A New Spectrum of Recursive Models

ANDRÉ NIES

Abstract We describe a strongly minimal theory S in an effective language such that, in the chain of countable models of S, only the second model has a computable presentation. Thus there is a spectrum of an ω_1 -categorical theory which is neither upward nor downward closed. We also give an upper bound on the complexity of spectra.

1 Introduction Our main purpose is to find a strongly minimal theory in an effective language whose spectrum of recursive models is the set {1}. We rely on some concepts in Khoussainov, Nies, and Shore [3], reviewed here briefly. Baldwin and Lachlan [1] showed that the countable models of an ω_1 -categorical theory T form an $\omega + 1$ -chain $M_0(T) \prec M_1(T) \prec \cdots \prec M_{\omega}(T)$ under elementary embeddings. In [3], we defined the spectrum of computable models of T,

 $SRM(T) = \{i \le \omega : M_i(T) \text{ has a computable presentation} \}.$

We gave an example of an ω_1 -categorical (in fact, strongly minimal) theory T such that $SRM(T) = (\omega - \{0\}) \cup \{\omega\}$. Kudeiberganov [4], extending a result of Goncharov, proved that, for each $n \in \omega$, $n \ge 1$, there is an ω_1 -categorical theory T such that $SRM(T) = \{0, \ldots, n-1\}$. Here, in a priority construction, we combine the techniques used to prove the two results and obtain a strongly minimal theory T such that $SRM(T) = \{1\}$. Thus, only $M_1(T)$ has a computable presentation (which we build in the priority construction).

The ultimate goal of these investigations is to describe all possible spectra of ω_1 -categorical theories. In a sense, our example is the most complicated one found so far, since all the previous spectra were upward closed or downward closed in $\omega+1$. Before we proceed to the main result, we give an upper bound on the complexity of spectra. Many ω_1 -categorical theories are model complete (for instance, ACF₀, or, more generally, each ω_1 -categorical theory axiomatizable by Π_2 -formulas, by Lindström's test), so we also give a tighter upper bound for such theories.

Received October 4, 2000

Proposition 1.1 Suppose T is ω_1 -categorical theory in an effective language. Then

- (i) $SRM(T) \in \Sigma_3^0(\varnothing^\omega)$;
- (ii) if T is model complete, then $SRM(T) \in \Sigma_4^0$.

Proof: Suppose $\beta(x)$ is a strongly minimal formula for T in the sense of [1]. Choose an effective numbering of the set D of atomic relations and negations of atomic relations in the given effective language over the domain \mathbb{N} (typical elements of D are fn = fgm and $\neg Rnm$, where $n, m \in \mathbb{N}$, f, g are unary function symbols and R is a binary relation symbol in our language). If we view a computably enumerable set W as a subset of D, then W gives rise to a presentation of a computable model, provided that exactly one of an atomic relation or its negation is in W, and, if the language contains an equality symbol \approx , then $\{n, m : n \approx m \in W\}$ is an equivalence relation compatible with W. The numbers e such that W_e determines a presentation form a Π_2^0 -set P. For $e \in P$, this computable presentation is denoted by \mathcal{A}_e .

In the following, "a.i." stands for "algebraically independent" and, for a structure \mathcal{A} in our language, $\beta(\mathcal{A})$ denotes $\{a \in \mathcal{A} : \mathcal{A} \models \beta(a)\}$. Let S_k be the group of permutations of $\{1, \ldots, k\}$.

