
by Lemma6.8,

X =
⋃

{ f (θ,�∗ϕ) : bst �∗(ϕ∧θ) ∩ X �= ∅}.

Suppose thatbst �∗(ϕ∧θ) ∩ X �= ∅, for someθ. Then 〈∗(ϕ ∧ θ)〉bϕ ∈ �. By
(#12,#13), [∗ϕ]〈∗θ〉b� ∈ � and so〈∗θ〉b� ∈ �∗ϕ, implying that f (θ,�∗ϕ) ∈
hth �∗ϕ. The fact that canonical hypertheories are closed under arbitrary union then
yields X ∈ hth �∗ϕ. �

7 The completeness proof As before,U is the set of small Lindenbaum sets. LetA

be the Boolean algebra generated by the set-theoretical operations intersection, union
and complement by the set of elements{|ϕ| : ϕ is a propositional letter}. Define a
valuationV by the requirement that, for each propositional letterπ, V (π) = {u ∈ U :
π ∈ u}. The valuationV is extended in the usual way to a valuationV ′ of all purely
Boolean formulas. We adopt the convention of writing||ϕ|| for V ′(ϕ), whenϕ is
purely Boolean. By a classical argument,||ϕ|| = |ϕ|; werefer to this fact by the term
tautological completeness.
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Lemma 7.1 Let � be any big Lindenbaum set. Then

hth � |=wst � χ iff χ ∈ �.

Proof: The proof is by induction on the complexity ofχ. The basic step holds by
definition. The Boolean steps are trivial. The case ofB is as in modal logic. The
cases ofK, [ ], and≤ are dealt with with the help of Lemmas6.13, 6.14, and6.10,
respectively.

As an example we give the case of [ ]. Assume thatχ is of the form [∗ϕ]θ; the
induction hypothesis is that the theorem holds forθ.

1. hth � |=wst � [∗ϕ]θ iff (by the truth-definition)
2. (hth �) ∗ ||ϕ|| |=wst � θ iff (by tautological completeness)
3. (hth �) ∗ |ϕ| |=wst � θ iff (by Lemma6.14)
4. hth (�∗ϕ) |=wst � θ iff (by Lemma6.4(iv))
5. hth (�∗ϕ) |=wst �∗ϕ θ iff (by the induction hypothesis)
6. θ ∈ �∗ϕ iff (by definition)
7. [∗ϕ]θ ∈ �. �

From Lemma7.1 follows a completeness result that is a converse to the soundness
result stated in Theorem5.1.

Theorem 7.2 If a set of formulas is consistent in our axiom system for IR, then it is
satisfiable. In particular, a formula true with respect to all points and hypertheories
is derivable in our axiom system for IR.

8 Closed hypertheories From a philosophical point of view, the completeness re-
sult just achieved is not enough. The elements of a hypertheory—the fallbacks—
represent positions on which the agent might fall back if his beliefs are challenged;
if he modifies his belief state, it is from those elements that (with the help of set-
theoretical operations) he molds his new belief state. Therefore one would expect the
fallbacks—those theoretical positions—to be theories (in the semantical sense). But
the fallbacks of a canonical hypertheory, although unions of theories, are not neces-
sarily theories. In this concluding section we will improve upon that state of affairs.

Let ϕ range over the set of purely Boolean formulas and� over the set of sets of
purely Boolean formulas. As before,U is the set of small Lindenbaum sets. Retaining
the definition

|ϕ| = {u ∈ U : ϕ ∈ u}
we also define

|�| = {u ∈ U : � ⊆ u}.
These notations are consistent if one accepts that|{ϕ}| = |ϕ|. If X ⊆ U we define

th X = {ϕ : X ⊆ |ϕ|},
CX = ⋂{|ϕ| : X ⊆ |ϕ|}.

Wesay thatCX is theclosure of X, and thatX is closed if X = CX. Note that
⋂

X =
{ϕ : ∀u ∈ X(ϕ ∈ u)} = {ϕ : ∀u ∈ X(u ∈ |ϕ|)} = th X. The following list of well-
known regularities is longer than really needed in this paper; it is included anyway in
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order to emphasize the interplay between syntax and model theory (or, more precisely,
between syntax and the theory of the canonical model).

