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Abstract We give a global, intrinsic, and coordinate-free quantization formalism for

Gromov–Witten invariants and their B-model counterparts, which simultaneously gen-

eralizes the quantization formalisms described by Witten, Givental, and Aganagic–

Bouchard–Klemm. Descendant potentials live in a Fock sheaf, consisting of local

functions onGivental’s Lagrangian cone that satisfy the (3g−2)-jet conditionofEguchi–

Xiong; they also satisfy a certain anomaly equation, which generalizes the holomorphic

anomaly equation of Bershadsky–Cecotti–Ooguri–Vafa. We interpret Givental’s

formula for the higher-genus potentials associated to a semisimple Frobenius manifold

in this setting, showing that, in the semisimple case, there is a canonical global section

of the Fock sheaf. This canonical section automatically has certain modularity proper-

ties. WhenX is a variety with semisimple quantum cohomology, a theorem of Teleman

implies that the canonical section coincides with the geometric descendant potential

defined by Gromov–Witten invariants of X. We use our formalism to prove a higher-

genus version of Ruan’s crepant transformation conjecture for compact toric orbifolds.

When combined with our earlier joint work with Jiang, this shows that the total descen-

dant potential for a compact toric orbifold X is a modular function for a certain group

of autoequivalences of the derived category ofX.
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1. Introduction

Givental’s [61], [64] quantization formalism has been an essential ingredient in

many recent advances in Gromov–Witten theory. These include the quantum

Lefschetz theorem (see [33], [110], [31]), the Abelian/non-Abelian correspon-

dence (see [13], [30]), connections to integrable systems (see [63], [92], [53])

and birational geometry (see [38], [40], [36], [72], [71], [17], [16]), the Landau–

Ginzburg/Calabi–Yau correspondence (see [26], [94], [84]), the study of relations

in the tautological ring (see [85], [86], [98]), and the theory of quasimaps (see [27],

[29], [28], [24]). The quantization formalism suggests, roughly speaking, that the

Gromov–Witten theory of a target space X is controlled by linear symplectic

geometry in a certain symplectic vector space1

HX =H•(X;C)⊗C((z−1)),

which can be thought of as the localized S1-equivariant Floer cohomology of

the loop space of X (see [59], [96], [70]). Genus-zero Gromov–Witten invariants

of X determine and are determined by a Lagrangian cone LX ⊂HX with very

special geometric properties. Natural operations in Gromov–Witten theory cor-

respond to symplectic linear transformations U of HX : their effect on genus-zero

Gromov–Witten invariants is recorded by the effect of U on LX , and their effect

on higher-genus Gromov–Witten invariants is (or is expected to be) recorded by

the action of the quantized symplectic transformation Û on the total descendant

potential ZX for X , which is a generating function for all Gromov–Witten invari-

ants of X . That is, the total descendant potential ZX , which is the mathematical

counterpart of the partition function in type IIA string theory, should be thought

of as an element of the Fock space arising from the geometric quantization of the

Givental space HX .

The symplectic transformation U is visible at the level of genus-zero Gromov–

Witten invariants, and so the quantization formalism is a powerful “genus zero

controls higher genus” principle. One of the most striking instances of this is

Givental’s [61] formula for the total descendant potential of a target space with

generically semisimple quantum cohomology:

(1.1) ZX = eF
1(t)Ŝ−1

t Ψ̂R̂t(Z⊗N
pt ).

Here Zpt is the total descendant potential for a point (the Kontsevich–Witten

τ -function; see [111], [79]); N is the rank of H•(X;C); St, Ψ, and Rt are linear

symplectomorphisms defined in terms of genus-zero Gromov–Witten invariants

of X ; and F 1(t) is the genus-one nondescendant Gromov–Witten potential. The

formula (1.1) gives a closed-form expression for higher-genus Gromov–Witten

invariants of X in terms of genus-zero Gromov–Witten invariants of X and

higher-genus Gromov–Witten invariants of a point. It was conjectured by Given-

tal [62] and proven by him in the toric case; it was proven for arbitrary generically

1In the main body of the article, we use the space of L2-functions on S1 (see Section 3.1) or a

certain nuclear space (see (4.32)) instead of C((z−1)).
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semisimple Frobenius manifolds by Teleman [109], using the classification of two-

dimensional semisimple family topological field theories.

Since we have this powerful genus-zero controls higher genus principle, and

since genus-zero Gromov–Witten theory is in many cases reasonably well under-

stood (for instance via mirror symmetry), it is surprising that this has not, to

date, led to a better understanding of higher-genus Gromov–Witten theory. One

reason for this is that Givental’s quantization formalism is rather difficult to use

in practice: the quantized operators involved are defined as infinite sums over

Feynman diagrams, and there are delicate questions of convergence. In particu-

lar, there is not a “Fock space” on which Givental’s quantized operators act: the

well-definedness of ÛZ is proven on a case-by-case basis, using properties both

of the particular transformation U and the particular generating function Z .
The idea that the partition function should be regarded as a state in a Fock

space arising from geometric quantization was originally proposed by Witten

[112] in the context of the B-model for a Calabi–Yau 3-fold. Witten used this idea

to give an interpretation of the holomorphic anomaly of Bershadsky–Cecotti–

Ooguri–Vafa [11], [12]. It has had a number of important consequences, including

the discovery that the higher-genus Gromov–Witten potentials of local Calabi–

Yau 3-folds should be quasimodular forms (see [2], [18], [4]). Building on the

works [11], [12], and [112], Aganagic–Bouchard–Klemm [2] (see also [3]) described

a concrete quantization procedure, in the context of the Calabi–Yau B-model,

which is free of many of the technical complexities of Givental’s quantization.

We refer to this as Witten quantization. In their setting, the relevant symplectic

vector space is a finite-dimensional space given by the middle cohomology group

of the Calabi–Yau 3-fold. The quantized operators involved are defined as finite

sums over Feynman diagrams, and so convergence and the well-definedness of

the results are manifest.

This article grew out of an attempt to understand and unify Givental quan-

tization and Witten quantization. We give a global, intrinsic, and coordinate-free

quantization formalism, which reduces to Givental quantization whenever they

both make sense and which reduces to Witten quantization in the Calabi–Yau

3-fold case. We now give a brief summary of this article.

Construction of a Fock sheaf. Let M be a complex manifold. We start with a

locally free OM[[z]]-module F of finite rank equipped with a flat connection

∇ : F→Ω1
M ⊗ z−1F

and a ∇-flat, symmetric, nondegenerate, and “z-sesquilinear” pairing

(·, ·)F : (−)∗F⊗OM[[z]] F→OM[[z]],

where (−)∗Fmeans F on which z acts by −z. We call the triple (F,∇, (·, ·)F) a cTP
structure, extending the terminology of Hertling [66] (see Definition 4.4).2 A cTP

2cTP stands for complete, twistor, pairing.
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structure arises from geometry as the Dubrovin connection associated to quantum

cohomology or as the Gauss–Manin connection associated to a deformation of

complex manifolds or singularities. We need to assume that our cTP structure

satisfies a certain miniversality condition (see Assumption 4.9). We regard F as

an infinite-dimensional vector bundle over M and write L for the total space

of the vector bundle zF→M. The total space L is an analogue of Givental’s

Lagrangian cone LX . As a polarization for geometric quantization, we consider

an OM-submodule P of F[z−1] such that

• P is opposite to F, that is, F⊕ P= F[z−1];

• P is isotropic with respect to the symplectic form Ω on F[z−1] defined by

Ω(s1, s2) := Resz=0((−)∗s1, s2)F dz;
• P is parallel (∇P⊂Ω1

M ⊗ P) and closed under z−1 (z−1P⊂ P).

We call P an opposite module.3 This serves as a splitting of the (semi-infinite)

Hodge filtration and has been used to construct a Frobenius manifold structure

(or flat structure) in the context of singularity theory (see [104], [105]). In terms

of Givental’s symplectic space, P corresponds to a Lagrangian subspace P ⊂HX

which is transversal to LX . The opposite module P defines an affine flat structure

on the total space L: we write ∇ for the corresponding flat connection on TL.

Given an open set U ⊂M and an opposite module P over U , the Fock space

Fock(U ;P) consists of collections

C = {C(g)
μ1...μn

: g ≥ 0, n≥ 0,2g− 2 + n > 0}

of meromorphic symmetric tensors C
(g)
μ1...μn ∈ (T ∗L)⊗n over L|U , called the genus-

g, n-point correlation functions. We require that these tensors satisfy (see Defi-

nition 4.56):

• the jetness condition C
(g)
μ1...μn =∇μ1C

(g)
μ2...μn ;

• the Eguchi–Xiong (3g − 2)-jet condition (see (4.44) below or [52], [57],

[51]);

• the dilaton equation (this is a homogeneity condition);

• a certain pole order condition along a discriminant divisor in L|U .

The genus-zero correlation functions are given by the Yukawa coupling and its

derivatives, which are determined by the cTP structure itself. We glue these Fock

spaces to give a sheaf of sets on M via a transformation rule

T (P, P̂) : Fock(U ;P)→ Fock(U ; P̂)

defined for two opposite modules P, P̂ over U . The element {Ĉ(h)
μ1...μm} ∈

Fock(U ; P̂) corresponding to the element {C(g)
μ1...μn} ∈ Fock(U ;P) is given by a

Feynman rule: each Ĉ
(g)
μ1...μm is expressed as a finite sum over connected stable

graphs, with vertex terms given by C
(h)
μ1,...,μn , h≤ g, and propagator defined geo-

3We also consider the P’s which do not satisfy the third condition: in this case P is called a

pseudo-opposite module.
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metrically in terms of the two opposite modules P, P̂. The construction of a Fock

sheaf will be given in Section 4. We also refer the reader to Section 3 for a more

informal account.

Comparison to Givental and Witten quantizations. Our transformation rule is

given as a finite sum over Feynman graphs and is a direct generalization of

Witten quantization to infinite dimensions. A key point is the use of a certain

algebraic coordinate system on the total space L. Every ingredient in the Feynman

rule has a polynomial or rational expression in the algebraic coordinate system,

and this fact makes evident that the Feynman rule is well defined in infinite

dimensions. On the other hand, when we restrict correlation functions to the

formal neighborhood L̂ of the fiber Lt of L at a point t ∈ M and write the

Feynman rule in a flat coordinate system on L̂, our transformation rule coincides

exactly with the action of Givental’s quantized operator on tame functions.

THEOREM 1.1 (see Theorem 5.14 for a more precise formulation)

The transformation rule T (P,P′) matches with the action of Givental’s upper-

triangular loop group over the formal neighborhood L̂ of the fiber at each point

on the base space.

In Section 5.3, we will adapt the transformation rule to an L2-setting. There we

work with the L2-subspace L2(L) ⊂ L, which is an infinite-dimensional Hilbert

manifold, and describe a transformation rule for holomorphic correlation func-

tions on L2(L). We see that one can define the quantized operator Û for any

linear symplectic transformation U that satisfies a certain “trace class” condi-

tion (see Definitions 5.19, 5.26). This gives a uniform definition of quantization

without insisting that U be upper triangular or lower triangular. We also show in

Remark 5.30 that this Û coincides with Givental’s quantized operator whenever

U is sufficiently close to the identity.

A global section of the Fock sheaf in the semisimple case. There is a simple and

attractive interpretation of Givental’s formula (1.1) in our setting. Suppose that

the flat connection ∇ of the cTP structure is extended in the z-direction with

poles of order 2 along z = 0 such that the pairing (·, ·)F is flat in the z-direction:

this is called a cTEP structure (see Definition 4.4).4 cTP structures that come

from geometry, such as quantum cohomology, are often cTEP structures, not just

cTP structures. We say that a cTEP structure is tame semisimple if the residue

U ∈ End(F/zF) of ∇z∂z is semisimple with distinct eigenvalues. We prove the

following.

THEOREM 1.2 (Definition 7.9, Theorem 7.14)

There exists a canonical global section of the Fock sheaf associated to a tame

4cTEP stands for complete, twistor, extension, pairing.
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semisimple cTEP structure, which coincides with the potential given by Givental’s

formula (1.1) in the formal neighborhood of each point of the base space. We call

this global section the Givental wave function.

We observe, via the Levelt–Turrittin formal decomposition of ∇z∂z , that any

tame semisimple cTEP structure of rank N + 1 is locally isomorphic to the

cTEP structure associated with the quantum cohomology of N +1 points; more-

over, the isomorphism is unique up to (signed) permutation of N + 1 points

(Proposition 7.2). This shows that a tame semisimple cTEP structure admits a

canonical semisimple opposite module Pss (Definition 7.3). Then the Gromov–

Witten potential Z⊗N
pt of N points defines an element of Fock(M,Pss): this is

the Givental wave function above. Teleman’s theorem (see [109, Theorem 1]) can

be rephrased in our language as follows.

THEOREM 1.3 (see Theorem 7.15)

When the quantum cohomology of X is generically semisimple, the total descen-

dant Gromov–Witten potential of X, when viewed as a section of the Fock sheaf,

coincides with the Givental wave function.

This is just a rephrasing of Givental’s formula (1.1) that says that ZX and Z⊗N
pt

are related by a quantized symplectic operator; in our formalism, this quantized

operator arises as the “transition function” T (Pss,Pstd) of the Fock sheaf between

the semisimple opposite module Pss and the standard opposite module Pstd (see

Example 4.16) of the quantum cohomology of X .

Since the Givental wave function is canonically associated to a semisimple

cTEP structure, it is automatically “modular” in the following sense. Opposite

modules P arising from geometry are typically not monodromy invariant, and

therefore, the presentation CP of the Givental wave function with respect to the

polarization P is not single-valued in general. Regarding it as a function on the

universal cover ofM, we have the following transformation property with respect

to a deck transformation γ ∈ π1(M):

(1.2) γ�CP = T (P, γ�P)CP.

Since M typically arises as a moduli space of complex structures, the universal

cover of M should be regarded as an analogue of a Hermitian symmetric space.

Thus, we refer to the property (1.2) as modularity (see also Remark 7.16).

The crepant transformation conjecture in the toric case. Combining our global

quantization formalism with mirror symmetry, we deduce in Section 8.1 a higher-

genus version of Ruan’s celebrated crepant transformation conjecture for compact

toric orbifolds. We fix a convex lattice polytope Δ in Zn containing the origin in

its interior and consider the set Crep(Δ) of weak-Fano toric orbifolds having Δ as

the fan polytope (see Section 8.1.1 for the precise conditions that we impose on

Δ). Toric orbifolds from Crep(Δ) are K-equivalent to each other; moreover, they
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are derived equivalent. These toric orbifolds have the same Landau–Ginzburg

models as mirrors (see [58], [69]), each of them corresponding to a different limit

point of the B-model moduli space. The Landau–Ginzburg mirror produces a

generically semisimple cTEP structure over the B-model moduli space (see [101],

[46], [47], [7], [38], [71], [100]). Therefore, the Fock sheaf FockB associated to the

B-model admits a global section given by the Givental wave function. Mirror

symmetry for toric orbifolds (see [32], [71]) and Teleman’s theorem (see [109,

Theorem 1]) immediately imply the following result.

THEOREM 1.4 (see Theorem 8.1)

There exists a global section of the B-model Fock sheaf FockB which restricts

to the total descendant Gromov–Witten potential ZX of X ∈ Crep(Δ) (viewed

as a section of FockB) in a neighborhood of the large-radius limit point of X. In

other words, the Gromov–Witten potentials ZX with X ∈ Crep(Δ) are analytically

continued to each other as sections of the B-model Fock sheaf.

This establishes the higher-genus crepant transformation conjecture for toric orb-

ifolds in Crep(Δ). Using the L2-formalism in Section 5.3, we recover an earlier

formulation of the higher-genus crepant transformation conjecture (see [19], [38],

[40]) as follows.5

THEOREM 1.5 (see Corollary 8.2)

Let X1, X2 be compact weak-Fano toric orbifolds from Crep(Δ). There exists

a linear symplectic transformation Uγ : HX1 →HX2 depending on a path γ on

the B-model moduli space connecting the two large-radius limit points such that,

under analytic continuation along γ, we have

Z2 ∝ ÛγZ1,

where Zi is the total descendant Gromov–Witten potential of Xi.

In our recent joint work with Jiang [36], we computed the symplectic trans-

formation Uγ explicitly for a certain path γ and showed that it arises from a

composition of Fourier–Mukai transformations FM : Db(X1) ∼= Db(X2) via the

Γ̂-integral structure in quantum cohomology (see [71], [75]). This means that we

have the following commutative diagram:

Db(X1)
FM

Db(X2)

H̃X1

Uγ

H̃X2

5Note that we do not require any hard Lefschetz hypothesis here (see [19]).
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where the vertical arrow is the map defining the Γ̂-integral structure and H̃Xi is a

multivalued variant of Givental’s symplectic space (see [36]). Note that an auto-

equivalence of Db(X) induces a symplectic transformation of the Givental space

HX via the Γ̂-integral structure, and we expect that the total descendant poten-

tial ZX of X should be modular with respect to the group of autoequivalences.

Our joint work with Jiang [36] implies the following result.

THEOREM 1.6 (see Corollary 8.7)

The total descendant potential ZX for a compact weak-Fano toric orbifold X is

modular with respect to a certain nontrivial subgroup of the group of autoequiva-

lences of the bounded derived category of coherent sheaves on X.

REMARK 1.7

We remark on the analyticity of the genus-zero data with respect to z and its

role in the above Theorems 1.4–1.6. The B-model cTEP structure above can be

in fact analytified in the z-direction and lifted to a TEP structure (see Defini-

tion 4.1) globally over the B-model moduli space (see [101], [46], [47], [7], [38],

[71], [100]).6 Mirror symmetry implies that this global TEP structure restricts

to the quantum cohomology TEP structure of each X ∈ Crep(Δ) on a neighbor-

hood of the large-radius limit point of X : this is the content of the genus-zero

crepant transformation conjecture (see [38], [72], [40]; this was proved in [36] for

the most general setup for toric stacks). In Theorem 1.4, we do not need this lift

to a TEP structure, since the analytic structure of the Fock sheaf depends only

on the underlying cTEP structure. On the other hand, in order to define a semi-

infinite period map (see Sections 3.3 and 9.3) of the genus-zero data, we need

its analyticity in z. This analyticity enables us to compare Givental’s symplec-

tic spaces HX1 ,HX2 via analytic continuation along the path γ. The symplectic

transformation Uγ : HX1 →HX2 in Theorem 1.5 arises in this way and matches

up the Lagrangian cones encoding the information of the genus-zero theory:

LX2 =UγLX1 .

Anomaly equation. In our global quantization formalism, we also allow polariza-

tions P which are not parallel alongM (see footnote 3 on page 698). In this case,

the connection ∇ on the tangent bundle TL is not flat, and correlation func-

tions C
(g)
μ1...μn fail to satisfy the jetness condition. We have instead the following

anomaly equation.

THEOREM 1.8 (Theorem 4.86)

Correlation functions under a nonparallel polarization P satisfy the anomaly

equation

6TEP stands for twistor, extension, pairing.
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C(g)
μ1...μn

=∇μ1C
(g)
μ2...μn

+
1

2

∑
{2,...,n}=I�J

k+l=g

C(k)
μI ,αΛ

αβ
μ1

C
(l)
μJ ,β

+
1

2
C

(g−1)
μ2...μnαβ

Λαβ
μ1

,

where Λαβ
μ is a tensor which measures the deviation of P from being parallel.

In Section 9, we consider a cTP structure equipped with a real structure, which

we call a TRP structure.7 We impose the condition that the TRP structure is

pure (see Definition 9.6). Quantum cohomology or its B-model counterpart are

often equipped with a natural real structure and give examples of pure TRP

structures (see [103], [66], [74]). For a pure TRP structure, we can consider a

polarization which is obtained as the complex conjugate of F. Such a polarization

is called the Kähler polarization or holomorphic polarization in the context of

geometric quantization. This complex-conjugate polarization is intrinsic to the

TRP structure, and therefore, if we have a single-valued section of the Fock sheaf

(such as the Givental wave function), then its presentation with respect to this

gives a single-valued function. This should be a useful and important property.

A drawback of this polarization is that the corresponding correlation functions

are not holomorphic. The antiholomorphic dependence is described precisely by

the holomorphic anomaly equation.

THEOREM 1.9 (Proposition 9.34)

Correlation functions under the complex-conjugate polarization satisfy the fol-

lowing holomorphic anomaly equation:

0 = ∂μ1
C(g)

μ2...μn
+

1

2

∑
{2,...,n}=I�J

k+l=g

C(k)
μI ,αΛ

αβ
μ1

C
(l)
μJ ,β

+
1

2
C

(g−1)
μ2...μnαβ

Λαβ
μ1

,

where Λαβ
μ is a tensor associated to the TRP structure.

This is analogous to the holomorphic anomaly equation of Bershadsky–Cecotti–

Ooguri–Vafa [11], [12]. Given a parallel polarization P of the TRP structure, we

introduce a positive scalar function on the baseM, called the half-density metric.

This can be thought of heuristically as a Hermitian metric on the half-density

line bundle “det(T ∗L)1/2” of L (see Definition 9.41). The genus-one potential

can be viewed as a holomorphic section of det(T ∗L)1/2, and the holomorphic

anomaly equation at genus one is a formula for the curvature of det(T ∗L)1/2 (see

(9.15) and [11]). The singularities and global properties of this metric will be the

subject of a future study.

Relation to other work

In this article we focus on the construction of a Fock sheaf and its fundamen-

tal properties, but we only discuss how to construct a canonical section of the

7TRP stands for twistor, real, pairing.
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Fock sheaf in the semisimple case (where we use Givental’s formula). To give a

section of the Fock sheaf in general, we certainly need more data from geome-

try. An approach based on Calabi–Yau categories and topological quantum field

theory has been proposed by Costello [41], [42], Kontsevich–Soibelman [82], and

Katzarkov–Kontsevich–Pantev [76]. Another approach based on renormalization

and Bershadsky–Cecotti–Ooguri–Vafa (BCOV) theory has been developed by

Costello–Li [43], [89], [90]; using a chain-level version of Givental’s symplectic

space, they construct a mathematical version of the higher-genus B-model. These

works should give a canonical global section of the Fock sheaf. We also remark

that the approach based on Givental’s formula (as in this article) has been taken

by several authors (see [94], [84], [95], [87]); in particular, Milanov–Ruan [94]

showed that the Gromov–Witten potential of an elliptic orbifold P1 is a quasi-

modular form using Givental’s formula.

Plan of the article

We begin by fixing notation for various objects in Gromov–Witten theory (Sec-

tion 2). We give an informal sketch of our quantization framework in Section 3

and give the rigorous construction in Section 4. In Section 5 we explain the pre-

cise connection between our quantization formalism and Givental’s. Section 6

describes how the Gromov–Witten potential fits into our framework. Section 7

treats the semisimple case; in particular, we explain how Givental’s formula (1.1)

gives rise to a global section of the Fock sheaf. In Section 8 we give two appli-

cations of our formalism to mirror symmetry, proving the higher-genus crepant

transformation conjecture for toric orbifolds in Section 8.1 and discussing mir-

ror symmetry for Calabi–Yau manifolds in Section 8.2. In Section 9 we describe

how the holomorphic anomaly equation of Bershadsky, Cecotti, Ooguri, and Vafa

arises from the anomaly equation for curved polarizations given in Section 4.13.

2. Notation in Gromov–Witten theory

We use the same notation as [34]. Let X be a smooth projective variety, and let

HX be the even part of H•(X;Q).

2.1. Gromov–Witten invariants
Let Xg,n,d denote the moduli space of n-pointed genus-g stable maps to X of

degree d ∈H2(X;Z). Write

〈a1ψl1
1 , . . . , anψ

ln
n 〉Xg,n,d =

∫
[Xg,n,d]vir

n∏
i=1

ev∗i (ai)∪ψli
i ,(2.1)

where a1, . . . , an ∈HX ; evi : Xg,n,d→X is the evaluation map at the ith marked

point; ψ1, . . . , ψn ∈ H2(Xg,n,d;Q) are the universal cotangent line classes;

l1, . . . , ln are nonnegative integers; and the integral denotes the cap product with

the virtual fundamental class (see [10], [88]). The right-hand side of (2.1) is a
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rational number, called a Gromov–Witten invariant of X (if li = 0 for all i) or a

gravitational descendant (if any of the li’s are nonzero).

2.2. Bases for cohomology and Novikov rings
Fix bases φ0, . . . , φN and φ0, . . . , φN for HX such that

(2.2)

• φ0 is the identity element 1 ∈HX ;

• φ1, . . . , φr is a nef Z-basis for the free part of H2(X;Z)⊂HX ;

• each φi is homogeneous;

• (φi)
i=N
i=0 and (φj)j=N

j=0 are dual with respect to the Poincaré pairing.

