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A New Spectrum of Recursive Models

ANDRÉ NIES

Abstract We describe a strongly minimal theoryS in an effective language
such that, in the chain of countable models ofS, only the second model has a
computable presentation. Thus there is a spectrum of anω1-categorical theory
which is neither upward nor downward closed. We also give an upper bound
on the complexity of spectra.

1 Introduction Our main purpose is to find a strongly minimal theory in an effec-
tive language whose spectrum of recursive models is the set{1}. We rely on some
concepts in Khoussainov, Nies, and Shore [3], reviewed here briefly. Baldwin and
Lachlan [1] showed that the countable models of anω1-categorical theoryT form an
ω + 1-chainM0(T ) ≺ M1(T ) ≺ · · · ≺ Mω(T ) under elementary embeddings. In [3],
we defined the spectrum of computable models ofT ,

SRM(T ) = {i ≤ ω : Mi(T ) has a computable presentation}.

We gave an example of anω1-categorical (in fact, strongly minimal) theoryT such
that SRM(T ) = (ω − {0}) ∪ {ω}. Kudeiberganov [4], extending a result of Gon-
charov, proved that, for eachn ∈ ω, n ≥ 1, there is anω1-categorical theoryT such
that SRM(T ) = {0, . . . , n −1}. Here, in a priority construction, we combine the tech-
niques used to prove the two results and obtain a strongly minimal theoryT such that
SRM(T ) = {1}. Thus, onlyM1(T ) has a computable presentation (which we build
in the priority construction).

The ultimate goal of these investigations is to describe all possible spectra ofω1-
categorical theories. In a sense, our example is the most complicated one found so
far, since all the previous spectra were upward closed or downward closed inω + 1.
Before we proceed to the main result, we give an upper bound on the complexity of
spectra. Manyω1-categorical theories are model complete (for instance, ACF0, or,
more generally, eachω1-categorical theory axiomatizable by�2-formulas, by Lind-
ström’s test), so we also give a tighter upper bound for such theories.
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Proposition 1.1 Suppose T is ω1-categorical theory in an effective language. Then

(i) SRM(T ) ∈ �0
3(∅

ω);
(ii) if T is model complete, then SRM(T ) ∈ �0

4.

Proof: Supposeβ(x) is a strongly minimal formula forT in the sense of [1]. Choose
an effective numbering of the setD of atomic relations and negations of atomic re-
lations in the given effective language over the domainN (typical elements ofD are
f n = f gm and¬Rnm, wheren, m ∈ N, f, g are unary function symbols andR is a bi-
nary relation symbol in our language). If we view a computably enumerable setW as
a subset ofD, thenW gives rise to a presentation of a computable model, provided
that exactly one of an atomic relation or its negation is inW, and, if the language
contains an equality symbol≈, then{n, m : n ≈ m ∈ W} is an equivalence relation
compatible withW. The numberse such thatWe determines a presentation form a
�0

2-setP. For e ∈ P, this computable presentation is denoted byAe.
In the following, “a.i.” stands for “algebraically independent” and, for a struc-

tureA in our language,β(A ) denotes{a ∈ A : A |= β(a)}. Let Sk be the group of
permutations of{1, . . . , k}.

To prove (i), we can suppose thatT ≤T ∅
ω, otherwise SRM(T ) = ∅. Now n ∈

SRM(T ) ⇐⇒ ∃e ∈ P

Ae |= T (this is�0
1(∅

ω)) & (1)

∃a1, . . . , an ∈ β(Ae)[(a1, . . . , an) a.i.] & (2)

¬∃a1, . . . , an+1 ∈ β(Ae)[a1, . . . , an+1 a.i.] (3)

Also, in Ae, c1, . . . , ck are a.i. if and only if for all formulasϕ(x1, . . . , xk),

∀π ∈ Sk[Ae |= ϕ(cπ(1), . . . , cπ(k)) =⇒ ∃∞c Ae |= ϕ(cπ(1), . . . , cπ(k−1), c)]

which is�0
1(∅

ω). Therefore, (2) is�0
2(∅

ω), (3) is�0
2(∅

ω), and the whole expression
is �0

3(∅
ω), as desired.

