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Abstract: This paper reviews the connections between estimators that derive
from three different modeling methodologies: Mixed-effects models, Bayesian
models and Penalized Least-squares. Extension of classical results on the equiv-
alence for smoothing spline estimators and best linear unbiased prediction
and/or posterior analysis of certain Gaussian signal-plus-noise models is ex-
amined in a more general setting. These connections allow for the application of
an efficient, linear time algorithm, to estimate parameters, compute random
effects predictions and evaluate likelihoods in a large class of model scenar-
ios. We also show that the methods of generalized cross-validation, restricted
maximum likelihood and unbiased risk prediction can be used to estimate the
variance components or adaptively select the smoothing parameters in any of
the three settings.
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1. Introduction

Mixed-effects model methodology, penalized least-squares and Bayesian random-
effects models are widely used statistical tools. However, due to the dissimilar nature
of the settings in which they are typically formulated, connections between these
three techniques as well as the fundamental reasons for the connections, have often
been overlooked. In this paper, we review some of the well known results that
connect smoothing spline estimators, Gaussian signal-plus-noise models and best
linear unbiased prediction of mixed-effects models and show that they are but
one aspect of a general framework that allows for “cross-platform” development in
mixed-effects models, using frequentist or Bayesian approaches, and/or penalized
least-squares (PLS) criteria.
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The relationship between particular cases of frequentist and Bayesian mixed-
effects models and PLS has been exposed before. For example, Lindley and Smith
[29] proposed the use of prior information on the parameters of a fixed effects linear
model under the assumption of the parameters having exchangeable distributions.
In the early development of the Bayesian theory for smoothing splines, Wahba [43]
noticed the intimate connection between estimators resulting from spline smoothing
and a Gaussian model with diffuse initial conditions. Robinson [35] remarked on
applications of Best Linear Unbiased Predictors (BLUP’s) for estimation of variance
parameters, randomized block designs and their link to empirical Bayes methods
and Kriging. Speed [40] pointed out, in a comment to Robinson’s article, that
smoothing spline estimators were in fact BLUP’s of a certain mixed effects model.
In the PLS framework, it is well known that smoothing splines estimators are a
special case of penalized splines estimators (P-splines) [37]. Wahba [47] and Cressie
[7] discussed the links between splines and kriging estimates and Nychka used the
representation of smoothing splines as a type of ridge estimator to further relate
smoothing spline estimation and kriging [32].

More recently, researchers have been using the connection between smoothing
spline estimators and particular mixed-effects models to compute smoothing spline
estimators [see 4, 19, 48]. Ruppert et al. [36] mentioned the correspondence between
penalized spline smoothers and prediction in the mixed-effects model and remarked
on the advantages of using existing mixed-effects model techniques and software
in a semi-parametric regression setting. Eubank et al. [11] took advantage of the
relationship between smoothing splines and the Gaussian model of [43] to provide
a general development that includes the efficient computation of estimators in a
varying coefficient model context.

Using connections that have been established for various special cases, we syn-
thesize them and present a formal result that details precisely when penalized least-
squares estimation, BLUP for a mixed-effects model and posterior mean analysis of
a mixed-effects model with diffuse priors on some of the random effects (hereafter
referred to as simply the Bayesian model) produce identical estimators. We then
describe how this can be exploited in many cases of interest to provide a computa-
tionally efficient algorithm for evaluation of estimators and likelihoods, computation
of predictions, and construction of Bayesian prediction intervals. The implemented
algorithm reduces the computational effort of calculating the aforementioned quan-
tities by two orders of magnitude over what would normally be the case for a direct
mixed-effects model approach. We also establish a result showing that the methods
of Generalized Cross-validation (GCV), Restricted Maximum Likelihood (REML)
or the equivalent technique of Generalized Maximum Likelihood (GML) and Unbi-
ased Risk Prediction (UBR) can be used in any of the three settings to adaptively
estimate the smoothing parameters or variance components.

The following three examples will be used throughout the paper to illustrate the
utility of our approach.

Example 1 (Varying Coefficient Models). Varying coefficient models gener-
alize ordinary linear regression models by allowing for regression coefficients that
change dynamically as a function of independent variables. The simplest example of
this are the so-called time varying coefficient models where there is only one effect
modifying covariate. In that setting, we have response variables yij , i = 1, . . ., n,
j = 1, . . ., ni, that depend on some predictor variables x1ij , . . ., xKij through a
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relationship of the form

yij =
K∑

k=1

βk(tij)xkij + eij ,(1)

where the βk(·)’s are unknown coefficient functions of a covariate t and the eij

represent random error terms. Models like (1) were first introduced by [21] who
proposed obtaining estimators through minimization of the PLS criterion

(2)
n∑

i=1

ni∑
j=1

{
yij −

K∑
k=1

fk(tij)xkij(tij)

}2

+
K∑

k=1

λk

∫ 1

0

[f (r)
k (t)]2dt

over functions f1, . . ., fK having r square integrable derivatives, and g(s)(t) being
the sthderivative of the function g. The parameters λk ≥ 0 control the smoothness
of the coefficient functions and the minimizers can be shown to be natural splines
of degree 2r − 1 with knots at the unique elements of the set {tij }.

Example 2 (Ridge Regression). Consider the linear regression model

y = Xβ + e,(3)

where y is a n × 1 vector of responses, X is a known n × p matrix of predictor
variables of rank p, β is a p × 1 vector of unknown coefficients and e is a normally
distributed vector of errors with E(e) = 0 and E(eeT) = σ2

eI, with “T” denoting
the transpose of a matrix and I an identity matrix of suitable dimension. The
generalized ridge regression estimator of β is then given by β̂ = [XTX+K]−1XTy.
This estimator can be obtained by minimizing the PLS criterion

(y − Xa)T(y − Xa) + aTKa,(4)

over {a : a ∈ RI p}, with K a diagonal matrix having elements λi ≥ 0, for i =
1, . . ., p. A special instance of (4) is given by ordinary ridge regression in which case
the predictor variables are usually standardized and K has the form λI, for λ > 0.
Other variations of generalized ridge regression are the P-splines estimators of [9]
and of [36]. We will now describe the later approach in more detail.

