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Truth and the Liar
in De Morgan-Valued Models

HANNES LEITGEB

Abstract Theaim of this paper isto give acertain algebraic account of truth:
we want to define what we mean by De Morgan-valued truth models and show
their existence even in the case of semantical closure: that is, languages may
contain their own truth predicate if they are interpreted by De Morgan-valued
models. Before we can prove this result, we have to repeat some basic facts
concerning De Morgan-valued models in general, and we will introduce a no-
tion of truth both on the object- and on the metalanguage level appropriate
for such models. The definitions and the existence theorem are extensions of
Kripke's, Woodruff’s, and Visser's concepts and results concerning three- and
four-valued truth models.

1 Preiminaries

1.1 De Morgan lattices De Morgan lattices are lattices with an associated unary
complement function having some intuitively attractive properties; they have been
introduced in the late 1950s by various authors independently (Bialynicki-Birulaand
Rasiowa [£], Kalman [B], and Monteiro [[15]) and have been used to give a seman-
tics for Relevance Logic (Dunn [B]; in this context they are also called intensional
lattices).

Definition 1.1  Wecal M = (M, <y, Am, Vv, —um) @aDe Morgan lattice if

1. (M, <m, Am, V) is adistributive lattice (Syy is the partial order of MI, Ay

Y =

and vy are the corresponding binary infimum and supremum functions), and
2. =y : M — M such that

@ fordlueM: —y—yu=u,
(b) forall u,
v € M=y (UAy V) = UV MY, "M (UV V) = g UAR M Y-
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That means, De Morgan lattices are distributive |attices with a complement function
that is adual automorphism of period two, that is, it satisfies the law of double conm+
plement and the De Morgan rules; it iseasy to seethat in aDe Morgan lattice also the
law of contraposition holds: for all u, v € M u <y v ifand only if =y v <pp = u.

Atfirst glance, De Morgan lattices are quite similar to Boolean algebras: indeed,
every Boolean algebrais aso a De Morgan lattice, and the variety of Boolean alge-
brasis a subvariety of the variety of De Morgan lattices; but in contrast to Boolean
algebras u Ay —ppU IS not necessarily the bottom in a De Morgan lattice—actualy a
DeMorgan latticeisnot necessarily bounded at all—and u vy —pg U iSnot necessarily
its top.

The following examples show that De Morgan lattices may indeed differ alot
from Boolean agebras:

f f

Figure1l: Three Figure 2: Four

Asyou can read off from the way the complement function is defined in each of the
two examples, it ispossible that a De M organ lattice has members which areidentical
to their own De Morgan complement. Let us call the De Morgan lattice in Figure 1
‘Three’ and theonein Figure 2 ‘Four’. According to atheoremin [[8] every DeMor-
gan lattice is isomorphic to a sublattice of a product lattice of Four: thusthis lattice
playsthe samerolefor the variety of De Morgan lattices as the two-member Boolean
algebrafor the variety of Boolean algebras.

Anather interesting example of a De Morgan lattice—thistime an infinite one—
is the compact interval [0, 1] with real number order and the complement function
—mU=1—u. If aDe Morgan latticeis bounded we speak of a De Morgan algebra:
inthis casewe call the smallest element 0 and the largest element 1. Notethat always
0= 1 and —v1l=0.

1.2 DeMorgan-valuedmodels Next, wesuggest to takethe membersof aDeMor-
gan lattice as candidates for values which are assigned to sentences. Of course, one
immediately thinks of such valuesastruth values, that is, values representing thetruth
status of aformula. In Section[L.3we will deal with such interpretations. But, at the
moment, let usconsider aDe Morgan-valued model just asaway to connect the struc-
ture of afirst-order language to the structure of a De Morgan lattice: by the structure
of alanguage we mean its syntax, that is, that formulas are built from atomic formulas
by negation, conjunction, digunction, universal, and existential quantification; by the
structure of a De Morgan lattice we mean its partial order and its complement func-
tion.

Let £ be afirst-order language corresponding to an alphabet 4 consisting of
variables, the usual logical connectives and quantifiers, parentheses, and a symbol
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set § of n-ary predicates B (for n = 1,2,...) and individual constants ¢;. Let
M= (M, <y, Am, Vi, —m) be aDe Morgan lattice.

f

Definition 1.2 An M-valued $-model (a De Morgan-valued model) isapair 9t =
(D, J) such that

1. D isanonempty set (the domain).
2. Jisafunction (the interpretation function) such that

(@) for every n-ary predicate P € §: 3(P) : D" — M,
(b) for every constant c € §: J(c) € D.

Later, we will be interested in extending M-valued S-models 9t = (D, J) to other
De Morgan-valued models. In this context we will sometimes use the more compli-
cated but somewhat more “transparent” notation,

M=(S, L,M,D,7T,)

for models.

Variable assignments s are defined the same way as for classical models. If sis
an assignment, s% isthe assignment identical to s, except that it maps x to d.

Thesetsof S-termsand S-formulasare defined inductively inthe usual way. Ac-
cordingly, evaluations Valygy s are also defined inductively: of course, the values of
negations, conjunctions, and disunctions are drawn back to complements, infima,
and suprema; the quantification cases are considered as (possibly) infinite conjunc-
tions and disjunctions.

Definition 1.3  If g isan S-formulaand x isavariable, then

1. Valgy s(VXgp) = infM{VaImsg (p)|d € D};
2. Valgy s(Ixp) = supralmsg (p)|d € D}.

Whenwe say that the values of quantified formulasare given by theinfimaor suprema
of certain sets of values, we assume that these sets of values actually do have an infi-
mum or supremum in M! Of course, if we assume that M isfinite or, more generaly,
complete, then we will not get into trouble at this point; but such arestrictionisby no
means necessary, since we only need that certain infinite infima and suprema exist:
those, which are given by quantification, that is, definablein L.