For (ii), if T is model complete, then by ([2], 8.3.3),T is equivalent toT ∩ �2,
the set of�2-sentences inT . If T has a recursive model, thenT ∩ �2 is �0

2. Now,
in the expression above,Ae |= T becomes�0

3. Moreover, since we can assume that
all formulas involved are�1, “c1, . . . , ck a.i.” becomes�0

2, (2) becomes�0
3, and(3)

�0
3. �

2 {1} is a spectrum

Theorem 2.1 There is a strongly minimal (and hence ω1-categorical) theory T in
an effective language such that Mi(T ) (i ≤ ω) has a computable presentation if and
only if i = 1.

Proof: We use a language consisting of binary relationsPk (k ≥ 0) callededge re-
lations and further relationsLe (e ≥ 0). T contains axioms saying that the relations
do not depend on the order of the elements and can hold only for distinct elements.

Let LP be first-order language over{Pk : k ≥ 0}. The models ofT restricted to
LP are, with a small notational change, as in [3]. They consist of a disjoint union
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of componentsCi, D. C0 is a singleton, andCn+1 is the union of two copies ofCn,
where elements in different subcomponents are connected via aPn-edge. We call the
modelsCi complexes of dimension i, or for short,i-complexes, which replace thei-
cubes in [3] to simplify notation. There are natural embeddings of ani-complex into
ani + 1-complex. The∞-complexD is the union of a chain of ani-complex for each
finite i.

We determineT by describing a recursive presentation ofM1(T ). However, as
in [3], T ∩ LP can be axiomatized by saying for whichn ∈ ω an n-complex exists,
and that there is at most one for eachn. As in [3], for an infinite setS ⊆ ω, let AS =⋃

n∈S Cn be theLP-structure consisting of exactly onen-complex whenevern ∈ S.
ThenT ∩ Lp = Th(AS) is ω1-categorical, whereMi(T ∩ Lp) (i ≤ ω) consists ofAS

and an∞-complex for eachj < i. �
An axiomatization for the theory in the full language is obtained by specifying, in
addition, first-order definitions for the relationsLe. This is needed to show that the
full theory isω1-categorical. Actually,T ∩ LP, and henceT , are strongly minimal,
as the following proposition shows.

Proposition 2.2 For each infinite S ⊆ ω, Th(AS) is strongly minimal.

Proof: SupposeM is a countable model of Th(AS) and D ⊆ M is definable from
parametersa0, . . . , an−1 ∈ M using edge relations amongP0, . . . , Pk, k ∈ S with the
intent of showing thatD is finite or cofinite. NowM̃ = M � {P0, . . . , Pk} consists of
at mostk complexes of dimension< k and infinitely manyk-complexes. LetF be
the union of the complexes of dimension< k and all complexes containing someai.
Then F is finite, and ifc, d ∈ M − F, there is an automorphism of̃M takingc to d
and fixing each parameter used to defineD. Thus, if D �⊆ F, thenD ∪ F = M. �
We now describe the construction of a computable presentation forM1(T ). The∞-
complex will be the complex containing 0 in this particular representation.

The construction is in stages. Each stages has finitely many substages, denoted
by the lettersτ, σ, which are numbered 0,1,2, . . . through the whole construction,
independently of s. M1,τ (T ) is the model obtained by the end of stageτ and has as
a domain an initial segment [0, u) ⊆ N, u ≥ τ. At the end of any substageτ, D will
denote the current complex containing 0. Ifx is already in the domain, dimτ(x) de-
notes the dimension of the complexx is in at stageτ (so that dimτ(0) is the current
dimension ofD). The distance betweenx andy in the domain ofM1,τ (T ) is defined
as follows:

dτ(x, y) = 0 if x = y
dτ(x, y) = k if Pk−1xy (k is unique)
dτ(x, y) = ∞ if there is no suchk.