Suppose that we have a collection of points on the plane, (ti, yi), i = 1, . . ., n,
and want to fit them using scatter-plot smoothing methodology. P-splines provide
one popular approach for accomplishing this that arise from using a spline basis to
construct the X matrix in (3). That is, for some integer m ≥ 0 and a fixed set of
knots ξ1 < ξ2 < · · · < ξp, we take X = [x1, . . ., xm+p] with x1 a n-vector of all ones,
xj = [tj−1

1 , . . ., tj−1
n ]T, j = 2, . . ., m and xm+j = [(t1 −ξj)m−1

+ , . . ., (tn −ξj)m−1
+ ]T, for

j = 1, . . ., p with (x)r
+ being xr for x ≥ 0 and zero otherwise. A P-spline smoother

is then found by minimizing (4), with the matrix K having the form

K =
[
0m×m 0m×p

0p×m λI

]
,(5)

with 0r×s being an r by s matrix of all zeros.

Example 3 (Randomized Block Design). Linear mixed-effects models have
been applied for analysis of data arising from situations involving repeated mea-
sures and experimental designs with factors that can be seen as a combination of
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fixed and random effects. Some types of randomized block designs fall in the last
category, for example, when the experimental units are randomly selected and each
has repeated measurements. For this particular type of design, the experimental
units are assumed to be the factor (or blocking criterion), that makes them rela-
tively homogeneous with respect to a measured response. One way of modeling this
type of problems is

y = Xθ + b + e,(6)

where X is the design matrix for the fixed-effects, θ is the parameter vector for
the fixed-effects and b is a random vector of blocking factors. This is not the only
model that can be used with this type of design, but it will serve the purpose of
this paper.

The remainder of the paper is organized as follows. In Section 2 we present a
result that connects estimators/predictions that are obtained from mixed-effects
models, penalized least-squares estimation and Bayesian formulations. We also ad-
dress the issue of estimation of the variance components and smoothing parameters
that arise from their respective contexts. In this latter respect, we establish that
GCV, REML/GML and UBR can all be used to obtain the above mentioned es-
timators. Section 3 illustrates the implementation of our main result using the
three examples mentioned in this section. Section 4 concludes with some comments
about the use of the theorems in Section 2 and the employment of the Kalman filter
algorithm.

2. Equivalence Theorem

To begin, we will give a detailed description of the three modeling scenarios that
are the focus of this section.
• Mixed-effects model: Consider first the linear mixed-effects model

y = Tθ + Ub + e,(7)

where y is a n × 1 vector of responses and T and U are design matrices for the
fixed and random effects of dimensions n × m and n × q, respectively. Here, we take
θ to be a m × 1 vector of fixed effects and b to be a q × 1 normally distributed
random vector with zero mean and variance-covariance matrix Var(b) = σ2

bR. The
random effects b are assumed to be independent of the n × 1 vector of random
errors, e, which in turn, is assumed to be normally distributed with zero mean
and variance-covariance matrix σ2

eI. For this model, as well as for the Bayesian
model below, the parameters σ2

e and σ2
b are the so called variance components. It

is often convenient to reparameterized the variance components as λ = σ2
b/σ2

e so
that Var(y) = σ2

e(λURUT + I). The value of Tθ + Ub can be predicted using its
BLUP.

• Bayesian Model: Similar to the previous case, in this setting we assume that

y = Tθ + Ub + e,(8)

with T and U fixed matrices. However, we now also take θ to be random and model
it as being independent of b and e, with a zero mean, normal prior distribution
having variance-covariance matrix Var(θ) = νI. The vector of random effects, b,
is also assumed to be normally distributed with zero mean and Var(b) = σ2

bR.
Prediction of Tθ + Ub can be accomplished via the use of its posterior mean. In
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the absence of an informative prior for θ a diffuse formulation can be employed
wherein ν is allowed to diverge. Note: notice that this is not truly a Bayesian model
since there are no priors on the variance components. It is named Bayesian model
for the sake of identification.

• Penalized Least-Squares: In this case we have y = Tθ+Ub+e with θ and
b being non random and e is a vector of zero mean, normally distributed random
errors with variance-covariance matrix Var(e) = σ2

eI. The parameters are to be
estimated by minimizing the PLS criterion

PLS(a, c) = (y − Ta − Uc)T (y − Ta − Uc) + λcT R−1c,(9)

with respect to a and c. Here, R−1 is a penalty matrix and λ is the parameter that
controls how heavily we penalize the coefficients c.

Having these three scenarios in mind, we now state the following theorem.

Theorem 2.1. The Best Linear Unbiased Predictor (BLUP) of Tθ +Ub in (7) is
given explicitly by

ŷ = Aλy,(10)

where

Aλ = {I − Q−1[I − T(TT Q−1T)−1TT Q−1]},(11)

and

Q = (λURUT + I).(12)

This result is numerically the same as the limiting value (as ν → ∞) of E[Tθ +
Ub|y] in (8) and the minimizer of (9).

Proof. To simplify the proof let us assume that the design matrices U and T, as
well as R, are all full rank matrices (we will later relax this assumption).

Under model (7), the first two moments of y are given by

E(y) = Tθ and Var(y) = σ2
bURUT + σ2

eI.