To prove (i), we can suppose that $T \leq_T \emptyset^\omega$, otherwise $SRM(T) = \emptyset$. Now $n \in SRM(T) \iff \exists e \in P$

$$\mathcal{A}_{\varepsilon} \models T \text{ (this is } \Pi_1^0(\varnothing^{\omega})) \&$$
 (1)

$$\exists a_1, \dots, a_n \in \beta(\mathcal{A}_e)[(a_1, \dots, a_n) \text{ a.i.}] \&$$
 (2)

$$\neg \exists a_1, \dots, a_{n+1} \in \beta(\mathcal{A}_e)[a_1, \dots, a_{n+1} \text{ a.i.}]$$
(3)

Also, in \mathcal{A}_e , c_1, \ldots, c_k are a.i. if and only if for all formulas $\varphi(x_1, \ldots, x_k)$,

$$\forall \pi \in S_k[\mathcal{A}_e \models \varphi(c_{\pi(1)}, \dots, c_{\pi(k)}) \Longrightarrow \exists^{\infty} c \, \mathcal{A}_e \models \varphi(c_{\pi(1)}, \dots, c_{\pi(k-1)}, c)]$$

which is $\Pi_1^0(\varnothing^\omega)$. Therefore, (2) is $\Sigma_2^0(\varnothing^\omega)$, (3) is $\Pi_2^0(\varnothing^\omega)$, and the whole expression is $\Sigma_3^0(\varnothing^\omega)$, as desired.

For (ii), if T is model complete, then by ([2], 8.3.3), T is equivalent to $T \cap \Pi_2$, the set of Π_2 -sentences in T. If T has a recursive model, then $T \cap \Pi_2$ is Π_2^0 . Now, in the expression above, $\mathcal{A}_e \models T$ becomes Π_3^0 . Moreover, since we can assume that all formulas involved are Σ_1 , " c_1, \ldots, c_k a.i." becomes Π_2^0 , (2) becomes Σ_3^0 , and (3) Π_3^0 .

2 {1} is a spectrum

Theorem 2.1 There is a strongly minimal (and hence ω_1 -categorical) theory T in an effective language such that $M_i(T)$ $(i \leq \omega)$ has a computable presentation if and only if i = 1.

Proof: We use a language consisting of binary relations P_k ($k \ge 0$) called *edge relations* and further relations L_e ($e \ge 0$). T contains axioms saying that the relations do not depend on the order of the elements and can hold only for distinct elements.

Let \mathcal{L}_P be first-order language over $\{P_k : k \ge 0\}$. The models of T restricted to \mathcal{L}_P are, with a small notational change, as in [3]. They consist of a disjoint union

of components C_i , D. C_0 is a singleton, and C_{n+1} is the union of two copies of C_n , where elements in different subcomponents are connected via a P_n -edge. We call the models C_i complexes of dimension i, or for short, i-complexes, which replace the i-cubes in [3] to simplify notation. There are natural embeddings of an i-complex into an i+1-complex. The ∞ -complex D is the union of a chain of an i-complex for each finite i.

We determine T by describing a recursive presentation of $M_1(T)$. However, as in [3], $T \cap \mathcal{L}_P$ can be axiomatized by saying for which $n \in \omega$ an n-complex exists, and that there is at most one for each n. As in [3], for an infinite set $S \subseteq \omega$, let $\mathcal{A}_S = \bigcup_{n \in S} C_n$ be the \mathcal{L}_P -structure consisting of exactly one n-complex whenever $n \in S$. Then $T \cap \mathcal{L}_p = \text{Th}(\mathcal{A}_S)$ is ω_1 -categorical, where $M_i(T \cap \mathcal{L}_p)$ $(i \le \omega)$ consists of \mathcal{A}_S and an ∞ -complex for each j < i.

An axiomatization for the theory in the full language is obtained by specifying, in addition, first-order definitions for the relations L_e . This is needed to show that the full theory is ω_1 -categorical. Actually, $T \cap \mathcal{L}_P$, and hence T, are strongly minimal, as the following proposition shows.

Proposition 2.2 *For each infinite* $S \subseteq \omega$, Th(\mathcal{A}_S) *is strongly minimal.*

Proof: Suppose M is a countable model of $\operatorname{Th}(\mathcal{A}_S)$ and $D \subseteq M$ is definable from parameters $a_0, \ldots, a_{n-1} \in M$ using edge relations among $P_0, \ldots, P_k, k \in S$ with the intent of showing that D is finite or cofinite. Now $\widetilde{M} = M \upharpoonright \{P_0, \ldots, P_k\}$ consists of at most k complexes of dimension k and infinitely many k-complexes. Let k be the union of the complexes of dimension k and all complexes containing some k. Then k is finite, and if k if k if k is an automorphism of k taking k to k and fixing each parameter used to define k. Thus, if k if k is finite, k is k if k

We now describe the construction of a computable presentation for $M_1(T)$. The ∞ -complex will be the complex containing 0 in this particular representation.