A complexCr which exists at substageτ will be isomorphic to the “ball”{x ∈ D :
dτ(0, x) ≤ r}.

During the construction, we may do one of the following: (a) add a newm-
complex (whose domain consists of the least numbers not used before) or (b) merge
an existing complexCr into D, using a procedureMerge(Cr) which choosesk large,
first expandsCr, D to complexesD′, D′′ of dimensionk − 1, and then connects all
elements ofD′ with all elements ofD′′ via Pk−1. Thus, dimτ(x) can change at most
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once from a constant value to “unbounded” whiledτ(x, y) may change once from∞
to a finite value. We denote the limit value of dimτ(x) by dim(x) and the limit value
of dτ(x, y) by d(x, y).

We recall a further definition from [3].

Definition 2.3 A function f is limitwise monotonic if there exists a recursive func-
tion ϕ(x, t) such thatϕ(x, t) ≤ ϕ(x, t + 1) for all x, t ∈ ω, lim t ϕ(x, t) exists for every
x ∈ ω and f (x) = lim t ϕ(x, t).

Let S be the set of dimensions of finite complexes in any model ofT . In [3], Lemma
2.2 we show that, if the prime modelAS is recursive, then the setS is the range of a
limitwise monotonic function.

Let ϕe(x, t), e ∈ ω, be auniform enumeration of all partial recursive functions
ϕ such that for allt′ ≥ t if ϕ(x, t′) is defined, thenϕ(x, t) is defined andϕ(x, t) ≤
ϕ(x, t′). To ensureM0(T ) � LP (and henceM0(T )) has no computable presentation,
we satisfy requirementsNi which imply thatS is not the range of a limitwise mono-
tonic function given byϕi.

Ni : ∃x, t ϕi(x, t) undefined∨ ∃x lim
t

ϕi(x, t) �∈ S.

The last disjunct may be achieved by ensuring limt ϕi(x, t) = ∞.
An Ni-strategy has a parameterm = m(Ni), whose values are chosen in a de-

creasing way in the interval [g(i), g(i + 1)), whereg(i) = ∑
j<i h( j) andh( j) is a

computable function bounding the possible number of injuries to the requirementN j

(see Lemma2.5below). It has also parametersx, t. All parameters may be undefined.
The Ni-strategy is as in the proof of the recursion theoretic lemma [3], Lemma

2.1, but here it is incorporated into the priority construction of a presentation for
M1(T ). First add anm-complex, for an appropriatem. The “opponent” now has to
providex, t such thatϕi(x, t) = m. As a response, usex to drive the limit limt′ ϕi(x, t′)
to infinity. To do so, remove anm′-complex wheneverϕi(x, t′) = m′ for t′ > t. (The
m′-complex was created byNi itself, in which casem′ = m, or by alower priority N-
strategy still waiting for the opponent’s first move, which is now injured.) In some
more detail, theNi-strategy is the following. If any of the cases below applies, take
the corresponding action.

(N1) All parameters are undefined, andg(i + 1) ≤ s.
Action. Let m be the largest unused number in [g(i), g(i + 1)). Perform the
procedureExpand(∅, m), which creates a new complex of dimensionm.

(N2) m is defined, butx, t are undefined, and nowϕi,s(x, t) = m for somex, t < s.
Action. Choosex, t as values for the parameters. Call the procedure
Merge(Cm), which putsCm into D and thereby removesm from the list of pos-
sible values for limt′ ϕi(x, t′).

(N3) x, t are defined and nowϕi(x, t′) = m′ for somet′ > t, where currently anm′-
complex�= D exists.
Action. PerformMerge(Cm′ ).

The requirementsRe codeK into any presentation of a modelMi(T ), i ≥ 2. By meet-
ing the following requirements, we ensure that, ife �∈ K, Le is empty in each model
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of T , and if e ∈ K thenLeuv holds for any two algebraically independent elements
of a model ofT .