Using the distribution of y given b and the distribution of b, we can then find the
joint density of y and b and obtain the normal equations of [23]:

TTTθ + TTUb = TTy,

UTTθ + (UTU + R−1
λ )b = UTy

for Rλ = λR.
After some algebra and using the Sherman-Morrison-Woodbury formula in [24]

we have

Q−1 = I − U(UTU + Rλ)−1UT,(13)

θ̂ = (TTQ−1T)−1TTQ−1y

and

b̂ = (UTU + R−1
λ )−1UT[I − T(TTQ−1T)−1TTQ−1]y.
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In this way, the predicted values of Tθ + Ub are given by

ŷ = {I − Q−1[I − T(TTQ−1T)−1TTQ−1]}y.(14)

To show that minimization of the PLS criterion produces the same numerical
answer as the BLUP of (7), we differentiate PLS(a, c) with respect to a and c to
obtain normal equations which together with (13) give us the same answer as in
(14).

It remains to show that under the Bayesian model with diffuse prior, limη→∞
E(Tθ + Ub|y) also agrees with (14). In this case, the joint distribution of Tθ +Ub
and y is found to be normal with zero mean vector and variance-covariance matrix
given by (

νTTT + n−1σ2
bURUT νTTT + n−1σ2

bURUT

(νTTT + n−1σ2
bURUT)T νTTT + n−1σ2

bURUT + σ2
eI

)
.

Standard multivariate analysis results then produce

E(Tθ + Ub|y) = Cov(Tθ + Ub, y)[Var(y)]−1y

= (νTTT + n−1σ2
bURUT)

×(νTTT + n−1σ2
bURUT + σ2

eI)
−1y.

Letting λ be as in (12), η = ν/σ2
e and recalling equation (12) we obtain

E(Tθ + Ub|y) = (ηTTT + URλUT)(ηTTT + Q)−1y.(15)

Applying the Sherman-Morrison-Woodbury formula [24] on (ηTTT + Q)−1 and
using a little algebra we get

(ηTTT + Q)−1 = Q−1 − Q−1T(TTQ−1T)−1[η−1(TTQ−1T)−1 + I]−1TTQ−1.

For η sufficiently large, the eigenvalues of (η−1(TTQ−1T)−1 are all less than one.
So, applying a power series expansion on (ηTTT + Q)−1 [16], substituting this
expansion in (15), and with the aid of some straight forward calculus we have that
limη→∞E(Tθ + Ub|y) is exactly the same expression as in (14).

Now, let us go back to our assumption of U, T and R being full rank matrices.
This may not be always the case. For example, if we approach estimation from the
PLS criterion perspective, there are cases (such as spline smoothing), where R has
less than full rank. To deal with this instance, suppose that the matrix URUT is
not invertible. In this situation, the matrix Q = (λURUT +I) will still be invertible
and our only concern is that the matrix T is less than full rank. In that case, we can
employ conditional inverses (e.g., [18], pp. 31) and the theorem will still hold.

A result such as Theorem 2.1 is important because, as pointed out by [4, 19, 48]
and [36], one can take advantage of existing methodology and software to facilitate
and enhance our analyses. The difference here is that Theorem 2.1 is not restricted
to the smoothing spline case of [43]; the BLUP result by [40] and referenced by
[4, 19, 48]; or to the Bayesian mixed model of [29]. Instead we see that, quite
generally, methodology from any particular one of the three frameworks can be
potentially applied to obtain useful developments for the other two.

In each of the scenarios described by Theorem 2.1, it will generally be necessary
to estimate the parameter λ. The following result is a generalization of Theorem 5.6
in [12] that allows us to apply three standard methods to the problem of adaptively
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selecting this parameter. The methods considered here are GCV, UBR and GML
which respectively produce estimators of λ via minimization of

GCV(λ) =
n−1RSS(λ)

[n−1tr(I − Aλ)]2
,(16)

UBR(λ) = n−1RSS(λ) + 2n−1σ2
etr(Aλ),(17)

and

GML(λ) =
yT (I − Aλ)y

|I − Aλ|1/(n−m)
+

.(18)

Here, tr denotes the trace of a matrix, RSS(λ) = (y − ŷ)T (y − ŷ)and |I − Aλ|+ is
the product of the nonzero eigenvalues of I − Aλ.

We note in passing that GML is equivalent to the method of REML that is a
popular approach to variance component estimation. (See, e.g. [40].) In terms of
the relationship between criteria (16)-(18) we can establish the following result.

Theorem 2.2. E[GCV(λ)], E[UBR(λ)] and E[REML/GML(λ)] are all minimized
at λ = σ2

b/σ2
e .

Proof. To establish Theorem 2.2 first note that the arguments in [12, pp. 244–247]
can be easily modified to account for either the GCV or UBR part of the theorem.
The main difference is that here we are not working with diffuse priors. Thus, we
will concentrate on sketching the part of the proof that pertains to equation (18).

Let λo = σ2
b/σ2

e and write I−Aλ = B(BTQB)−1BT, for a B such that BTB = I,
BBT = I − T(TTQ−1T)−1TTQ−1 and BTT = 0. Then,

BTQB = BT(nλURUT + I)B
= nλBTURUTB + I.

Define the matrix of eigenvalues for BTURUTB with corresponding matrix of
eigenvectors V as Λ = diag{d1, . . ., dn−m}. Then, we can write

BTQB = V(λΛ + I)VT.

Now, taking expectation with respect to e and b we can show that

E[REML/GML(λ)] =
σ2

etr[(I − Aλ)] + λotr[(I − Aλ)(Q − I)]
[
∏n−m

i=1 (λdi + 1)−1/(n−m)]

=
σ2

e∏n−m
i=1 (λdi + 1)−1/(n−m)

n−m∑
i=1

(λodi + 1)
(λdi + 1)

.

Now, take the difference of the logarithms of the expectations E[REML/GML(λ)]
and E[REML/GML(λo)]. A sufficient condition for minimization of the REML/
GML criterion at λo is then seen to be

log

[
1

n − m

n−m∑
i=1

(λodi + 1)
(λdi + 1)

]
− 1

(n − m)

n−m∑
i=1

log
[
(λodi + 1)
λdi + 1

]
≥ 0.