(a) X ⊆ CX,
(b) CCX = CX,
(c) C|ϕ| = |ϕ|,
(d) C∅ = ∅,
(e) C|�| = |�|,
(f) C(X ∩ Y ) = CX ∩ CY,

(g) C(X ∪ Y ) = CX ∪ CY,

(h)
⋂

i∈I CXi = C
⋂

i∈I Xi,

(i)
⋃

i∈I CXi ⊆ C
⋃

i∈I Xi,

(j) if X ⊆ Y thenCX ⊆ CY,

(k) if X ⊆ Y thenth X ⊇ th Y,

(l) if � tautologically impliesϕ, then|�| ⊆ |ϕ|,
(m) if |�| ⊆ |ϕ| then (by compactness)� tautologically impliesϕ,
(n) � ⊆ th |�|,
(o) � = th |�| (thanks to compactness), if� contains all tautologies

and is closed under modus ponens,
(p) X ⊆ |th X|,
(q) X = |th X|, if X is closed,
(r) th CX = th X.

(s) |th X| = CX.

Lemma 8.1 If X ∩|ϕ| = ∅, then CX ∩ |ϕ| = ∅.

Proof: Suppose thatX ∩ |ϕ| = ∅. ThenC(X ∩ |ϕ|) = C∅. Furthermore, with
the help of observations (c), (d), and (f),C(X ∩ |ϕ|) = CX ∩ C|ϕ| = CX ∩ |ϕ| and
C∅ = ∅. �

Definition 8.2 chth � = {CX : X ∈ hth �}.
Thus each element ofchth � is a theory, as we wanted. Notice that ifhth � = {∅},
then alsochth � = {∅}.

Obviously what we have called theories in the semantical sense are the same as
the closed sets. Thus, according to the definition in Section 2, a hypertheory is closed
if all its fallbacks are closed. For philosophical reasons, it is in closed hypertheories
that our interest lies. We now wish to establish the following results.

Lemma 8.3 chth � is a hypertheory.

Proof: (NE) and (LIN) hold as before. We check the limit assumption (LIM) by
verifying thatC f (ϕ,�) is the smallest fallback inchth � to intersect|ϕ|. Suppose
thatC f (ψ,�)∩ |ϕ| �= ∅. Then f (ψ,�)∩ |ϕ| �= ∅ by Lemma8.1. Hence f (ϕ,�) ⊆
f (ψ,�), whenceC f (ϕ,�) ⊆ C f (ψ,�) by observation ( j). �

Lemma 8.4 chth (�∗ϕ) = (chth �) ∗ |ϕ|, i f 〈∗ϕ〉b� ∈ �.
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Proof: Assume that〈∗ϕ〉b� ∈ �. First suppose thatZ ∈ chth (�∗ϕ). Then there
is someX ∈ hth (�∗ϕ) such thatZ = CX. It follows from the assumption by
Lemma6.14 that X ∈ (hth �) ∗ |ϕ|. HenceX �= ∅ and there is someY ∈ hth �

such thatX = Y ∩ |ϕ|, for someY ∈ hth �. Note thatCX = C(Y ∩ |ϕ|) = CY ∩ |ϕ|.
Evidently,CY ∈ chth �. Moreover,CX �= ∅. Consequently,Z ∈ (chth �) ∗ |ϕ|.

Conversely, suppose thatZ ∈ (chth �) ∗ |ϕ|. Then Z �= ∅ and there is some
W ∈ chth � such thatZ = W ∩ |ϕ|. Evidently there is someY ∈ hth � such that
W = CY . Let X = Y ∩ |ϕ|. By Lemma8.1, X �= ∅. HenceX ∈ hth (�∗ϕ) and so
CX ∈ chth (�∗ϕ). Note thatCX = CY ∩ |ϕ| = W ∩ |ϕ| = Z. ThusZ ∈ chth (�∗ϕ),
as we wanted. �

Lemma 8.5 For all formulas, purely Boolean or not, chth � |=wst � ϕ if and only
if ϕ ∈ �.