Note that r is the rank of H2(X). Define the Novikov ring Λ =Q[[Q1, . . . ,Qr]],

and for d ∈H2(X;Z), write Qd =Qd1
1 · · ·Qdr

r where di = d · φi.

2.3. Quantum cohomology
Let t0, . . . , tN be the coordinates of t ∈HX defined by the basis φ0, . . . , φN , so

that t= t0φ0+ · · ·+ tNφN . Define the genus-zero Gromov–Witten potential F 0
X ∈

Λ[[t0, . . . , tN ]] by

F 0
X =
∑

d∈NE(X)

∞∑
n=0

Qd

n!
〈t, . . . , t〉X0,n,d,

where the first sum is over the set NE(X) of degrees of effective curves in X . This

is a generating function for genus-zero Gromov–Witten invariants. The quantum

product ∗ is defined in terms of the third partial derivatives of F 0
X :

(2.3) φi ∗ φj =

N∑
h=0

∂3F 0
X

∂ti ∂tj ∂th
φh.

The product ∗ is bilinear over Λ and defines a formal family of algebras on

HX ⊗ Λ parameterized by t0, . . . , tN . This is the quantum cohomology or big

quantum cohomology of X .

We have defined big quantum cohomology as a formal family of algebras,

that is, in terms of the ring of formal power series Q[[Q1, . . . ,Qr]][[t
0, . . . , tN ]].

In many cases, however, including the examples discussed in [34], the genus-zero

Gromov–Witten potential F 0
X converges to an analytic function. By this we mean

the following. The divisor equation (see [80, Section 2.2.4]) implies that

F 0
X ∈Q[[t0,Q1e

t1 , . . . ,Qre
tr , tr+1, tr+2, . . . , tN ]],

and one can often show, for example by using mirror symmetry, that F 0
X is the

power series expansion of an analytic function

F 0
X ∈Q{t0,Q1e

t1 , . . . ,Qre
tr , tr+1, tr+2, . . . , tN}.

We can then set Q1 = · · ·=Qr = 1, obtaining an analytic function

F 0
X ∈Q{t0, et1 , . . . , etr , tr+1, tr+2, . . . , tN}
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of the variables t0, . . . , tN defined in a region{
|ti|< εi, i= 0 or r < i≤N,

�ti� 0, 1≤ i≤ r.
(2.4)

We refer to the limit point{
ti = 0, i= 0 or r < i≤N,

�ti→−∞, 1≤ i≤ r

as the large-radius limit point. When F 0
X converges to an analytic function in

the sense just described, the quantum product ∗ then defines a family of alge-

bra structures on HX that depends analytically on parameters t0, . . . , tN in the

neighborhood (2.4) of the large-radius limit point.

2.4. The Dubrovin connection
Consider HX ⊗ Λ as a scheme over Λ, and let M be a formal neighborhood of

the origin in HX ⊗Λ. The Euler vector field E on M is

(2.5) E = t0
∂

∂t0
+

r∑
i=1

ρi
∂

∂ti
+

N∑
i=r+1

(
1− 1

2
degφi

)
ti

∂

∂ti
,

where c1(X) = ρ1φ1 + · · ·+ ρrφr. The grading operator μ : HX →HX is defined

by

(2.6) μ(φi) = degφi −
1

2
dimCX.

Let π : M×A1→M denote projection to the first factor. The extended Dubrovin

connection is a meromorphic flat connection ∇ on π∗TM∼= HX × (M× A1),

defined by

∇ ∂
∂ti

=
∂

∂ti
− 1

z
(φi∗), 0≤ i≤N,

∇z ∂
∂z

= z
∂

∂z
+

1

z
(E∗) + μ, where z is the coordinate on A1.

Together with the pairing on TM induced by the Poincaré pairing, the Dubrovin

connection equips M with the structure of a formal Frobenius manifold with

extended structure connection (see [91]).

The Dubrovin connection admits a canonical fundamental solution (see, e.g.,

[97, Proposition 2], [71, Proposition 2.4]) L ∈ End(HX)⊗Λ[[t]][[z−1]], defined by

(2.7) L(t, z)v = v+
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈 v

z −ψ
, t, . . . , t, φε

〉X
0,n+2,d

φε,

where v ∈HX . The expression v/(z−ψ) in the correlator should be expanded as

the series
∑∞

n=0 vψ
nz−n−1. This satisfies ∇∂/∂ti(L(t, z)v) = 0 for all i= 0, . . . ,N .

The fundamental solution also satisfies the unitarity property(
L(t,−z)v,L(t, z)w

)
HX

= (v,w)HX
, for all v, w ∈HX ,
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where (·, ·)HX
denotes the Poincaré pairing on HX . Hence, the inverse funda-

mental solution M(t, z) := L(t, z)−1 is identified with the adjoint of L(t,−z):

(2.8) M(t, z)v = v+
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈 φε

−z −ψ
, t, . . . , t, v

〉X
0,n+2,d

φε.

The divisor equation (see [1, Theorem 8.3.1]) for descendant invariants shows

that

(2.9)

M(t, z)v

= e−δ/z
(
v+
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

ed·δQd

n!

〈 φε

−z −ψ
, t′, . . . , t′, v

〉X
0,n+2,d

φε

)
,

where t = δ + t′, δ ∈H2(X), and t′ ∈
⊕

p �=1H
2p(X). This form will be helpful

when we specialize the Novikov variables Qi to 1 in the fundamental solutions.

If the genus-zero Gromov–Witten potential F 0
X converges to an analytic func-

tion, as discussed in Section 2.3 above, then the extended Dubrovin connection

with Q1 = · · ·=Qr = 1 depends analytically on t in a neighborhood (2.4) of the

large-radius limit point and defines an analytic Frobenius manifold with extended

structure connection. The fundamental solution with Q1 = · · · = Qr = 1 then

depends analytically on both t and z, where t lies in the neighborhood (2.4) and

z is any point of C×.

2.5. Gromov–Witten potentials
We introduce various generating functions for Gromov–Witten invariants. They

belong to certain rings of formal power series (in infinitely many variables), for

which we refer the reader to [34, Section 2.5].

Let (t0, t1, t2, . . .) be an infinite sequence of elements of HX , and write tn =

t0nφ0 + · · ·+ tNn φN . The genus-g descendant potential

(2.10) Fg
X :=

∑
d∈NE(X)

∞∑
n=0

∞∑
l1=0

· · ·
∞∑

ln=0

Qd

n!
〈tl1ψl1

1 , . . . , tlnψ
ln
n 〉Xg,n,d

is a generating function for genus-g gravitational descendants of X . The total

descendant potential

(2.11) ZX := exp
( ∞∑
g=0

�g−1Fg
X

)
is a generating function for all gravitational descendants of X .

Consider now the morphism pm : Xg,m+n,d→Mg,m that forgets the map and

the last n marked points and then stabilizes the resulting prestable curve. Write

ψm|i ∈H2(Xg,n+m,d;Q) for the pullback along pm of the ith universal cotangent

line class on Mg,m, and write
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(2.12)

〈a1ψ̄k1
1 , . . . , amψ̄km

m : b1ψ
l1
m+1, . . . , bnψ

ln
m+n〉Xg,m+n,d

=

∫
[Xg,m+n,d]vir

m∏
i=1

(
ev∗i (ai)∪ ψki

m|i
)
·

n∏
j=1

(
ev∗m+j(bj)∪ψ

lj
m+j

)
,

where a1, . . . , am ∈HX ; b1, . . . , bn ∈HX ; and k1, . . . , km, l1, . . . , ln are nonnegative

integers.

As above, consider t ∈ HX with t = t0φ0 + · · · + tNφN and a sequence

(y0, y1, y2, . . . ) of elements in HX with yn = y0nφ0 + · · · + yNn φN . The genus-g

ancestor potential is

(2.13)

F̄g
X :=

∑
d∈NE(X)

∞∑
n=0

∞∑
m=0

∞∑
l1=0

· · ·

∞∑
lm=0

Qd

n!m!
〈yl1 ψ̄l1

1 , . . . , ylm ψ̄lm
m :

n︷ ︸︸ ︷
t, . . . , t〉Xg,m+n,d,

and the total ancestor potential is

(2.14) AX := exp
( ∞∑
g=0

�g−1F̄g
X

)
.

We will often want to emphasize the dependence of the ancestor potentials on the

variable t, writing F̄g
t for F̄g

X and At for AX . Note that the ancestor potentials

(2.13) do not contain terms with g = 0 and m< 3 or with g = 1 and m= 0, as

in these cases the space Mg,m is empty and so the map pm : Xg,m+n,d→Mg,m

is not defined.

Let (t0, t1, t2, . . .) and (y0, y1, y2, . . .) be infinite sequences of elements of HX

with tn = t0nφ0 + · · ·+ tNn φN and yn = y0nφ0 + · · ·+ yNn φN . Define the genus-g jet

potential

Wg
X :=

∑
d∈NE(X)

∞∑
m=0

∞∑
k1=0

· · ·
∞∑

km=0

∞∑
n=0

∞∑
l1=0

· · ·

∞∑
ln=0

Qd

n!m!
〈yk1 ψ̄

k1
1 , . . . , ykm ψ̄km

m : tl1ψ
l1
m+1, . . . , tlnψ

ln
m+n〉Xg,m+n,d.

We write WX =
∑∞

g=0 �
g−1Wg

X . The total jet potential is

(2.15) exp(WX) = exp
( ∞∑
g=0

�g−1Wg
X

)
.

The coordinates (t0, t1, t2, . . . ) are used for the descendant potentials and the

coordinates (y0, y1, y2, . . . ) are used for the ancestor potentials. We sometimes

also use the coordinates (q0, q1, q2, . . . ) with qn = q0nφ0 + · · ·+ qNn φN related to

(t0, t1, t2, . . . ) or (y0, y1, y2, . . . , ) by the identification

qin =−δn,1δi,0 + tin, qin =−δn,1δi,0 + yin.

This identification is called the dilaton shift (see also Section 3.2 below).



A Fock sheaf for Givental quantization 709

2.6. The orbifold case
The discussion in this article applies to the case where X is a smooth algebraic

orbifold or Deligne–Mumford stack, rather than a smooth algebraic variety. The

discussion above goes through in this situation with minimal changes, as follows.

• We take HX to be the even part8 of the Chen–Ruan orbifold cohomology

H•
CR(X;Q) rather than the even part of the ordinary cohomology H•(X;Q).

• We replace

– the usual grading on H•(X) by the age-shifted grading on H•
CR(X);

– the Poincaré pairing on H•(X) by the orbifold Poincaré pairing on

H•
CR(X).

Note that H2(X)⊂H2
CR(X), and so definition (2.2) makes sense in the orbifold

context.

• We define correlators (2.1) and (2.12) using orbifold Gromov–Witten

invariants [1] rather than usual Gromov–Witten invariants. There are two small

differences:

– a subtlety in the definition of ev∗k, discussed in [1] and [39, Section 2.2.2];

– the degree d of an orbifold stable map f : Σ→X lies in H2(|X|;Z), where
|X| is the coarse moduli space of X .

Having made these changes, the discussion in Sections 2.1–2.5 applies to orbifolds

as well. In this context, the family of algebras (HX ⊗ Λ,∗) is called orbifold

quantum cohomology (see [23]).

3. Global quantization: Motivation

In this section, as an introduction to global quantization, we review Givental’s

symplectic formalism (see [61], [33], [64]) from the viewpoint of geometric quan-

tization. This section is not logically necessary and can safely be skipped by the

impatient reader, but provides motivation and context for the rest of the article.

Roughly speaking one can think of our Fock space as obtained from the quantiza-

tion of Givental’s infinite-dimensional symplectic space H and think of the total

descendant potential ZX as an element of the Fock space. The aim of this sec-

tion is to give an informal account of the ideas behind the rigorous construction,

which is given in Sections 4 and 5.3.

3.1. Givental’s symplectic vector space
Givental’s quantization is based on the Hilbert space

H=HX ⊗Q L2(S1,C)

equipped with the symplectic form

8Here we mean the even part of the rational cohomology of the inertia stack IX with respect

to the usual grading on H•(IX), not the age-shifted grading (cf. [36, Section 2.2]).
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Ω(f, g) =
1

2πi

∫
S1

(
f(−z), g(z)

)
HX

dz.

Here L2(S1,C) denotes the space of complex-valued L2-functions on S1 and

(α,β)HX
=
∫
X
α ∪ β is the Poincaré pairing. The coordinate z on S1 coincides

with the variable that appeared in the Dubrovin connection (see Section 2.4).

We call (H,Ω) the Givental space for X . Each element f(z) ∈ H has a Fourier

expansion

f(x) =

∞∑
n=0

qnz
n +

∞∑
n=0

pn(−z)−n−1

with qn, pn ∈HX ⊗C. We have the decomposition H=H+ ⊕H−, where

H+ =
{
q=

∞∑
n=0

qnz
n ∈H
}
, H− =

{
p=

∞∑
n=0

pn(−z)−n−1 ∈H
}
.(3.1)

These are maximally isotropic subspaces. We set

qn =

N∑
i=0

qinφi, pn =

N∑
i=0

pn,iφ
i(3.2)

and regard {qin, pn,i : 0 ≤ n <∞,0 ≤ i ≤ N} as a complex coordinate system

on H. These are holomorphic Darboux coordinates in the sense that

Ω =

∞∑
n=0

N∑
i=0

dpn,i ∧ dqin.

3.2. Dilaton shift
Let us denote by Fg the genus-g descendant Gromov–Witten potential (2.10)

with Novikov variables specialized9 to 1 (i.e., Q1 = · · ·=Qr = 1). We can regard

Fg as a holomorphic function on an open subset U of H+

Fg : U →C

via the dilaton shift

q= t− z1,

where 1 ∈HX is the identity element, and we set

t=

∞∑
n=0

N∑
i=0

tinφiz
n, q=

∞∑
n=0

N∑
i=0

qinφiz
n.

The open subset U contains a point −z1 + t with t in a neighborhood (2.4)

of the large-radius limit point and Fg|−z1+t gives the nondescendant genus-g

Gromov–Witten potential F g(t) with the Novikov variables specialized to 1.

9In order to make sense of this specialization, we need a certain convergence assumption for

Fg (see [34, Section 8.1]). This technical point will be explained in Definition 6.7 below.
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3.3. Lagrangian submanifold and TP structure
Here we introduce the Givental cone for X , a submanifold L of H which encodes

all information about the genus-zero Gromov–Witten theory of X . Define L to

be the following submanifold of H:

L=
{
q+ p
∣∣∣ pn,i = ∂F0

∂qin
(q)
}
,

where we set p=
∑∞

n=0

∑N
i=0 pn,iφ

i(−z)−n−1. This is Lagrangian, since it is the

graph of the differential dF0. Moreover, it has the following special geometric

properties (see [33], [64]):

• L is a cone, that is, it is preserved by scalar multiplication;

• Tf , the tangent space of L at f ∈ L, is tangent to L exactly along zTf .

This means that

(i) zTf ⊂L;
(ii) for g ∈ zTf , we have Tg = Tf ;

(iii) Tf ∩L= zTf .

The Lagrangian submanifold L is a submanifold-germ around the unique family

of points on L of the form

t �−→ J(t,−z) =−z1+ t+ pt, pt ∈H−,

with t ∈HC
X in a neighborhood (2.4) of the large-radius limit point, and the above

properties should be understood in the sense of germs. The set of all tangent

spaces to L forms a finite-dimensional family: every tangent space coincides with

Tt = TJ(t,−z)L for a unique t ∈ HC
X . The point J(t,−z) on L is called the J -

function. Moreover, we can recover the Lagrangian submanifold L as the union

of tangent spaces:

L=
⋃
f∈L

zTf =
⋃

t∈HC

X

zTt.

The special geometric properties of L can be rephrased as Griffiths transversality

for the family {Tt} of semi-infinite subspaces; {Tt} is an example of Barannikov’s

[6] variation of semi-infinite Hodge structure.

We saw that L is ruled by infinite-dimensional spaces zTt. The ruling struc-

ture can be understood via the identification of L with the total space of a

certain infinite-dimensional vector bundle, as follows. Consider the vector bun-

dle H×HC
X →HC

X endowed with the (nonextended) Dubrovin connection ∇=

d− 1
z

∑N
i=0(φi∗)dti (see Section 2.4). The inverse M(t, z) = L(t, z)−1 of the fun-

damental solution (see (2.8)) defines an isomorphism of flat bundles

M : (H×HC
X →HC

X ,∇)
∼−→ (H×HC

X →HC
X , d).

Here Novikov variables have (again) been specialized to 1 in ∇, L(t, z) and

M(t, z). We have

M(t, z)(−z1) = J(t,−z), M(t, z)zH+ = zTt.
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Figure 1. The subbundle zH+ × HC

X → HC

X (left) and the ruled Lagrangian submanifold L (right). By

identifying all the fibers H by ∇-parallel transport in the left picture, we get the picture on the right. The

zero section collapses to the origin and the section −z1 goes to the J -function J(t,−z).

Therefore, the Lagrangian submanifold L is obtained as the projection to the

fiber H of the image of the subbundle zH+ ×HC
X under the map M :

L= (prH ◦M)(zH+ ×HC
X),

and the bundle structure zH+×HC
X →HC

X gives the ruling on L (see Figure 1).

Using this identification, we can introduce two different coordinate systems

on L.
Flat coordinates (q0, q1, q2, . . . ) �→ (q, dF0(q)). These are the coordinates given

by the projection to H+; here qn =
∑N

i=0 q
i
nφi ∈HC

X .

Algebraic coordinates (t, x1, x2, . . . ) �→M(t, z)(x1z + x2z
2 + x3z

3 + · · · ). These

are the coordinates coming from the standard coordinates on zH+ ×HC
X ;

here t, xn ∈HC
X .

We saw that the Lagrangian submanifold L can be identified with the total

space of the infinite-dimensional vector bundle zH+ ×HC
X →HC

X . This infinite-

dimensional vector bundle arises from the finite-dimensional vector bundle

F =HC
X × (HC

X ×Cz)→HC
X ×Cz

as its pushforward π∗(zO(F )) along the projection π : HC
X ×Cz →HC

X ; here Cz

denotes the complex plane with coordinate z. The finite-dimensional vector bun-

dle F over HC
X × Cz is endowed with a flat connection ∇ and a ∇-flat pairing

(·, ·)F . The structure (F,∇, (·, ·)F ) here is given the name TP structure in Def-

inition 4.1 below;10 this terminology is borrowed from Hertling [66]. The global

quantization formalism in Section 4 is based on a closely related structure called

a cTP structure, for “complete TP” structure: we replace the Lagrangian sub-

manifold L above with the total space of a cTP structure. The use of algebraic

coordinates will be important there.

10TP stands for twistor, pairing.
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REMARK 3.1

Both TP structures and variations of semi-infinite Hodge structure are general-

izations of the notion of variation of Hodge structure (VHS) and, in fact, reduce to

it when we deal with the small quantum cohomology of a 3-dimensional Calabi–

Yau manifold. These structures originate from K. Saito’s [104] theory of primitive

forms and have been rediscovered in the context of integrable systems, string the-

ory, and mirror symmetry (see [49], [6], [75]).

3.4. Geometric quantization
The quantization of a real symplectic manifold H is given by a Hilbert space

Fock(H) called the Fock space and an assignment of an operator F̂ acting on the

Fock space Fock(H) to a smooth function F : H→R such that

[F̂1, F̂2] = i� ̂{F1, F2}+O(�2),

where {·, ·} is the Poisson bracket and � is a formal variable. In geometric quanti-

zation, the construction of the Fock space depends on the choice of a polarization

P , that is, an integrable Lagrangian subbundle of TH ⊗ C. To emphasize the

dependence on P , we denote by Fock(H;P ) the Fock space associated to P . We

illustrate this in the following example.

EXAMPLE 3.2 (see [78], [113])

Take H to be the symplectic vector space R2n with coordinates (pμ, q
μ), μ =

1, . . . , n. Let ω =
∑n

μ=1 dpμ ∧ dqμ be the symplectic form on H . The prequantum

line bundle is a Hermitian line bundle L→H endowed with a Hermitian con-

nection ∇ such that the curvature ∇2 equals −iω/�, where � is a positive real

parameter in this example. We take the following prequantum line bundle:

L=H ×C, ∇= d− i

2�

n∑
μ=1

(pμdq
μ − qμdpμ).

The connection ∇ here is Sp(H)-invariant. For F ∈C∞(H,R), we define

F̂ := i�∇XF
+ F,

where XF is the Hamiltonian vector field of F (i.e., ιXF
ω = dF ). This operator

acts on the space C∞(H,L) of sections of L, and we have [F̂ , Ĝ] = i�{̂F,G}. This
is called prequantization. However, C∞(H,L) is too big, and we need to take a

smaller subspace. Let P ⊂H ⊗C be a Lagrangian subspace. We can view P as a

subbundle of TH⊗C which is invariant under translation. The space of polarized

sections of L is defined to be

ΓP (H,L) =
{
s ∈C∞(H,L) :∇V s= 0 for all V ∈ P

}
.

Note that [∇V1 ,∇V2 ] = 0 for V1, V2 ∈ P , because P is Lagrangian and ∇2 =

−iω/�. There are two important special cases.



714 Tom Coates and Hiroshi Iritani

• When P ⊂H , it is called the real polarization. In this case, ΓP (H,L) is

the space of sections of L which are covariantly constant along each leaf v + P ,

v ∈H .

• When P ⊕ P = H ⊗ C, it is called a Kähler or holomorphic polariza-

tion. This corresponds to the choice of a complex structure IP on H such that

ω(v1, v2) = ω(IP v1, IP v2) and P = (H⊗C)0,1. In this case, ΓP (H,L) is the space

of holomorphic sections of L (with respect to IP ).

Suppose that P is nonnegative, that is, that iω(v, v)≥ 0 for all v ∈ P . Then one

can introduce a certain L2-metric on the space of polarized sections (see [78])

and define the Fock space Fock(H;P ) to be the Hilbert space of L2-polarized sec-

tions. If the flow generated by XF preserves the polarization P as a subbundle

of TH ⊗ C, then the operator F̂ preserves the subspace ΓP (H,L) and acts on

the Fock space (possibly as an unbounded operator). In particular, the quanti-

zations of the linear functions pμ, q
μ act on Fock(H,P ) and satisfy the canonical

commutation relation [q̂μ, p̂ν ] = i�δμν . Thus, Fock(H,P ) becomes an irreducible

unitary representation of the Heisenberg algebra. Because an irreducible unitary

representation of the Heisenberg algebra is unique up to isomorphism (the Stone–

von Neumann theorem), Schur’s lemma shows that there exists an isomorphism

TP,P ′ : Fock(H,P )
∼−→ Fock(H,P ′)

of representations of the Heisenberg algebra. This isomorphism TP,P ′ is unique

up to scalar multiplication. For example, when P is the subbundle spanned by

∂/∂pμ and P ′ is spanned by ∂/∂qμ, the isomorphism TP,P ′ is given by the Fourier

transformation

(3.3) ψ(q) �−→ ψ̂(p) =
1

(2π�)n/2

∫
Rn

e−ipq/�ψ(q)dq,

where we identify elements of Fock(H,P ) (resp., of Fock(H,P ′)) as functions

of the qμ’s (resp., of the pμ’s) by restriction to pμ = 0 (resp., to qμ = 0). The

transformation TP,P ′ defines the so-called Segal–Shale–Weil representation; it is

also known as a Bogoliubov transformation.

We regard the Givental space H as a complexification of a real symplectic

vector space HR and try to apply the above scheme to it. However, since H
is infinite-dimensional, the quantization has many difficulties. For example, it

is known that there are uncountably many irreducible representations of the

infinite-dimensional Heisenberg algebra (see [54], [55]), and so the argument in

Example 3.2 fails in our situation. The following heuristic discussion will be only

used as a motivation.11 Consider the prequantum line bundle

L=H×C, ∇= d− 1

2�

∞∑
n=0

N∑
i=0

(pn,idq
i
n − qindpn,i).

11For example, we do not construct the Fock space as a representation of the Heisenberg

algebra. Our Fock space is not even a vector space.
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Here we dropped the imaginary unit, since we will ignore the metric. As the

standard polarization of H, we take P =H−, which is spanned by ∂/∂pn,i. In

this case, a polarized section s of L should take the form

s= exp
(
− 1

2�
q · p
)
f(q), q · p=

∞∑
n=0

N∑
i=0

qinpn,i,

for some holomorphic function f on H+. Following Givental’s [61] convention,

we define the quantized operator of a linear function F : H→C as

F̂ :=
1√
�
(−�∇XF

+ F ).