However, this is an immediate consequence of Jensen’s inequality.
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Criteria (16)–(18) have long been used for the selection of smoothing or penalty
parameters. Golub et al. [17] proposed (16) as a method to choose the ridge re-
gression parameter in a standard regression model like (3) and Craven and Wahba
[6] introduced GCV as a method for choosing the smoothing parameter in non-
parametric regression. Wahba [46], Kohn et al. [27] and Stein [41] compared the
performance of GCV and REML/GML for the smoothing spline case.

Unlike the methods of REML/GML in the PLS framework, GCV and UBR have
not been applied in the context of mixed-effects models. Theorem 2.2 suggests that
GCV may be another suitable method for estimation of variance components in this
context. The fact that the GCV estimator of the variance components shares the
REML/GML estimator attribute of minimizing the expectation of the risk, seems
to indicate that both estimators will have similar properties and behavior under the
mixed-effects model (as it has been shown for the PLS and the Bayesian models [see
27, 46] ). However, this needs to be confirmed by studying the distributional and
consistency properties of the GCV estimator of σ2

e and σ2
b under the mixed-effects

model and this is a topic for future research.

3. Examples

In this section we focus on the examples introduced in section 1 and exemplify
the advantages of using existing methodology for one particular framework (the
Bayesian model) to the other two. In particular, we will use a Kalman filter al-
gorithm to compute estimators and predictions that arise in the three scenarios
considered in Theorem 2.1. Perhaps the most common application of the Kalman
filter has been in a Bayesian context (see [3, 28]). Specifically, Kohn and Ansley
[25], using Wahba’s Gaussian model (a particular case of our Bayesian model), re-
formulated the model into a state-space representation and thereby obtained an
efficient O(n) algorithm for computing smoothing spline estimators. Theorem 2.1
allows us to extend this approach to non spline smoothing situations and obtain an
efficient, Kalman filter based, computational algorithm provided that the random
components in Theorem 2.2 admit a state-space representation. This algorithm
also permits the evaluation of likelihood functions, making it possible to obtain
REML/GML estimators for variance components or smoothing parameters.

Description of the Kalman filter is beyond the scope of this paper. Instead, we
will focus on establishing a state-space representation for the three examples and
refer the reader to [11, 13] and [14] for a more complete development. To accomplish
this, it suffices to give only a brief discussion concerning the form of a state-space
model.

Any response yi can be represented using a state-space model if the observation
at time i can be expressed as a function of the observation at time i − 1. More
formally, a state-space model is composed of a set of response equations

yi = hT(ti)x(ti) + ei,(19)

and a system of state equations

x(ti+1) = F(ti)x(ti) + u(ti).(20)

with ti ∈ [0, 1] and 0 = t0 ≤ t1 < · · · < tn. The yi are observed quantities and
the ei, u(ti), x(ti), are all unobservable with u(t0), . . ., u(tn−1), e1, . . ., en and the
initial state, x(t0), all being zero mean, uncorrelated normal random variables.
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In general, the x(ti) and u(ti) may be vector valued with u(ti) having variance-
covariance matrix Ru(ti). For our purposes we will treat the vectors h(ti) and the
transition matrix F(ti) in (19)–(20) as being known.

We will proceed now to demonstrate the application of the equivalence theorem
in the context of our three examples.

3.1. Varying Coefficient Models

To illustrate the varying coefficient case, we will examine the progesterone pro-
files data (Figure 1) of [4]. The data consists of metabolite progesterone profiles,
measured daily in urine over the course of a menstrual cycle in a group of 51 women.

The women in the study were divided into two groups: 29 in the non-conceptive
group and 22 in the conceptive group. Each woman contributed a different number
of cycles, ranging from 1 to 5 cycles and some of the cycles have missing values.

The goal of the analysis is to detect differences between the conceptive and non-
conceptive group profiles. To do this we will express the varying coefficient model (1)
with the formulation in (9), apply Theorem 2.1 and find the equivalent formulation
(8) in the Bayesian framework in order to use the efficient Kalman filter algorithm
of [13].

For simplicity, assume that we have complete data and the same number of cycles
per woman (later we will relax these assumptions). Let the log progesterone level
of the cth cycle for the wth woman at time ti be denoted by ywci and model this

Fig 1. Observed progesterone measurements for subject 11 in the non-conceptive group. The plots
correspond to three of the four cycles for subject 11 and show the log progesterone concentration
versus day in the cycle. All cycles have missing observations. Days corresponding to the menses
were excluded.
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response as

ywci = β1(ti)X1wci + β2(ti)X2wci + ewci,

where i = 1, . . ., 24, and t1 = −8, t2 = −7, . . ., t24 = 15 are the days in a menstrual
cycle. The cycles c range from 1 to 5 and w = 1, . . ., 29 correspond to women in the
non-conceptive group and the rest belong to the conceptive group.

Assume that the βk(·)’s, k = 1, 2, are smooth functions of t. Usually, this trans-
lates into assuming that the functions belong to a Hilbert space of order m (see
[22]). To find the estimated profiles we minimize a particular PLS criterion, where
the penalty is applied to the integral of the square of the second derivative of the
βk(·)’s. The minimizers of β1(·), β2(·) are natural splines of order m, with m = 3,
that can be represented by a linear combinations of basis functions

m−1∑
q=0

θkqt
q
i +

24∑
r=1

bkrξr(ti),

with knots at each of the design points ti, and

ξr(ti) =
∫ min{tr,ti }

0

(ti − u)m−1(tr − u)m−1du

[(m − 1)!]2
.(21)

Equation (21) is one of the usual reproducing kernels of a Hilbert space of order m
[22].