The construction is in stages. Each stage s has finitely many substages, denoted by the letters τ , σ , which are numbered $0, 1, 2, \ldots$ through the whole construction, independently of s. $M_{1,\tau}(T)$ is the model obtained by the end of stage τ and has as a domain an initial segment $[0, u) \subseteq \mathbb{N}$, $u \ge \tau$. At the end of any substage τ , D will denote the current complex containing 0. If x is already in the domain, $\dim_{\tau}(x)$ denotes the dimension of the complex x is in at stage τ (so that $\dim_{\tau}(0)$ is the current dimension of D). The distance between x and y in the domain of $M_{1,\tau}(T)$ is defined as follows:

```
d_{\tau}(x, y) = 0 if x = y

d_{\tau}(x, y) = k if P_{k-1}xy (k is unique)

d_{\tau}(x, y) = \infty if there is no such k.
```

A complex C_r which exists at substage τ will be isomorphic to the "ball" $\{x \in D : d_{\tau}(0, x) \leq r\}$.

During the construction, we may do one of the following: (a) add a new m-complex (whose domain consists of the least numbers not used before) or (b) merge an existing complex C_r into D, using a procedure $Merge(C_r)$ which chooses k large, first expands C_r , D to complexes D', D'' of dimension k-1, and then connects all elements of D' with all elements of D'' via P_{k-1} . Thus, $\dim_{\tau}(x)$ can change at most

once from a constant value to "unbounded" while $d_{\tau}(x, y)$ may change once from ∞ to a finite value. We denote the limit value of $\dim_{\tau}(x)$ by $\dim(x)$ and the limit value of $d_{\tau}(x, y)$ by d(x, y).

We recall a further definition from [3].

Definition 2.3 A function f is *limitwise monotonic* if there exists a recursive function $\varphi(x, t)$ such that $\varphi(x, t) \leq \varphi(x, t+1)$ for all $x, t \in \omega$, $\lim_t \varphi(x, t)$ exists for every $x \in \omega$ and $f(x) = \lim_t \varphi(x, t)$.

Let S be the set of dimensions of finite complexes in any model of T. In [3], Lemma 2.2 we show that, if the prime model \mathcal{A}_S is recursive, then the set S is the range of a limitwise monotonic function.

Let $\varphi_e(x,t)$, $e \in \omega$, be a uniform enumeration of all partial recursive functions φ such that for all $t' \geq t$ if $\varphi(x,t')$ is defined, then $\varphi(x,t)$ is defined and $\varphi(x,t) \leq \varphi(x,t')$. To ensure $M_0(T) \upharpoonright L_P$ (and hence $M_0(T)$) has no computable presentation, we satisfy requirements N_i which imply that S is not the range of a limitwise monotonic function given by φ_i .

$$N_i: \exists x, t \ \varphi_i(x, t) \ \text{undefined} \ \lor \ \exists x \ \lim_t \varphi_i(x, t) \not\in S.$$

The last disjunct may be achieved by ensuring $\lim_t \varphi_i(x, t) = \infty$.

An N_i -strategy has a parameter $m = m(N_i)$, whose values are chosen in a decreasing way in the interval [g(i), g(i+1)), where $g(i) = \sum_{j < i} h(j)$ and h(j) is a computable function bounding the possible number of injuries to the requirement N_j (see Lemma 2.5 below). It has also parameters x, t. All parameters may be undefined.