Then it is easy to check that the actions of pn,i, q
i
n on polarized sections are

given by

p̂n,i
(
e−

1
2�q·pf(q)

)
= e−

1
2�q·p
(√

�
∂

∂qin
f(q)
)
,

q̂in
(
e−

1
2�q·pf(q)

)
= e−

1
2�q·p
( qin√

�
f(q)
)
.

These give the Schrödinger representation. By dilaton shift we regard the total

descendant potential Z = exp(
∑∞

g=0 �
g−1Fg) of X (see (2.11)) as a function on

H+. (Here again all Novikov variables Q1, . . . ,Qr have been specialized to 1.) We

regard the total descendant potential as a polarized section of L by the extension

(3.4) Z(q,p) = exp
(
− 1

2�
q · p
)
Z(q).

Let us consider the restriction of Z to the Lagrangian submanifold L. Note that

F0 is homogeneous of degree two in q since L is a cone. Therefore,

Z ′(q) =Z(q,p)|(q,p)∈L = exp
(
− 1

2�
q · dF0

)
Z(q) = exp

(
−1

�
F0
)
Z(q)

= exp
(
F1(q) + �F2(q) + �2F3(q) + · · ·

)
,

where the genus-zero potential cancelled in the second line. Therefore, we can

forget about the genus-zero potential after restricting to L. Moreover, the origi-

nal polarized section can be reconstructed from this restriction if we know the

submanifold L. Therefore, we shall define the Fock space to be the set of certain

functions Z ′ : L→C over L of the form (without genus-zero term)

Z ′ = exp
( ∞∑
g=1

�g−1Fg
)
.

Different choices of polarization give different ways of extending functions Z ′ on

L to H.

REMARK 3.3

Givental [61] defined the quantized operator Û on the Fock space for a linear

symplectic transformation U ∈ Sp(H). In particular, if U(z) is an element of the

loop group LGL(HC
X) satisfying U(−z)†U(z) = 1, then it defines a symplectic
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transformation U of H and its quantization Û. (Here U(−z)† is the adjoint with

respect to the Poincaré pairing on HX .) This is called the Givental group action

on the Fock space. The above interpretation in geometric quantization imme-

diately explains the lower-triangular part of the Givental group action. If the

Fourier expansion of U(z) contains only nonpositive powers in z, then U=U(z)

preserves the standard polarization H−. In this case, we can make it act on

polarized sections s via the “coordinate change” s �→ Ûs := s ◦ U(z)−1. For the

polarized section Z in (3.4), we have

(ÛZ)(p,q) = exp
(
− 1

2�
p · q
)
exp
( 1
2�

W (q,q)
)
Z
([
U(z)−1q(z)

]
+

)
,

where [U(z)−1q(z)]+ ∈ H+ denotes the nonnegative part as a z-series and

W (q,q) is the quadratic form defined by

(3.5) W (q,q) = Ω
([
U(z)−1q(z)

]
+
,
[
U(z)−1q(z)

]
−
)
.

This coincides with Givental’s [61, Proposition 5.3] formula for Û.

3.5. Ancestor-descendant relation
We have seen that the total descendant potential Z gives rise to a polarized

section Z which restricts over L to the potential Z ′ which does not contain the

genus-zero term. A result of Kontsevich–Manin [81, Theorem 2.1], reformulated12

by Givental [61, Section 5], tells us that Z ′ coincides with the total ancestor

potential (2.14) with the zeroth variable y0 set to be zero:

Z ′(q) = eF
1(t)At|y0=0,y1=x1+1,y2=x2,y3=x3,...,

where (t, x1, x2, . . . ) are the algebraic coordinates from page 712. Set x =∑∞
n=1 xnz

n, and note that q and (t,x) are related by q= [M(t, z)x]+. In other

words, for g ≥ 1, we have

Fg(q) = δg,1F
1(t) + F̄g

t |y0=0,y1=x1+1,y2=x2,y3=x3,....

Strictly speaking, this relation is an equality of formal power series over the

Novikov ring. We shall explain how to make sense of it as an equality of analytic

functions in Theorem 6.8 below, where we discuss the specialization to Q1 = · · ·=
Qr = 1.

3.6. Transformation rule and the Fock sheaf
We have so far discussed only local situations, since the Lagrangian submanifold

L is given a priori as a germ. Assume that L is analytically continued to a certain

global submanifold. We would like to construct a Fock sheaf over L by gluing local

Fock spaces. The essential point here is that a transversal polarization may not

exist globally. Take an open covering {Uα} of L. If each Uα is sufficiently small,

then we can choose a polarization Pα ⊂ H which is transversal to L over Uα,

12See Coates–Givental [33, Appendix 2] for a proof.
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Figure 2. We need to take a different polarization on each chart.

that is, Pα � TxL for x ∈ Uα. We take a Lagrangian subspace S ⊂H transversal

to Pα. By the identification H = S ⊕ Pα
∼= T ∗S, we can express Uα ⊂ L as the

graph of the differential dF0 of a quadratic function:

F0 : S→C.

This defines the genus-zero potential over Uα. (Here we identify Uα with a subset

of S via the projection H→ S along Pα.) The third derivatives C
(0)
μνρ = ∂μ∂ν∂ρF0

in linear coordinates {xμ} on S define a well-defined cubic tensor on L, indepen-
dent of the choice of (S,Pα). The tensor

∑
C

(0)
μνρdxμ ⊗ dxν ⊗ dxρ is called the

Yukawa coupling.

We define the local Fock space Fock(Uα;Pα) to be the set of functions

Z ′ : Uα → C of the form Z ′ = exp(
∑∞

g=1 �
g−1Fg) without the genus-zero term.

When Uα ∩Uβ �=∅, we shall define a transformation rule13 (gluing map)

Tαβ : Fock(Uα ∩Uβ ;Pα)→ Fock(Uα ∩Uβ ;Pβ)

induced by the change of polarizations. This defines a sheaf of Fock spaces—the

Fock sheaf—over L. Moreover, if there exists a linear symplectic transformation

U ∈ Sp(H) which leaves the global Lagrangian submanifold invariant (U(L) = L),
then U acts on sections of the Fock sheaf by pullback along U followed by the

transformation rule induced from the difference of polarizations. (In the context

of mirror symmetry, such an automorphism U of L arises from the monodromy

of the mirror family.) For the Fock sheaf so constructed, we can ask the following

questions.

QUESTION 3.4

Does the total descendant potential extend to a global section of the Fock sheaf?

If so, then we ask the following question.

13Our transformation rule Tαβ is defined up to a scalar multiple, due to the ambiguity at
genus one, and TγαTβγTαβ = cαβγ id for some constant cαβγ . Later we ignore the constant

ambiguity and work with the genus-one one-form dF1 rather than the potential function F1

(see Definition 4.56 and Proposition 4.70).
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QUESTION 3.5

Let U ∈ Sp(H) be a symplectic transformation preserving L. Is the global section
invariant under U? (This should imply that the Gromov–Witten potential is

“modular” in an appropriate sense.)

The transformation rule Tαβ is described as follows. Let Tx denote the tangent

space of L at x ∈ L. For each x ∈ Uα∩Uβ , we have Tx⊕Pα = Tx⊕Pβ =H. Since

Tx, Pα, Pβ are Lagrangian subspaces, we can identify Pα, Pβ with the dual space

of Tx via the symplectic form Ω. Take ϕ ∈ T ∗
x , and let vα(ϕ) ∈ Pα, vβ(ϕ) ∈ Pβ

be the corresponding vectors. Then vβ(ϕ)−vα(ϕ) is symplectic-orthogonal to Tx

and, thus, belongs to Tx. Thus, we have a map

Δ(x) : T ∗
x −→ Tx, ϕ �−→ vβ(ϕ)− vα(ϕ).

We can regard Δ(x) as an element of Tx⊗Tx. Then Δ defines a symmetric bivec-

tor field on Uα ∩Uβ . The polarization Pα defines an affine flat structure on Uα,

via the open embedding to the vector space Uα ↪→H/Pα. Let {xμ} be a flat coor-

dinate system on Uα. Write Δ =Δμν∂xμ ⊗ ∂xν . For Z ′
α = exp(

∑∞
g=1 �

g−1Fg
α) ∈

Fock(Uα ∩Uβ ;Pα), we define

(3.6) (TαβZ ′
α)(x) := e

1
2

∫
C(0)

μνρ(x)Δ
μν(x)dxρ

exp
(�
2
Δμν(x)∂yμ∂yν

)
Z ′′

α(x;y)
∣∣∣
y=0

,

where

Z ′′
α(x;y) =Z ′

α(x+ y)e
1
�
(F0(x+y)−F0(x)−(∂μF0(x))yμ− 1

2 (∂μ∂νF0)(x)yμyν).

REMARK 3.6

Take Lagrangian subspaces Sα, Sβ ⊂H transversal to Pα, Pβ , respectively. These

define genus-zero potentials F0
α, F0

β as above, and we set Zα = exp(F0
α/�)Z ′

α,

Zβ = exp(F0
β/�)Z ′

β for Z ′
α ∈ Fock(Uα;Pα), Z ′

β ∈ Fock(Uβ ;Pβ). The definition

(3.6) originates from the asymptotic expansion as �→ 0 of the Fourier-type

transformation (cf. (3.3))

Zβ(x) =

∫
Sα

e−Gαβ(x,x
′)/�Zα(x

′)dx′,

which would make rigorous sense if H were finite-dimensional. In the finite-

dimensional case, this integral representation and its asymptotic expansion were

used by Aganagic–Bouchard–Klemm [2, (2.8)] to describe the transformation of

topological string partition functions. Here Gαβ(x,x
′) is a quadratic function

(the so-called generating function) defined by

dGαβ(x,x
′) =
∑

yμdx
μ −
∑

y′μdx
′μ,

where (xμ, yμ) and (x′μ, y′μ) are Darboux coordinate systems on H compatible

with the decompositions H= Sα ⊕ Pα and H= Sβ ⊕ Pβ , respectively.

REMARK 3.7

The discussion here is far from being rigorous. For instance, in the previous
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remark we assumed that (xμ, x′μ) form a coordinate system on H, which would

hardly be true in our infinite-dimensional setting. In Sections 4.10–4.12, we set up

a correct function space for the Fock space and show that the transformation rule

is indeed well defined. We will give another formulation based on L2-topology in

Section 5.3, which is more similar to the exposition here.

4. Global quantization: General theory

We now construct a rigorous version of the structure sketched out in Section 3.

Let M be a complex manifold, and let OM denote the analytic structure sheaf.

The space M will be the base space of a (c)TP structure. Examples include the

cohomology of a smooth projective variety (A-model TP structure) and the base

space of an unfolding of singularities (B-model TP structure). The discussion

in this section also applies to the case where M is replaced with the formal

neighborhood of a point on it and, in particular, applies to formal Frobenius

manifolds (such as those associated to the A-model or B-model).

4.1. TP and TEP structure
A TP structure is a certain coherent sheaf with extra structure overM×C. Fix

a coordinate z on the complex line C. Let (−) : M× C→M× C be the map

sending (t, z) to (t,−z), and let π : M×C→M be the projection.

DEFINITION 4.1

(1) A TP structure (F ,∇, (·, ·)F ) with base M consists of a locally free

OM×C-module F of rank N + 1 and a flat connection ∇ with pole along z = 0

∇ : F → π∗Ω1
M ⊗OM×C

F
(
M×{0}

)
,

so that for f ∈OM×C, s ∈ F , and tangent vector fields v1, v2 ∈ΘM

∇(fs) = df ⊗ s+ f∇s, [∇v1 ,∇v2 ] =∇[v1,v2],

together with a nondegenerate pairing

(·, ·)F : (−)∗F ⊗OM×C
F →OM×C,

which satisfies (
(−)∗s1, s2

)
F = (−)∗

(
(−)∗s2, s1

)
F ,

d
(
(−)∗s1, s2

)
F =
(
(−)∗∇s1, s2

)
F +
(
(−)∗s1,∇s2

)
F

for s1, s2 ∈ F . Here F(M×{0}) denotes the sheaf of sections of F with poles of

order at most 1 along the divisor M×{0} ⊂M×C.

(2) A TEP structure is a TP structure such that the connection ∇ is

extended in the z-direction with a pole of order 2 along z = 0. More precisely, it

is a TP structure (F ,∇, (·, ·)F ) equipped with a π−1OM-module map

∇z∂z : F →F
(
M×{0}

)
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such that for f ∈OM×C, s, s1, s2 ∈ F , and v ∈ΘM

∇z∂z (fs) = z(∂zf)s+ f∇z∂zs, [∇v,∇z∂z ] = 0,

z∂z
(
(−)∗s1, s2

)
F =
(
(−)∗∇z∂zs1, s2

)
F +
(
(−)∗s1,∇z∂zs2

)
F .

Combining the M-direction with the z-direction, we can view ∇ as a map

∇ : F → (π∗Ω1
M ⊕OM×Cz

−1dz)⊗OM×C
F
(
M×{0}

)
.

REMARK 4.2

These notions are due to Hertling [66]. TEP here stands for twistor, extension,

and pairing. Definitions similar to the one above were given in [38, Definition 2.6]

and [74, Definition 2.1].

EXAMPLE 4.3

An important class of examples of TEP structure is provided by the quantum

cohomology of a projective algebraic variety X . If the genus-zero Gromov–Witten

potential F 0
X converges in the sense of Section 2.3, then as discussed there, we

can specialize Novikov variables, setting Q1 = · · ·=Qr = 1, and regard F 0
X as an

analytic function on an open subset (2.4) ofHX⊗C. Denote this open set byMA.

Then the Dubrovin connection (see Section 2.4) for the quantum cohomology of

X defines a TEP structure over the analytic space M=MA, which we call the

A-model TEP structure for X , by setting

(4.1)

• F =HX ⊗Q OM×C;

• ∇= d− 1
z

∑N
i=0(φi∗)dti +

(
1
z2 (E∗) + 1

zμ
)
dz;

•
(
α(−z), β(z)

)
F =
∫
X
α(−z)∪ β(z);

where E is the Euler vector field (2.5) and μ is the grading operator (2.6). In the

case where the genus-zero Gromov–Witten potential is not known to converge,

the same procedure defines a TEP structure over the formal neighborhood of the

origin in HX ⊗Λ, viewed as a formal scheme over Λ.

4.2. cTP and cTEP structure
A cTP structure is a certain coherent sheaf with extra structure over M× Â1,

where Â1 = Spf C[[z]] denotes the formal neighborhood of zero in C. A sheaf

of modules over M× Â1 is the same thing as a sheaf of OM[[z]]-modules. Let

(−) : M× Â1 →M× Â1 be the map sending (t, z) to (t,−z) as before. For an

OM[[z]]-module F, the structure of an OM[[z]]-module on the pullback (−)∗F is

defined by f(z)(−)∗α= (−)∗f(−z)α for f(z) ∈OM[[z]] and α ∈ F.

DEFINITION 4.4

(1) A cTP structure (F,∇, (·, ·)F) with base M consists of a locally free

OM[[z]]-module F of rank N + 1 and a flat connection ∇ with pole along z = 0

∇ : F→Ω1
M ⊗OM z−1F,
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so that for f ∈OM[[z]], s ∈ F, and tangent vector fields v1, v2 ∈ΘM

∇(fs) = df ⊗ s+ f∇s, [∇v1 ,∇v2 ] =∇[v1,v2],

together with a pairing

(·, ·)F : (−)∗F⊗OM[[z]] F→OM[[z]],

which satisfies (
(−)∗s1, s2

)
F
= (−)∗
(
(−)∗s2, s1

)
F
,

d
(
(−)∗s1, s2

)
F
=
(
(−)∗∇s1, s2

)
F
+
(
(−)∗s1,∇s2

)
F

for s1, s2 ∈ F. The pairing (·, ·)F is assumed to be nondegenerate in the sense that

the induced pairing on F0 := F/zF

(·, ·)F0 : F0 ⊗OM F0→OM

is nondegenerate. We regard z−1F as a subsheaf of F[z−1] := F⊗OM[[z]] OM((z)).

(2) A cTEP structure is a cTP structure such that the connection ∇ is

extended in the z-direction with a pole of order 2 along z = 0. More precisely, it

is a cTP structure (F,∇, (·, ·)F) equipped with an OM-module map

∇z∂z : F→ z−1F

such that for f ∈OM[[z]], s, s1, s2 ∈ F, and v ∈ΘM

∇z∂z (fs) = z(∂zf)s+ f∇z∂zs, [∇v,∇z∂z ] = 0,

z∂z
(
(−)∗s1, s2

)
F
=
(
(−)∗∇z∂zs1, s2

)
F
+
(
(−)∗s1,∇z∂zs2

)
F
.

Combining the M-direction with the z-direction, we can view ∇ as a map

∇ : F→ (Ω1
M ⊕OMz−1dz)⊗OM z−1F.

REMARK 4.5

A TP structure (resp., a TEP structure) in Definition 4.1 gives rise to a cTP

structure (resp., a cTEP structure) by restriction to the formal neighborhood

of z = 0 in M× C. In particular, the A-model TEP structure in Example 4.3

defines the A-model cTEP structure over the formal neighborhood of z = 0. On

the other hand, we do not know if every cTP structure admits an extension to

M×C. The first letter c of cTP stands for complete.

REMARK 4.6

In the remainder of this section we work with cTP structures, without extending

the connection to the z-direction. Consequently, the framework that we construct

applies to cases, such as equivariant quantum cohomology, where the flat con-

nection cannot be extended to the z-direction. An extension to the z-direction

will play an important role when we construct a semisimple opposite module in

Section 7.1 and in certain Virasoro symmetries of the Fock space.
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4.3. Total space of a cTP structure
We begin by studying the geometry of the total space of a cTP structure. The

total space of a cTP structure is an algebraic analogue of the Givental cone L
discussed in Section 3.3.

Let (F,∇, (·, ·)F) be a cTP structure. Set F[z−1] := F⊗OM[[z]] OM((z)). This

is a locally free OM((z))-module. The pairing (·, ·)F induces a symplectic pairing

Ω: F[z−1]⊗OM F[z−1]→OM

defined by

(4.2) Ω(s1, s2) = Resz=0

(
(−)∗s1, s2

)
F
dz.

Note that this is antisymmetric: Ω(s1, s2) =−Ω(s2, s1). We define the dual mod-

ules (znF)∨, n ∈ Z, and F[z−1]∨ as

(znF)∨ := lim−→
l

H omOM(znF/zlF,OM),

F[z−1]∨ := lim←−
n

lim−→
l

H omOM(z−nF/zlF,OM).
(4.3)

There is a sequence of natural projections

F[z−1]∨ � · · ·� (z−2F)∨ � (z−1F)∨ � F∨ � (zF)∨ � · · · .

The dual (znF)∨ has the structure of an OM[[z]]-module such that the action of

z is nilpotent. It is locally isomorphic to (OM((z))/OM[[z]])⊕(N+1) as an OM[[z]]-

module, where N + 1 is the rank of F. Also F[z−1]∨ is a locally free OM((z))-

module. The dual flat connection ∇∨ is defined by

∇∨ : (z−1F)∨→ F∨ ⊗OM Ω1
M, 〈∇∨ϕ, s〉 := d〈ϕ, s〉 − 〈ϕ,∇s〉.(4.4)

The symplectic pairing gives an isomorphism

F[z−1]∼= F[z−1]∨, s �→ ιsΩ=Ω(s, ·),

which in turn induces the dual symplectic pairing Ω∨ on F[z−1]∨

(4.5) Ω∨ : F[z−1]∨ ⊗OM F[z−1]∨→OM.

DEFINITION 4.7

The total space L of a cTP structure (F,∇, (·, ·)F) is the total space of the infinite-
dimensional vector bundle associated to zF. As a set, L consists of all pairs (t,x)

such that t ∈M and x ∈ zFt. Let pr : L→M denote the natural projection.

We endow L with the structure of a ringed space so that we can regard it as a

“fiberwise algebraic variety” overM. For a connected open set U ⊂M such that

F|U is a free OU [[z]]-module, the ring of regular functions on pr−1(U) is defined

to be the polynomial ring over O(U):

(4.6) O
(
pr−1(U)

)
:= Sym•

O(U)Γ
(
U, (zF)∨

)
.

A basis of open sets of L is given by the complements in pr−1(U) of the zero-loci

of regular functions in O(pr−1(U)) for all such open sets U ⊂M. For a general



A Fock sheaf for Givental quantization 723

open set V ⊂ L in this topology, O(V ) is the ring14 of C-valued functions which

can be written locally as quotients f/g of some polynomials f, g ∈O(pr−1(U)).

Let U ⊂M be a connected open set such that F|U is a free OU [[z]]-module.

Then by (4.6), O(pr−1(U)) is graded by the degree of polynomials:

On
(
pr−1(U)

)
= Symn

O(U)Γ
(
U, (zF)∨

)
.

The OM-module (zF)∨ has the increasing filtration (zF)∨l = H omOM(zF/zl+2F,

OM). This induces the exhaustive increasing filtration on O(pr−1(U)):

Ol

(
pr−1(U)

)
=O(U) +

∞∑
n=1

∑
l1,...,ln≥0
l1+···+ln≤l

Γ
(
U, (zF)∨l1(zF)

∨
l2 · · · (zF)

∨
ln

)
, l≥ 0,

O−1

(
pr−1(U)

)
:= {0}

such that

{0} ⊂O0

(
pr−1(U)

)
⊂O1

(
pr−1(U)

)
⊂O2

(
pr−1(U)

)
⊂ · · ·

and Ol1(pr
−1(U))Ol2(pr

−1(U))⊂Ol1+l2(pr
−1(U)).

Let U ⊂M be a connected open set such that F|U is a free OU [[z]]-module. Take

a trivialization F|U ∼= CN+1 ⊗ OU [[z]]. This induces a trivialization F[z−1]|U ∼=
CN+1 ⊗OU ((z)) and defines a dual frame xi

n ∈ F[z−1]∨, n ∈ Z, 0≤ i≤N , by

xi
n : F[z

−1]|U ∼=CN+1 ⊗OU ((z))−→OU ,
∑
m∈Z

N∑
j=0

ajmejz
m �−→ ain.(4.7)

Here ei, 0 ≤ i ≤ N , denotes the standard basis of CN+1. By restricting xi
n to

zF, we obtain fiber coordinates xi
n, n ≥ 1, 0 ≤ i ≤ N , on L|U . Assume that

dimM =N + 1 = rankF, and let t0, . . . , tN be a local coordinate system on U .

We call {ti, xi
n : 0≤ i≤N,n≥ 1} an algebraic local coordinate system on L. This

corresponds to the algebraic coordinate system on the Lagrangian submanifold

L discussed on page 712. In Section 4.7 below, we will introduce a flat coordinate

14When V = pr−1(U) for a connected open set U such that F|U can be trivialized, one can
check that O(V ) coincides with the original definition (4.6). More generally, for the complement

D(h) of the zero-locus of h ∈O(pr−1(U)), O(D(h)) is the localization of the polynomial ring
O(pr−1(U)) by h:

O
(
D(h)
)
=O
(
pr−1(U)

)
h
.

Proof

Each element r ∈O(D(h)) can be locally written as r = f/g for some f, g ∈O(pr−1(U ′)) with
U ′ ⊂ U . Then by the standard argument using Hilbert’s Nullstellensatz, we can see that, for

each t ∈ U ′, there exists m ∈ N such that hm(f/g) restricted to the fiber zFt is a polynomial on
zFt. (Here, m can depend on t.) On the other hand, it is clear that we can take m to be deg(g).

Then rhdeg(g) is a polynomial in fiber variables with coefficients in holomorphic functions on

the base U . �
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system on the formal neighborhood (or an L2- or nuclear neighborhood) of the

fiber Lt = pr−1(t). We have

O
(
pr−1(U)

)
=O(U)[xi

n : 0≤ i≤N,n≥ 1].

The grading is given by the degree as polynomials in the variables xi
n. The

filtration is given by

(4.8)

Ol

(
pr−1(U)

)
=
{ ∞∑
n=0

∑
l1,...,ln≥0
l1+···+ln≤l

∑
i1,...,in≥0

f l1,...,ln
i1,...,in

(t)xi1
l1+1 · · ·x

in
ln+1 : f

l1,...,ln
i1,...,in

(t) ∈O(U)
}
.