Let ywc = [ywc(t1), . . ., ywc(t24)]T be the vector of responses for women w that
contains all the daily observations in the c cycle, and ξi = [ξ1(ti), ξ2(ti), . . ., ξ24(ti)]T

and ti = [t0i , t
1
i , . . ., t

m−1
i ]T be the vectors of basis functions evaluated at the times

ti’s.
Denote the vector of coefficients for β1 and β2 as θ1 = [θ10, θ11, . . ., θ1,(m−1)]T,

θ2 = [θ20, θ21, . . ., θ2,(m−1)]T, b1 = [b10, b11, . . ., b1,24]T, b2 = [b21, b22, . . ., b2,24]T,
respectively. Construct t, ξ and X such that

t =

⎡
⎢⎢⎢⎣

tT1
tT2
...

tT24

⎤
⎥⎥⎥⎦ , ξ =

⎡
⎢⎢⎢⎣

ξT
1

ξT
2
...

ξT
24

⎤
⎥⎥⎥⎦ and X =

⎡
⎢⎢⎢⎣

X1wc1 X2wc1

X1wc2 X2wc2

...
...

X1wc24 X2wc24

⎤
⎥⎥⎥⎦ .

Let Twc = t
⊗

X and Uwc = ξ
⊗

X, where A
⊗

B denotes the Kronecker product
of the matrices A and B and it is equal to aijB.

For each woman’s cycle we have the model Twcθ
� + Uwcb

� + eew, where θ� =
[θT

1 , θT
2 ]T, b� = [bT

1 , bT
2 ]T and ewc is the corresponding vector of errors. Denote

by y and e the vectors resulting from stacking the vectors ywc and ewc, (i.e.,
y = [yT

1,1, y
T
1,2, . . ., y

T
1,5, y

T
2,1, . . ., y

T
51,5]

T), and let T = diag{Twc} w=1,51
c=1,5

and U =
diag{Uwc} w=1,51

c=1,5
. Then, we can construct the model Tθ+Ub+e, where θ = 1

⊗
θ�,

b = 1
⊗

b�, and minimize criteria (9), where R−1 = U.
By Theorem 2.1, this is equivalent to find limν→∞ E[Tθ + Ub|y], where θ, b

and e are independent of each other and normally distributed with zero mean and
variance-covariance matrices νI, σ2

bU
−1, and σ2

eI, respectively. In this case, the
smoothing parameter λ in the PLS model can be found using the variance compo-
nents, σ2

e and σ2
b since nλ = σ2

b/σ2
e , where n is the total number of observations in

the data.
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Table 1

Run time comparisons between the Kalman filter algorithm of [11] implemented in SAS, SAS
proc mixed and Brumback and Rice’s [4] approach. Both Kalman filter and Brumback and Rice’s

approach include the time it took to calculate the smoothing parameter. The proc mixed time
does not include this computation

Method Real Time
Kalman Filter 14.60 secs.
PROC MIXED 4 hrs. 12 mins. 15 secs.
Brumback and Rice 1 hr. 50 mins.

The equivalent Bayesian representation of the varying coefficient model will allow
us to make use of the Bayesian theory and apply it to our PLS setting. Specifically,
we can follow [13] and transform the Bayesian model into a state-space model, as
they indicate, and apply their efficient algorithm to compute the varying coefficients
and respective confidence bands. Their approach also shows how to reformulate the
matrices in the Bayesian model so the unbalanced design does not represent a
problem in the computation of the estimators. For details on how to find the state-
space model form, or on how to apply this efficient algorithm, we refer the readers
to the appendix and to the above mentioned authors, respectively.

To see what are the advantages of using this equivalence representation of the
PLS, let us first explore the extent that the Kalman filter can speed up computa-
tions. To investigate this issue we carried out a run time comparison between our
Kalman filter approach, the “standard way” of estimation assuming a mixed-effects
model approach (both in SAS), and, only as a reference, we provide the time used in
the method developed by Brumback and Rice [4]. We need to point out that these
are the reported times in their 1998 paper and that there has been great improve-
ment in computational speed since the publication of this paper. Table 1 shows the
required times for computing the estimated conceptive and non-conceptive func-
tions (see Figure 2).

The first time in Table 1 corresponds to the time employed by the Kalman filter
algorithm of [11] implemented in SAS and using a computer with a 3.2GHz processor
and 1G RAM. This algorithm used 2004 observations (missing values were omitted)
and calculated the estimated coefficient functions and corresponding 95% confidence
intervals. The second time is the result of using a mixed-effects model representation
and taking advantage of SAS proc mixed (the same equipment was used). The
last time is the one reported by [4]. They implemented an eigenvalue-eigenvector
decomposition on a mixed-effects model representation of the profiles, separately
for each group, and combined the times for both groups and the estimation of the
variance components. We calculated the smoothing parameters via REML/GML
using the Kalman filter algorithm and it took approximately 10.5 seconds in SAS
(this time is included in the computation of the Kalman filter in Table 1). These
parameters were used in both the SAS and Kalman filter calculation of the varying
coefficient functions (we didn’t want to calculate the smoothing parameters with
SAS Proc Mixed given that it already took 4 hrs. to calculate the profiles without
estimating the variance components). The reason why SAS takes so long to estimate
the functions is due to the complex covariance structure of the model and the
number of observations. The convenient SAS built-in covariance structures were
not an option (see comment by [4]), and the inversion of a general n × n matrix
requires O(n3) operations versus the O(n) used by the Kalman filter.

Another advantage of using the Bayesian interpretation in our PLS model is
that the Kalman filter allows us to easily obtain confidence intervals as well as
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Fig 2. Smooth estimates for non conceptive and conceptive mean groups with respective 95%
pointwise confidence intervals. The corresponding smoothing parameters were computed using the
GML method implemented through a Kalman filter algorithm.

point estimators. In this respect, we use the relationship between PLS and the
Bayesian model to provide Bayesian 100(1−α)% confidence (or prediction) intervals
which parallel those developed by [44] and [31]. Specifically, we “estimate” the
ithcomponent of βk(ti) via the interval βk(ti) ± z1−α/2

√
σ̂2

e × aii, where σ̂2
e = [(y −

Aλy)T (y − Aλy)]/(n − m), aii is the ithdiagonal element of the corresponding hat
matrix Aλ for βk and z1−α/2 is the 100(1 − α/2) standard normal percentile.