Important examples of De Morgan-valued models are, of course, those where M
isthe smallest nontrivial Boolean algebra, that is, the algebraof classical truth values.
In this case classical models are back on stage again. If M is any Boolean algebra,
we are dealing with Boolean-valued models, which have, for example, been used to
prove independence results in set theory (see, e.g., Rosser [17]). If M isidentical to
Three, the corresponding M-valued models are three-valued models the semantics
of which isgiven by the Strong Kleene scheme; and if Ml isidentical to Four, we are
considering Belnap's ‘ useful four-valued logic’ [B]. Asafinal example, the compact
unit interval of the reals together with the complement function from above leads to
the infinitely-valued system S (we use the notation of Rescher [E], p. 344), which
isalso known fromfuzzy logic. The notion of aDe Morgan-valued model istheresult
of abstracting from all these examples.
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A further natural constraint on De Morgan agebras which are to be used for
De Morgan-valued models, is to demand some strengthening of finite distributivity
to aversion of infinite distributivity. But this may turn out to be arather strong re-
gtriction: if, for example, M is Boolean and completely distributive, then M may be
shown to be atomic (see Koppelberg [[I0], p. 215).

1.3 De Morgan-values considered as intensions  In this section we will present
some ideas on how to interpret De Morgan-valued models properly. If we reconsider
our examplesfrom above, we see that—with the exception of general Boolean-val ued
models and S;—all of them arefinitely valued, and each valueis usually interpreted
asatruth value: t and f astrue and false, n as neither true nor false, b as both true
and false.

Now we are heading for an interpretation of an arbitrary De Morgan-valued
model: consequently, we cannot be sure that its corresponding De Morgan lattice is
finite; therefore it will no longer do to attach finitely many labels to the members of
the lattice, which denote some truth status. It is also very questionable, whether an
infinite De Morgan lattice allows any truth status interpretation at all: the only inter-
pretation of that kind | could think of isa probability or possibility interpretation; but
such an interpretation does not seem to make sensefor an arbitrary De Morgan lattice
(though it does make sense for the compact real unit interval). Instead, in the context
of a De Morgan-valued model, | suggest to interpret the members of a De Morgan
lattice as intensional entities of a certain kind: as propositions. Let ¢ be a sentence
in L. Letue M. We say that ¢ expresses (the proposition) u, if Valgy (@) = u.

Propositions are sentence meanings. Intheway | present them here, they are not
(necessarily) objectswhich have astructure in themselves—contrary to, for example,
Barwise [1J, where propositions are considered as complex set theoretic objects; they
arejust membersof alattice. Onthe other hand, becausethey are membersof alattice,
they share the De Morgan lattice structure: let u, v € M; we say that u contains v, if
us,, v.

In possible world semantics, propositions are analyzed as sets of possible
worlds, ¢ expresses the very set of worlds where it is true and the relation of con-
tainment is defined by the subset relation. Something similar to a possible world se-
mantics may also be given for De Morgan-valued models. Consider the De Morgan
latticeM = (M, <, A, Vv, =) with

1. M:i=XxX;
X isaring of subsets of afixed set X;
(Ug, V1) = (Up, Vo) if Ug C U, Vi 2 Vo,
(U1, V1) A (U2, Vo) = (U NUz, VL U Va);
(U1, V1) vV (U2, Vo) = (U U Uz, V1 N Vz);
6. =(U,V) =(V,U).

Dunn [[5] calls De Morgan lattices of this kind fields of polarities. He has shown that
every De Morgan lattice is isomorphic to such afield. Dunn’s theorem shows the
“degree of freedom” concerning complement functions one gainsin De Morgan lat-
tices compared to Boolean algebras: in the latter for any U we have one and only one
V such that (U, V) € M = B; in the former there may be many such sets V. More

a s DN
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important, by Dunn’s theorem we know that there is also a possible worlds semantics
for DeMorgan-valued models: itisjust that a sentence now expressesapair of world
sets; thefirst oneisthe set of worlds where ¢ is definitely true; the second oneisthe
set of worldswhere ¢ isdefinitely false. The differenceto classical possibleworldsis
congtituted by the fact that these two sets are neither necessarily disjoint nor do they
necessarily exhaust the set of all possible worlds.

Let us return to the language level. If ¢ expresses u, y expresses v, and u con-
tainsv, wesay that ¢ semantically implies ; that is, by the concept of containment on
the propositional level we also get a concept of semantical implication for sentences.
If two sentences express the same proposition, we call them semantically equivalent
Or Synonymous.

Aswe can see, De Morgan-valued model s define some binary semantical impli-
cation relation on alanguage and they do thisin aneat way. Theresultingimplication
relation has some of the properties one usually wantsto have: for example, ¢ seman-
tically implies ¢ v ¢; if ¢ semantically implies p and v semantically implies p, then
also ¢ v ¢ semantically implies p; <p>1( semantically implies Ixg; and so on. Since
De Morgan lattices are distributive we also have that ¢ A (¥ Vv p) is semantically
equivaent to (¢ A ¥) V (p A p). Moreover, ¢ is semantically equivalent to ——g,
—(p A ) issemantically equivalent to —¢ v =1, and —Vxg is semantically equiva
lent to Ix—¢. | have said that we usually want to have such properties when we think
of an implication relation. But do we really? Thisis, of course, a matter of taste; for
relevance logicians the properties above seem to be on entailment’s shopping list; for
the paraconsistent logician the possible absence of (¢ A —¢) semantically implying
Y for arbitrary v is what she likes, since she does not want contradiction to spread
over thewholelanguage; on the other hand, it isjust thisfacet that israther untenable
for the classical mathematician, who definitely wantsto use hisreductio ad absurdum:
what he could do, at least, isto consider acertain subclass of De Morgan-valued mod-
els, namely, Boolean-valued models. But for intuitionists, thelaw of double negation
makes De Morgan-valued models completely inadequate! In a nutshell, the class of
De Morgan-valued modelsislarge enough to contain someinteresting semantical im-
plication relations on languages. | am sure that there are many other ways of under-
standing De Morgan-valued models (some are discussed in Dunn [[g]).