Proof: By induction onϕ. Remember thatK and≤ could have been introduced as
abbreviations. Thus in order to check the inductive step of the induction it is really
enough to check the cases whenϕ is Bψ, for some purely Booleanψ, or [∗ψ]χ, for
some purely Booleanψ and arbitraryχ. Weconfine ourselves to the latter as the for-
mer easily follows from Lemma8.1.

First assume that
⋃

chth � ∩ |ψ| = ∅. By observation (a) above,
⋃

hth � ⊆⋃
chth �. Hence

⋃
hth � ∩ |ψ| = ∅. This case is trivial.

Therefore suppose that
⋃

chth �∩ |ψ| �= ∅. Then there is someX ∈ hth � such
thatCX ∩ |ψ| �= ∅. By Lemma8.1, X ∩ |ψ| �= ∅. Hence

⋃
hth � ∩ |ψ| �= ∅. Note

that〈∗ψ〉b� ∈ �. Then

1. chth � |=wst � [∗ψ]χ iff (by the truth definition)
2. chth � ∗ |ψ| |=wst � χ iff (by Lemma8.4)
3. chth (�∗ψ) |=wst � χ iff (by Lemma6.4(iv))
4. chth (�∗ψ) |=wst �∗ψ χ iff (by the induction hypothesis)
5. χ ∈ �∗ψ iff (by definition)
6. [∗ψ]χ ∈ �.

�
From this lemma follows the second completeness result of this paper:

Theorem 8.6 If a set of formulas is consistent in our axiom system for IR, then it
is satisfiable in a model with a system of closed hypertheories. In particular, in the
class of models with systems of closed hypertheories, a formula true with respect to
all points and hypertheories is derivable in our axiom system for IR.

The second part of Theorem8.6 can be strengthened even further: it is enough to
consider finite models. Suppose thatϕ is a particular formula. Thenϕ contains only
afinite number of propositional letters—sayn, wheren is a nonnegative integer. Let
Lϕ be the object language obtained by restricting the normal object languageL to
the propositional letters occurring inϕ The constructions and arguments in Section
6 go through as before withLϕ taking the place ofL . There are some differences,
of course; one is that the cardinality of the setUϕ of small Lindenbaum sets inLϕ

is 2n, hence finite. (Notice that this fact trivializes condition (LIM).) The proof of
Lemma7.1also goes through. Hence we have:
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Theorem 8.7 A formula true in all finite models with respect to all points and all
systems of (closed) hypertheories is derivable in our axiom system for IR.

Corollary 8.8 IR is decidable.

Proof: Wenow have both a proof procedure and a disproof procedure. �
The last result is of theoretical interest only as the complexity of the decision problem
is impractical.

9 Concluding remarks This paper was read by several referees who, in addition
to suggesting many improvements, made a number of interesting comments. This
section is in response to the latter.

First, it should be said that the interest in the paper is mainly formal. It seems
obvious to the author that the proposed modeling has some application, in particular
to a common variety of hypothetical reasoning; but not much effort was expended
in arguing for this view. Rather, the interest is in describing a modeling with formal
features that make it worth investigating. Modal logic may be looked upon as a store-
house of systems that can be used to model certain concepts in which philosophers
are interested; for most of those concepts, there are many candidates. In the view of
the author, the situation in belief revision is similar: we need not just one modeling,
but many. It is probably hopeless to look for the logic of belief revision—if there is
uniqueness, at least it is not obvious from the outset. Thus IR has not been launched
in order to replace AGM.

As stated above, AGM is really a “one-shot” theory whereas IR is iterative, so
in some ways it is impossible to compare the two. In the “one-shot” perspective, the
difference between AGM and IR is not great and stems mainly from the slightly dif-
ferent conceptions of hypertheory: in AGM but not in IR, hypertheories are replete in
the sense that the universe of a model is always a fallback (that is,H is a hypertheory
in an algebra with universeU only if U ∈ H). Another difference is that in AGM any
hypertheory becomes consistent upon revision by a consistent proposition, whereas in
IR inconsistent hypertheories remain inconsistent after any revision (cf.(#23)). This
has to do with a feature of IR that might be called “the persistence of commitment”:
[∗ϕ][∗ψ]Kϕ andKϕ ⊃ [∗ψ]Kϕ are valid schemata.