Re : e ∈ K =⇒ ∃n

∀x, y[dim(x) < g(e + 1) ∨ dim(y) < g(e + 1) ∨ d(x, y) < n ∨ Lexy]. (4)

Since (4) can be expressed in a first-order way and only the last alternative can occur
for algebraically independentu, v, meeting all the requirementsRe is sufficient for
the coding ofK.

TheRe-strategy has a single parameterne, which is defined first at a stages when
e ∈ Ks and may be made undefined finitely often by higher priorityN-type strategies.
The limit value will provide the witnessn for (4). The Re-strategy tries to ensure
Leuv wheneverne is defined, dim(u),dim(v) ≥ g(e) andd(u, v) ≥ ne. The priority
ordering of the requirements isN0 ≺ R0 ≺ N1 ≺ R1 ≺ · · ·. Both types of requirements
arereset by making all their parameters undefined.

Suppose anN-strategy wants to merge a complexCm′ created by anN ′-strategy
into D, so that N ≺ N ′. This conflicts with theRe-strategy in case we did not de-
clare Lexy for all x ∈ Cm′ , y ∈ D, since we will use an edge relationPu, u ≥ ne to
connectx, y. It is too late now to addLexy, since we want a computable presentation
of M1(T ). This conflict is solved as follows: for all the requirementsN ′ such that
Re ≺ N ′ andCm(N ′) exists, whene is enumerated intoK, Re first mergesCm(N ′) into
D. Only then doesRe define the first value ofne, larger than all indices of edge rela-
tions used so far. IfN ′ ≺ Re, before mergingCm(N ′) into D we makene undefined,
andRe redefines it with large value after the merging takes place.

The effect ofRe on the theory is described by a setFe which is cofinite ife ∈ K
and empty otherwise. LetFe,0 = ∅ andFe,τ =

Fe,τ−1 ∪ {k : ne defined at substageτ & k ≥ ne & Pk−1 first used atτ}. (5)

Let Fe = ⋃
τ Fe,τ. Wewill verify that

M1 |= Lexy ⇐⇒ dim(x),dim(y) ≥ g(e + 1) & d(x, y) ∈ Fe ∪ {∞}, (6)

which gives the desired first-order definition ofLe from finitely many edge relations.
During a substageτ of the construction, we addLexy to the presentation ify is a
new element,e ∈ Ks−1, and(6) holds at that stage. Thus the presentation is com-
putable. We need to verify thatLM1(T )

e actually satisfies (6) despite possible changes
of dim(x),dim(y), andd(x, y) afterτ.

We describe the procedures and the construction in detail. Whenever a proce-
dure adds new numbers to the domain, they are chosen minimal inN.

Expand(Cu, k) has as an input au-complexCu (recall thatCu is isomorphic to
{x : d(x,0) ≤ u}). It expandsCu to a k-complex by adding new elements and the
appropriatePk−1-relations between elements. We also include as a special caseEx-
pand(∅, k), which creates a new complex of dimensionk. This is counted as one
substage.

Merge(Cr) assumes that there is a complexCr, r = m(N) for some (unique)N.
It mergesCr andD, but in a way that the overall goal thatLe be definable by (6) can
be achieved. LetN ′ � N be the requirement of highest priority such thatm(N ′) is
defined. Recursively, callMerge(Cm(N ′)), using finitely many substages (ifN ′ fails
to exist, this step is vacuous). Next, in a single substageτ, perform the following:
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1. Reset all theR-type requirements� N.
2. Choosek large and callExpand(Cr,τ−1, k − 1), producing a complexD′, and

call Expand(Dτ−1, k − 1) producing a complexD′′.
3. ConnectD′, D′′ by adding symmetric edgesPk−1xy, wheneverx is in one and

y in the other. This yieldsDτ. Reset the requirementN.