The N_i -strategy is as in the proof of the recursion theoretic lemma [3], Lemma 2.1, but here it is incorporated into the priority construction of a presentation for $M_1(T)$. First add an m-complex, for an appropriate m. The "opponent" now has to provide x, t such that $\varphi_i(x, t) = m$. As a response, use x to drive the limit $\lim_{t'} \varphi_i(x, t')$ to infinity. To do so, remove an m'-complex whenever $\varphi_i(x, t') = m'$ for t' > t. (The m'-complex was created by N_i itself, in which case m' = m, or by a lower priority N-strategy still waiting for the opponent's first move, which is now injured.) In some more detail, the N_i -strategy is the following. If any of the cases below applies, take the corresponding action.

- (N1) All parameters are undefined, and $g(i+1) \le s$. Action. Let m be the largest unused number in [g(i), g(i+1)). Perform the procedure $Expand(\emptyset, m)$, which creates a new complex of dimension m.
- (N2) m is defined, but x, t are undefined, and now $\varphi_{i,s}(x,t) = m$ for some x, t < s. *Action*. Choose x, t as values for the parameters. Call the procedure $Merge(C_m)$, which puts C_m into D and thereby removes m from the list of possible values for $\lim_{t'} \varphi_i(x,t')$.
- (N3) x, t are defined and now $\varphi_i(x, t') = m'$ for some t' > t, where currently an m'-complex $\neq D$ exists. Action. Perform $Merge(C_{m'})$.

The requirements R_e code K into any presentation of a model $M_i(T)$, $i \ge 2$. By meeting the following requirements, we ensure that, if $e \notin K$, L_e is empty in each model

of T, and if $e \in K$ then L_euv holds for any two algebraically independent elements of a model of T.

$$R_e: e \in K \Longrightarrow \exists n$$

$$\forall x, y[\dim(x) < g(e+1) \lor \dim(y) < g(e+1) \lor d(x,y) < n \lor L_e xy]. \tag{4}$$

Since (4) can be expressed in a first-order way and only the last alternative can occur for algebraically independent u, v, meeting all the requirements R_e is sufficient for the coding of K.

The R_e -strategy has a single parameter n_e , which is defined first at a stage s when $e \in K_s$ and may be made undefined finitely often by higher priority N-type strategies. The limit value will provide the witness n for (4). The R_e -strategy tries to ensure $L_e uv$ whenever n_e is defined, $\dim(u)$, $\dim(v) \ge g(e)$ and $d(u, v) \ge n_e$. The priority ordering of the requirements is $N_0 \prec R_0 \prec N_1 \prec R_1 \prec \cdots$. Both types of requirements are reset by making all their parameters undefined.

Suppose an N-strategy wants to merge a complex $C_{m'}$ created by an N'-strategy into D, so that $N \prec N'$. This conflicts with the R_e -strategy in case we did not declare $L_e xy$ for all $x \in C_{m'}$, $y \in D$, since we will use an edge relation P_u , $u \geq n_e$ to connect x, y. It is too late now to add $L_e xy$, since we want a computable presentation of $M_1(T)$. This conflict is solved as follows: for all the requirements N' such that $R_e \prec N'$ and $C_{m(N')}$ exists, when e is enumerated into K, R_e first merges $C_{m(N')}$ into D. Only then does R_e define the first value of n_e , larger than all indices of edge relations used so far. If $N' \prec R_e$, before merging $C_{m(N')}$ into D we make n_e undefined, and R_e redefines it with large value after the merging takes place.

The effect of R_e on the theory is described by a set F_e which is cofinite if $e \in K$ and empty otherwise. Let $F_{e,0} = \emptyset$ and $F_{e,\tau} =$

$$F_{e,\tau-1} \cup \{k : n_e \text{ defined at substage } \tau \& k \ge n_e \& P_{k-1} \text{ first used at } \tau\}.$$
 (5)

Let $F_e = \bigcup_{\tau} F_{e,\tau}$. We will verify that

$$M_1 \models L_e xy \iff \dim(x), \dim(y) \ge g(e+1) \& d(x, y) \in F_e \cup \{\infty\},$$
 (6)

which gives the desired first-order definition of L_e from finitely many edge relations. During a substage τ of the construction, we add $L_e x y$ to the presentation if y is a new element, $e \in K_{s-1}$, and (6) holds at that stage. Thus the presentation is computable. We need to verify that $L_e^{M_1(T)}$ actually satisfies (6) despite possible changes of $\dim(x)$, $\dim(y)$, and d(x, y) after τ .