Wahba’s “Bayesian Confidence Intervals” have been often used in the nonpara-
metric community. Wahba [44] showed that the average of the coverage probability
across points of these pointwise intervals is very close to nominal level for large
n. She also commented that even if the confidence intervals are derived from a
Bayesian perspective, they perform well in the frequentist realm. Nychka [32] offers
an excellent discussion on why this is true.

In their paper, Brumback and Rice [4] utilized a hierarchical bootstrap method
to assess the variability of the fitted functions instead of using the variance compo-
nents estimators (it is well know that these estimators often underestimate the true
parameters). For each bootstrapped sample 1.5 hours was required to obtain the
estimated sample profiles (as reported by [4]). As a result, a partially parametric
version of the method was implemented (see [4], for more details). They computed
35 bootstrap samples and this took approximately 45 mins. In contrast, the confi-
dence intervals computed in this paper for the progesterone profiles were obtained
with the same computational effort involved in the estimation of the profiles.

Our estimated function profiles seem to agree with the ones obtained by Brum-
back and Rice. In addition, the “confidence” intervals also allow us to see that, on
average, the production of progesterone in the conceptive group drops significantly
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from day 4 until around day 8 (when ovulation occurs) as compared to the hormone
production of the non conceptive group. This result differs from the findings by [4].
Their bootstrap sample suggested that the decrease in progesterone for the con-
ceptive group was not significant. The discrepancy between our findings and those
of Brumback and Rice may be due to the small bootstrap sample they employed
in their analysis or with our interpretation of the confidence intervals. Nychka [32]
pointed out that these intervals may not be reliable at specific points, even more if
those points are part of a sharp peak or deep valley in the function. However, he
also mentioned that it provides “a reasonable measure of the spline estimate’s ac-
curacy provided that the point for evaluation is chosen independently of the shape”
of the function. It is known that the women are more fertile around day 3 to day 9,
making it an interval targeted for studying before the start of the analysis. Also, we
do not consider that the bump that forms in the interval of interest is that sharp.
Hence, we believe that the confidence intervals provide reasonable evidence that
the profiles are different.

3.2. Ridge Regression and Penalized Spline Regression

To exemplify the use of Theorem 2.1 in the ridge regression setting, we have selected
a data set that is freely distributed by StatLib at http://lib.stat.cmu.edu. The data
set consists of 1150 heights measured at 1 micron intervals along the drum of a
roller (i.e. parallel to the axis of the roller). The units of height are not given and
the zero reference height is arbitrary.

To fit this data we used a model of the form (3) with X = [T,U] and corre-
sponding vector of coefficients β = [θT, bT]T, where

T =

⎡
⎢⎢⎢⎣

1 t1
1 t2
...

...
1 t1150

⎤
⎥⎥⎥⎦ and U =

⎡
⎢⎢⎢⎣

(t1 − ξ1)+ · · · (t1 − ξk)+
(t2 − ξ1)+ · · · (t2 − ξk)+

... · · ·
...

(t1150 − ξ1)+ · · · (t1150 − ξk)+

⎤
⎥⎥⎥⎦ .(22)

The generalized ridge regression estimator of β is then obtained by minimizing the
PLS criterion (4), with K as in (5) and m = 2.

Applying the results of Theorem 2.1 we can write a parallel mixed-effects model
representation for this ridge regression problem. This particular framework was con-
sidered by [36] who describe in Section 4.9 of their book how to represent p-splines
as BLUP’s and illustrated how to use available software packages, like SAS proc
mixed or the S-PLUS function lme, to obtain a fitted curve for the data. In view of
the equivalence theorem, an alternative approach would be to use the connection
between PLS and the Bayesian model so the Kalman filter can be implemented for
purposes of computing estimators and “confidence” intervals. Another comprehen-
sive description of the use of P-splines in the semi-parametric regression setting
using Bayesian techniques is given in [5]. In this paper, we will use the Bayesian
connection.

Assume that the vectors θ, b and e are independently normally distributed with
zero mean and respective variance-covariance matrices νI, σ2

bI and σ2
eI. Then, by

the equivalence theorem, the minimizer of (4) is the same as the limit, when ν is
allowed to go to infinity, of the posterior mean of Tθ + Ub|y.

Again, this Bayesian model representation of the ridge regression example will
permit the use of the Kalman filter algorithm for the computation of the estimated
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Fig 3. Figure (a) shows the P-spline estimator with 150 knots for the roller height with its
respective 95% confidence bands. The corresponding figure for the P-spline estimator with 1150
knots looks exactly the same and has been omitted. Figure (b) shows the comparison between the
p-spline estimator with 150 knots and the P-spline with 1150 knots. There is no visual difference
and both procedures yielded an estimated error variance of 0.36.

function and its respective “confidence intervals”. For the explicit form of the state-
space model see the appendix.

For this particular example, we considered two different model versions, one
using k = 150 knots and the other with k = 1150 knots. This because we wanted to
contrast the computational performance of the P-splines versus the computational
effort required using smoothing splines and the Kalman filter. We should remark
here that, when k = 1150, basically we have a smoothing spline estimator which
basis functions are the polynomials and the truncated power functions (ti − ξk)+,
for i = 1, . . ., 1150.

Figure 3 shows the smooth estimated curve for the roller height and corre-
sponding 95% “confidence intervals”. The smoothing parameters were, respectively,
λ150 = 0.043 and λ1150 = 0.095. They were selected via GCV and as we can see the
GCV methods adjusts the smoothing parameters according to the number of knots
used.

One of the main arguments in favor of using P-splines in lieu of smoothing splines
is that, by reducing the number of knots involved in the model, we increase the
computational efficiency involved in calculating the spline estimator. This is true
when using brute force methods, i.e., direct inversion of the matrix (12). However,
when using the proposed Kalman filter algorithm, the computational advantage of
the P-splines over the smoothing splines disappear as we can see in Table 2.