Under this trivialization, we present the flat connection ∇ as

(4.9) ∇s= ds− 1

z
C(t, z)s,

where C(t, z) =
∑N

i=0 Ci(t, z)dti ∈ End(CN+1)⊗Ω1
U [[z]] and s ∈ CN+1 ⊗OU [[z]]∼=

F|U . The residual part C(t,0) = (−z∇)|z=0 defines a section of End(F0) ⊗ Ω1
U ,

which is independent of the choice of trivialization. In the case of the A-model

TEP structure in Example 4.3, we have C(t, z) = C(t,0) =
∑N

i=0(φi∗)dti with

respect to the standard trivialization.

DEFINITION 4.8 (The open subset L◦ ⊂ L)

Define the following open subsets:

F◦
0,t :=
{
x1 ∈ F0,t : TtM→ F0,t, v �→ Cv(t,0)x1 is an isomorphism

}
,

L◦ :=
{
(t,x) ∈ L : t ∈M,x ∈ zFt, (x/z)|z=0 ∈ F◦

0,t

}
.

We set F◦
0 =
⋃

t∈M F◦
0,t. This is an open subset of the total space of F0.

Henceforth, we assume that our cTP structure (F,∇, (·, ·)F) is miniversal, which

means the following.

ASSUMPTION 4.9

At every point t ∈M, F◦
0,t is a nonempty Zariski-open subset of F0,t.

This assumption implies, in particular, that dimM= rankF. Miniversality holds

for the cTP structure defined by quantum cohomology, because φ0 = 1 is a section

of F◦
0. Using an algebraic local coordinate system {ti, xi

n} on L, we can write L◦

as the complement of the zero-locus of the degree N + 1 polynomial P (t, x1)

defined by

(4.10)
P (t, x1) := (−1)N+1 det

(
C0(t,0)x1,C1(t,0)x1, . . . ,CN (t,0)x1

)
∈O(U)[x0

1, . . . , x
N
1 ],

where Ci(t, z) = C∂/∂ti(t, z). We call P the discriminant. More invariantly, we

can think of P (t, x1)dt
0 ∧ · · · ∧ dtN as a section of the line bundle pr∗(det(F0)⊗
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KM) over L. In the case of the A-model TEP structure in Example 4.3, we

have P (t, x1) = det(−x1∗t) under the standard trivialization. The ring of regular

functions over pr−1(U)◦ := pr−1(U)∩ L◦ is

O
(
pr−1(U)◦

)
=O(U)

[
{xi

n}n≥1,0≤i≤N , P (t, x1)
−1
]
.

Since P (t, x1) is homogeneous in x1 and lies in the zeroth filter, O(pr−1(U)◦)

inherits the grading and the filtration. Since we will almost always deal with

open sets of the form pr−1(U) or pr−1(U)◦, we will omit the domain pr−1(U)

or pr−1(U)◦ from the notation, writing for example On, Ol for On(pr−1(U)),

Ol(pr
−1(U)) (or for On(pr−1(U)◦), Ol(pr

−1(U)◦)). We also write On
l :=

On ∩Ol.

The sheaf Ω1 of one-forms on L is defined on a local coordinate chart as

Ω1 =

N⊕
i=0

Odti ⊕
∞⊕

n=1

N⊕
i=0

Odxi
n

and then glued in the obvious way. The grading and the filtration on Ω1 are

determined by

deg(dti) = 0, deg(dxi
n) = 1, filt(dti) =−1, filt(dxi

n) = n− 1.(4.11)

Here filt(y) denotes the least number m such that y belongs to the mth filter.

We have

(Ω1)nl =

N⊕
i=0

On
l+1dt

i ⊕
⊕

l1+l2≤l

N⊕
i=0

On−1
l1

dxi
l2+1.

More generally, we set(
(Ω1)⊗m

)n
l
=
∑

l1+···+lm≤l

∑
n1+···+nm=n

(Ω1)n1

l1
⊗ · · · ⊗ (Ω1)nm

lm
.

The sheaf Θ of tangent vector fields on L is the dual of Ω1

Θ :=H omO(Ω1,O) =
(locally)

N∏
i=0

O∂i ×
∞∏

n=1

N∏
i=0

O∂n,i,

where ∂i := ∂/∂ti, ∂n,i := ∂/∂xi
n. Note that Ω1 is the direct sum, whereas Θ is

the direct product.

4.4. Yukawa coupling and Kodaira–Spencer map
Recall from Section 3.6 that the Yukawa coupling is the third derivative of the

genus-zero potential. In terms of an algebraic local coordinate system, this has

the following simple definition. We start by noting that the flatness of ∇ implies[
Ci(t,0),Cj(t,0)

]
= 0 for all i, j.

Also the flatness of the pairing implies(
Ci(t,0)s1, s2

)
F0

=
(
s1,Ci(t,0)s2

)
F0
.
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Hence, the operators Ci(t,0) together yield a structure similar to a Frobenius

algebra. (In order to define a Frobenius algebra structure on F0, one needs to

choose an identity element from F◦
0.)

DEFINITION 4.10

The Yukawa coupling is a symmetric cubic tensor

Y =
∑
i,j,h

C
(0)
ijhdt

i ⊗ dtj ⊗ dth ∈
(
(Ω1)⊗3

)2
−3

on L defined in local coordinates by

C
(0)
ijh(t,x) =

(
Ci(t,0)x1,Cj(t,0)Ch(t,0)x1

)
F0
, x1 = (x/z)|z=0.

The tensor Y is the pullback of a cubic tensor on F0.

Let pr : L→M denote the natural projection. We define the pullbacks of the

sheaves znF, F[z−1], (znF)∨, F[z−1]∨ to L as follows:15

pr∗(znF) := lim←−
l

pr∗(znF/zlF)∼= (pr−1 znF)⊗pr−1 OM[[z]] O[[z]],

pr∗ F[z−1] := lim←−
l

pr∗
(
F[z−1]/zlF

)∼= (pr−1 F[z−1]
)
⊗pr−1 OM((z)) O((z)),

pr∗(znF)∨ :=
(
pr−1(znF)∨

)
⊗pr−1 OM O (the standard definition),

pr∗ F[z−1]∨ := lim←−
l

pr∗(z−lF)∨ ∼=
(
pr−1 F[z−1]∨

)
⊗pr−1 OM((z)) O((z)).

(4.12)

These are locally free modules over, respectively, O[[z]], O((z)), O, and O((z)).

The pullback pr∗ F admits a flat connection ∇̃ := pr∗∇

(4.13) ∇̃ : pr∗ F→Ω1 ⊗̂ pr∗(z−1F),

where ⊗̂ is the completed tensor product Ω1 ⊗̂pr∗(z−1F) = lim←−n
(Ω1⊗pr∗(z−1F/

znF)). A local trivialization F|U ∼= CN+1 ⊗ OU [[z]] induces a trivialization

pr∗ F|pr−1(U)
∼=CN+1⊗O[[z]]. Under this trivialization, we can write, using nota-

tion as in (4.9),

∇̃i = ∇̃∂/∂ti = ∂i −
1

z
Ci(t, z), ∇̃n,i = ∇̃∂/∂xi

n
= ∂n,i, n≥ 1.

The trivialization also induces a trivialization pr∗ F[z−1]|pr−1(U)
∼=CN+1⊗O((z)).

We denote by16 {ϕi
n : n ∈ Z,0≤ i≤N} the local frame of pr∗ F[z−1]∨ defined by

(cf. (4.7))

15Note that the standard pullback pr−1(znF)⊗pr−1 OM
O of znF is different from the definition

of pr∗(znF) that we use here. We take the completion with respect to the z-adic topology.
16We denote the frame of F[z−1]∨ by {xi

n} and the frame of pr∗ F[z−1]∨ by {ϕi
n} so that the

coordinates on L and the frame of pr∗ F[z−1]∨ are not confused.
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ϕi
n : pr

∗ F[z−1]|pr−1(U)
∼=CN+1 ⊗O((z))→O,

∑
m∈Z

N∑
j=0

ajmejz
m �→ ain.

(4.14)

The tautological section x of pr∗(zF) is defined by

x(t,x) = x,

where (t,x) denotes the point x ∈ zFt on L.

DEFINITION 4.11

The Kodaira–Spencer map KS: Θ→ pr∗ F is defined by

KS(v) = ∇̃vx, v ∈Θ.

The dual Kodaira–Spencer map KS∗ : pr∗ F∨→Ω1 is defined by

KS∗(ϕ) = ϕ(∇̃x), ϕ ∈ pr∗ F∨.

The maps KS and KS∗ are isomorphisms over L◦ ⊂ L.

In terms of the Lagrangian submanifold L in Section 3.3, the Kodaira–Spencer

map corresponds to the differential dι of the embedding ι : L ↪→ H (see also

Sections 5.3 and 9.3).

NOTATION 4.12

For CN+1-valued power series f =
∑

n∈Z

∑N
i=0 a

i
neiz

n in z, we write [f ]in = ain.

Here e0, . . . , eN is the standard basis of CN+1.

REMARK 4.13

In algebraic local coordinates {ti, xi
n} on L, we have

(4.15)

KS(∂i) =−Ci(t, z)(x/z),

KS(∂n,i) = eiz
n, n≥ 1,

KS∗(ϕi
n) =
[
dx− z−1C(t, z)x

]i
n
, n≥ 0.

Here x=
∑∞

n=1 xnz
n and xn =

∑N
i=0 x

i
nei. (Note that KS∗(ϕi

0) =−[C(t,0)x1]
i.)

These formulae make clear that KS and KS∗ are isomorphisms over L◦.

LEMMA 4.14

The Yukawa coupling Y can be written as (id⊗(KS∗)⊗2)pr∗Υ for the following

section Υ ∈Ω1
M ⊗ F∨ ⊗ F∨:

Υ(X,v,w) =
(
[v],CX(t,0)[w]

)
F0
, X ∈ΘM, v,w ∈ F.

Proof

Note that KS∗(ϕi
0) =−
∑

j [Cj(t,0)x1]
idtj by (4.15). Therefore,
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Y =

N∑
i=0

N∑
j=0

N∑
h=0

(
Cj(t,0)x1,Ci(t,0)Ch(t,0)x1

)
F0
dti ⊗ dtj ⊗ dth

=

N∑
i=0

N∑
j=0

N∑
h=0

N∑
f=0

N∑
g=0

(
ef ,Ci(t,0)eg

)
F0

[
Cj(t,0)x1

]f
×
[
Ch(t,0)x1

]g
dti ⊗ dtj ⊗ dth

=

N∑
i=0

N∑
f=0

N∑
g=0

(
ef ,Ci(t,0)eg

)
F0
dti ⊗KS∗(ϕf

0 )⊗KS∗(ϕg
0).

(4.16)

The conclusion follows. �

4.5. Opposite modules and Frobenius manifolds
We now introduce the notion of an opposite module. In the construction of the

Fock space, an opposite module plays the role of a polarization (see Section 3.4).

The content in this section is an adaptation of [38, Section 2.2.2] to the setting

of miniversal cTP structures (F,∇, (·, ·)F). Opposite modules were first used in

singularity theory by M. Saito [105] in order to construct K. Saito’s [104] flat

structure or Dubrovin’s [49] Frobenius manifold structure on the base space of

miniversal unfolding of a singularity. A closely related discussion can be found

in Sabbah [102, VI, Section 2] and Hertling [66, Section 5.2].

DEFINITION 4.15

A pseudo-opposite module P for a cTP structure (F,∇, (·, ·)F) is an OM-

submodule P of F[z−1] satisfying the following two conditions:

(Opp1) (Opposedness) F[z−1] = F⊕ P; and

(Opp2) (Isotropy) Ω(P,P) = 0.

A pseudo-opposite module P is said to be parallel if it satisfies

(Opp3) ∇ preserves P, that is, ∇P⊂Ω1
M ⊗ P.

If P satisfies (Opp1)–(Opp3) and

(Opp4) (z−1-linearity) z−1P⊂ P,

then it is called an opposite module. When a pseudo-opposite module fails to

satisfy the parallel condition (Opp3), it is said to be curved.

Suppose that (F,∇, (·, ·)F) is a cTEP structure. An opposite module P for

the underlying cTP structure is said to be homogeneous if it satisfies

(Opp5) (Homogeneity) ∇z∂zP⊂ P.

The notion of a (pseudo-)opposite module is local. For an open set U ⊂M, P is

called a (pseudo-)opposite module over U if it is a (pseudo-)opposite module of

the restriction (F,∇, (·, ·)F)|U .

EXAMPLE 4.16

The A-model cTEP structure (see Example 4.3 and Remark 4.5) associated to a
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smooth projective variety X admits a standard opposite module Pstd defined by

Pstd =HX ⊗Q z−1OMA [z
−1].

Moreover, this opposite module is homogeneous (see Remark 4.22 below for the

relationship between a homogeneous opposite module and a Frobenius manifold

structure).

A pseudo-opposite module P is necessarily a locally free OM-module with a

countable basis, because P∼= F[z−1]/F by opposedness (Opp1). We observe that

an opposite module exists at least in the formal neighborhood of any point t

in M.

LEMMA 4.17

There exists an opposite module P in the formal neighborhood M̂ of every point

t ∈ M. Here an opposite module in the formal neighborhood means an OM̂-

submodule P of F̂[z−1] = lim←−n
F[z−1]/mn

t F[z
−1] satisfying the conditions (Opp1)–

(Opp4) in Definition 4.15 with F[z−1] and M there replaced by F̂[z−1] and M̂,

where mt is the maximal ideal of the local ring OM,t.

Proof

The fiber Ft at t is a free C[[z]]-module of rank N +1. We claim that there exists

a basis e0, . . . , eN of Ft over C[[z]] such that (ei, ej)F is independent of z. Take any

basis e′0, . . . , e
′
N of Ft. By transforming the basis by an element in GL(N +1,C),

one can assume that (e′i, e
′
j) = ciδij+O(z) for some nonzero element ci ∈C. After

a further change of basis [e′0, . . . , e
′
N ] = [e0, . . . , eN ]A(z) with A(z) = I + A1z +

A2z
2 + · · · , we can assume that (ei, ej)F = ciδij . Once we have such a basis, we

can define a free C[z−1]-submodule Pt of Ft[z
−1] by Pt =

⊕N
i=0C[z

−1]z−1ei. This

is opposite to Ft, z
−1-linear, and isotropic with respect to Ω. Next we extend

it to the formal neighborhood of t. Let s0, . . . , sN ∈ mt be a regular system of

parameters of the local ring OM,t. We extend the basis e0, . . . , eN of Ft to a frame

ẽ0, . . . , ẽN of F over an open neighborhood of t. This trivializes F in the formal

neighborhood: F|M̂ =
⊕N

i=0C[[z, s0, . . . , sN ]]ẽi. In this frame, we can solve for

a flat section fi(s) ∈ F̂[z−1] =
⊕N

i=0C((z
−1))[[s0, . . . , sN ]]ẽi such that fi(0) = ei.

Then P=
⊕N

i=0C[z
−1][[s0, . . . , sN ]]z−1fi is parallel with respect to ∇ and gives

an opposite module over the formal neighborhood M̂. �

PROPOSITION 4.18 (cf. [38, Section 2.2.2], [72, Lemma 3.8])

For an open set U ⊂M and an opposite module P over U , the following hold.

(i) The natural maps F0 = F/zF← F∩ zP→ zP/P are isomorphisms of OU -

modules.



730 Tom Coates and Hiroshi Iritani

(ii) We have F= (F∩ zP)⊗C[[z]]∼= (zP/P)⊗C[[z]], which we call a flat triv-

ialization. Note that zP/P is a locally free coherent OU -module with a flat con-

nection, and let ∇0 : zP/P→Ω1
U ⊗OU

(zP/P) denote the flat connection induced

by ∇.

(iii) Under the flat trivialization, the connection ∇ takes the form

∇=∇0 − 1

z
C(t),

where C(t) is a z-independent End(zP/P)-valued one-form.

(iv) Under the flat trivialization, the pairing (·, ·)F induces and can be recov-

ered from a z-independent symmetric pairing

(·, ·)zP/P : (zP/P)⊗ (zP/P)→OU ,

which is flat with respect to ∇0.

(v) Assume that there exists a section ζ of F∩ zP over U which is flat with

respect to ∇0 in the flat trivialization and whose image under F→ F0 = F/zF

lies in F◦
0. (This assumption implies the miniversality of (F,∇, (·, ·)F).) We call

such a section ζ a primitive section associated to P. Then the base U carries the

structure of a Frobenius manifold without Euler vector field. It consists of

– a flat symmetric OU -bilinear metric g : ΘU ⊗OU
ΘU →OU , defined by

g(v1, v2) = (z∇v1ζ, z∇v2ζ)F;

– a commutative and associative product ∗ : ΘU ⊗OU
ΘU →ΘU , defined by

z∇v1z∇v2ζ =−z∇v1∗v2ζ;

– a flat identity vector field e ∈ΘU for the product ∗, defined by

−z∇eζ = ζ

such that the connection ∇λ
v =∇LC

v −λ(v∗) on the tangent sheaf ΘU is a flat pen-

cil of connections with parameter λ. Here ∇LC denotes the Levi-Civita connection

for the metric g.

The same statements (i)–(v) here hold, with U replaced by M̂, for P an opposite

module over the formal neighborhood M̂ of t ∈M (in the sense of Lemma 4.17).

Proof

The proof is similar to that in [38, Section 2.2.2]. For (i), the injectivity of the

maps F∩ zP→ F/zF, F∩ zP→ zP/P follows from opposedness F[z−1] = F⊕P=

zF ⊕ zP. For a local section s ∈ F/zF, take a local lift s̃ ∈ F. By opposedness,

one can write s̃ = s′ + s′′ with s′ ∈ zF and s′′ ∈ zP. Now s′′ = s̃ − s′ ∈ F ∩ zP

and the image of s′′ in F/zF equals s. A similar argument shows the surjectiv-

ity of F ∩ zP→ zP/P. For (ii), we need to show that any local section s ∈ F

has a unique expression s =
∑∞

n=0 snz
n with sn ∈ F ∩ zP. The zeroth term s0

is given as the unique lift of [s] ∈ F/zF to F ∩ zP (which exists by (i)). Then

s − s0 ∈ zF. The first term s1z is given as the unique lift of [s − s0] ∈ zF/z2F
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to zF∩ z2P. Then s− s0 − s1z ∈ z2F. Repeating this, we get the desired expres-

sion. For (iii), take a section s ∈ F ∩ zP. Then ∇s = Ω1
U ⊗ (z−1F ∩ zP) because

∇(F) ⊂ Ω1
U ⊗ z−1F and ∇(zP) ⊂ Ω1

U ⊗ zP. By opposedness F[z−1] = F ⊕ P, we

have z−1F ∩ zP = (z−1F ∩ P) ⊕ (F ∩ zP). With respect to this decomposition,

we can write ∇s = z−1C(t)s ⊕ ∇0s. For (iv), it suffices to show that (s1, s2)F
is independent of z for s1, s2 ∈ F ∩ zP. Because P is isotropic and z−1-linear,

we have (P,P)F ⊂ z−2OM[z−1]. Therefore, (s1, s2)F ∈ (zP, zP)F ⊂ OM[z−1]. On

the other hand (s1, s2)F ∈ OM[[z]]. The ∇0-flatness of (·, ·)zP/P follows from the

∇-flatness of (·, ·)F and (iii). For (v), one needs to show that the isomorphism

ΘU � v �→ −z∇vζ = Cv(t)ζ ∈ F∩ zP translates the given structures on F into the

Frobenius manifold structure. The details here are left to the reader. �

EXAMPLE 4.19

The standard trivialization (4.1) of the A-model TEP structure is the flat trivi-

alization associated to the standard opposite module Pstd in Example 4.16.

REMARK 4.20

The product ∗ in Proposition 4.18(v) does not depend on the choice of opposite

module P. In fact, the tangent sheaf ΘM of the base space M of a miniversal

cTP structure carries a natural product ∗ such that the embedding

ΘM→ EndOM(F0), v �→ z∇v

becomes a homomorphism of OM-algebras. The product ∗ endows M with the

structure of an F -manifold (see [67]), since it arises from a Frobenius manifold

structure at least infinitesimally by Lemma 4.17 (cf. [38, Section 2.2], [72, Sec-

tion 3.2]).

REMARK 4.21

Let π : M× P1→M denote the projection. An opposite module P gives rise to

an extension of F (regarded as a sheaf on M× Â1) to a locally free sheaf F (∞)

overM×P1 such that π∗F (∞) = F∩zP. The sheaf F (∞) gives a free OP1 -module

when restricted to each fiber {t} × P1.

REMARK 4.22

Let (F,∇, (·, ·)F) be a cTEP structure. Under the miniversality assumption

(Assumption 4.9), there is an Euler vector field E on the base which is uniquely

characterized by the condition that ∇z∂z +∇E has no poles along z = 0 (cf. [72,

Section 3.2]), that is, that

(∇z∂z +∇E)F⊂ F.

Assume that we have a homogeneous opposite module P over U and also

that there exists a primitive section ζ associated to P, in the sense of Propo-

sition 4.18(v), which satisfies

(∇z∂z +∇E)ζ =−
ĉ

2
ζ
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for some ĉ ∈C. Then the structures (g,∗, e) in Proposition 4.18(v) together with

the Euler vector field E define a Frobenius manifold structure (see [49, Defini-

tion 1.2]) on U with conformal dimension ĉ (cf. [38, Proposition 2.12]). They

satisfy the following additional properties:

(∇LC)2E = 0,

Eg(v1, v2) = g
(
[E,v1], v2

)
+ g
(
v1, [E,v2]

)
+ (2− ĉ)g(v1, v2),

[E,v1 ∗ v2] = [E,v1] ∗ v2 + v1 ∗ [E,v2] + v1 ∗ v2.

(4.17)

Conversely, any conformal Frobenius manifold determines a TEP structure (see

Definition 7.6). For the A-model cTEP structure, in the convergent case, the stan-

dard opposite module Pstd in Example 4.16 gives rise to the standard Frobenius

manifold structure on the set MA defined in (2.4).

4.6. Connection on the total space L◦

Recall from Section 3.6 that a polarization P which is transversal to L defines an

affine flat structure on L via the projection L→H/P along P . In a similar man-

ner, we construct a flat structure on L associated to a parallel pseudo-opposite

module P. The choice of P also defines the genus-zero potential in Section 4.7.

The connection ∇̃ on pr∗ F in (4.13) extends z−1-linearly to the flat con-

nection ∇̃ : pr∗ F[z−1]→ Ω1 ⊗̂ pr∗ F[z−1], where Ω1 ⊗̂ pr∗ F[z−1] := lim←−l
(Ω1 ⊗

pr∗(F[z−1]/zlF)). Define the dual flat connection ∇̃∨ : pr∗ F[z−1]∨ → Ω1 ⊗̂
pr∗ F[z−1]∨ by

〈∇̃∨ϕ, s〉 := d〈ϕ, s〉 − 〈ϕ, ∇̃s〉, s ∈ pr∗ F[z−1], ϕ ∈ pr∗ F[z−1]∨,(4.18)

where Ω1 ⊗̂ pr∗ F[z−1]∨ := lim←−l
(Ω1 ⊗ pr∗(z−lF)∨). Under a local trivialization of

F and the associated frame {ϕi
n : n ∈ Z,0≤ i≤N} of pr∗ F[z−1]∨, we can write

(see Notation 4.12)

(4.19) ∇̃∨ϕi
n =
∑
l∈Z

N∑
j=0

[
C(t, z)ejzl

]i
n+1

ϕj
l ,

where the summand on the right-hand side vanishes for l ≥ n+ 2. This induces

the flat connection ∇̃∨ : pr∗(znF)∨→Ω1⊗pr∗(zn+1F)∨ for each n ∈ Z such that

the following diagram commutes:

(4.20)

pr∗ F[z−1]∨
∇̃∨

Ω1 ⊗̂ pr∗ F∨[z−1]

pr∗(znF)∨
∇̃∨

Ω1 ⊗ pr∗(zn+1F)∨

DEFINITION 4.23

Let P be a pseudo-opposite module for a cTP structure (F,∇, (·, ·)F). Let

Π: F[z−1] = F ⊕ P → F denote the projection along P. Set Ω1
◦ := Ω1|L◦ and
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Θ◦ =Θ|L◦ . Consider the maps

pr∗ F
∇̃

Ω1 ⊗̂ pr∗(z−1F)
id⊗Π

Ω1 ⊗̂ pr∗ F,

pr∗ F∨ Π∗

pr∗(z−1F)∨
∇̃∨

Ω1 ⊗ pr∗ F∨.