Note that, when we say that introducing De Morgan-valued models is a way
to define a semantical implication relation on a language, it is important to keep in
mind that such models do actually much more: they are semantical objects, that is,
they al so relate language to adomain of entities! Thisisthe main difference between
De Morgan-valued models and axiom systems for De Morgan-like implication; the
notion of a universe does not play arole for the latter, but it does for models.

1.4 Designation in De Morgan-valued models Nonclassical De Morgan-valued
models give us amuch more fine-grained implicational structure than classical mod-
els do; indeed, from the viewpoint of semantical implication, classical models are
guite unacceptable, as one may easily see from the so-called paradoxes of material
implication.

However, contrary to classical models, we can no longer say which sentencesare
evaluated astrue and which sentences as falsein a De Morgan-valued model. Worse,
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we have no semantical analogue to theories: we cannot say that some sentenceis a
member of atheory while another is not.

In many-valued logic one usually solves this problem by taking a subset of the
set of truth values asthe set of so-called designated truth values: if some sentence has
adesignated truth value, we say that it is evaluated astrue, else asfalse. In classical
possible world semantics something similar is done when a world is designated as
“the” real world. The natural way to define aset of designated valuesin aDe Morgan-
valued model is given by the concept of atruth filter: let 90t = (S, £, M, D, J) bean
M-valued S-model.

Definition 1.4 Let TF be a proper filter in M (atruth filter). Let ¢ be a sentence
in L. We say that

1. gisevaluated astrue, if Valgy(¢) € TF,
2. ¢ isevaluated asfalse, else.

The notion of atruth filter is used by many authors; probably among the earliest by
Belnap [2]: theretruth filters had to be ultrafiltersin De Morgan lattices. On the side
of languages, truth filters have characteristics quite similar to theories: for example,
if g isevaluated astrue, and ¢ semantically implies, then i isalso evaluated astrue.
A word hasto be said about our definition of ‘evaluated asfalse': another possibility
of defining falsehood would have been to say that a sentence ¢ € L is evaluated as
falseif Valgn(—¢) € TF. Weleave the question to the reader, which definitionisthe
more appropriate (if any). From now on, if we speak of truth filters, we will restrict
ourselvesto the definition given above. Thusno formulaisboth evaluated astrue and
asfalse.

Since the filter property is still rather weak, we should think about ways to
strengthen it. In the literature we find three conditions that could be added (for
Boolean-valued model s these three conditions coincide):

1. atruth filter should be prime, that is, u vy v € TF if and only if u e TF or
ve TF;

2. atruthfilter should be maximal, that is, it is not properly contained in any other
proper filter;

3. atruthfilter should be an ultrafilter, that is, for all u € M it contains either u or
—u, but not both.

Generaly, it cannot be said which way of strengthening is“the” right one, sinceit is
not so clear what counts as “right”. Since De Morgan lattices are distributive, every
maximal filter is prime, and since the De Morgan complement obeys the De Morgan
rules, aso every ultrafilter is prime. Therefore, we shall at least add the condition
of primeness to the definition of a truth filter. Note that De Morgan lattices do not
necessarily have maximal proper filters, whereas De Morgan algebras do. De Mor-
gan algebras do not necessarily have ultrafilters. But both De Morgan lattices and
De Morgan algebras always have prime filters.

If TF isaprime filter, conjunction and disjunction behave truth functionally as
they should. Thisis not necessarily so in the case of negation.

Concerning quantification it is natural to consider prime truth filters having the
following properties:
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1. Vxg isevaluated astrueif and only if for all assignments's, Valgy s(¢) € TF.

2. Ixg is evaluated as true if and only if there is an assignment s such that
Valgy s(¢) € TF.

Of course, it would be enough to postulate just one of thetwo statements. If atruth fil-
ter hasthis property—which aprimefilter does not necessarily have—also quantified
sentences will behave truth functionally as expected.

2 De Morgan-valued truth models and semantical paradoxes Now we want to
give an application of our concept of De Morgan-valued models: we will show that,
if languagesare understood asinterpreted by such models, they may containtheir own
truth predicates.

2.1 De Morgan-valued truth models  In his classical papers [[18] and [19], Tarski

presents, essentially, the following account of truth. Let £, be alanguage (= a set of

sentences) corresponding to asymbol set ;. Let £, bealanguage corresponding to a

symbol set S, suchthat S, containsaunary predicate True (thetruth predicate), there

isapartia surjection psfrom the terms of .S, onto the sentences of £;, and $; C %,

that is, £; isasublanguage of £,. £, isthe object language, £, the metalanguage.
Now we can define what atruth theory is. let 7% be afirst-order theory.

Definition 2.1 (Convention T) 74 isa(classical) truth theory for £y in £, if
TH - True(t) < ¢

foral t, ¢ suchthat t isatermin S such that t is mapped to the sentence ¢ € £; by
ps (thus, Convention T is actually relativized to the stipulated ps).

Thus, according to Tarski, True(t) should (materially) imply the sentence ¢, and vice
versa.