We describe the procedures and the construction in detail. Whenever a procedure adds new numbers to the domain, they are chosen minimal in \mathbb{N} .

 $Expand(C_u, k)$ has as an input a u-complex C_u (recall that C_u is isomorphic to $\{x : d(x, 0) \le u\}$). It expands C_u to a k-complex by adding new elements and the appropriate P_{k-1} -relations between elements. We also include as a special case $Ex-pand(\emptyset, k)$, which creates a new complex of dimension k. This is counted as one substage.

 $Merge(C_r)$ assumes that there is a complex C_r , r = m(N) for some (unique) N. It merges C_r and D, but in a way that the overall goal that L_e be definable by (6) can be achieved. Let N' > N be the requirement of highest priority such that m(N') is defined. Recursively, call $Merge(C_{m(N')})$, using finitely many substages (if N' fails to exist, this step is vacuous). Next, in a single substage τ , perform the following:

- 1. Reset all the *R*-type requirements $\succ N$.
- 2. Choose k large and call $Expand(C_{r,\tau-1}, k-1)$, producing a complex D', and call $Expand(D_{\tau-1}, k-1)$ producing a complex D''.
- 3. Connect D', D'' by adding symmetric edges $P_{k-1}xy$, whenever x is in one and y in the other. This yields D_{τ} . Reset the requirement N.

The construction

Stage 0: Let $D = \{0\}, \tau = 0$.

Stage s > 0: In the following, increase τ by one after each substage. Declare $L_e xy$ whenever an element y is added at a substage τ to the domain M_1 such that $e \in K_{s-1}$, $d_{\tau}(x, y) \in F_{e,\tau} \cup \{\infty\}$ and $\dim_{\tau}(x)$, $\dim_{\tau}(y) \geq g(e+1)$.

- 1. Pick the requirement of highest priority U (if there is any) for which one of the following applies and carry out the corresponding action.
 - (a) U is N_i , all parameters of N_i are undefined, and $g(i+1) \le s$. *Action*. (N1) above.
 - (b) U is R_e , n_e was not defined up to now and $e \in K_s$. Action. Let $N \succ R_e$ be the N-type requirement of highest priority such that m(N) is defined. If N exists, perform $Merge(C_{m(N)})$. Next, pick a large number $\geq g(e+1)$ as n_e .
- 2. If some *u*-complex exists and some *N*-type requirement desires to merge it via (N2) or (N3), perform $Merge(C_u)$ for the minimal such *u*.
- 3. To ensure that $\dim(D) \ge s$ at the end of stage s, call $Expand(D_{\tau-1}, \dim_{\tau}(0) + 1)$.
- 4. For all R_e such that n_e is now undefined but was defined before, redefine n_e with a large value.

The verification We write M_i instead of $M_i(T)$.

Lemma 2.4 The model M_1 is recursive.

Proof: We want to test whether $M_1 \models Rxy$ where $x, y \in \mathbb{N}$ and R is a relation symbol from our language. We can suppose that x < y and $y \in \text{dom}(M_{1,\tau}) - \text{dom}(M_{1,\tau-1})$ so that y is added at a substage τ of a stage s.

- 1. If R is P_k , then we distinguish two cases. If y is added by a procedure Ex-pand, then $M_1 \models P_k xy \iff M_{1,\tau} \models P_k xy$. Otherwise, $M_1 \models P_k xy$ because we connected D', D'' in a Merge procedure and $x \in D'$, $y \in D''$, or we performed (3) of the construction during a stage $t \geq s$, in which case $k \geq s$ (since at each stage we introduce a new edge relation). Thus it suffices to check whether $M_{1,\max(k+1,s)} \models P_k xy$.
- 2. Now suppose R is L_e . Then, by the construction, $M_1 \models L_e xy \iff M_{1,\tau} \models L_e xy$ (since we determine whether $L_e xy$ holds when y is introduced).