Via the (dual) Kodaira–Spencer isomorphisms KS: Θ◦ ∼= pr∗ F and

KS∗ : pr∗ F∨ ∼=Ω1
◦ over L◦, these maps induce, respectively, the connections

∇ : Θ◦ −→Ω1
◦ ⊗̂Θ◦, ∇ : Ω1

◦ −→Ω1
◦ ⊗Ω1

◦

on the tangent and the cotangent sheaves on L◦. These induced connections

are dual to each other. Here Ω1
◦ ⊗̂ Θ◦ = lim←−n

(Ω1
◦ ⊗ (Θ◦/Θ◦n)) with Θ◦n :=

KS−1(pr∗(znF))⊂Θ◦. The connection on Ω1
◦ induces a connection on n-tensors:

∇ : (Ω1
◦)

⊗n→Ω1
◦ ⊗ (Ω1

◦)
⊗n, n≥ 0.

For n= 0, this denotes the exterior derivative. When we want to emphasize the

dependence on the choice of P, we will write ΠP, ∇P for Π, ∇.

PROPOSITION 4.24

The connection ∇=∇P : Θ◦→Ω1
◦ ⊗̂Θ◦ associated to a pseudo-opposite module

P is torsion-free. If P is parallel, then ∇ is flat. If P is parallel, then the dual

connection ∇ : Ω1
◦→Ω1

◦ ⊗Ω1
◦ is also flat.

Proof

For v1, v2 ∈Θ◦ and the tautological section x, we have

∇v1v2 −∇v2v1 =KS−1Π(∇̃v1∇̃v2x− ∇̃v2∇̃v1x) = KS−1Π(∇̃[v1,v2]x) =∇[v1,v2]

by the definition of the Kodaira–Spencer map and the flatness of ∇̃. This shows

that ∇ is torsion-free.

Suppose that P is parallel. To prove the flatness of ∇, it suffices to show

that the connection (id⊗Π) ◦ ∇̃ : pr∗ F→Ω1 ⊗̂ pr∗ F on pr∗ F is flat. Therefore,

it suffices to prove that the connection (id⊗Π) ◦ ∇ : F→ Ω1
M ⊗ F on F is flat.

Under the decomposition F[z−1] = F⊕ P, we can write

∇=

(
A 0

C B

)
with A ∈ HomC(F,Ω

1
M ⊗ F), B ∈ HomC(P,Ω

1
M ⊗ P), and C ∈ HomOM(F,Ω1

M ⊗
P), because P is parallel. Here A= (id⊗Π) ◦∇. The flatness of ∇ implies that A

and B are flat connections. �

LEMMA 4.25

The connection ∇ : Ω1
◦ → Ω1

◦ ⊗ Ω1
◦ associated to a pseudo-opposite module P

raises the pole order along the discriminant P = 0 (see (4.10)) by at most 1.



734 Tom Coates and Hiroshi Iritani

Proof

The connection ∇ arises from the connection ∇̃∨ ◦Π∗ : pr∗ F∨→Ω1⊗pr∗ F∨ via

the isomorphism KS∗ : pr∗ F∨|L◦ ∼= Ω1
◦. Both the connection ∇̃∨ ◦ Π∗ and KS∗

are regular along P = 0, but the inverse KS∗−1 has a pole of order 1 along P = 0.

The conclusion follows (see also the formula in Example 4.26). �

EXAMPLE 4.26

Assume that P is an opposite module and that we have a trivialization F ∼=
CN+1⊗O[[z]] such that P is identified in this trivialization as CN+1⊗z−1O[z−1].

(The trivialization here is the flat trivialization associated to P in Proposi-

tion 4.18.) In this case, C(t, z) in the presentation (4.9) of ∇ is independent

of z. We write C = C(t) = C(t, z) below. Let {ti, xi
n} be the associated algebraic

local coordinate system on L. The flat connection ∇ : Ω1
◦→Ω1

◦ ⊗Ω1
◦ is given in

these coordinates as

∇dth =−
[
K(x1)

−1Ciej
]h
(dti ⊗ dxj

1 + dxj
1 ⊗ dti)

+
[
K(x1)

−1
(
CiCjx2 − (∂iCj)x1

)]h
dti ⊗ dtj ,

∇dxh
n =−
[
K(xn+1)K(x1)

−1Ciej
]h
(dti ⊗ dxj

1 + dxj
1 ⊗ dti)

+
[
K(xn+1)K(x1)

−1
(
CiCjx2 − (∂iCj)x1

)
−
(
CiCjxn+2 − (∂iCj)xn+1

)]h
dti ⊗ dtj

+ [Ciej ]h(dti ⊗ dxj
n+1 + dxj

n+1 ⊗ dti), n≥ 1,

where K(xn) ∈ End(CN+1) ⊗O is defined by K(xn)ei := Ci(t)xn and we used

the Einstein summation convention for the repeated indices i, j, h.

REMARK 4.27

When P is an opposite module, we have two different flat structures on the

total space L◦. Recall that the tangent bundle Θ◦ is identified with pr∗ F via

the Kodaira–Spencer map and the flat connection ∇P is induced from the flat

connection ΠP ◦ ∇̃ on pr∗ F. Another flat structure on L◦ is given by the flat

trivialization F∼= (F∩ zP)[[z]]∼= (zP/P)[[z]] that we discussed in Proposition 4.18.

This arises from the restriction of the flat connection ΠP ◦∇̃ to the flat subbundle

pr∗(F ∩ zP) and its z-linear extension. Note that ∇P is not z-linear (under the

identification Θ◦ ∼= pr∗ F), whereas the latter flat structure is z-linear.

4.7. Flat coordinates and genus-zero potential
We construct a flat coordinate system for ∇=∇P for a parallel pseudo-opposite

module P and see that the Yukawa coupling is the third derivative of a certain

function, called the genus-zero potential. A flat coordinate system and the genus-
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zero potential may only be defined in the formal17 neighborhood L̂
◦
of the fiber

L◦
t = pr−1(t)∩ L◦ at t ∈M.

Let s0, . . . , sN be a regular system of parameters in the local ring OM,t at

t ∈M. The formal neighborhood M̂ of t is then given by

M̂= Spf C[[s0, . . . , sN ]].

Take a local trivialization F ∼=
⊕N

i=0O[[z]]ei in a neighborhood of t, and let

{si, xi
n} be the corresponding algebraic local coordinate system on L as in Sec-

tion 4.3. The formal neighborhood L̂ of Lt = pr−1(t) in L (resp., the formal

neighborhood L̂
◦
of L◦

t in L◦) is then given by

L̂= Spf C
[
{xi

n}n≥1,0≤i≤N

]
[[s0, . . . , sN ]],

L̂
◦
= Spf C

[
{xi

n}n≥1,0≤i≤N , P (t, x1)
−1
]
[[s0, . . . , sN ]],

where P (t, x1) is the discriminant (4.10).

Let P be a parallel pseudo-opposite module over the formal neighborhood M̂
of t (see Lemma 4.17). The above local trivialization of F induces a trivialization

F|M̂ ∼=
⊕N

i=0C[[z]][[s0, . . . , sN ]]ei on the formal neighborhood M̂. We can solve for

a unique flat section

fi(s) ∈ F̂[z−1] := lim←−
n

F[z−1]/mn
t F[z

−1]∼=
N⊕
i=0

C((z))[[s0, . . . , sN ]]ei

such that

∇fi(s) = 0, fi(0) = ei.

This defines a parallel transportation map

PT: F̂[z−1]
∼=−→ Ft[z

−1][[s0, . . . , sN ]], fi �→ ei,

which is an isomorphism of C((z))[[s0, . . . , sN ]]-modules. Since the symplectic form

Ωt identifies Pt with F∨
t , there exist unique elements ξjm ∈ Pt, m≥ 0, 0≤ j ≤N ,

such that

Ω(ξjm, eiz
n) = δji δn,m.

Then we have a Darboux basis {eizn, ξjm}0≤n,m<∞,0≤i,j≤N of Ft[z
−1]. A general

element of Ft[z
−1] can be written as a linear combination

∞∑
n=0

N∑
i=0

qineiz
n +

∞∑
m=0

N∑
j=0

pm,jξ
j
m,

and the coefficients {qin, pm,j} form a Darboux coordinate system on Ft[z
−1].

Pulling back the Darboux coordinates via

emb: (zF)|M̂ ↪→ F̂[z−1]
PT−→ Ft[z

−1][[s0, . . . , sN ]],

17Or, rather than formal neighborhood, in an L2- or nuclear neighborhood (see Remarks 4.39

and 4.40).
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we get regular functions qin, pm,j on the total space L̂ of (zF)|M̂:

qin := emb∗(qin), pm,j := emb∗(pm,j).

DEFINITION 4.28

We call {qin}n≥0,0≤i≤N the flat coordinate system on the formal neighborhood L̂
◦

of Lt. It depends only on the choice of a trivialization Ft
∼=CN+1[[z]] at the point

t and on the isotropic subspace Pt ⊂ Ft[z
−1] which is complementary to Ft. One

can view this flat coordinate system as a “projection” to the tangent space

q=

∞∑
n=0

N∑
i=0

qineiz
n : L̂−→ Ft

such that it is the identity on Lt = zFt and its derivative at any point x in Lt

Dq : Θx −→ Ft

coincides with the Kodaira–Spencer map. (This will be verified in (4.28) below.)

The flatness of the coordinates qin will be shown momentarily. We write ei =∑N
j=0 fj(s)M

j
i (s, z) with M j

i ∈ C((z))[[s0, . . . , sN ]]. Let M(s, z) be the (N + 1)×
(N +1) matrix with matrix elements M j

i (s, z). By definition, M(s, z) is a matrix

representation of the parallel transportation map PT, that is, PT(ei) =∑N
j=0M

j
i (s, z)ej . By the definition of the functions qin, pm,j on L̂, we have

(4.21) q+ p=M(s, z)x,

where

q=

∞∑
n=0

N∑
i=0

qineiz
n, p=

∞∑
n=0

N∑
i=0

pn,iξ
i
n, x=

∞∑
n=1

N∑
i=0

xi
neiz

n.

Here M(s, z) acts on the column vector x in the basis e0, . . . , eN . Let ∇ = d−
z−1C(s, z) be the presentation of the connection in the trivialization given by the

frame e0, . . . , eN . The matrix M(s, z) is a solution to the differential equation

(4.22) dM(s, z) =−z−1M(s, z)C(s, z)

with the initial condition M(0, z) = I ; that is, M is an inverse fundamental

solution (cf. (2.8)). Therefore,M(s, z) = I−z−1
∑

i Ci(0, z)si+h.o.t., where h.o.t.

means terms of order 2 or more in s0, . . . , sN . Thus, we have by (4.21)

q0 =−
∑
i

siCi(0,0)x1 +h.o.t.,

qn = xn −
∑
i

si
[
Ci(0, z)x

]
n+1

+h.o.t., n≥ 1,
(4.23)

where qn =
∑N

i=0 q
i
nei and [· · · ]n denotes the coefficient of zn. The lowest-order

term of the first equation gives an invertible change of variables between {qi0}Ni=0

and {si}Ni=0 when the matrix formed by the column vectors {Ci(0,0)x1}Ni=0 is
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invertible, that is, when P (t, x1) is invertible. Therefore, {qin : n≥ 0,0≤ i≤N}
gives a coordinate system on L̂

◦
in the sense that

C
[
{xi

n}n≥1,0≤i≤N , P (t, x1)
−1
]
[[s0, . . . , sN ]]

=C
[
{qin}n≥1,0≤i≤N , P (t, q1)

−1
]
[[q00 , . . . , q

N
0 ]].

We elaborate on this in Lemma 4.30 below.

REMARK 4.29

Note a small difference between M in Gromov–Witten theory (see (2.8)) and M

in the above construction (see (4.21)). In the construction above, M is normalized

so that it is the identity at the base point. In Gromov–Witten theory, however,

it is normalized by the asymptotic behavior M ∼ e−δ/z at the large-radius limit

(see (2.9)). The Gromov–Witten case will be discussed in Example 4.42.

LEMMA 4.30

When we invert the coordinate change (4.23) and express si, xi
n, n≥ 1, as func-

tions of qin, n≥ 0, we find

si ∈ PtC[q1, q2, Ptq3, P
2
t q4, . . . ][[P

−2
t q0]],

xi
n ∈ δn,1q

i
1 + P 2−n

t C[q1, q2, Ptq3, P
2
t q4, . . . ][[P

−2
t q0]], n≥ 1,

where Pt = P (t, q1). Moreover, we have

N∑
i=0

siCi(0,0)q1 ∈ P 2
t C

N+1[q1, q2, Ptq3, P
2
t q4, . . . ][[P

−2
t q0]].

Proof

Because M(s, z) is a solution to the differential equation (4.22) with M(0, z) = id,

we can expand it in the form

(4.24) M(s, z) = id+
∑
n>0

∑
I=(i1,...,in)

∑
m≥0

sIMI,mz−n+m

with sI = si1 · · ·sin . Let Πt : Ft[z
−1]→ Ft denote the projection along Pt. We set

Πt(vz
−a) =
∑∞

u=0 π
−a
u (v)zu for a > 0, where π−a

u ∈ End(CN+1). From (4.21), we

have

qu = xu +
∑

l>0,n>0,m≥0
−n+m+l=u

∑
I

sIMI,mxl +
∑

l>0,n>0,m≥0
−n+m+l<0

∑
I

sIπ−n+m+l
u MI,mxl

for u≥ 0. Here I = (i1, . . . , in), and we set x0 = 0. Setting

qin = P 2−n
t q̂in (n �= 1), si = Ptŝ

i, xi
n = δn,1q

i
1 + P 2−n

t x̂i
n (n≥ 1),

we can rewrite this in the following form:
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(4.25)

q̂0 = P−1
t

N∑
i=0

ŝiMi,0q1 +

N∑
i=0

ŝiMi,0x̂1

+
∑

l>0,m≥0
n=m+l≥2

∑
I

Pm
t ŝIMI,m(δl,1P

−1
t q1 + x̂l)

+
∑

l>0,n>0,m≥0
m+l<n

∑
I

Pn−l
t ŝIπ−n+m+l

0 MI,m(δl,1P
−1
t q1 + x̂l),

0 = x̂1 +
∑

l>0,n>0,m≥0
m+l=n+1

∑
I

Pm
t ŝIMI,m(δl,1P

−1
t q1 + x̂l)

+
∑

l>0,n>0,m≥0
m+l<n

∑
I

Pn−l+1
t ŝIπ−n+m+l

1 MI,m(δl,1P
−1
t q1 + x̂l),

q̂u = x̂u +
∑

l>0,n>0,m≥0
m+l=n+u

∑
I

Pm
t ŝIMI,m(δl,1P

−1
t q1 + x̂l)

+
∑

l>0,n>0,m≥0
m+l<n

∑
I

P
u+(n−l)
t ŝIπ−n+m+l

u MI,m(δl,1P
−1
t q1 + x̂l)

(u≥ 2),

where again I = (i1, . . . , in). Note that the powers of P (t, q1) appearing on the

right-hand side are nonnegative except for the leading term P−1
t

∑N
i=0 ŝ

iMi,0q1
in q̂0. From these equations, we can solve for ŝi, x̂i

n as functions of q̂in, n �= 1, and

qi1. To do this, we need to invert the leading-term operator

ŝ �→ P (t, q1)
−1

N∑
i=0

ŝiMi,0q1 =−P (t, q1)
−1

N∑
i=0

ŝiCi(0,0)q1.

Because P (t, q1) = (−1)N+1 det(C0(0,0)q1, . . . ,CN (0,0)q1), the inverse operator is

polynomial in q01 , . . . , q
N
1 . (The inverse is the transpose of the cofactor matrix of

−(C0(0,0)q1, . . . ,CN (0,0)q1).) Therefore, we have

(4.26) ŝi, x̂i
n ∈C[q1, q̂2, q̂3, . . . ][[q̂0]].

The first statement in the lemma follows by substituting q̂n = P (t, q1)
n−2qn,

n �= 1. In turn, (4.25) and (4.26) show that P−1
t

∑N
i=0 ŝ

iMi,0q1 lies in C[q1, q̂2,

q̂3, . . . ][[q̂0]]. The second statement follows. �

PROPOSITION 4.31 (Flatness)

We have that ∇Pdqin = 0.

Proof

We regard q+ p as an Ft[z
−1]-valued function on L̂. By (4.21) and (4.22), we

have
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(4.27)
dq+ dp=

(
dM(s, z)

)
x+M(s, z)dx

=M(s, z)
(
−z−1C(s, z)x+ dx

)
=M(s, z)∇̃x.

This is an equality in Ft[z
−1] ⊗̂Ω1 = lim←−n

Ft[z
−1]⊗ (Ω1/mn

t Ω
1); ∇̃x is a section

of pr∗ F ⊗̂Ω1; and M(s, z) acts on the pr∗ F factor (via the trivialization). By

(4.15), we have

(4.28) KS∗−1(dq+ dp) =

∞∑
n=0

N∑
i=0

M(s, z)eiz
n ⊗ϕi

n.

This is an equality in Ft[z
−1] ⊗̂ pr∗ F∨. For the map Π∗ : pr∗ F∨ → pr∗(z−1F)∨,

we have

Π∗ϕi
n = ϕi

n +

N∑
j=0

[Πejz
−1]inϕ

j
−1.

Hence, for the map ∇̃∨ : pr∗(z−1F)∨→Ω1 ⊗ pr∗ F∨, we have from (4.19)

∇̃∨Π∗ϕi
n =

∞∑
l=0

N∑
j=0

[
C(s, z)ejzl

]i
n+1

ϕj
l +

∞∑
l=0

N∑
j=0

N∑
h=0

[Πejz
−1]in
[
C(s, z)ehzl

]j
0
ϕh
l

=

∞∑
l=0

N∑
j=0

[
z−1C(s, z)ejzl

]i
n
ϕj
l +

N∑
h=0

[
ΠC(s,0)ehz−1

]i
n
ϕh
0 .

Therefore, from (4.28) and (4.22),

∇̃∨Π∗KS∗−1(dq+ dp)

=

∞∑
n=0

N∑
i=0

M(s, z)eiz
n ⊗
( ∞∑
l=0

N∑
j=0

[
z−1C(s, z)ejzl

]i
n
ϕj
l

+

N∑
h=0

[
ΠC(s,0)ehz−1

]i
n
ϕh
0

)

−
∞∑

n=0

N∑
i=0

M(s, z)z−1C(s, z)eizn ⊗ϕi
n

=

N∑
h=0

M(s, z)Π
(
C(s,0)ehz−1

)
⊗ϕh

0 −
N∑
i=0

M(s, z)C(s,0)eiz−1 ⊗ϕi
0

=−
N∑
i=0

M(s, z)
[
C(s,0)eiz−1

]
P
⊗ϕi

0.

Here [C(s,0)ehz−1]P denotes the P-component of the section C(s,0)ehz−1 of

Ω1
M ⊗ F[z−1] under the decomposition F[z−1] = F⊕P. Applying id⊗KS∗ to the
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above equality and using (4.15), we obtain

(4.29) ∇(dq+ dp) =

N∑
i=0

N∑
j=0

(
M(s, z)

[
z−1Ci(s,0)Cj(s,0)x1

]
P

)
dsi ⊗ dsj ,

where ∇=∇P is the connection on Ω1
◦ associated to P. Since P is parallel and

M(s, z) represents the parallel transportation map to the fiber Ft[z
−1], the right-

hand side is a Pt-valued quadratic differential on L̂
◦
. �

LEMMA 4.32

The tensor T := Ωt(dp ⊗ dq) =
∑∞

n=0

∑N
i=0 dpn,i ⊗ dqin on L̂ is symmetric. In

particular, (∂pn,i/∂q
j
m) is symmetric in (n, i) and (m,j).

Proof

Since pr∗ F⊂ pr∗ F[z−1] is isotropic with respect to Ω, we have

Ω(∇̃x⊗ ∇̃x) = 0,

where we regard ∇̃x as a section of pr∗ F ⊗̂Ω1 and Ω contracts the pr∗ F compo-

nent. Since the parallel transportation map M(s, z) to the fiber Ft preserves the

symplectic form, by (4.27) we have18

Ωt

(
(dq+ dp)⊗ (dq+ dp)

)
= 0,

where Ωt denotes the symplectic form on Ft[z
−1]. This implies that

Ωt(dq⊗ dp) +Ωt(dp⊗ dq) = 0,

which completes the proof. �

DEFINITION 4.33

The genus-zero potential is a function on L̂ defined by

(4.30) C(0) :=
1

2

∞∑
n=0

N∑
i=0

pn,iq
i
n.

This depends on a choice of a parallel pseudo-opposite module P over the formal

neighborhood M̂.

LEMMA 4.34

We have that

pn,i =
∂C(0)

∂qin
.

Proof

By Lemma 4.32, we have

18Note that this is not a trivial equality.
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∂C(0)

∂qjl
=

1

2
pl,j +

1

2

∞∑
n=0

N∑
i=0

∂pn,i

∂qjl
qin =

1

2
pl,j +

1

2

∞∑
n=0

N∑
i=0

qin
∂pl,j
∂qin

= pl,j .

Here we used the fact that the function pl,j is homogeneous of degree one

with respect to the dilation vector field
∑∞

n=0

∑N
i=0 q

i
n(∂/∂q

i
n) =∑∞

n=1

∑N
i=0 x

i
n(∂/∂x

i
n). �

PROPOSITION 4.35 (Potentiality)

The Yukawa coupling Y is the third covariant derivative of C(0), that is,

∇3C(0) =∇T = Y . Here ∇=∇P is the flat connection associated to the parallel

pseudo-opposite module P.

Proof

Using ∇dqin = 0, we have

∇2C(0) =∇
( ∞∑
n=0

N∑
i=0

pn,idq
i
n

)
=

∞∑
n=0

N∑
i=0

dpn,i ⊗ dqin = T .

Using ∇dq= 0, we have

∇T =∇Ωt(dp⊗ dq) = Ωt

(
(∇dp)⊗ dq

)
=Ωt

(
∇(dq+ dp)⊗ (dq+ dp)

)
.

Using (4.29), (4.27), and the fact that M(s, z) preserves the symplectic form, we

have

∇T =

N∑
i=0

N∑
j=0

Ω
([
z−1Ci(s,0)Cj(s,0)x1

]
P
dsi ⊗ dsj ⊗

(
dx− z−1C(s, z)x

))
=Ω
(
z−1Ci(s,0)Cj(s,0)x1ds

i ⊗ dsj ⊗
(
dx− z−1C(s, z)x

))
.

This equals Y . �

LEMMA 4.36 (Genus-zero pole structure)

The genus-zero potential C(0) is an element of P 5
t C[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]],

where Pt = P (t, q1).

Proof

Set S := C[q1, q2, Ptq3, P
2
t q4, . . . ][[P

−2
t q0]]. Note that we have C(0)|q0=0 =

C(0)|s=0 = 0. Thus, it suffices to show that p0,i = ∂C(0)/∂qi0 ∈ P 3
t S . We set

Ωt(ejz
−n, ei) = hn;ij ∈ C. Using (4.21) and the expansion (4.24) of M(s, z), we

have

p0,i =Ωt(q+ p, ei) = Ω
(
M(s, z)x, ei

)
=
∑

n>0,m≥0,l≥1

∑
I=(i1,...,in)

sIΩt(MI,mz−n+m+lxl, ei)
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=
∑

n>0,m≥0,l≥1
n>m+l

∑
I=(i1,...,in)

N∑
j=0

sIhn−m−l;ij [MI,mxl]
j .

By Lemma 4.30, we have that si ∈ PtS and xl ∈ δl,1q1 + P 2−l
t S . From this we

find that all the terms on the right-hand side belong to P 3
t S except perhaps for

the following one, which arises from (n,m, l) = (2,0,1):

N∑
i1=0

N∑
i2=0

N∑
j=0

si1si2h1,ij [Mi1i2,0q1]
j .

But the differential equation (4.22) for M(s, z) shows that Mi1i2,0 =

Ci1(0,0)Ci2(0,0). The second part of Lemma 4.30 now shows that the above sum

lies in P 3
t S as well. �

REMARK 4.37

The genus-zero potential C(0) may only be defined on the formal neighborhood

L̂
◦
, whereas the Yukawa coupling ∇3C(0) = Y is globally defined. The data C(0)

and ∇ depend on the choice of a parallel pseudo-opposite module P, whereas

Y =∇3C(0) does not.

REMARK 4.38

The genus-zero potential is homogeneous of degree 2 with respect to the dilation

vector field.

REMARK 4.39 (L2-neighborhood)

Let U ⊂M be an open set with coordinates s0, . . . , sN centered at a point in

U , and let P be an opposite module on U . Then P defines a flat trivialization

F|U ∼= (zP/P) ⊗ C[[z]] (Proposition 4.18). Suppose that we can trivialize zP/P

by a ∇0-flat frame over U . This defines a trivialization F|U ∼= CN+1 ⊗ OU [[z]].