Now we want to use Definition 2.1]as a guide which is to lead us to an intu-
itively plausible notion of a De Morgan-valued truth model, that is, a De Morgan-
valued model which interprets the truth predicate in aplausible way. First of all, we
suggest to replace the mapping ps from above by the interpretation mapping J of a
De Morgan-valued model such that ps(t) = ¢ if and only if J(t) = ¢. Secondly, we
have to “put” the T-biconditionals of Definition[2.1]into the context of De Morgan-
valued models. Thiscan bedonein variousways. One obviousway isto demand that
True(t) and ¢ should be semantically equivaent in every De Morgan-valued truth
model. Call thisthe implication reading of Convention T.

Another possible reading of Convention T in this context is the truth reading:
True(t) and ¢ should either both be evaluated as true or both of them asfalsein a
De Morgan-valued truth model. In classical models, the implication and the truth
reading coincide; in De Morgan-valued models the | atter reading correspondsto say-
ing that the values of True(t) and ¢ should either both be members of the given truth
filter or not (recall Section[L4): thisis something completely different compared to
thefirst reading! But, of course, if True(t) and ¢ semantically imply each other, they
are also either both members of the truth filter or not: that is, the implication reading
implies the truth reading, but not necessarily vice versal Thisis another reason why
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we will basically be interested in the semantical implication reading of Convention
T.

A third possible reading of Convention T in the light of general De Morgan-
valued models is the biconditional reading: the sentence True(t) «— ¢ should be
evaluated astrue, that is, its value should be a member of the truth filter. But what is
True(t) «— ¢? Now andinthefollowing, wewill understand ¢ «— v asshort for
(p — ¥) A (Y —> @) Where ¢ — ¢ isametalinguistic abbreviation of —¢ Vv .
The problem with thisreading isthat, if True(t) «— ¢ isevaluated astrue, thisdoes
not necessarily entail that True(t) and ¢ semantically imply each other; correspond-
ing counterexamples are easily constructed. Put differently, the connective — as
defined above does not in general represent the metalinguistic ‘<’ in the object lan-
guage, asit doesin the classical case. Of course, one could introduce such a connec-
tivein the object language, and we could correspondingly extend De Morgan algebras
by acomponent used for theinterpretation of thisnew connective (e.g., wemight con-
sider Heyting algebras with De Morgan complement). But note that this could have a
negative effect on the general existence of truth models (e.g., in the Heyting algebra
approach we might suffer from the Curry-Lob paradox). Therefore, we heglect the
biconditional reading of Convention T in our considerations.

Since Tarski's efforts we know that if £; = £, = Lyrue, that is, in the extreme
case where a language contains its own truth predicate, there is generally no clas-
sical truth model for Lyrye in Lrrye. The reason for thisis that Lryue may contain
self-referent sentences. Not all of them are necessarily vicious, but some definitely
are: the classical exampleisthe so-called Liar sentence, which says about itself that
itisnot true. Intuitively, the Liar istrueif and only if it isnot. But, of course, thisis
impossible in a classical truth model. Languages that contain their own truth predi-
cate or that are rather supposed to contain it, have been called semantically closed by
Tarski.

Starting with Martin [[L3] and Kripke [[L1] in the mid seventies, we perceive an
avalanche of publications which show that semantically closed languages indeed ex-
ist, if only the underlying classical semanticsisaltered. Among these new approaches
we also find existence results for truth models, the truth values of which are mem-
bers of alattice, though these models are no longer Boolean-valued: examples are
Kripke's Strong Kleene-valued truth models and Woodruff’s [22] and Visser’s [20]
Belnap-valued truth models. As we have seen before, both of these models are ac-
tually De Morgan-valued; and indeed, in Kripke's and Woodruff’s/Visser’s accounts
Convention T is understood in the implication reading. The concepts and results we
present below, and which have been stimulated by these famous predecessors, are ex-
tensions of theseaccounts. Particularly, Kalman’stheorem cited on p.[497Isheds some
light on Woodruff’s/Visser’s existence result for truth model s with a semantics based
on Four: it indicates that an analogous existence result should be derivable for all
De Morgan-valued models; however, we will prove existence later without making
use of Woodruff’s/Visser's or Kalman's theorems.

L et us now introduce our notion of aDe Morgan-valued truth model: let £, and
L, be as above.

Definition 2.2  Wecall an M*-valued S-model 9t* = (S, L, M*, D*, J*) a(DeMorgan-
valued) truth model for £, in £, if
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1. D* O L;
2. foral ¢ € £, thereisaconstantt in S, such that 7*(t) = ¢;
3. foral ¢ € £; and al constantst with J*(t) = ¢,

Val gy (True(t)) = Valgy- ().

The point of thisdefinitionisto postulatethat True(t) should expressthe same propo-
sitionas ¢ if J*(t) = ¢. Note that we use the notation **’ because we want to extend
models 90t to truth models 9t* later. The object language is a subset of the domain
of the truth model, since we want to talk about properties of sentences in the truth
model. An alternative would have been to use some objectsin the domain, for exam-
ple, natural numbers, as codes of sentences; but we refrain from this strategy here for
the sake of simplicity.

Since £, = £, seemsto bethe problematic case concerning the existence of truth
models, wewill concentrate on such truth models. Let Lyyye = £1 = £,. Thequestion
is: Are there truth models for Lrrye in Lyrye? Surely, we do not only want to give
instances of such truth models but we want to show a general existence result; to do
so we have to introduce yet another notion: De Morgan-valued truth extensions.

2.2 DeMorgan-valued truth extensions We are going to present a“natural” class
of truth models: the ideais to start with a ground model, that is, a model of alan-
guage L without truth predicate, and just as we extend £ syntactically to alanguage
Lrrye With truth predicate, we extend the ground model semantically to atruth model.
Consequently, this truth model is called an extension of the ground model:

Definition 2.3 By atruth extension of an M-valued S-model It = (S, £, M, D, J)
we mean an M*-valued Strye-truth model 9t* = (Strue, L1rue, M*, D*, J*) such that

1. S C Strues Lisasublanguage of Lrrye;
2. M isasublattice of M*;
3. D C D¥
4. for al constantscin §, J*(c) = J(c),
for all n-ary predicates P in S, 3*(P) [pn= J(P);
5. foral ¢ € L: Valgy(p) = Valgy: (¢).