The construction

Stage 0: Let D = {0}, τ = 0.
Stage s > 0: In the following, increaseτ by one after each substage. DeclareLexy
whenever an elementy is added at a substageτ to the domainM1 such thate ∈ Ks−1,
dτ(x, y) ∈ Fe,τ ∪ {∞} and dimτ(x),dimτ(y) ≥ g(e + 1).

1. Pick the requirement of highest priorityU (if there is any) for which one of the
following applies and carry out the corresponding action.

(a) U is Ni, all parameters ofNi are undefined, andg(i + 1) ≤ s.

Action. (N1) above.

(b) U is Re, ne was not defined up to now ande ∈ Ks.

Action. Let N � Re be theN-type requirement of highest priority
such thatm(N) is defined. IfN exists, performMerge(Cm(N)). Next,
pick a large number≥ g(e + 1) asne.

2. If someu-complex exists and someN-type requirement desires to merge it via
(N2) or (N3), performMerge(Cu) for the minimal suchu.

3. To ensure that dim(D) ≥ s at the end of stages, call
Expand(Dτ−1,dimτ(0) + 1).

4. For all Re such thatne is now undefined but was defined before, redefinene

with a large value.

The verification Wewrite Mi instead ofMi(T ).

Lemma 2.4 The model M1 is recursive.

Proof: We want to test whetherM1 |= Rxy wherex, y ∈ N and R is a relation
symbol from our language. We can suppose thatx < y and y ∈ dom(M1,τ ) −
dom(M1,τ−1) so thaty is added at a substageτ of a stages.

1. If R is Pk, then we distinguish two cases. Ify is added by a procedureEx-
pand, then M1 |= Pkxy ⇐⇒ M1,τ |= Pkxy. Otherwise,M1 |= Pkxy because
we connectedD′, D′′ in a Merge procedure andx ∈ D′, y ∈ D′′, or we per-
formed (3) of the construction during a staget ≥ s, inwhich casek ≥ s (since at
each stage we introduce a new edge relation). Thus it suffices to check whether
M1,max(k+1,s) |= Pkxy.

2. Now supposeR is Le. Then, by the construction,M1 |= Lexy ⇐⇒ M1,τ |=
Lexy (since we determine whetherLexy holds wheny is introduced). �

Lemma 2.5 There is a computable function h such that Ni is reset at most h(i)
times. In particular, during the construction, there is always a sufficient supply of
candidates for the parameter m(Ni), and also, Ri is reset only finitely many times.
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Proof: Let h(0) = 0. To determineh(i + 1), we observe thatNi+1 can be reset at
most two times beforeNi is reset as well. For, ifNi is not reset, then eitherNi+1

was reset byRi, which can only happen once, or during aMerge procedure for the
sake ofNi. This means that before the merging,Ni has parametersx, t andϕi(x, t) =
m(Ni+1). By the waym(Ni+1) is chosen and sinceϕi(x, t) is nondecreasing int, this
can only happen once beforex(Ni) is changed.

Now, definingh recursively byh(0) = 0, h(i + 1) = 3h(i) + 3, we obtain the
desired bound. �

Lemma 2.6 The requirements Ni are met. Hence M0(T ) has no computable pre-
sentation.

Proof: Suppose thatNi is not reset from stages0 on. ThenNi permanently has high-
est priority froms0 on and therefore can always fulfill its desire to create a complex.
Since a complexCm(N j), Ni ≺ N j, is merged intoD wheneverNi desires,Ni is met.

�

Lemma 2.7 Le is definable in all models of T by a �1-formula in the restricted
language LP, which depends only on e.