Using the local coordinate system {si, xi
n} associated to this trivialization, we

can define the L2-subspace L2(L) of L as

L2(L) =
{
(s,x) ∈ L|U

∣∣∣ s ∈ U,

∞∑
n=1

N∑
i=0

|xi
n|2 <∞

}
.

This has the structure of a complex Hilbert manifold. In this case, p is a strictly

negative power series in z with respect to the trivialization (since it belongs to P).

Because the inverse fundamental solution M(s, z) in (4.22) is holomorphic over

U×C×, q and p given by (4.21) belong to L2(S1,CN+1) when (s,x) ∈ L2(L). The

genus-zero potential C(0) defined in (4.30) therefore converges to a holomorphic

function on L2(L). Moreover, the inverse function theorem for Hilbert spaces

implies that the map (s,x) �→ q defines a local isomorphism between L2(L◦)

and CN+1 ⊗ L2(S1,C). This means that {qin} is a coordinate system on an L2-

neighborhood of each point in L2(L◦).
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REMARK 4.40 (Nuclear neighborhood)

Following [34, Section 8.4], we define the space C{{z, z−1}} of formal Laurent

series in z to be

C{{z, z−1}}=
{
a ∈C[[z, z−1]] : ‖a‖n <∞ for all n� 0

}
,

where ‖ · ‖n, n= 0,1,2, . . . , is a family of Hilbert norms defined by

‖a‖n =
(∑
l∈Z

|al|2
|Γ( 12 + l)|2

e2nl
)1/2

for a=
∑
l∈Z

alz
l.

We set

C{{z}}=C{{z, z−1}} ∩C[[z]], C{{z−1}}=C{{z, z−1}} ∩C[[z−1]].

Then C{{z}} is a nuclear Frechet space19 whose topology is given by the countable

collection of norms20 ‖ · ‖n; C{{z−1}} is the inductive limit of the Hilbert space

completions of C[z−1] with respect to ‖ · ‖n and is a nuclear (DF) space. We

also know that C{{z, z−1}} is a topological ring (see [34, Lemma 8.5]). Let us

consider the same situation as in the previous Remark 4.39. We introduce a

nuclear subspace of L which is an infinite-dimensional complex manifold modelled

on C{{z}}:

N (L) :=
{
(s,x) ∈ L|U | s ∈ U, sup

0≤i≤N,l≥0

(
enl|xi

l|/l!
)
<∞, for all n≥ 0

}
.

This contains L2(L) as a proper subspace. The genus-zero potential C(0) in this

section defines an analytic function on this nuclear subspace. This follows from

the method of [34], as follows. Because now C(s, z) is independent of z, the

inverse fundamental solution M(s, z) satisfying (4.22) and the initial condition

M(0, z) = id can be written as M(s, z) = id+
∑∞

n=1Mn(s)z
−n with

Mn(s) =

∫
0≤s1≤···≤sn≤s

(
−C(s1)

)
· · ·
(
−C(sn)

)
,

where s1, . . . , sn are on the line segment [0, s]⊂ U . Therefore, after shrinking U

if necessary, we obtain the estimate∥∥Mn(s)
∥∥≤Cn 1

n!
, s ∈ U,

for some C > 0. Using the results in [34, Section 8.4], one finds easily that, for

(s,x) ∈ N (L), (q,p) defined by (4.21) belongs to CN+1 ⊗ C{{z, z−1}}. Thus,

C(0) = 1
2Ω(p,q) converges to a holomorphic function on N (L), since C{{z, z−1}}

is a ring. Moreover, one can use the Nash–Moser inverse function theorem to

show that the map (s,x) �→ q defines a local isomorphism between N (L◦) and

CN+1 ⊗ C{{z}} by the same method as [34, Section 8.5], that is, {qin} gives a

coordinate system on a nuclear neighborhood of each point in N (L◦).

19This space is Laplace-dual to the space of entire functions on C (see [34, Remark 8.6]).
20All of the norms ‖ · ‖n are well defined on C{{z}}.
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REMARK 4.41

When the cTP structure (F,∇, (·, ·)F) is the completion of a TP structure

(F ,∇, (·, ·)F ) (see Remark 4.5), the total space L has standard L2- and nuclear

subspaces induced from the TP structure F .

EXAMPLE 4.42 (Genus-zero Gromov–Witten potential [34])

Recall from Section 3.2 that the genus-zero descendant Gromov–Witten potential

F0
X of X can be viewed as a function on H+ via the dilaton shift. Here we explain

that the construction in this section starting from the A-model TEP structure

of X (Example 4.3) gives rise to the genus-zero descendant Gromov–Witten

potential F0
X under an identification of certain flat coordinates on L◦ with the

linear coordinates {qin} on H+ in Section 3.1.

As in Example 4.3, we assume that the nondescendant genus-zero potential

F 0
X (Section 2.3) is convergent and defines an analytic function over an open

subset MA ⊂HX ⊗C (after the specialization Q1 = · · ·=Qr = 1); then we have

the A-model cTP structure (F,∇, (·, ·)F) overMA. We use the standard opposite

module Pstd described in Example 4.16. The associated standard trivialization of

the A-model cTP structure F (given by the basis in (2.2)) together with the linear

coordinates {ti} on HX gives an algebraic local coordinate system {ti, xi
n} on

the total space L of F. The standard trivialization also defines subspaces L2(L)⊂
N (L)⊂ L as in Remarks 4.39 and 4.40. Let M(t, z) be the inverse fundamental

solution (2.8) in Gromov–Witten theory. This is analytic on MA × C× after

specialization of Novikov variables Q1 = · · ·=Qr = 1. The flat coordinate system

{qin} on N (L) is given by the formula (cf. (4.21))

(4.31) q+ p=M(t, z)x|Q1=···=Qr=1,

where

q=

∞∑
n=0

qinφiz
n, p=

∞∑
n=0

pn,iφ
i(−z)−n−1, x=

∞∑
n=1

N∑
i=0

xi
nφiz

n.

By [34, Lemmas 8.5, 8.8], we know that (q,p) here belongs to a nuclear version

HNF of the Givental space for X (see [34, Definition 8.7]):

HNF :=HX ⊗C{{z, z−1}}=HNF
+ ⊕HNF

− ,

where HNF
+ :=HX ⊗C{{z}},HNF

− :=HX ⊗ z−1C{{z−1}},
(4.32)

whenever (t,x) ∈ N (L). Then the map (t,x) �→ q defines a local isomorphism

between N (L◦) and HNF
+ (see [34, Section 8.5]). The genus-zero potential is

defined by (cf. (4.30))

(4.33) C(0) =
1

2

N∑
i=0

∞∑
n=0

pn,iq
i
n.

This is a holomorphic function on N (L). In this setting, we have the following.
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• The genus-zero descendant potential F0
X is NF-convergent (see [34, The-

orem 7.8]);21 that is, the power series (2.10) converges absolutely and uniformly

on a polydisk of the form |til|< ε(l!)/Cl, |Qi|< ε for some ε > 0 and C > 0.

• As F0
X is NF-convergent, the specialization F0

X,an of F0
X to Q1 = · · · =

Qr = 1 makes sense as a holomorphic function on a domain U ⊂HNF
+ (see [34,

Section 8.1]) via the dilaton shift from Section 3.2 (see Definition 6.7 below).

• When t is sufficiently close to the large-radius limit (2.4) and x ∈ zHNF
+

is sufficiently close to −z1, the flat coordinate q = [M(t, z)x]+|Q1=···=Qr=1 of

the point (t,x) ∈ N (L) belongs to U . Then we have C(0) = F0
X,an(q) (see [34,

Theorem 8.12]).

Although the normalization for the inverse fundamental solution M(t, z) in

Gromov–Witten theory is different from the one that we used in the general con-

struction (see Remark 4.29), the same argument as in this section (Section 4.7)

proves that the coordinates qαn on N (L◦) defined by (4.31) are flat with respect

to ∇Pstd and that the third derivative of C(0) in (4.33) with respect to ∇Pstd

coincides with the Yukawa coupling over N (L◦). In particular, we have

(4.34) ∇n−3Y =

∞∑
l1=0

· · ·
∞∑

ln=0

N∑
i1=0

· · ·
N∑

in=0

∂nF (0)
X,an

∂qi1l1 · · ·∂q
in
ln

dqi1l1 ⊗ · · · ⊗ dqinln

with ∇=∇Pstd .

4.8. Propagator
Given two pseudo-opposite modules P1, P2 for a cTP structure F, we now define

a bivector field on the space L◦, called the propagator Δ. Let Πi : F[z
−1]→ F,

i ∈ {1,2}, be the projection along Pi given by the decomposition F[z−1] = Pi⊕F.

DEFINITION 4.43

The propagator Δ=Δ(P1,P2) associated to pseudo-opposite modules P1, P2 is

the section of H omO(Ω1
◦ ⊗Ω1

◦,O) defined by

Δ(ω1, ω2) := Ω∨(Π∗
1KS∗−1 ω1,Π

∗
2KS∗−1 ω2), ω1, ω2 ∈Ω1.

Here KS∗ : pr∗ F∨→Ω1 is the dual Kodaira–Spencer map (Definition 4.11) and

Ω∨ : F[z−1]∨⊗F[z−1]∨→OM is the dual symplectic form (4.5). One can identify

Δ with the pushforward of the Poisson bivector on F[z−1] along Π1 ⊗Π2.

PROPOSITION 4.44

Let Δ=Δ(P1,P2) be the propagator associated to pseudo-opposite modules P1,

P2.

(1) The propagator Δ is symmetric: Δ(ω1, ω2) =Δ(ω2, ω1).

21Here, NF stands for nuclear Fréchet.
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(2) If P1,P2 are parallel, then

dΔ(ω1, ω2) =Δ(∇P1ω1, ω2) +Δ(ω1,∇P2ω2).

(See Proposition 4.85 below for the nonparallel case.)

Proof

Write ϕi := KS∗−1 ωi ∈ pr∗ F∨ for i = 1,2. Because ImΠ∗
i = P⊥

i and Im(Π∗
1 −

Π∗
2)⊂ F⊥, these subspaces are isotropic with respect to Ω∨. Hence, we have

0 = Ω∨((Π∗
1 −Π∗

2)ϕ1, (Π
∗
1 −Π∗

2)ϕ2

)
=−Ω∨(Π∗

1ϕ1,Π
∗
2ϕ2)−Ω∨(Π∗

2ϕ1,Π
∗
1ϕ2)

=−Ω∨(Π∗
1ϕ1,Π

∗
2ϕ2) +Ω∨(Π∗

1ϕ2,Π
∗
2ϕ1).

This shows that Δ is symmetric. For part (2), we have

dΔ(ω1, ω2) = dΩ∨(Π∗
1ϕ1,Π

∗
2ϕ2)

= Ω∨(∇̃∨Π∗
1ϕ1,Π

∗
2ϕ2) +Ω∨(Π∗

1ϕ1, ∇̃∨Π∗
2ϕ2)

= Ω∨(∇̃∨Π∗
1ϕ1, (Π

∗
2 −Π∗

1)ϕ2

)
+Ω∨((Π∗

1 −Π∗
2)ϕ1, ∇̃∨Π∗

2ϕ2

)
+Ω∨(∇̃∨Π∗

1ϕ1,Π
∗
1ϕ2) +Ω∨(Π∗

2ϕ1, ∇̃∨Π∗
2ϕ2).

(4.35)

Note that ImΠ∗
i = P⊥

i is preserved by ∇̃∨ because Pi is parallel. Therefore, the

two terms in the last line vanish. Because both Π∗
1(∇̃∨Π∗

1ϕ1|F)− ∇̃∨Π∗
1ϕ1 and

(Π∗
1 −Π∗

2)ϕ2 lie in F⊥, we have

Ω∨(∇̃∨Π∗
1ϕ1, (Π

∗
2 −Π∗

1)ϕ2

)
=Ω∨(Π∗

1(∇̃∨Π∗
1ϕ1|F), (Π∗

2 −Π∗
1)ϕ2

)
=Ω∨(Π∗

1KS∗−1∇P1ω1, (Π
∗
2 −Π∗

1)ϕ2

)
=Ω∨(Π∗

1KS∗−1∇P1ω1,Π
∗
2ϕ2) =Δ(∇P1ω1, ω2).

Similarly we have Ω∨((Π∗
1 − Π∗

2)ϕ1, ∇̃∨Π∗
2ϕ2) = Δ(ω1,∇P2ω2). The conclusion

follows. �

We introduce tensor notation. Let {xμ} denote an arbitrary local coordinate

system on L (or on the formal neighborhood L̂ of Lt). For example, this could be

an algebraic local coordinate system {ti, xi
n} (Section 4.3) associated to a local

trivialization of F or a flat coordinate system (Section 4.7) on L̂ associated to a

parallel pseudo-opposite module. In this coordinate system, we write the Yukawa

coupling and the propagator as

Y =C(0)
μνρdx

μ ⊗ dxν ⊗ dxρ, Δ=Δμν∂μ ⊗ ∂ν , where ∂μ =
∂

∂xμ
, ∂ν =

∂

∂xν
.

Here we adopt Einstein’s summation convention for repeated indices. The

Christoffel symbol of the connection ∇=∇P on L◦ (for a pseudo-opposite P) is

defined by

∇νdx
μ =−Γμ

νρdx
ρ, ∇ν∂ρ =Γμ

νρ∂μ,(4.36)
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where ∇ν =∇∂/∂xν . Note that Γμ
νρ =Γμ

ρν because ∇ is torsion-free; also Δμν =

Δνμ by the previous proposition. The propagator has the following key properties.

PROPOSITION 4.45

Let Pi be pseudo-opposite modules, and let Γ(i)μ

νρ denote the Christoffel symbols

of ∇Pi , i= 1,2. Let Δ=Δ(P1,P2) be the associated propagator.

(1) (∇P2 −∇P1)ω = ι(ιωΔ)Y for ω ∈Ω1
◦. In tensor notation,

(∇P2
μ −∇P1

μ )dxν = (Γ(1)ν

μρ − Γ(2)ν

μρ)dx
ρ =ΔνσC(0)

σμρdx
ρ.

(2) If P1,P2 are parallel, we have (∇P1Δ)(ω1 ⊗ ω2) = ι(ιω1Δ⊗ ιω2Δ)Y for

ω1, ω2 ∈Ω1
◦, that is,

∇P1
μ Δνρ(:= ∂μΔ

νρ +Γ(1)ν

μσΔ
σρ +Γ(1)ρ

μσΔ
νσ) =ΔνσC(0)

σμτΔ
τρ.

(See Proposition 4.85 below for the nonparallel case.)

Proof

Set ϕ=KS∗−1 ω ∈ pr∗ F∨. Note that ιωΔ is a section of Θ◦. For β ∈ pr∗ F[z−1],

we have

Ω
(
KS(ιωΔ), β

)
=
〈
KS(ιωΔ),−ιβΩ

〉
=
〈
KS(ιωΔ),−(ιβΩ)|pr∗ F

〉
=−
〈
ιωΔ,KS∗

(
(ιβΩ)|pr∗ F

)〉
=−Δ
(
ω,KS∗
(
(ιβΩ)|pr∗ F

))
=−Ω∨(Π∗

1ϕ,Π
∗
2

(
(ιβΩ)|pr∗ F

))
(by the definition of Δ)

=−Ω∨((Π∗
1 −Π∗

2)ϕ,Π
∗
2

(
(ιβΩ)|pr∗ F

))
(
since ImΠ∗

2 = (pr∗P2)
⊥ is isotropic

)
=−Ω∨((Π∗

1 −Π∗
2)ϕ, ιβΩ

)
.

The last line follows from the fact that both (Π∗
1−Π∗

2)ϕ and ιβΩ−Π∗
2((ιβΩ)|pr∗ F)

lie in the isotropic subspace (pr∗ F)⊥. Thus,

(4.37) Ω
(
KS(ιωΔ), β

)
=
〈
(Π∗

2 −Π∗
1)ϕ,β
〉
.

For X,Y ∈Θ◦ and the tautological section x of pr∗ F, we have〈
(∇P2 −∇P1)ω,X ⊗ Y

〉
=
〈
(id⊗KS∗)∇̃∨(Π∗

2 −Π∗
1)ϕ,X ⊗ Y

〉
=
〈
∇̃∨(Π∗

2 −Π∗
1)ϕ,X ⊗ ∇̃Y x

〉
=
〈
∇̃∨

X(Π∗
2 −Π∗

1)ϕ, ∇̃Y x
〉

=X
〈
(Π∗

2 −Π∗
1)ϕ, ∇̃Y x

〉
−
〈
(Π∗

2 −Π∗
1)ϕ, ∇̃X∇̃Y x

〉
.

Because (Π∗
2−Π∗

1)ϕ vanishes on pr∗ F, the first term vanishes. By (4.37), we now

have 〈
(∇P2 −∇P1)ω,X ⊗ Y

〉
=−Ω
(
KS(ιωΔ), ∇̃X∇̃Y x

)
= Y (ιωΔ,X,Y ).
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This proves part (1). For part (2), using Proposition 4.44(2), we have

dΔ(ω1, ω2)−Δ(∇P1ω1, ω2)−Δ(ω1,∇P1ω2) =Δ
(
ω1, (∇P2 −∇P1)ω2

)
.

This equals ι(ιω1Δ⊗ ιω2Δ)Y by part (1). �

PROPOSITION 4.46

Let P1,P2,P3 be pseudo-opposite modules, and let Δij = Δ(Pi,Pj) denote the

corresponding propagators. We have

Δ13 =Δ12 +Δ23.

In particular, Δ(P1,P2) =−Δ(P2,P1).

Proof

Putting ϕi =KS∗−1 ωi ∈ pr∗ F∨, we have

Δ13(ω1, ω2) = Ω∨((Π∗
1 −Π∗

3)ϕ1,Π
∗
3ϕ2

)
=Ω∨((Π∗

1 −Π∗
2)ϕ1,Π

∗
3ϕ2

)
+Ω∨((Π∗

2 −Π∗
3)ϕ1,Π

∗
3ϕ2

)
=Ω∨((Π∗

1 −Π∗
2)ϕ1,Π

∗
2ϕ2

)
+Ω∨(Π∗

2ϕ1,Π
∗
3ϕ2)

=Δ12(ω1, ω2) +Δ23(ω1, ω2).

We used the fact that ImΠ∗
i = P⊥

i is isotropic and that Im(Π∗
i −Π∗

j ) is contained

in the isotropic subspace F⊥. The last statement follows from the case P1 =

P3. �

4.8.1. Givental’s propagator

Suppose that we have two opposite modules P1,P2 over U and that we have the

corresponding two trivializations

Φi : C
N+1 ⊗OU [[z]]→ F|U , i= 1,2,

such that

• Pi =Φi(C
N+1 ⊗ z−1OU [z

−1]), i= 1,2;

• the values gij = (Φ1(ei),Φ1(ej))F and g̃ij = (Φ2(ei),Φ2(ej))F are constant.

Here e0, . . . , eN is the standard basis of CN+1. Such a trivialization arises from

the flat trivialization (see Proposition 4.18) associated to Pi and a ∇0-flat frame

of zPi/Pi. Let R(z) = Φ−1
2 ◦Φ1 =R0+R1z+R2z

2+ · · · ∈GL(N+1,O[[z]]) denote

the gauge transformation between the two trivializations

R(z) : CN+1 ⊗OU [[z]]
Φ1−→ F

Φ−1
2−→CN+1 ⊗OU [[z]].

Let g, g̃ : CN+1 ⊗CN+1→ C denote the pairings with the Gram matrices (gij),

(g̃ij). Then the gauge transformation intertwines these pairings:

(4.38) g̃
(
R(−z)v,R(z)w

)
= g(v,w), v,w ∈CN+1.
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DEFINITION 4.47 (see [61])

Givental’s propagator is a collection of elements V (n,j),(m,i) ∈OU , 0≤ n,m<∞,

0≤ i, j ≤N , defined by the formula

(4.39)

∞∑
n=0

∞∑
m=0

(−1)n+mV (n,j),(m,i)wnzm = g
(
ej ,

R(w)†R(z)− id

z +w
ei
)
,

where R(w)† = R(−w)−1 denotes the adjoint of R(w) with respect to g and g̃

(see (4.38)) and ei =
∑

j g
ijej with (gij) the matrix inverse to (gij).

Let ϕi
m be the frame of pr∗ F[z−1]∨ defined by the trivialization Φ1 (cf. (4.14)):

ϕi
m : pr∗ F[z−1]→O, ϕi

m(s) = [Φ−1
1 s]im,

where Φ1 : C
N+1 ⊗O((z))∼= pr∗ F[z−1] and we followed Notation 4.12.

LEMMA 4.48

We have that V (n,j),(m,i) =−[R(z)−1[R(z)(−z)−n−1ej ]+]
i
m = Ω∨(Π∗

1ϕ
j
n,Π

∗
2ϕ

i
m),

where [· · · ]+ denotes the nonnegative part as a z-series.

Proof

The first equality follows from the calculation

(4.39) = g
(R(z)†R(w)− id

z +w
ej , ei
)
= g
(
R(−z)−1

(R(w)−R(−z)
z +w

ej
)
, ei
)

=−g
(
R(−z)−1

[
R(−z) ej

z +w

]
+
, ei
)

when |w|< |z|

=−
∞∑

n=0

(−1)ng
(
R(−z)−1

[
R(−z)z−n−1ej

]
+
, ei
)
wn

=−
∞∑

n=0

∞∑
m=0

(−1)n+m
[
R(z)−1

[
R(z)(−z)−n−1ej

]
+

]i
m
wnzm.

In the second line, we expanded ej/(z +w) in power series in z−1 (i.e., around

z =∞). Under the trivialization Φ1, the projection Π2 can be presented as

Π2(ehz
n) =R(z)−1

[
R(z)ehz

n
]
+
, n ∈ Z.

Therefore, for m≥ 0,

Π∗
2ϕ

i
m =
∑
n∈Z

∑
h

[
R(z)−1

[
R(z)ehz

n
]
+

]i
m
ϕh
n

= ϕi
m +

∞∑
n=0

∑
h

[
R(z)−1

[
R(z)ehz

−n−1
]
+

]i
m
ϕh
−n−1.
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Consequently, under the isomorphism F[z−1] ∼= F[z−1]∨, v �→ ιvΩ, the section

Π∗
2ϕ

i
m ∈ F[z−1]∨ corresponds to

vim = ei(−z)−m−1 +

∞∑
n=0

∑
h

[
R(z)−1

[
R(z)ehz

−n−1
]
+

]i
m
(−z)neh.

Hence, we have Ω∨(Π∗
1ϕ

j
n,Π

∗
2ϕ

i
m) = 〈Π∗

1ϕ
j
n, v

i
m〉= 〈ϕj

n, [v
i
m]+〉= V (n,j),(m,i). �

PROPOSITION 4.49

For t ∈M, let {qin}n≥0,0≤i≤N be the flat coordinate system (Definition 4.28)

on the formal neighborhood L̂
◦
of L◦

t associated to the trivialization Φ1 and the

opposite module P1. The propagator Δ=Δ(P1,P2) restricted to the fiber L◦
t can

be written in terms of the flat coordinates as

Δ|L◦
t
=

∞∑
n=0

∞∑
m=0

N∑
i=0

N∑
j=0

V (n,j),(m,i) ∂

∂qjn
⊗ ∂

∂qim
,

where V (n,j),(m,i) is Givental’s propagator in Definition 4.47.

Proof

Restricting (4.28) to the fiber Lt (i.e., s= 0), we have

(4.40) KS∗−1 dqjn = ϕj
n over Lt.

Hence, Δ(dqjn, dq
i
m)|Lt =Ω∨(Π∗

1ϕ
j
n,Π

∗
2ϕ

i
m) = V (n,j),(m,i) by Lemma 4.48. �

REMARK 4.50

In terms of the algebraic coordinates (ti, xi
n)n≥1,0≤i≤N on L associated to the

trivialization Φ1, the propagator Δ=Δ(P1,P2) can be written as

Δ(dta ⊗ dtb) =
[
K(x1)

−1ei
]a[

K(x1)
−1ej
]b
V (0,i),(0,j),

Δ(dta ⊗ dxb
n) =−
[
K(x1)

−1ei
]a
V (0,i),(n,b)

+
[
K(x1)

−1ei
]a[

K(xn+1)K(x1)
−1ei
]b
V (0,i),(0,j),

Δ(dxa
m ⊗ dxb

n) = V (m,a),(n,b) −
[
K(xm+1)K(x1)

−1ei
]a
V (0,i),(n,b)

−
[
K(xn+1)K(x1)

−1ej
]b
V (m,a),(0,j)

+
[
K(xm+1)K(x1)

−1ei
]a[

K(xn+1)K(x1)
−1ej
]b
V (0,i),(0,j),

where K(xn) is as in Example 4.26.