We call 9t aground model (for the ground language £).

Remark 2.4  The transition from a ground model to atruth model by truth exten-
sion is the generalization of a common procedure in the literature; it should not be
mistaken for some transition from object- to metalanguage: we want to emphasize
againthat Lt e functionsas object- and metalanguage at the sametime. Themostim-
portant point regarding thistransition isthat all semantical implicationsin the ground
model are preserved in the truth extension and no semantical implications between
sentences in the ground language are “ added” in the transition.

Remark 2.5 If atruthfilter TF isassociated with the ground model 9t it is plausi-
ble to add atruth filter TF*—if possible—to the truth model 2t* which satisfies the
following condition: TF*NM = TF. Thismeans¢ € L isevauated astrue/falsein
the ground model 9t if and only if it is evaluated as true/false in the truth extension
mr*.
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2.3 The existence of De Morgan-valued truth extensions The basic question is
now: Given some ground model, is there a truth extension? First we will describe
what the ground models we want to extend should look like; afterward we will show
that they can be extended to truth models.

2.3.1 Our ground models 9t One peculiar property of the ground models which
we will useisthat they are already “prepared” to be extended to truth models, in the
sense that they already contain Lty e in their domain. But, of course, thisis no real
restriction: otherwise we would embed the ground model into one with this property.
To make things more readable, we will furthermore assume that Ly e contains quo-
tation marks, that is, if g isasentencein Ly then "¢ 'isaterm.

Let S = Srrue\{True}. Moreover, let C'T = CZg,,. bethe set of constant terms,
T = Ts,,. the set of terms, F= ¥, . the set of formulas. Finaly, let L= {¢ €
Lrruelif True occursin g, it occurs under quotation marks).

Thisiswhat our ground models look like:

1 Let9n = (S, L, M, D, T) with

(a) D ) LTrue,
(b) foral ¢ € Lyrue: I("p") = ¢.

2. Moreover, we assume that for every u € M there is a ¢ € L such that
Valgr (9) = u. This property says that M is already “covered” by the values
of sentences. Thisisfulfilled if, for example, M is the Boolean agebra with
two members; moreover, if each member in the domain has an individual con-
stant as its name, one can simply take {Valgr ()¢ € L} as “new” lattice M
which has our desired property.

3. Prime Filter Property For al formulas Ix¢ in Fand al primefilters PF of
M we assume that

Valgy(Ixp) € PF

if and only if thereis an assignment s such that Valgy s(¢) € PF. Thisiskind
of atechnical property; the restriction to ground models of thiskind is severe,
but it still includes enough interesting cases.

If Ml has the property that for all X € M, for all primefilters PF' of M we have that
sup(X) € PF if and only if some member of X is contained in PF, then a model
based on M hasthe primefilter property afortiori (in such acase, we might say that M
hasthe full prime filter property; this was suggested to us by an anonymous referee).

Example2.6 If M satisfiesthe ascending chain condition (and thus, by De Morgan
properties, the descending chain condition), in particular, if M is finite, then M has
the full prime filter property. For example, the De Morgan algebra with eight mem-
bers, which isreferred to as Mg in Dunn ([5], p. 198), plays an important role for the
algebraic semantics of Relevance Logic; since My isfinite, it satisfies, of course, the
full primefilter property.

Example2.7 Let M be a subalgebra of the compact unit interval such that M =
{#In € No} U {1 — |n € No}. M is acomplete De Morgan algebra. Now let 9t
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be a ground model such that for al predicates P, Xp = {u € M|3(dy, ..., dn) €
D" suchthat 3(P)(dy, ..., dn) = u} has the property that (i) if there is a sequence
of members of Xp which approach 1, then 1 € Xp and (ii) if there is a sequence of
members of Xp which approach O, then 0 € Xp. It iseasy to seethat in this case 90t
has the prime filter property.

Example2.8 If M isBoolean, it may be embedded into a Boolean algebra which
hasthefull primefilter property (this may be done by akind of Henkin extension; see
Lemma 56 in Leitgeb [12]).

On the other hand, for example, the compact unit interval [0, 1] does not have thefull
prime filter property.

Remark 2.9  Notethat intheground model we may also have any (interpreted) syn-
tactical theory of any strength and expressiveness you want: there may be predicates
the interpretation of which is’ p is the conjunction of ¢ and " or ‘¢ iswhat you get
when you substitute t for x in ¢’ and so on.

If our ground model satisfies these three conditions, it may be shown to have atruth
extension.

2.3.2 Theexistence theorem

Theorem 210 For any M-valued S-model 9t = (S, £, M, D, J) satisfying prop-
erties2.3.1](1) — (3) from above there is a truth extension

m* = <5Truea LTrue, M*, D, Tk)'

Remark 2.11  Actualy, we will show more: there is aways a truth extension with
the properties