Lemma 2.5 There is a computable function h such that N_i is reset at most h(i) times. In particular, during the construction, there is always a sufficient supply of candidates for the parameter $m(N_i)$, and also, R_i is reset only finitely many times.

Proof: Let h(0) = 0. To determine h(i + 1), we observe that N_{i+1} can be reset at most two times before N_i is reset as well. For, if N_i is not reset, then either N_{i+1} was reset by R_i , which can only happen once, or during a *Merge* procedure for the sake of N_i . This means that before the merging, N_i has parameters x, t and $\varphi_i(x, t) = m(N_{i+1})$. By the way $m(N_{i+1})$ is chosen and since $\varphi_i(x, t)$ is nondecreasing in t, this can only happen once before $x(N_i)$ is changed.

Now, defining h recursively by h(0) = 0, h(i + 1) = 3h(i) + 3, we obtain the desired bound.

Lemma 2.6 The requirements N_i are met. Hence $M_0(T)$ has no computable presentation.

Proof: Suppose that N_i is not reset from stage s_0 on. Then N_i permanently has highest priority from s_0 on and therefore can always fulfill its desire to create a complex. Since a complex $C_{m(N_j)}$, $N_i \prec N_j$, is merged into D whenever N_i desires, N_i is met.

Lemma 2.7 L_e is definable in all models of T by a Σ_1 -formula in the restricted language \mathcal{L}_P , which depends only on e.

Proof: Since $T = \text{Th}(M_1)$ by definition, it suffices to work in M_1 . Clearly, if $e \notin K$, then $L_e = \emptyset$. Now suppose $e \in K$. Then F_e is cofinite by Lemma 2.5. As discussed after (6), we want to prove that, for each $x, y \in \mathbb{N}$,

$$M_1 \models L_e xy \iff \dim(x), \dim(y) \ge g(e+1) \& d(x, y) \in F_e \cup \{\infty\}. \tag{7}$$

This suffices, for $\dim(x) \geq g(e+1)$ can be expressed by a Σ_1 -formula in \mathcal{L}_P , and, if $\mathbb{N} - F_e \subseteq \{0, \dots, m-1\}$, m > 1, then $d(x, y) \in F_e \cup \{\infty\} \iff d(x, y) \geq m \iff \neg P_0 x y \& \cdots \& \neg P_{m-2} x y$. In the following, we argue by induction over *substages* (recall that they are numbered consecutively throughout the construction). As in Lemma 2.4, suppose that x < y and $y \in \text{dom}(M_{1,\tau}) - \text{dom}(M_{1,\tau-1})$ (but note that possibly $\dim_{\tau}(y) < \dim_{\tau}(x)$). We denote by $\text{Compl}_{\sigma}(z)$ the complex z is in by the end of substage σ .

For the direction from left to right, if L_exy , then at the end of substage τ , the right-hand side in (7) holds. Thus $\dim_{\sigma}(x)$, $\dim_{\sigma}(y) \geq g(e+1)$ for all $\sigma \geq \tau$, since dimension is nondecreasing over substages. Moreover, if $d_{\tau}(x,y) \in F_{e,\tau}$ then $d(x,y) = d_{\tau}(x,y) \in F_e$. Suppose now that $d_{\tau}(x,y) = \infty$ (so that x,y are in different complexes at the end of τ), but k = d(x,y) is finite. Then at some substage $\sigma > \tau$, $\mathrm{Compl}_{\tau}(x) = \mathrm{Compl}_{\sigma-1}(x) = C_{m(N)}$ is merged into D during a run of the Merge procedure, while $y \in D_{\sigma-1}$. (If instead, y enters D while x is in D already, we argue similarly.) During σ , x is in a complex D' which is connected with $D'' \supseteq D_{\sigma-1}$ using P_{k-1} , where k is chosen large. Note that $R_e \prec N$, since $\dim_{\sigma}(x) \geq g(e+1)$. So, during the run of the Merge procedure, n_e is still defined at σ when we use P_{k-1} and $k \geq n_e$, hence $k \in F_e$.