4.8.2. Difference one-form

DEFINITION 4.51

For two pseudo-opposite modules P and Q, we define a one-form on L◦ by
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(4.41) ωPQ =
1

2

∑
μ,ν,ρ

C(0)
μνρΔ

νρ(P,Q)dxμ =
1

2

∑
0≤i,j,h≤N

C
(0)
ijhΔ

jh(P,Q)dti,

where in the second expression the indices i, j, h are labels of the t-variables of an

algebraic local coordinate system {ti, xi
n}n≥1,0≤i≤N . We call ωPQ the difference

one-form, because it appears as the difference of genus-one one-point functions

(4.51). By Proposition 4.46, we have ωPQ + ωQR = ωPR for any three pseudo-

opposite modules P,Q,R.

LEMMA 4.52

The difference one-form ωPQ is pulled back from the base M; we have

ωPQ =

N∑
i=0

1

2
TrF0

(
(ΠP −ΠQ)∇i

)
dti.

Proof

One can easily check that the operator (ΠP−ΠQ)∇i defines an OM-linear endo-

morphism of F0 = F/zF. By Proposition 4.45(1), we have

(∇Q
i −∇P

i )(∂/∂t
j) =−C(0)

ijhΔ
hμ(P,Q)(∂/∂xμ).

Here xμ can be either ti or xi
n. The minus sign here is because we are working

with connections on the tangent bundle Θ. On the other hand, by the definition

of ∇P and ∇Q, we have ∇Q
i −∇P

i = KS−1(ΠQ − ΠP)∇̃iKS. Hence, ∇Q
i −∇P

i

induces a map Θ/KS−1(pr∗(zF))→ Θ/KS−1(pr∗(zF)) which is conjugate to

(ΠQ −ΠP)∇̃i ∈ End(F0). Because {∂/∂ti} is a basis of Θ/KS−1(pr∗(zF)) ∼= F0,

the conclusion follows. �

4.9. Grading and filtration
Recall that we introduced a grading and an increasing filtration on O and Ω1 in

Section 4.3. The grading and the filtration on pr∗ F[z−1]∨ are defined as follows.

For a pullback pr∗ϕ ∈ pr−1 F[z−1]∨ of ϕ ∈ F[z−1]∨, we set deg(pr∗ϕ) = 0. The

grading on pr∗ F[z−1]∨ is determined by this and the grading on O. To define

the filtration, recall that F[z−1]∨ is the projective limit of the sequence:

· · ·� (z−2F)∨ � (z−1F)∨ � F∨ � (zF)∨ � · · · .

Let F[z−1]∨n ⊂ F[z−1]∨ be the kernel of F[z−1]∨ � (zn+2F)∨. This defines an

increasing filtration of F[z−1]∨ by subsheaves. The filtration on pr∗ F[z−1]∨ is

induced from this and the filtration on O:(
pr∗ F[z−1]∨

)
n
=
∑

i+j≤n

Oi · pr−1
(
F[z−1]∨j

)
.

Note that the filtration on O is bounded from below: {0}=O−1 ⊂O0 ⊂O1 ⊂
· · · , whereas the filtration on F[z−1]∨ is unbounded in both directions. The grad-

ing and the filtration on pr∗ F∨ are induced from those on pr∗ F[z−1]∨ by the

surjection pr∗ F[z−1]∨ � pr∗ F∨.
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Take a local trivialization F|U ∼= CN+1 ⊗OU [[z]]. This defines a local frame

{eizn}n∈Z,0≤i≤N for pr∗ F[z−1] and the dual local frame {ϕi
n}n∈Z,0≤i≤N for

pr∗ F[z−1]∨ (see (4.14)). The image of ϕi
n under pr∗ F[z−1]∨ � pr∗ F∨ is denoted

by the same symbol. Note that we have

degϕi
n = 0, filtϕi

n = n− 1.

Here as before filt(y) denotes the least number m such that y belongs to the mth

filter.

LEMMA 4.53

(1) The dual Kodaira–Spencer map KS∗ : pr∗ F∨ → Ω1 (resp., its inverse

KS∗−1) raises (resp., lowers) the degree by one and preserves the filtration.

(2) The connection ∇̃∨ : pr∗ F[z−1]∨ → pr∗ F[z−1]∨ ⊗Ω1 preserves both the

grading and the filtration.

(3) Let Π: pr∗ F[z−1]→ pr∗ F denote the projection along a pseudo-opposite

module P. The dual map Π∗ : pr∗ F∨→ pr∗ F[z−1]∨ preserves the grading and the

filtration.

(4) The pairing Ω∨ : pr∗ F[z−1]∨ ⊗ pr∗ F[z−1]∨ → O preserves the grading

and raises the filtration by three.

Proof

Part (1) follows easily from (4.15). Note that d : O→Ω1 preserves the degree

and the filtration. Part (2) follows from this and (4.19). Part (3) is obvious from

the definition. For part (4), note that Ω∨(ϕi
m, ϕj

n) is in OU and of degree zero.

Hence, Ω∨ preserves the grading. Also, for f, g ∈O,

filt
(
Ω∨(fϕi

m, gϕj
n)
)
≤ filt(f) + filt(g) + (m+ n+ 1) = filt(fϕi

m) + filt(gϕj
n) + 3.

The first inequality follows from the fact that Ω∨(ϕi
m, ϕj

n) vanishes unless m+

n+ 1≥ 0. �

PROPOSITION 4.54

The connection ∇ : Ω1
◦ → Ω1

◦ ⊗ Ω1
◦ associated to a pseudo-opposite module P

preserves the grading and the filtration.

Proof

This follows from ∇ω =KS∗((∇̃∨Π∗
PKS∗−1 ω)|pr∗ F) and Lemma 4.53. �

PROPOSITION 4.55

Let P1,P2 be pseudo-opposite modules. The propagator

Δ(P1,P2) : Ω
1
◦ ⊗Ω1

◦→O

lowers the degree by two and raises the filtration by two, that is, degΔ = −2,
filtΔ≤ 2.
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Proof

Recall that the propagator Δ=Δ(P1,P2) is defined by

Δ(ω1, ω2) = Ω∨(Π∗
1KS∗−1 ω1,Π

∗
2KS∗−1 ω2).

By Lemma 4.53, it follows that Δ lowers the degree by two and raises the filtration

by three. One can improve the estimate on the filtration. Note that

Δ(ω1, ω2) = Ω∨(Π∗
1KS∗−1 ω1, (Π

∗
2 −Π∗

1)KS∗−1 ω2

)
.

We claim that Ω∨(·, (Π∗
2 −Π∗

1)·) : pr∗ F[z−1]∨ ⊗ pr∗ F∨→O raises the filtration

only by two. Let l≥ 0. Because (Π∗
2−Π∗

1)ϕ
j
l vanishes on pr∗ F, one can write (Π∗

2−
Π∗

1)ϕ
j
l =
∑

m≤−1 cm,a(t)ϕ
a
m. Thus, Ω∨(ϕi

n, (Π
∗
2 − Π∗

1)ϕ
j
l ) ∈ OU can be nonzero

only if n≥ 0, so in particular only if n+ l≥ 0. Therefore, for f, g ∈O,

filt
(
Ω∨(fϕi

n, (Π
∗
2−Π∗

1)(gϕ
j
l )
))
≤ filt(f)+filt(g)+n+ l = filt(fϕi

n)+filt(gϕj
l )+2.

The conclusion follows. �

4.10. Local Fock space
We work with a local coordinate system {ti, xi

n} on L associated to a local trivi-

alization of F (Section 4.3). This local coordinate system is also denoted by {xμ}.
We use the notation and summation convention which appeared in and above

Proposition 4.45. For any n-tensor Cμ1,...,μndx
μ1 ⊗ · · · ⊗ dxμn ∈ (Ω1

◦)
⊗n, we write

∇(Cμ1,...,μndx
μ1 ⊗ · · · ⊗ dxμn) = (∇νCμ1,...,μn)dx

ν ⊗ dxμ1 ⊗ · · · ⊗ dxμn

with

(4.42) ∇νCμ1,...,μn := ∂νCμ1,...,μn −
n∑

i=1

Cμ1,...,ρ
i
,...,μnΓ

ρ
μiν ,

where Γρ
μiν is the Christoffel symbol (4.36) of ∇. Similarly, for a “contravariant”

tensor Cμ1,...,μn∂μ1 ⊗ · · · ⊗ ∂μn ∈ Θ⊗n
◦ , we write ∇νC

μ1,...,μn = ∂νC
μ1,...,μn +∑n

i=1C
μ1,...,

i
ρ,...,μnΓμi

νρ.

DEFINITION 4.56 (Local Fock space)

Let P be a parallel pseudo-opposite module over an open set U ⊂M. Let ∇ be

the associated flat connection on the total space L◦. Let {ti, xi
n}n≥1,0≤i≤N be an

algebraic local coordinate system on pr−1(U), and let P = P (t, x1) denote the

discriminant (4.10). The Fock space Fock(U ;P) over U associated with P consists

of collections

C =
{
∇nC(g) ∈ (Ω1)⊗n

(
pr−1(U)◦

)
: g ≥ 0, n≥ 0,2g− 2 + n > 0

}
of completely symmetric tensors such that the following conditions are satisfied:

(Yukawa) ∇3C(0) is the Yukawa coupling Y (see Section 4.4);

(Jetness) ∇(∇nC(g)) =∇n+1C(g);

(Grading and filtration) ∇nC(g) ∈ ((Ω1)⊗n(pr−1(U)◦))2−2g
3g−3;
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(Pole) P∇C(1) extends to a regular one-form on pr−1(U), and for g ≥ 2,

C(g) ∈ P−(5g−5)O(U)[x1, x2, Px3, P
2x4, . . . , P

3g−4x3g−2].

Using local coordinates {xμ}= {ti, xi
n}, we write

∇nC(g) =C(g)
μ1,...,μn

dxμ1 ⊗ · · · ⊗ dxμn ,

where once again we use Einstein’s summation convention for the indices μi. We

call ∇nC(g) or C
(g)
μ1,...,μn the genus-g, n-point correlation functions of C .

REMARK 4.57

(1) We do not define ∇nC(g) in the unstable range (g,n) = (0,0), (0,1),

(0,2), (1,0). The genus-zero data are given by the cubic tensor Y , and the genus-

one data are given by a one-form ∇C(1).

(2) The fact that C
(1)
μν =∇μC

(1)
ν is symmetric implies that ∇C(1) =C

(1)
ν dxν

is a closed one-form. By (Grading and filtration) and (Pole), one can write it in

local coordinates as

(4.43) ∇C(1) =
1

P (t, x1)

( N∑
i=0

Fi(t, x1)dt
i +

N∑
i=0

Gi(t, x1)dx
i
1

)
for some homogeneous polynomials Fi,Gi ∈ O(U)[x0

1, . . . , x
N
1 ] of degree N + 1

and N , respectively. The condition (Grading and filtration) does not prevent Fi

from containing x2, but the closedness of ∇C(1) implies that Fi does not depend

on x2. The primitive C(1) =
∫
∇C(1) is a multivalued function defined up to a

constant. The symmetry of ∇nC(g) is automatic for g ≥ 2 because ∇ is flat; the

symmetry of ∇nC(0) =∇n−3Y , n≥ 3, follows from the existence of C(0) in the

formal neighborhood L̂ (Proposition 4.35).

(3) Because ∇nC(g) ∈ ((Ω1)⊗n)3g−3, we have

C(g)
μ1,...,μn

∈O3g−3−|μ1|−···−|μn|+n,

where we set

|μ|=
{
n if xμ = xi

n,

0 if xμ = ti,

so that dxμ ∈ (Ω1)|μ|−1. In particular, the following (3g− 2)-jet condition holds:

(4.44) C(g)
μ1,...,μn

= 0 if |μ1|+ · · ·+ |μn|> 3g− 3 + n.

For t ∈ U , let {qin}n≥0,0≤i≤N be the flat coordinate system (Definition 4.28) on

the formal neighborhood L̂
◦
of L◦

t associated to P. Then we have (see (4.23))

∂

∂qin

∣∣∣
L◦
t

=

{
a linear combination of ∂

∂ti |L◦
t
and ∂

∂xi
m
|L◦

t
, m≥ 1 if n= 0,

∂
∂xi

n
|L◦

t
otherwise.

Therefore, the (3g− 2)-jet condition implies the following tameness (cf. [63]):
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(4.45)
∂nC(g)

∂qi1l1 · · ·∂q
in
ln

∣∣∣
q0=0

= 0 if l1 + · · ·+ ln > 3g− 3 + n.

Note that we need the restriction to q0 = 0 here.

(4) The discriminant depends on the choice of local coordinates {ti} on U ,

and making a different choice changes it as P → f(t)P for some function f(t)

on U . Note, however, that the condition (Pole) does not depend on the choice of

coordinates.

(5) Recall that ∇ preserves the grading and the filtration (Proposition 4.54).

Therefore, (Grading and filtration) for genus g ≥ 1 is equivalent to the condition

that ∇C(1) ∈O(pr−1(U)◦)00 and C(g) ∈O(pr−1(U)◦)2−2g
3g−3 for g ≥ 2. Note that

(Grading and filtration) at genus zero follows from Y ∈ ((Ω1)⊗3)2−3.

(6) The condition (Pole) for g ≥ 2 is equivalent to the fact that C(g) has the

expansion

C(g) =

∞∑
n=0

∑
L=(l1,...,ln)
la≥2 for all a

∑
I=(i1,...,in)

1

n!

fg,L,I(t, x1)

P (t, x1)5g−5+2n−(l1+···+ln)
xi1
l1
· · ·xin

ln

for some polynomials fg,L,I(t, x1) in x1. This can be further rephrased as

P 5g−5+2n−(l1+···+ln)
∂nC(g)

∂xi1
l1
· · ·∂xin

ln

extends regularly to pr−1(U) for l1, . . . , ln ≥ 1.

Since C(g) ∈O(pr−1(U)◦)3g−3, the exponent 5g− 5+ 2n− (l1 + · · ·+ ln)≥ 2g−
2+n here is always positive unless the derivative is zero. Note that ∂/∂xi

1 raises

the pole order by at most 1 and that ∂/∂xi
2 does not raise the pole order.

4.11. Pole order along the discriminant
We next study the pole order of tensors ∇nC(g) in algebraic local coordinates

and also in flat coordinates on L̂
◦
.

LEMMA 4.58

Let ∇=∇P be the connection associated to a pseudo-opposite module P over U .

(1) The 4-tensor ∇Y is completely symmetric22 and is regular on pr−1(U).

(2) We have

∇Y = (id⊗3⊗KS∗)Ξ

for some regular section Ξ of (Ω1)⊗3 ⊗ pr∗ F∨ over pr−1(U) (cf. Lemma 4.14).

(3) For n≥ 5, the n-tensor Pn−5∇n−3Y is regular on pr−1(U).

Proof

Using (4.16), we calculate (writing Ci = Ci(t,0))

22This is obvious if P is parallel, but we do not assume here that P is parallel.
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∇Y =
∑(

d(Cief , eg)F0

)
⊗ dti ⊗KS∗(ϕf

0 )⊗KS∗(ϕg
0)

+
∑

(Cief , eg)F0dx
ν ⊗∇νdt

i ⊗KS∗(ϕf
0 )⊗KS∗(ϕg

0)

+
∑

(Cief , eg)F0dx
ν ⊗ dti ⊗∇ν KS∗(ϕf

0 )⊗KS∗(ϕg
0)

+
∑

(Cief , eg)F0dx
ν ⊗ dti ⊗KS∗(ϕf

0 )⊗∇ν KS∗(ϕg
0).

(4.46)

The first term is regular and is in the image of id⊗3⊗KS∗. So are the third and

the fourth terms, because ∇KS∗(ϕi
0) = KS∗((∇̃∨Π∗ϕi

0)|pr∗ F). Using KS∗(ϕf
0 ) =

−
∑

j [Cjx1]
fdtj (see (4.15)), we can rewrite the second term as∑

(CiCjx1, eg)F0(∇dti)⊗ dtj ⊗KS∗(ϕg
0)

=
∑

(Cjef , eg)F0 [Cix1]
f (∇dti)⊗ dtj ⊗KS∗(ϕg

0).

Using KS∗(ϕf
0 ) =−
∑

i[Cix1]
fdtj again, we have∑

i

[Cix1]
f (∇dti) =−∇

(
KS∗(ϕf

0 )
)
−
∑
i

(
d[Cix1]

f
)
⊗ dti.

The right-hand side is regular on pr−1(U) for the same reason as before. Thus, the

second term of (4.46) is regular and is in the image of id⊗3⊗KS∗. This establishes

the regularity of ∇Y and part (2). Next we show that ∇Y is symmetric. Take

an opposite module Q in the formal neighborhood of t ∈M (see Lemma 4.17).

We have by Proposition 4.45(1)

∇P
μC

(0)
νρσ = ∂μC

(0)
νρσ −C(0)

τρσΓ
Pτ

μν −C(0)
ντσΓ

Pτ

μρ −C(0)
νρτΓ

Pτ

μσ

=∇Q
μC

(0)
νρσ −C(0)

τρσΔ
τκC(0)

κμν −C(0)
ντσΔ

τκC(0)
κμρ −C(0)

νρτΔ
τκC(0)

κμσ,

where ΓPτ
μν denotes the Christoffel symbol (see (4.36)) of ∇P and Δ =Δ(P,Q)

is the propagator. Because the propagator is symmetric (Proposition 4.44) and

the tensor ∇Q
μC

(0)
νρσ associated to a parallel Q is symmetric, we find that ∇PY

is also symmetric. Finally we prove part (3). We can write

∇Y =
∑
a

κa ⊗ λa ⊗ μa ⊗ νa

with κa, λa, μa, νa ∈Ω1 regular and νa the image under KS∗ of a regular section

of pr∗ F∨. Then we have

(4.47) ∇2Y =
∑
a

[
(∇κa)⊗ λa ⊗ μa ⊗ νa) + · · ·+ (κa ⊗ λa ⊗ μa ⊗∇νa)

]
.

Note that ∇νa is regular by the definition of ∇. We claim that the difference∑
a

(∇κa)⊗ λa ⊗ μa ⊗ νa −
∑
a

(∇νa)⊗ λa ⊗ μa ⊗ κa

is regular. Since ∇Y is symmetric, the image of∑
a

κa ⊗C λa ⊗C μa ⊗C νa −
∑
a

νa ⊗C λa ⊗C μa ⊗C κa ∈Ω1 ⊗C Ω1 ⊗C Ω1 ⊗C Ω1
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in Ω1 ⊗O Ω1 ⊗O ⊗Ω1 ⊗O Ω1 is zero. Therefore, it is generated by elements of

the form

fφ1 ⊗C φ2 ⊗C φ3 ⊗C φ4 − φ1 ⊗C fφ2 ⊗C φ3 ⊗C φ4,

φ1 ⊗C fφ2 ⊗C φ3 ⊗C φ4 − φ1 ⊗C φ2 ⊗C fφ3 ⊗C φ4,

φ1 ⊗C φ2 ⊗C fφ3 ⊗C φ4 − φ1 ⊗C φ2 ⊗C φ3 ⊗C fφ4

with f ∈O regular and regular sections φi ∈Ω1. If one applies ∇⊗ id⊗3 to any

of these generators and maps it to Ω1 ⊗O Ω1 ⊗O Ω1 ⊗O Ω1 ⊗O Ω1, we always

get a regular 5-tensor. This proves the claim. Because ∇νa is regular, it follows

that every term in (4.47) is regular. Part (3) is proved. Part (4) follows from part

(1), part (3), and Lemma 4.25. �

PROPOSITION 4.59

For C = {∇nC(g)}2g−2+n>0 ∈ Fock(U ;P), Pmax(5g−5+n,0)∇nC(g) extends to a

regular n-tensor on pr−1(U).

Proof

At genus zero, this was shown in the previous lemma. At higher genera, it fol-

lows from Lemma 4.25 and the fact that C(g) has poles of order 5g − 5 along

P (t, x1) = 0. �

PROPOSITION 4.60 (Pole structure in flat coordinates)

Let P be a parallel pseudo-opposite module over an open set U ⊂M, and let

t ∈ U . Let {qin}n≥0,0≤i≤N be a flat coordinate system on the formal neighborhood

L̂
◦
of L◦

t associated to P (see Definition 4.28). For any element C = {∇nC(g)} ∈
Fock(U ;P), we have

(4.48)
∂nC(g)

∂qi1l1 · · ·∂q
in
ln

∈ P
−(5g−5+2n−(l1+···+ln))
t C[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]]

whenever 2g− 2 + n > 0, where Pt = P (t, q1).

Proof

At genus zero, this follows from Lemma 4.36. For g ≥ 2, it suffices to show

that C(g) lies in P
−(5g−5)
t S , where S :=C[q1, q2, Ptq3, P

2
t q4, . . . ][[P

−2
t q0]]. Let s=

(s0, . . . , sN ) be a local coordinate onM centered at t ∈M as in Section 4.7, and

write t + s for the corresponding point in a neighborhood of t. The condition

(Pole) implies that

C(g) ∈ P−(5g−5)O(U)[x1, x2, Px3, P
2x4, . . . , P

3g−4x3g−2],

where P = P (t + s,x1). By Lemma 4.30, we have xi
1 ∈ qi1 + PtS , xi

n ∈ P 2−n
t S ,

n≥ 2, and si ∈ PtS . Thus, we have

P/Pt = P (t+ s,x1)/P (t, q1) ∈ S.
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We also have Pt/P ∈ S , because (P/Pt)|q0=0 = 1 so that P/Pt is invertible in S .
Therefore,

P−(5g−5) ∈ P
−(5g−5)
t S, Pn−2xn ∈ S (n≥ 2).

Hence, C(g) ∈ P
−(5g−5)
t S for g ≥ 2. For g = 1, it suffices to show (4.48) for n= 1.

Using the expression (4.43), we have

∂C(1)

∂qjl
=

1

P

N∑
i=0

(
Fi(t+ s,x1)

∂si

∂qjl
+Gi(t+ s,x1)

∂xi
1

∂qjl

)
.

Because P−1 ∈ P−1
t S , Fi(t + s,x1),Gi(t + s,x1) ∈ S , and ∂si/∂qil , ∂x

i
1/∂q

j
l ∈

P l−1
t S , the right-hand side here belongs to P l−2

t S . �

REMARK 4.61

The previous proposition implies and is implied by

∂nC(g)

∂qi1l1 · · ·∂q
in
ln

∣∣∣
q0=0

=
fg,I,L(q1, q2, . . . )

P (t, q1)5g−5+2n−(l1+···+ln)

for some polynomial fg,I,L(q1, q2, . . . ). By tameness (4.45), the exponent 5g−5+

2n− (l1 + · · ·+ ln) is positive unless the derivative vanishes.

4.12. Transformation rule and Fock sheaf
As outlined in Section 3.6, we now define a Fock sheaf by gluing local Fock spaces

using a transformation rule. Let {yμ} denote the fiber coordinates of the tangent
bundle Θ dual to {xμ}. A general point on the total space of Θ can be written

as ∑
μ

yμ
( ∂

∂xμ

)
x
∈Θx.

Much as we did for L, one can give a coordinate-free definition of the total space

of the tangent bundle Θ as a certain ringed space. To avoid excessive formalism,

however, we will work in terms of local coordinates {xμ, yμ} on Θ, regarding any

polynomial (or formal power series) expression in xμ, yμ as a regular (or formal)

function on the total space of Θ.

DEFINITION 4.62 (Jet potential)

An element C = {∇nC(g)}g,n of Fock(U ;P) is encoded by the following formal

function W on the total space of Θ|pr−1(U)◦ :

W(x, y) =
∞∑
g=0

�g−1Wg(x, y),

where

Wg(x, y) =
∞∑

n=max(3−2g,0)

1

n!
C(g)

μ1,...,μn
(x)yμ1 · · · yμn .
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We callWg the genus-g jet potential and exp(W) the total jet potential associated

to C .

REMARK 4.63

(1) For a fixed x ∈ L◦, Wg(x, y) should be viewed as a packaging of the

multilinear tensors {∇nC(g)}n on the tangent space Θx. This can be identified

with the Taylor expansion at x of the potential C(g) in flat coordinates. Namely,

the linear coordinates yμ on Θx play the role of flat coordinates on L centered

at x such that dyμ|x = dxμ|x. Note, however, that the constant term at genus one

and the quadratic term at genus zero are ignored.