1. M* isacomplete De Morgan algebra,
2. if M isaDe Morgan algebra, bottom and top of M and M* coincide.

Proof of Theorem[2.10] The plan of the proof isthe following. We extend 9t to its
diagram expansion. Then wewill basically embed the resulting model into onewhich
isdefined over acompletefield of polarities, of which M isasublattice. Notethat this
will need somekind of “cosmetic” procedure: if we had defined truth extensions dif-
ferently, it would have been enough, if M were just isomor phic to a sublattice of M*.
Inthislatter model wewill study the possibleinterpretations of thetruth predicate; we
choose one which is afixed interpretation under some appropriately defined “jump”
operation: such an interpretation will be an adequate interpretation of the truth pred-
icate. Itsexistenceisensured by the Knaster-Tarski Fixed Point Theorem. The theo-
rem may be applied, although, for example, negation does not give rise to monotonic
jump operators per se: but first, odd number occurences of the negation sign may be
eliminated over De Morgan-valued models, and second, an atomic sentence and its
negation are not so “tightly” related as in Boolean-valued models, indeed, they may
be considered independently; this additional degree of freedom is enough to prove
existence of atruth extension. Put in a different way, truth may be defined by a pos-
itive inductive definition in De Morgan-valued models; for more on such inductive
definitions see, for example, McGee [[14], Chapter 5.
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. First, we extend 9t = (S, £, M, D, J) to the diagram expansion M, =
(&1, L1, M, D, J,1); that is, add individual constants for each member of D and
interpret them in the obvious way such that each member of the domain is de-
noted by a constant; what wegetis $; 2 S, L1 2 £, and J; isan extension of
J. It follows that quantification may now be understood substitutionally, since
every member of the domain has aname. 901, is still amodel since no new de-
finable sets of valuesin M are introduced by adding the constants. It follows
that for al ¢ € £, Valgn(¢) = Valgy, (¢).

. Letu e M. Then we define

_ (Yue X,
PEU:={XSM| 5 isaproper primefilter [

. From Stone’s Representation Theorem for distributive lattices we know that
PF considered as amapping

PF: M — {PF(U|ue M}
ur— PF(u)

is an isomorphism from M onto the lattice ({ PF'(u)|u € M}, €, N, U). Note
that if Ml isaDe Morgan agebra, its bottom is mapped to @ by PF and itstop
to the set of al proper prime filters of M.

. Since PF isanisomorphism and quantification in 9t issubstitutional, we have
(letCT1=CTy)

t
PF (Valon, (3x¢)) = PF (sup{Valan, (¢ )It € CT1})

= SJp{PF(Valgml((p)E())lt € CT,} (because the prime
filtersin M have the prime filter property)

= U PF(vala, (o).
teCT,

Similarly, PF (Valgy, (VX¢)) = ﬂteCTl PF (Valgy, (cp)l()), since for any prime
filter F, for all definable sets X € F, itholdsthat inf X € F. Thisfollowsfrom
the prime filter property by applying it to the set-complement (—F )€ of the set
—F of complemented values of F ((—F)€ isalso aprimefilter).

. Inthe following we will denote the set {X € M| X isaproper primefilter} by
‘Pr(M)’. Let M, = (M, <, A, Vo, o) bethefield of polarities where

M3 = p(Pr(M)) x p(Pr(M)).
Obvioudly, M, is complete and for A C Mo,
ian=< N u U V>,supA=< U u N v>.
(U,V)eA (U,V)eA (U,V)eA (U,V)eA

. Let L := (p(Pr(M)), €, N, V). L isacomplete lattice. We will need that (1
and | are monotone on £, that is, if {Uj|j € J}, {Vj|j € J} are families of
subsetsof Pr(M) withU; C V;, where Jisan arbitrary set of indices, it follows
that (), Uj € MNjeg Viand UjeaUj € Ujes Vi
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7. Let G = {919 Lrrue —> ©(Pr(M))}. Let g1 =g g2 if for al ¢ € Lyrye!
01(p) C g2(p). G with <g isacomplete lattice because LL is.
8. Let L' = L, where §' ;= 5 U({True}.
9. Moreover, we fix some member Ag of p(Pr(M)).
10. Now we define inductively afamily of functionshg : L — ©(Pr(M)), each
relativetosomeg € G.
(8) For atomic ¢, with ¢ € Ly,
hg(p) := PF (Valgy, (9)).
(b) For atomic ¢, with ¢ = True(t),

ifJ(t) =yf Lrue,
hg(q))::{i(ow) ;I;é() yforyr e Ln,

(c) For —¢p, with ¢ atomicand ¢ € Ly,
hg(—¢) := PF (Valgy, (—9)).
(d) For —¢, with ¢ atomic and ¢ = True(t),
hg(—g) := { g\(o_‘w) g;el(t) =y for v € Lrrge,
(€) hg(p A ) i=hg(p) Nhg(¥), hg(p v ¥) := hg(p) U hg ().
(f) hg(=(e A ¥)) = hg(=¢ Vv =), hg(=(@ V ¥)) = hg(—¢g A =).
(9) hg(Vxp) == mtecffl hg(%l(% hg(Ixp) = UteC’Tl hg(%l()-
(h) hg(=VYx@) := hg(IX—¢), hg(—=Ixp) = hg(VX—¢).
(i) hg(==¢) 1= hg(p).
Since the value of hg(¢) is either directly set or drawn back to some value(s)
hg () such that v has smaller rank than ¢, the definition of hg is sound.

11. Next we define afamily of M,-valued modelsMig of L'. Let Dg:= D. Let Jg
be an interpretation function such that

@ Tg(t) :=T1(V);
(b) [jg(P)] (dOa D] dn—l) =
(PF([31(P)](do, ..., dn-1)), PF(=[31(P)](do, ..., dn-1)));
~ | (g(d), g(=d)) ifd=g¢foree Lrrye,
(©) [Tg(True)](d) := { (Ao. Ag) dse
Thus, My = (S, L', My, D, Jg). Each My is defined relative to some g € G.
All infima and suprema arising from Val gy, exist in M, since M, is complete.
12. 1t follows from the definition of 914 that for all ¢ € L/,

Valgn, (¢) = (hg(¢), hg(—=¢)).

The proof is by standard induction. We use the definitions of hg and M, and
that 34 and 3, do not differ on terms.