3.3. Mixed-Effects Model

In this last example, we want to illustrate the application of the equivalence theorem
in the mixed-effects model setting. By finding the equivalent Bayesian model of a
mixed-effects model representation we will demonstrate the use of Kalman filtering
for estimating parameters in a setting that it has seldom being used and that
it can benefit from the reduced computational burden of estimating parameters
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Table 2

Run time comparisons between a p-splines estimator with 150 knots, a P-spline estimator with
1150 knots and a smoothing spline estimator (technically 1150 knots but using as basis

functions the polynomials and equation (21)). Both estimators were computed using code in R
and the time does not include computation of the smoothing parameter

Knots Real Time
P-spline 150 48.34 secs.
P-spline 1150 54.55 secs.
Smoothing Spline 48.26 secs.

and variance components. It is true that, if we have a “reasonable” number of
observations and a specific covariance structure, like the ones provided by existing
software, it will be advisable to use these procedures in lieu of the Kalman filter.
However, there are occasions where the number of observations is really large. Then
we can take advantage of the computational efficiency of the Kalman filter.

Our example deals with a randomized block design, where the data consists of
37 patients, which represent the random blocks, and a set of consecutive Hamilton
depression scores measured over the course of 6 weeks (see Figure 4). The data set
is part of a study conducted by [34] and it is available at http://tigger.uic.edu/
∼hedeker/.

We model the data as

yij = β0 + β1week + bi + eij ,

where the yij ’s are the depression scores, for i = 1, . . ., 37, β0 and β1 are fixed
parameters and week = 0, 1, . . ., 5, is the week number where the score was mea-
sured. The random effects due to each patient are denoted by the bi’s and they are
independent of the errors eij ’s which are generated by an autoregressive process
of order 1, i.e., eij = φei,j−1 + aj(ti), with φ a constant and aj(ti) independent,
identically distributed zero mean errors with variance σ2

e .
Let y be the vector of depression scores such that y = [yT

1 , . . ., yT
37]

T, for yi =
[yi0, yi1, . . ., yi5]T. Denote by 1n, the vector of all ones of dimension n × 1 and

Fig 4. (a) Hamilton depression scores for 37 patients measured over the period of 6 weeks. (b)
Estimated regression line, y = 24.41 − 2.36 week, with respective 95% confidence bands.
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week = [0, 1, . . ., 5]T. In matrix form our model becomes

y = Tθ + b + e,

with θ = [β0, β1]T, T = [137

⊗
15,137

⊗
week], and b = 15

⊗
[b1, b2, . . ., b37]T and

e = [eT
1 , eT

2 , . . ., eT
37]

T, for ei = [ei0, ei1, . . ., ei5]T. Here, we model the b as normally
distributed with zero mean and variance-covariance matrix R = {ξr(t1)} r=1,5

i=1,5
and

W =

⎡
⎢⎢⎢⎢⎢⎣

σ2
e

1−φ2
φ

1−φ2
φ2

1−φ2 . . . φn

1−φ2

φ
1−φ2

σ2
e

1−φ2
φ

1−φ2 . . . φn−1

1−φ2

... . . .
. . . . . .

...
φn

1−φ2
φn−1

1−φ2 . . . φ
1−φ2

σ2
e

1−φ2

⎤
⎥⎥⎥⎥⎥⎦ ,

where W is the variance-covariance matrix of the AR(1) errors.
To find the corresponding Bayesian model, let b and e keep their distributions

and assume that θ is normally distributed with zero mean and variance-covariance
matrix νI. Once in the Bayesian form, we check that our observations Yij can be
represented using the state-space equations (19)-(20). The equivalence theorem hold
regardless of the state-space structure but, if we have that structure, then we can
apply the efficient Kalman filter algorithm of [13] and estimate all our parameters
with linear computational efficiency.

Figure 4 shows the estimated regression line for the Hamilton depression scores
over the 6 week period. The variance components for this example are estimated via
REML/GML and are φ̂ = 0.97, σ̂2

e = 1.214 and σ̂2
b = 0.00132. The corresponding

estimated values for the regression coefficients are θ̂0 = 24.41 and θ̂1 = −2.36.

4. Summary

In this paper, we have reviewed known results concerning the numerical equivalence
of (1) a smoothing spline estimator and a particular mixed-effects model and (2)
a smoothing spline estimator and the posterior mean of Wahba’s Gaussian model
and focus on the more general framework of frequentist and Bayesian mixed-effects
models and penalized least-squares estimation as seen in Theorem 2.1. This result
broadens the number of methodological resources available for computing BLUPs,
posterior means, likelihoods and minimizers of penalized least squares criteria and
facilitates the use of existing methodological tools, as exemplified by Theorem 2.2
and our examples.

The link between the Bayesian mixed-effects model and the two other model
settings allowed us to obtain Bayesian “confidence” intervals for the profile groups
(instead of the computationally demanding bootstrap method of Brumback and
Rice) and facilitated the analysis of the profile differences during the fertile days.
Example 2 showed us that the Kalman filter implementation is not restricted to
Wahba’s Bayesian model. More generally, the idea carries over to settings involving
p-splines, Kernel estimators, differences, etc. Lastly, this link allows for the imple-
mentation of a computationally efficient Kalman filter algorithm in many cases of
interest. Kalman filter algorithms have been used to compute smoothing splines
type estimators [19, 25, 26, 48]. But, they have been sparsely used in mixed-effects
model settings. To this author knowledge, only [38] and, more recently, [30] have ap-
plied the Kalman filter to mixed-effects models. In the mixed-effects framework, the
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techniques employed for the analysis of large data sets require the use of computer
intensive methods like the EM or MCMC algorithms [1, 39], conjugate gradient iter-
ative methods [42], or the use of high performance computing environments. Some
of the methods mentioned in these references assume that observations are gener-
ated by Brownian motion or ARMA processes and, whenever we have this type of
processes, we have a state-space structure that can be exploited, as demonstrated
in our examples, to reduce the computational burden. Observations generated by
longitudinal analysis (as in example 3), repeated measurements or any process that
depends on an ordering variable can also frequently be assumed to have a state-
space representation and can, as a result, benefit from the computational efficiency
of the Kalman filter.