Proof: SinceT = Th(M1) by definition, it suffices to work inM1. Clearly, ife �∈ K,
thenLe = ∅. Now supposee ∈ K. ThenFe is cofinite by Lemma2.5. As discussed
after (6), we want to prove that, for eachx, y ∈ N,

M1 |= Lexy ⇐⇒ dim(x),dim(y) ≥ g(e + 1) & d(x, y) ∈ Fe ∪ {∞}. (7)

This suffices, for dim(x) ≥ g(e + 1) can be expressed by a�1-formula inLP, and, if
N − Fe ⊆ {0, . . . , m − 1}, m > 1, thend(x, y) ∈ Fe ∪ {∞} ⇐⇒ d(x, y) ≥ m ⇐⇒
¬P0xy & · · · & ¬Pm−2xy. In the following, we argue by induction oversubstages
(recall that they are numbered consecutively throughout the construction). As in
Lemma2.4, suppose thatx < y and y ∈ dom(M1,τ ) − dom(M1,τ−1) (but note that
possibly dimτ(y) < dimτ(x)). We denote by Complσ(z) the complexz is in by the
end of substageσ.

For the direction from left to right, ifLexy, then at the end of substageτ, the
right-hand side in (7) holds. Thus dimσ(x),dimσ(y) ≥ g(e + 1) for all σ ≥ τ,
since dimension is nondecreasing over substages. Moreover, ifdτ(x, y) ∈ Fe,τ then
d(x, y) = dτ(x, y) ∈ Fe. Suppose now thatdτ(x, y) = ∞ (so thatx, y are in different
complexes at the end ofτ), but k = d(x, y) is finite. Then at some substageσ > τ,
Complτ(x) = Complσ−1(x) = Cm(N) is merged intoD during a run of theMerge pro-
cedure, whiley ∈ Dσ−1. (If instead,y entersD while x is in D already, we argue
similarly.) Duringσ, x is in a complexD′ which is connected withD′′ ⊇ Dσ−1 us-
ing Pk−1, wherek is chosen large. Note thatRe ≺ N, since dimσ(x) ≥ g(e + 1). So,
during the run of theMerge procedure,ne is still defined atσ when we usePk−1 and
k ≥ ne, hencek ∈ Fe.

Now suppose the right-hand side in (7) holds. We showLexy.

1. If dimτ(x) ≤ dimτ(y) and dimτ(x) < g(e + 1), then at the end of substageτ,
the numbersx, y are in different complexes, otherwised(x, y) = dτ(x, y) <
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g(e + 1) while min(Fe) ≥ g(e + 1). Suppose at the end of substageτ, x ∈
Cm(N), andy ∈ D or y ∈ Cm(N ′), whereN ≺ N ′. Since dim(x) ≥ g(e + 1),
at a stageσ > τ we mergeCm(N) = Complτ(x) = Complσ−1(x) into D while
y ∈ Dσ−1. By theMerge procedure and sinceN ≺ Re, Re was reset before we
merged Complτ(x). So we add a relationPk−1xy while ne is undefined, whence
k = d(x, y) �∈ Fe, contradiction. If dimτ(y) ≤ dimτ(x) and dimτ(y) < g(e +
1), we argue similarly. We can henceforth assume that dimτ(x),dimτ(y) ≥
g(e + 1), so that by the end of stageτ, x is in D or in someCm(N) for some
N � Re, and similarly fory.

2. If dτ(x, y) = ∞ and we do not declareLexy at τ, thenne is undefined atτ.
If e ∈ Ks−1 then, by the end of stages − 1, ne was defined, and we madene

undefined at substages ofs prior toτ. Then while performingMerge, wewould
have merged the complexesx andy are in intoD at a substage ofs prior toσ,
contrary todτ(x, y) = ∞.
If e �∈ Ks−1, then sincee ∈ K, by 1(b) in the construction, we merge the dis-
tinct complexes Complτ(x) and Complτ(y) into D at some substage before we
definene for the first time. So, againd(x, y) �∈ Fe.

3. Finally, supposedτ(x, y) = k < ∞. Sincek ∈ Fe and Pk−1 is used first at a
substage≤ τ, k ∈ Fe,τ. Since y is added atτ, wedeclareLexy. �

Remark 2.8 D. Hirschfeldt and the author have recently extended Theorem2.1:
for any ordinalα,2 ≤ α ≤ ω, the set{n : 1 ≤ n < α} is a spectrum.
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