Now suppose the right-hand side in (7) holds. We show $L_e xy$.

1. If $\dim_{\tau}(x) \le \dim_{\tau}(y)$ and $\dim_{\tau}(x) < g(e+1)$, then at the end of substage τ , the numbers x, y are in different complexes, otherwise $d(x, y) = d_{\tau}(x, y) < 0$

сı. П

- g(e+1) while $\min(F_e) \geq g(e+1)$. Suppose at the end of substage $\tau, x \in C_{m(N)}$, and $y \in D$ or $y \in C_{m(N')}$, where $N \prec N'$. Since $\dim(x) \geq g(e+1)$, at a stage $\sigma > \tau$ we merge $C_{m(N)} = \operatorname{Compl}_{\tau}(x) = \operatorname{Compl}_{\sigma-1}(x)$ into D while $y \in D_{\sigma-1}$. By the Merge procedure and since $N \prec R_e$, R_e was reset before we merged $\operatorname{Compl}_{\tau}(x)$. So we add a relation $P_{k-1}xy$ while n_e is undefined, whence $k = d(x, y) \notin F_e$, contradiction. If $\dim_{\tau}(y) \leq \dim_{\tau}(x)$ and $\dim_{\tau}(y) < g(e+1)$, we argue similarly. We can henceforth assume that $\dim_{\tau}(x)$, $\dim_{\tau}(y) \geq g(e+1)$, so that by the end of stage τ , x is in D or in some $C_{m(N)}$ for some $N > R_e$, and similarly for y.
- 2. If $d_{\tau}(x, y) = \infty$ and we do not declare $L_e x y$ at τ , then n_e is undefined at τ . If $e \in K_{s-1}$ then, by the end of stage s-1, n_e was defined, and we made n_e undefined at substages of s prior to τ . Then while performing Merge, we would have merged the complexes x and y are in into D at a substage of s prior to σ , contrary to $d_{\tau}(x, y) = \infty$.
 - If $e \notin K_{s-1}$, then since $e \in K$, by 1(b) in the construction, we merge the distinct complexes $\operatorname{Compl}_{\tau}(x)$ and $\operatorname{Compl}_{\tau}(y)$ into D at some substage before we define n_e for the first time. So, again $d(x, y) \notin F_e$.
- 3. Finally, suppose $d_{\tau}(x, y) = k < \infty$. Since $k \in F_e$ and P_{k-1} is used first at a substage $\leq \tau$, $k \in F_{e,\tau}$. Since y is added at τ , we declare $L_e x y$.

Remark 2.8 D. Hirschfeldt and the author have recently extended Theorem 2.1: for any ordinal α , $2 \le \alpha \le \omega$, the set $\{n : 1 \le n < \alpha\}$ is a spectrum.

Acknowledgments The author would like to thank Robert Soare and Alistair Lachlan for helpful discussions. This work is partially supported by NSF grant DMS-9803482

REFERENCES

- [1] Baldwin, J., and A. Lachlan, "On strongly minimal sets," *The Journal of Symbolic Logic*, vol. 36, (1971), pp. 79–96. Zbl 0217.30402 MR 44:3851 1, 1
- [2] Hodges, W., *Model Theory*, Encyclopedia of Mathematics, Cambridge University Press, Cambridge, 1993. Zbl 0789.03031 MR 94e:03002 1
- [3] Khoussainov, B., A. Nies, and R. A. Shore, "Recursive models of theories with few models," *Notre Dame Journal of Formal Logic*, vol. 38 (1997), pp. 165–78. 1, 1, 2, 2, 2, 2, 2, 2, 2
- [4] Kudeiberganov, K., "On constructive models of undecidable theories," *Sibirskiy Matematicheskiy Zhumal*, vol. 21 (1980), pp. 155–58, 192. 1

Department of Mathematics The University of Chicago 5734 S University Ave Chicago IL 60637

website: http://www.math.uchicago.edu/~nies

email: nies@math.uchicago.edu