Appendix: State-Space Forms

In this section we will explicitly describe the state-space forms used for the appli-
cation of the Kalman filter in each of our examples. Since the form of the errors
u(ti) in equation (20) is assumed to be the same for the varying-coefficient case
and the mixed-effects model, we will show the derivation for the varying coefficient
case and detail the small changes needed for the mixed-effects case. We will leave
for the last the ridge regression example.

To employ the Kalman filter for computation of the varying coefficient example
we need to show that the varying coefficients have a state-space representation.
That is, we need to be able to write equation (1) using equations (19)–(20). Since
the βk(·) are assumed to be smooth functions of t, we model them as

βk(ti) =
m−1∑
q=0

θkqt
q + σ2

bZk(ti),(A.1)

for k = 1, 2 and m = 2, where (without loss of generality) we can take t in [0, 1]
and

Zk(t) =
∫ 1

0

(t − u)m−1
+

(m − 1)!
dWk(u),

with Wk(·) standard Wiener processes. To simplify matters, first assume that
βk(ti) = σ2

bZk(ti). Then, βk(ti+1) can be written as σ2
b times

∫ ti

0

(ti+1 − s)m−1
+

(m − 1)!
dWk(s) +

∫ ti+1

ti

(ti+1 − s)m−1
+

(m − 1)!
dWk(s).

Taking

uk(ti) =
∫ ti+1

ti

(ti+1 − u)m−1
+

(m − 1)!
dWk(u),

for ti < tj , the covariance between uk(ti) and uk(tj) is found to be equal to

∫ ti

0

(ti − u)m−1(tj − u)m−1

[(m − 1)!]2
du.

For the remaining integral, add and subtract ti inside (ti+1 − u)m−1 and apply the
Binomial theorem. Upon doing this, a state-space representation results with F(ti)
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equal to

F(ti) =

⎡
⎢⎢⎢⎢⎣

1 (ti+1 − ti)
(ti+1−ti)

2

2! . . . (ti+1−ti)
m−1

(m−1)!

0 1 (ti+1 − ti) . . . (ti+1−ti)
m−2

(m−2)!

...
...

...
. . .

...
0 . . . 1

⎤
⎥⎥⎥⎥⎦ ,(A.2)

Zk(ti) = [Zk(ti), Z
(1)
k (ti), . . ., Z

(m−1)
k (ti)]T , uk(ti) = [uk(ti), u

(1)
k (ti), . . .,

u
(m−1)
k (ti)]T and Zk(ti+1) = F(ti)Zk(ti) + uk(ti).
Now, rearranging the observations with respect to the time ti define

yT
iw = [yiw1, . . ., yiwcw ]T

with yT
iw the responses for woman w at time ti observed at cycles 1, . . ., cw, with

corresponding vector of random errors eiw. Let x(ti) = [Z1(ti), Z2(ti)]T , u(ti) =
[u1(ti), u2(ti)]T and Xkwi = [Xkw1i, . . ., Xkwcwi]T . Then, taking

h(ti) = [XT
1wi,0, . . .,0, XT

2wi,0, . . .,0]T ,

we arrive at the state-space model

yiw = h(ti)x(ti) + eiw,

x(ti+1) = F�(ti)x(ti) + u(ti),

where F�(ti) is the block diagonal matrix of size 2m × 2m with diagonal blocks
F(ti), i = 1, . . ., n.

Application of the standard Kalman filter to the vector of observations yiw will
yield coefficient functions estimates that disregard the polynomial term in (A.1).
To account for that, we must employ the diffuse Kalman filter as in [13]. This
entails a slight modification of our approach wherein the Kalman filter is applied to
the vector of observations yiw and each of the vectors 1n, t, t2, . . ., t(m−1), where
tr = [tr1, t

r
2, . . ., t

r
n]T (see [11], for a detailed derivation).

For our mixed-effects example we need to show that e can be represented in a
state-space form and stack the respective state vectors, errors and matrices. We will
proceed as follows: since the errors e(ti) are generated by an AR(1) process, they
can be written as e(ti+1) = φe(ti) + aj(ti), with φ a non random coefficient. This
entails that the transition matrix F�(ti) = diag{F(ti), φ}, with F(ti) as in (A.2)
and h(ti) = [1, 0, 1]. Take the state vector, x(ti), to be equal to [Zk(ti)T, e(ti)]T,
u(ti) = [uk(ti)T, aj(ti)]T with m = 2, where Zk(ti) and uk(ti) are as in the varying
coefficient case. Specific details about the form of the state vector and the vector
u(ti) of the state equation (20), as well as a more general form for an ARMA model,
can be found in [14].

Lastly, the state-space representation for the ridge regression example is found by
taking the state vector to be x(ti) = [x(ti), x(1)(ti), . . ., x(m−1)(ti)]T , with x(ti) =∑j

k=1 βk(ti − ξk)m−1 for ti ∈ [ξj , ξj+1) (using the definition of the truncated power
function), and x(r)(ti) the rth derivative of x(ti), r = 1, . . ., (m − 1). Then,

x(ti+1) = F(ti)x(ti) + u(ti),

with F(ti) as in (A.2) and u(ti) = [u(ti), u(1)(ti), . . ., u(m−1)(ti)]T, where

u(ti) =
{

0 if ti+1 ∈ [ξj , ξj+1),
βj+1(ti+1 − ξj+1)m−1 if ti+1 ∈ [ξj+1, ξj+2).
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To complete the state-space formulation, take the vector h(ti) to have dimension
m × 1 with one in the first position and the rest of its elements equal to zero.
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