13. Furthermore, it follows (again by standard induction) from the definition of 914
that for all ¢ € Ly,

Valon, (¢) = (PF (Valoy, (¢)), PF (Valon, (—¢))).
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Thus, for al ¢, ¥ € Ly,

Valgy, (¢) = Valgy, (¥) iff Valgy, () =2 Valor, (¥).

For the proof, use (13) contraposition, and the fact that PF’ isan isomorphism.
This means that the sublattice {Valo, (¢)l¢ € L3} of M isisomorphic to M
viathe isomorphism f(Valgﬁg (¢)) = Valgy, (¢). Notethat f isonto because
M is*“covered” by the values Val oy, (¢) = Valgn(p) of sentencesp € L C L.
Let M, be the lattice you get when you replace {Valgp, (9)l¢ € Ly} in M by
M via an isomorphism " : My — M with ' [y, @)ipecy= f- Misa
sublattice of M, by (13) the bottom and the top of M and M, coincide.

Now, we “redefing” our model 9ty in a way that its associated lattice is
M, > M: let Dy = D; let Jy(t) = J1(), [TG(P)](do,...,dn-1) =
f'([3g(P)](do, . .., dn—1)), [Tg(True)](d) := f'([Tg(True)](d)).

im’g = (5, L ,M,, D, ’J’g) isamodel. Each sm’g is defined relative to some
ge G.

It followsimmediately that for all ¢ € £/,

Valon, (¢) = f'(Valgy, ().
Thisimpliesforal ¢ € L, Valm/g (¢) = Valgy (), sincefor al such ¢ we have
Valim’g (p) = f/(Valsmg (p)) = f(Valgn,(¢)) = Valgy, (¢) = Valgn(¢).

We have used (1Z), (15, and (@).

Let g1, 92 € Gwithgy < g2. Thisimpliesthatforall ¢ € L, hg, (¢) C hg, ().
Proof: Thisiseasily shown by induction.

(@) For atomic ¢, with ¢ € Ly, hg, (¢) = PF(Valgy, (¢)) = hg, (¢).
(b) For atomic ¢, with ¢ = True(t),

ifJt) =y f rues
hg(@:{i(ow) ;I;é() yfory e Ly

but since g1 (¥) < g2(v) by assumption and Ag < Ao, hg, (¢) < hg, (¢).
(c) For =g, with ¢ atomic and ¢ € L,

hg, (—¢) = PF(Valgn, (—¢)) = hg, (—¢).
(d) For —¢, with ¢ atomic and ¢ = True(t),

- f~t= f Lru,
hg(“‘”)z{i(o ¥) ;;1’() v for v € Lrre

but since g1 (—vy) C go(—y) by assumption and Ag C Ao,

(e) For all further cases use what we said in (B). O
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Now let J: G—G

[J(D] () :=hg(p)

for all ¢ € Lrree. INntheliterature such afunction J is often called a“Jump”.
J is monotone on G since, if g1, g» € G with g1 <g g, according to

it holds that for all ¢ € L', hg, (¢) S hg,(¢). Therefore, aso for al ¢ €
Lrrue, [J(9)] (@) = hg, (9) € hg, (9) =[I(92)](p). Thatis, J(g1) ¢ J(92).
Since Giscompleteand Jismonotoneon G, it followsfrom the K naster-Tarski
Fixed Point Theorem (see, e.g., Hermes [[8]) that thereisafunction g* such that
J(g") =9"
Thisimplies

(@ Foral ¢ € Lrrye, [I(@)] (@) := hg: (¢), according to the definition of J.

(b) Foral ¢ € Lyrye, [J(G")](¢) := g*(¢), since g* isafixed function under
J

(c) Therefore, for all ¢ € Lrrye, hg: () = g* ().
(d) Put together, we have for Jg:(t) = J1(t) = ¢ with ¢ € Lrrge,

Valgﬁé* (True(t)) = [Jg(True)](Jg. (1)), according to definition,
= f’([ﬁg*(True)](ﬁg*(t)))
= f(g*(T1(D), g"(=T1(1)))),

according to what we have just seen,
= f'({hg (), hg: (=9))), since (12} holds,
= f'(Valy,, (1)), because of (17],
Valgn (V).
If we now only look at Strye instead of ' and, respectively, at Lrrye instead

of £/, we have that there is atruth extension 9t = ( Strue, L1rue, M*, D, J%),
where

(@ M*:=Mj,
(b) j* = j/g* rSTrue'
Proof: First we have two remarks.

Remark 2.12 For al ¢ € Lyrge, Valm/g* (¢) = Valgy: (¢). Thisistrue, be-
cause Valmé*’s((p) = Valgy- s(¢) for al atomic formulas ¢ € Frrue and al as-
signments sin M. and N* (D, and M* have the same domain), and by in-
duction, for all formulas ¢ € Frrye and all assignments. For example, in the
case of ¢ = Vxyr € Frrue,
Valgmé*,s(wa) = infM/Z{VaIm ¢ (¥)|d € D}, by inductive hypothesis,
g*rTX

= infu, (Valgy. o ()Id €}

= infM*{Valm*Ysg (l//)|d S D*}

= Valgp- s(YX¥).
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Remark 2.13 For al ¢ € £, Valgr () = Valgn:(¢). The reason for thisis
that for al ¢ € L, Valgyr(¢) = Valgﬁé* () because of (8], and Valgy: (¢) =
Valgmé* (), aswe have seen in Remark [2.12]

Now we know that 9t* isatruth model, sincefor all ¢ € Lt e and al constants
twith 3*(t) = ¢

Val gy (True(t)) = Va.lgﬁé* (True(t)) = Valmfg* () = Valgy: (9). O

We have used Remark [2.12]again and proof item[23] Finally, thisimplies that
I isatruth extension of 9. This completes the proof of Theorem[2.10] O

Corollary 2.14  For any Boolean-valued model there is a truth extension.