But even though it is possible to compare AGM and IR in some ways, it is per-
haps more fruitful to focus on the doxastic actions that they model. In AGM we find
one kind of revision, in IR another; let them be denoted by∗ and ∗∗ , respectively.
There is an obvious way in which Grove’s modeling in [3] of AGM (“one-shot”) re-
vision can be adapted to nonreplete hypertheories: in an algebra with universeU, if P
is any proposition andH any hypertheory such that

⋃
H ∩ P = ∅, then just stipulate

that revision ofH by P yields the new belief set∅. Consider the obvious model-
ing in which both∗ and ∗∗ are represented. The fact that the two different kinds of
action—AGM revision and “one-shot” IR revision—lead to the same beliefs in “nor-
mal” cases is brought out by the fact that the schema [∗ϕ]Bχ ≡ [∗∗ϕ]Bχ is valid in
this modeling, whether or not attention is restricted to replete hypertheories.

To gain further perspective, let us compare another modeling with the idea of
irrevocable revision. LR is a system of belief revision described in [9] that differs
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from AGM in two respects: hypertheories need not be replete and need not be nested
(that is, the condition (LIN) is not imposed; cf. [5]), and there is provision for iterated
revision. Let∗ denote revision according to LR andR∗P the relation that models the
change the agent’s belief state undergoes if he revises his beliefs by a propositionP
(cf. Section 2). According to LR,R∗P is defined as the set of all pairs(H, H ′) of
hypertheoriesH andH ′ for which there exists a setZ such that

1. Z is minimal in the set{X ∈ H : X ∩ P �= ∅},
2. H ′ = {X : Z ⊆ X} ∪ {X ∩ P : Z ⊆ X}.

(Thus belief revision in LR is not functional, in contrast with both revision in AGM
and irrevocable revision in IR.) Now let∗∗ denote irrevocable revision in this system,
and letR

∗∗P denote the relation modeling the change the agent’s belief state undergoes
if he revises his beliefs by a propositionP in the irrevocable manner. Then it is natural
to defineR

∗∗P as the set of all pairs(H, H ′) of hypertheories such that either
⋃

H ∩
P = ∅ andH ′ = ∅, or else there is a setZ such that

3. Z is minimal in the set{X ∈ H : X ∩ P �= ∅},
4. H ′ = {X ∩ P : Z ⊆ X}.

The example suggests that the idea of irrevocable belief revision may be combined
with many modelings of “ordinary” belief revision.2

Acknowledgments The author is grateful to John Cantwell for helping to sort out a number
of confusions and to the anonymous referees.

NOTES

1. One referee found Lemma5.3(e) “very interesting” and went on to make the following
comment: “It states, for the principal case, where a revision ofϕ ∧ ψ is feasible, a def-
inition of how to revise plausibility relations. My conjecture is that the biconditional
〈∗ϕ〉(θ ≤ ψ) ≡ ((ϕ ∧ θ) ≤ (ϕ ∧ ψ)) fully characterizes the author’s method of irre-
vocable revision (save perhaps for the limiting case in which¬〈∗(ϕ ∧ ψ)〉b�) obtains.
Given the equivalence of Grove plausibilities and Gärdenfors-Makinson entrenchments,
it turns out that the method was briefly discussed (but finally rejected) by Rott in a paper
published in 1991.” Evidently, the paper referred to here is [7].

2. The idea underlying the modeling of IR (as distinct from the idea of exploring it with
the help of dynamic deontic logic) arose in conversation between Horacio Arló Costa
and the author. At one time we had hoped to write a joint paper; a joint abstract was
presented by title at the Scandinavian Logic Symposium in Uppsala 1997 but unfortu-
nately never published. The author gratefully remembers many discussions with Arló
Costa. In particular, it was Arló Costa who first observed that the McGee example can
be handled by IR; see [2].
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