For the proof of Corall arym extend the given Boolean-valued model to one with
the primefilter property (recall Examplel2.8) and use Theorem[2.10] Corollary[2.14Js
thus an instance of apossible application of Theorem[2_10hnd it al so easesthe burden
alittle bit constituted by the fact that we have to assume ground model s which satisfy
the prime filter property.

Remark 2.15 If 9t isaground model satisfying (1) —(2) from Section[2.3.1] such
that M is complete and atomic, then we can prove the existence of atruth extension
of <M without making use of the Stone mapping PF, but rather by using the mapping
AT suchthat AT (u) := {v e M|v <y U, v isan atom) (see Koppelberg [[10], pp. 29—
30); inthis case we take p(At(M)) x p(At(M)) to be our field of polarities, where
At(M) isthe set of atomsin M.

2.3.3 Designation in De Morgan-valued truth extensions  Asexplained at the end
of Section[L4] atruth filter TF* may be added to the truth extension in order to get
some notions of evaluated as true and evaluated as false. We will show that, if M
isaDe Morgan algebra, any maximal truth filter TF (given with the ground model
M) may be extended to a maximal truth filter TF* suchthat TF* "M = TF. As
sume that Ml is a De Morgan algebra and that TF is maximal in M. Take the filter
in M* which is generated by T'F'; obviously this filter is proper, because otherwise
TF would not have been proper in M. Furthermore, the intersection of the generated
filter with M is afilter of M, which cannot be larger than T'F'; that is, it is identical
with TF.

Since M* has a bottom, we can even extend the generated filter to a maximal
truth filter, which is prime, because M* is distributive. Theintersection of this maxi-
mal filter with Ml isaproper filter of M, because otherwiseit would include the bottom
of M, which is by Theorem[2.10lalso the bottom of M*, and then the maximal filter
would not be proper in M*. It cannot belarger than T'F sincethe latter ismaximal by
assumption. Thus, we know that TF* is some maximal prime truth filter extending
TF.

Do we aso know whether TF* will preserve al infima and suprema given by
quantification in Lyy,e? Generally: no. However, since TF' is prime it preserves all
infimaand supremaarising from quantification in £ because of the Prime Filter Prop-
erty; the same must hold for TF* regarding quantification in L. If we additionally
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assumethat M isitself afield of polarities of the kind used in our proof we see from
the proof of Theorem[2-I0]that we also can assume M* = M and then TF* = TF
preserves all infima and suprema given by quantification in Lrye.

Since Valgy- (True("¢ ")) = Valgy: (¢) for al ¢ € Lrrye it follows that

1. Foradl ¢ € Lrrye, ¢ isevaluated astrueif and only if True(" ¢ ") is evaluated
astrue.

2. Foral ¢ € Lrrye, g isevaluated asfalseif and only if True("¢™) isevaluated
asfalse.

That meansthat if we look at the interpretation of the truth predicate we may deduce
whether someformula ¢ isevaluated astrue: thisisthecaseif andonly if True("¢™)
isevaluated astrue. Therefore we can conclude that our De Morgan-valued truth ex-
tension 9* satisfies Tarski’s Convention T both in the implication and in the truth
reading.

2.3.4 Example Now, what does this mean for the Liar sentence? Let 9 =
(S, L,M, D, 3) such that J(c;) = —=True(cy). Then we know a truth model 9t* =
{STrues Lrrue, M*, D, J*) exists such that for all ¢ € Lrrye and al constants t with
JO =9

Val gy (True(t)) = Valgy« ().

In the case of the Liar thisimplies
Valgy+ (True(cy)) = Valgy(—=True(cy)) (= —py+ Valgy: (True(cy))).

Thus, the Liar and itsnegation are semantically equivaent in De Morgan-valued truth
extensions since they express the same proposition. Note that whether the Liar is
evaluated as true or false depends on which truth filter TF* is chosen. But, in any
case, the Liar is evaluated as true/false if and only if its negation is evauated as
true/false. This corresponds to the intuition that the Liar should be true if and only
if the same holds for its negation.

3 Summary Wehaveshownthat alanguage, if understood asgiven by aDeMorgan-
valued model, may indeed contain its own truth predicate. On the technical side, the
most relevant open question is whether the Prime Filter Property from SectionP.31]
can be weakened, and thus whether a more general result could be obtained.

A different question is how to interpret our result: it is clear that our proof only
works because negation is a much weaker notion in De Morgan-valued models than
in classical models, or, moregeneraly, in Boolean-valued models. Asaconsequence,
the metalinguistic semantical implication relation between sentences of the object
language is no longer represented in the latter by some composition of logical con-
nectives, contrary to classical and, in some sense, also Boolean-valued models. From
thispoint of view, we have only shifted the problems connected to semantically closed
languages: from the unrepresentability of truth to the unrepresentability of semanti-
cal implication (asimilar point has aready been made by Gupta [[7], pp. 91-104). It
needs a separate paper to investigate this in more detail.

Asyou may have noted, all our efforts have a certain algebraic flavor: indeed,
you may see this paper as akind of advertisment to deal with problems of truth and
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self-referencein an algebraic mood. Of course, thisconceptionisnot new at all, since,
for example, Visser’s contributions to this area are basically algebraic in style (see
Visser [21]). Thenomenclature and concepts devel opedin thispaper upto Section2.3]
are genera enough to be applicable to many kinds of lattice-valued models, where a
complement function is associated with the lattice, and not just to De Morgan-valued
models. Inparticular, our notions of atruth model and atruth extension do not contain
any trace of De Morgan structure at all. By the means of our background theory it is
therefore also possible to ask for which other algebraic structures existence or non-
existence of truth extensions may be proved, and which (necessary and/or sufficient)
criteria can be found for such results.
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