(2) Let yin be the fiber coordinate dual to ∂/∂xi
n for n≥ 1, and let yi0 be the

fiber coordinate dual to ∂/∂ti. Then the jet potential W(x, y) is an element of

�−1O(U)
[
{xi

n}n≥1,0≤i≤N , P (t, x1)
−1,{yin}n≥2,0≤i≤N

]
[[y00 , . . . , y

N
0 , y01 , . . . , y

N
1 ]][[�]].

Moreover, the �−1-coefficient of W (i.e., W0) vanishes along y00 = · · ·= yN0 = 0,

and thus, exp(W(x, y)) is a well-defined formal Laurent series in � (infinite in

both directions).

To describe the transformation rule (or Feynman rule), we use the following

terminology for graphs. A graph Γ is given by four finite sets V (Γ), E(Γ), L(Γ),

F (Γ) called (the sets of) vertices, edges, legs, and flags, respectively, together

with incidence maps

πV : F (Γ)→ V (Γ), πE : F (Γ)→E(Γ)�L(Γ)

such that |π−1
E (e)|= 2 for each e ∈ E(Γ) and |π−1

E (l)|= 1 for each l ∈ L(Γ). We

assign to an edge e a closed interval Ie ∼= [0,1], to a leg l a half-open interval

Hl
∼= [0,1), and to a vertex v a point pv , and we fix identifications π−1

E (e)∼= ∂Ie,

π−1
E (l)∼= ∂Hl. By identifying Ie, Hl, pv via the map πV : F (Γ)∼=

⊔
∂Ie�
⊔
∂Hl→

V (Γ)∼= {pv}, we get a topological realization |Γ| of the graph Γ. We say that Γ

is connected if |Γ| is connected; we also write χ(Γ) = χ(|Γ|) = |V (Γ)| − |E(Γ)| for
the topological Euler characteristic of |Γ|.

DEFINITION 4.64 (Transformation rule)

Let P1, P2 be parallel pseudo-opposite modules over U ⊂ M, and let Δ =

Δ(P1,P2) be the propagator. The transformation rule T (P1,P2) : Fock(U ;P1)→
Fock(U ;P2) is a map which assigns, to the jet potential exp(W) for an element

of Fock(U ;P1), the jet potential exp(Ŵ) for an element of Fock(U ;P2) given by

(4.49) exp
(
Ŵ(x, y)

)
= exp
(�
2
Δμν∂yμ∂yν

)
exp
(
W(x, y)

)
.

Let C = {C(g)
μ1,...,μn}g,n, Ĉ = {Ĉ(g)

μ1,...,μn}g,n be the correlation functions corre-

sponding, respectively, toW , Ŵ . The above formula is equivalent to the following
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Feynman rule:

Ĉ(g)
μ1,...,μn

=
∑
Γ

1

|Aut(Γ)| ContΓ(C ,Δ)μ1,...,μn .

Here the summation is over all connected decorated graphs Γ such that

• to each vertex v ∈ V (Γ) is assigned a nonnegative integer gv ≥ 0, called

the genus;

• Γ has n labelled legs: an isomorphism L(Γ)∼= {1,2, . . . , n} is given;

• Γ is stable, that is, 2gv−2+nv > 0 for every vertex v, where nv = |π−1
V (v)|

denotes the number of edges or legs incident to v;

• g =
∑

v gv + 1− χ(Γ).

We put the index μi at the ith leg, the correlation function ∇nvC(gv) on the ver-

tex v, and the propagator Δ on every edge. Then ContΓ(C ,Δ)μ1,...,μn is defined

to be the contraction of all these tensors with the indices μ1, . . . , μn on the legs

fixed. Here Aut(Γ) denotes the automorphism group of the decorated graph Γ.

EXAMPLE 4.65

(1) The Feynman rule for genus-zero three-point correlation functions is triv-

ial:

(4.50) Ĉ(0)
μνρ =C(0)

μνρ,

since there is only one genus-zero stable graph with three legs. This is compatible

with the fact that the Yukawa coupling was defined independently of the choice

of pseudo-opposite module.

(2) The Feynman rule for genus-one one-point functions is given by

(4.51) Ĉ(1)
μ =C(1)

μ +
1

2
C(0)

μνρΔ
νρ =C(1)

μ + (ωP1P2)μ.

Here ωP1P2 is the difference one-form defined in (4.41) and comes from the graph

μ−©.

(3) The Feynman rule for genus-two potentials is given by (cf. [2, Figure 1])

Ĉ(2) =C(2) +
1

2
C(1)

μν Δ
μν +

1

2
C(1)

μ ΔμνC(1)
ν +

1

2
C(1)

μ ΔμνC(0)
νρσΔ

ρσ

+
1

8
C(0)

μνρσΔ
μνΔρσ +

1

8
ΔμνC(0)

μνρΔ
ρσC(0)

στωΔ
τω

+
1

12
C(0)

μνρΔ
μμ′

Δνν′
Δρρ′

C
(0)
μ′ν′ρ′ .

REMARK 4.66

We can use the flat coordinate system {qin}n≥0,0≤i≤N associated to the paral-

lel pseudo-opposite P1 (see Definition 4.28) to expand the n-point correlation

functions as follows:

∇nC(g) =
∑

l1,...,ln≥0
0≤i1,...,in≤N

∂nC(g)

∂qi1l1 · · ·∂q
in
ln

dqi1l1 ⊗ · · · ⊗ dqinln .
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Written in flat coordinates, the transformation rule above matches with the

action of Givental’s quantized operators on tame potentials. This will be

explained in Section 5.2 below.

We show in Lemmas 4.67–4.69 below that the transformation rule is well defined,

that is, that Ĉ = {Ĉ(g)
μ1,...,μn} in Definition 4.64 satisfies the conditions in Defini-

tion 4.56. Observe first that the tensor Ĉ
(g)
μ1,...,μn defined by the Feynman rule is

automatically completely symmetric. We already saw in (4.50) that Ĉ
(0)
μνρ is the

Yukawa coupling. Let ∇, ∇̂ denote the flat connections on L◦ associated with

P1, P2, respectively.

LEMMA 4.67 (Jetness)

We have that ∇̂(∇̂n
Ĉ(g)) = ∇̂n+1

Ĉ(g), that is, ∇̂νĈ
(g)
μ1,...,μn = Ĉ

(g)
ν,μ1,...,μn (see

(4.42) for this notation).

Proof

We have

(4.52) ∇̂νĈ
(g)
μ1,...,μn

=∇νĈ
(g)
μ1,...,μn

+ (∇̂−∇)νĈ
(g)
μ1,...,μn

.

By the Feynman rule for Ĉ
(g)
μ1,...,μn , we can write the first term as

∇νĈ
(g)
μ1,...,μn

=Cvert +Cprop,

where Cvert and Cprop arise from the vertex and the propagator differentiations,

respectively. The term Cvert is the sum over stable graphs with one extra leg ν

attached to a vertex v; note that the vertex v satisfies 2gv−2+nv > 1. The term

Cprop is the sum over stable graphs with the differentiated propagator ∇νΔ on

one of the edges. By Proposition 4.45(2), we can replace the edge ∇νΔ by the

genus-zero trivalent vertex with the leg ν:

•

•
∇νΔ

•
•

Δ

•
•

Δ

ν
g=0

By Proposition 4.45(1), the second term of (4.52) is

(∇̂−∇)νĈ
(g)
μ1,...,μn

=

n∑
i=1

∑
Γ

1

Aut(Γ)
ContΓ(C ,Δ)μ1,...,σ

i
,...,μnΔ

σρC(0)
ρμiν .

Namely, we add to the leg μi the genus-zero trivalent vertex:

(4.53) • μi • •
g=0

Δ
μi

ν

On the other hand, by the Feynman rule, Ĉ
(g)
ν,μ1,...,μn can be written as a sum-

mation over genus-g stable graphs with legs ν,μ1, . . . , μn; if v denotes the vertex

incident to the leg ν, we have the following three cases:
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• nv + 2gv − 2> 1;

• gv = 0, nv = 3, and v has only one leg ν;

• gv = 0, nv = 3, and v has two legs ν,μi.

These three cases correspond to Cvert, Cprop, and (∇̂−∇)νĈ
(g)
μ1,...,μn , respectively.

�

LEMMA 4.68 (Grading and filtration)

We have that ∇̂n
Ĉ(g) ∈ ((Ω1)⊗n)2−2g

3g−3.

Proof

Let Γ be a decorated graph contributing to the Feynman rule of Ĉ
(g)
μ1,...,μn . We

estimate the grading and the filtration of the contribution from Γ. Recall that

degΔ=−2, filtΔ≤ 2 by Proposition 4.55 and deg∇= 0, filt∇≤ 0 by Proposi-

tion 4.54. The degree can be calculated as∑
v∈V (Γ)

(2− 2gv) +
∑

e∈E(Γ)

(−2) = 2− 2g.

The filtration is estimated as∑
v∈V (Γ)

(3gv − 3) +
∑

e∈E(Γ)

2 = 3g− 3−
∣∣E(Γ)
∣∣≤ 3g− 3.

The conclusion follows. �

LEMMA 4.69 (Pole)

Let P = P (t, x1) be the discriminant (4.10). Then P∇̂Ĉ(1) extends to a regular

one-form on pr−1(U) and Ĉ(g) belongs to P−(5g−5)O(U)[x1, x2, Px3, P
2x4, . . . ]

for g ≥ 2.

Proof

By the Feynman rule (4.51) at genus one, ∇̂Ĉ(1) differs from ∇C(1) by a regular

one-form ωP1P2 on U (see (4.41)). Thus, P∇̂Ĉ(1) is regular.

For g ≥ 2, we apply the Feynman rule to correlation functions written in flat

coordinates. Take a point t ∈ U and flat coordinates {qin}n≥0,0≤i≤N on the formal

neighborhood L̂
◦
of L̂

◦
t associated to P1. Take a graph Γ (without legs) which

contributes to the Feynman rule for Ĉ(g). By Proposition 4.60, the vertex term

for v ∈ V (Γ),

∂nC(g)

∂qi1l1 · · ·∂q
in
ln

∣∣∣
q0=0

, with g = gv, n= nv,

belongs to P
−(5gv−5+2nv−(l1+···+lm))
t C[q1, q2, Ptq3, P

2
t q4, . . . ] with Pt = P (t, q1).

The propagator

Δ(dqin, dq
j
m)|q0=0 =Ω∨(Π∗

1ϕ
i
n,Π

∗
2ϕ

j
m)
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is constant (see (4.40)) along the fiber Lt = {q0 = 0}. Using the formulae∑
v∈V (Γ)

(gv − 1) = g− 1−
∣∣E(Γ)
∣∣, ∑

v∈V (Γ)

nv = 2
∣∣E(Γ)
∣∣,

we bound the pole order of ContΓ(C ,Δ)|q0=0 along Pt = 0 from above as∑
v∈V (Γ)

(5gv − 5 + 2nv) = 5g− 5−
∣∣E(Γ)
∣∣≤ 5g− 5.

Thus,

Ĉ(g)|L◦
t
∈ P

−(5g−5)
t C[q1, q2, Ptq3, P

2
t q4, . . . ].

Since qin|Lt = xi
n (n≥ 1) and this holds for every point t, the conclusion follows.

�

PROPOSITION 4.70 (Cocycle condition)

Let P1,P2,P2 be parallel pseudo-opposite modules over an open set U . The trans-

formation rules Tij = T (Pi,Pj) : Fock(U ;Pi) → Fock(U ;Pj) satisfy the cocycle

condition

T13 = T23 ◦ T12.

Proof

This is immediate from the definition (4.49) and Proposition 4.46. �

We define the Fock sheaf over M under the following assumption. (The Fock

sheaf without this assumption will be considered in Section 4.13.)

ASSUMPTION 4.71 (Covering assumption)

There exists an open covering {Uα}α∈A of M such that we can find a parallel

pseudo-opposite module Pα over Uα for each α ∈A.

DEFINITION 4.72 (Fock sheaf)

The Fock sheaf is a sheaf of sets over M which is obtained by gluing the local

Fock spaces Fock(Uα;Pα) over Uα by the transformation rule

Tαβ = T (Pα,Pβ) : Fock(Uαβ ;Pα)−→ Fock(Uαβ ;Pβ),

where Uαβ = Uα ∩Uβ . More precisely, we define the set Fock(U) for an open set

U as the equalizer of the sequence

∏
α:U∩Uα �=∅

Fock(U ∩Uα;Pα)
π2

π1 ∏
(α,β):U∩Uαβ �=∅

Fock(U ∩Uαβ ;Pα),

where π1({uα}α) = {uα|U∩Uαβ
}α,β and π2({uα}α) = {Tβα(uβ |U∩Uαβ

)}α,β , that
is,

Fock(U) =
{{

Cα ∈ Fock(U ∩Uα;Pα)
}
α∈A

∣∣ TαβCα|U∩Uα∩Uβ
= Cβ |U∩Uα∩Uβ

}
.
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REMARK 4.73

Note that Fock(U) is not a C-vector space but is just a set. This is because

the transformation rule is not C-linear. A natural C-linear structure should be

considered on the space of exponentiated potentials exp(C(1) + �C(2) + �2C(3) +

· · · ). In fact, we can construct a Fock sheaf of C-vector spaces by choosing certain

“orientation data” and regard these exponentiated potentials as sections of the

sheaf. We hope to discuss this issue elsewhere.

4.13. Anomaly equation for curved polarizations
In this section we introduce a Fock space for possibly curved pseudo-opposite

modules. Correlation functions associated with a curved pseudo-opposite module

satisfy, instead of the jetness condition, a certain anomaly equation. As we explain

in Section 9 below, when the curved pseudo-opposite module is the so-called

complex-conjugate polarization, the anomaly equation becomes the celebrated

holomorphic anomaly equation of Bershadsky–Cecotti–Ooguri–Vafa [11], [12].

Recall that a pseudo-opposite module for a cTP structure is said to be curved

if it is not preserved by ∇ (Definition 4.15). For a curved pseudo-opposite module

Q, (∇Q)nC(g) is not necessarily symmetric, because ∇Q is not flat. The com-

pletely symmetric correlation functions associated to a curved pseudo-opposite

module Q are defined in a different way, as follows. Suppose that we are given

an element {C(g)
P;μ1,...,μn

} ∈ Fock(U ;P) for a parallel pseudo-opposite module P.

For each t ∈M, there is a unique parallel pseudo-opposite module Q̃(t) in the

formal neighborhood of t such that Q̃(t)t = Qt. (This is the parallel translation

of Qt (see the proof of Lemma 4.17).) From the transformation rule, we obtain

correlation functions

{C(g)

Q̃(t);μ1,...,μn
}= T
(
P, Q̃(t)
)(
{C(g)

P;μ1,...,μn
}
)

over the formal neighborhood of L◦
t . Restricting these to the fiber L◦

t and varying

the point t, we obtain the correlation functions C
(g)
Q;μ1,...,μn

associated to Q such

that

C
(g)
Q;μ1,...,μn

|L◦
t
=C

(g)

Q̃(t);μ1,...,μn
|L◦

t

for every t. Because the propagator Δ(P, Q̃(t)) coincides with Δ(P,Q) along the

fiber L◦
t , the new correlation functions C

(g)
Q;μ1,...,μn

can be described using the

same Feynman rule as before.

DEFINITION 4.74

Let CP = {C(g)
P;μ1,...,μm

}g,m be an element of the local Fock space Fock(U ;P) asso-

ciated to a parallel pseudo-opposite module P over U , and let exp(WP(x, y))

denote the corresponding jet potential (Definition 4.62). Let Q be a (not neces-

sarily parallel) pseudo-opposite module over U . We define a set

CQ = {C(g)
Q;μ1...,μn

: g ≥ 0, n≥ 0,2g− 2 + n > 0}
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of completely symmetric tensors by the same Feynman rule as appears in Defi-

nition 4.64:

C
(g)
Q;μ1,...,μn

=
∑
Γ

1

|Aut(Γ)| ContΓ
(
CP,Δ(P,Q)

)
μ1,...,μn

.

We write

CQ = T (P,Q)CP

and call CQ the correlation functions under Q corresponding to CP. The jet poten-

tial associated to Q

(4.54) WQ(x, y) =
∑

g,n≥0,2g−2+n>0

�g−1

n!
C

(g)
Q;μ1,...,μn

(x)yμ1 · · · yμn

is related to the jet potential WP associated to CP by the same formula (4.49) as

before:

exp
(
WQ(x, y)

)
= exp
(�
2
Δμν(P,Q)∂yμ∂yν

)
exp
(
WP(x, y)

)
.

PROPOSITION 4.75

The correlation functions under a curved pseudo-opposite module Q correspond-

ing to a Fock space element satisfy the conditions (Yukawa), (Grading and filtra-

tion), and (Pole) but not necessarily the condition (Jetness) in Definition 4.56.

Proof

The proofs of Lemmas 4.68 and 4.69 work for curved pseudo-opposite modules

too. �

We will shortly (in Theorem 4.86 below) describe an anomaly equation that gives

a substitute for the jetness condition for correlation functions under a curved

pseudo-opposite module. The simplest case of this anomaly equation is the cur-

vature condition for the genus-one one-point function: the one-form C
(1)
Q;μdx

μ is

not necessarily closed, but its derivative d(C
(1)
Q;μdx

μ) equals a certain two-form

ϑQ associated to Q.

LEMMA 4.76

Let P be a parallel pseudo-opposite module, and let Q be a (not necessarily par-

allel) pseudo-opposite module. Let ωPQ denote the difference one-form (4.41)

between P and Q. The two-form ϑQ = dωPQ does not depend on the choice of

a parallel P and vanishes if Q is parallel.

Proof

When both P and Q are parallel, ωPQ arises as the difference (4.51) of the genus-

one one-forms C
(1)
μ dxμ, which are closed. More directly, by Proposition 4.45(2),

we have

2(∇PωPQ)μν = (∇P
μC

(0)
νρτ )Δ

ρτ +C(0)
νρτ (∇P

μΔ
ρτ ) =C(0)

μνρτΔ
ρτ +C(0)

νρτΔ
ρσC

(0)
σμλΔ

λτ ,
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where Δ = Δ(P,Q). This 2-tensor is symmetric with respect to μ and ν; thus,

ωPQ is closed. Because ωPQ − ωP′Q = ωPP′ , it follows that dωPQ does not depend

on the choice of parallel P. �

DEFINITION 4.77

The two-form ϑQ := dωPQ ∈ pr∗Ω2
M in the above lemma is called the curvature

two-form of Q. This is the pullback of a two-form onM. We will give an explicit

and intrinsic formula in (4.56) below.

PROPOSITION 4.78 (Curvature condition)

For a genus-one one-point function C
(1)
Q;μdx

μ under Q corresponding to a Fock

space element in Fock(U ;P) with P a parallel pseudo-opposite module, we have

d(C
(1)
Q;μdx

μ) = ϑQ.

Proof

This follows from the Feynman rule at genus zero, namely, C
(1)
Q;μdx

μ =C
(1)
P;μdx

μ +

ωPQ (see (4.51)), and the definition of ϑQ. �

Let P be a parallel pseudo-opposite module, and let Q be a possibly curved

pseudo-opposite module. An element of Fock(U ;P) induces correlation functions

under Q. Conversely, an element of Fock(U ;P) can be uniquely reconstructed from

a genus-one one-point function and higher-genus zero-point functions under Q.

PROPOSITION 4.79

Let Q be a pseudo-opposite module over U . Assume that we have a one-form

C
(1)
Q;μdx

μ ∈ Ω1 and functions C
(g)
Q ∈ O for g ≥ 2 over pr−1(U)◦ satisfying the

following conditions:

• (Grading and filtration) C
(1)
Q;μdx

μ ∈ (Ω1)00, C
(g)
Q ∈O2−2g

3g−3;

• (Curvature) d(C
(1)
Q;μdx

μ) = ϑQ, where ϑQ is the curvature two-form in Def-

inition 4.77;

• (Pole) P (C
(1)
Q;μdx

μ) extends to a regular one-form on pr−1(U); for g ≥ 2,

C
(g)
Q ∈ P−(5g−5)O(U)[x1, x2, Px3, P

2x4, . . . , P
3g−4x3g−2], where P = P (t, x1) is

the discriminant (4.10).

For a parallel pseudo-opposite module P over U , there exists a unique Fock space

element CP = {C(g)
P;μ1,...,μn

}g,n ∈ Fock(U ;P) such that

• C
(1)
Q;μ is the genus-one one-point correlation function under Q correspond-

ing to CP;

• for g ≥ 2, C
(g)
Q is the genus-g zero-point correlation function under Q cor-

responding to CP.
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The formula

CQ = T (P,Q)CP

reconstructs the multipoint correlation functions CQ = {C(g)
Q;μ1,...,μn

} under Q that

satisfy the conditions (Yukawa), (Grading and filtration), and (Pole) in Defini-

tion 4.56. The multipoint correlation functions C
(g)
Q;μ1,...,μn

are independent of the

choice of P.

Proof

We solve for the Fock space element CP = {C(h)
P;ν1,...,νm

}h,m satisfying the Feyn-

man rule (see (4.51))

C
(1)
Q;μdx

μ =C
(1)
P;μdx

μ + ωPQ,

C
(g)
Q =
∑
Γ

1

|Aut(Γ)| ContΓ
(
CP,Δ(P,Q)

)
inductively on the genus and the number of insertions. Imposing the jetness

(∇P)n−1C
(1)
P;μdx

μ =C
(1)
P;μ1,...,μn

dxμ1 ⊗ · · · ⊗ dxμn ,

(∇P)nC
(g)
P =C

(g)
P;μ1,...,μn

dxμ1 ⊗ · · · ⊗ dxμn (g ≥ 2),

and the condition C
(0)
P;μ1,...,μn

= (∇P)n−3Y , we can uniquely determine the sym-

metric tensors C
(g)
P;μ1,...,μn

. The genus-one tensors C
(1)
P;μ1,...,μn

become completely

symmetric by the curvature condition d(C
(1)
Q;μdx

μ) = ϑQ = dωPQ. It remains to

check that the reconstructed correlation functions C
(g)
P;μ1,...,μn

satisfy the condi-

tions (Grading and filtration) and (Pole) in Definition 4.56. At genus one, C
(1)
P;μdx

μ

satisfies (Grading and filtration) and (Pole), because C
(1)
Q;μdx

μ does as well. Note

that the conditions (Grading and filtration) are stable under ∇P by Proposi-

tion 4.54. Suppose that (Grading and filtration) and (Pole) are satisfied up to

genus g−1. We can write C
(g)
P as the sum of C

(g)
Q and the Feynman graph contri-

butions from lower-genus n-point functions C
(h)
P;μ1,...,μn

. Therefore, the argument

of Lemmas 4.68 and 4.69 applies here too.

Finally we check that CQ is independent of the choice of parallel P. Sup-

pose we have two parallel pseudo-opposite modules P1,P2. The above proce-

dure gives two Fock space elements CP1 ∈ Fock(U ;P1), CP2 ∈ Fock(U ;P2). Then

T (P1,Q)CP1 and T (P2,Q)CP2 have the same genus-one one-point functions and

higher-genus zero-point functions. On the other hand we can write T (P2,Q)CP2 =

T (P1,Q)T (P2,P1)CP2 by the cocycle condition for the transformation rule

(Proposition 4.70). The above reconstruction procedure implies that CP1 =

T (P2,P1)CP2 . Therefore, T (P1,Q)CP1 = T (P2,Q)CP2 . �

REMARK 4.80

Since an opposite module exists in the formal neighborhood of every point t ∈M
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(Lemma 4.17), the reconstruction of multipoint correlation functions satisfy-

ing (Curvature), (Pole), and (Grading and filtration) from the data {C(1)
Q;μ,C

(2)
Q ,

C
(3)
Q , . . .} is always possible, even without Assumption 4.71.

In view of the above proposition, we make the following definition for the local

Fock space with respect to a possibly curved opposite module (cf. Definition 4.56).

This definition does not rely on Assumption 4.71.

DEFINITION 4.81 (Local Fock space and transformation rule: General case)

Let Q be a (not necessarily parallel) pseudo-opposite module over an open set

U ⊂ M. The local Fock space Fock(U ;Q) consists of collections {C(1)
Q;μ,C

(2)
Q ,

C
(3)
Q , . . .} satisfying the conditions (Curvature), (Grading and filtration), and

(Pole) in Proposition 4.79, where

C
(1)
Q;μdx

μ ∈Ω1
(
pr−1(U)◦

)
and C

(g)
Q ∈O

(
pr−1(U)◦

)
, g ≥ 2.

Proposition 4.79 allows us to reconstruct multipoint correlation functions

C
(g)
Q;μ1,...,μn

from the data {C(1)
Q;μ,C

(2)
Q ,C

(3)
Q , . . .} and they define the associated

jet potential WQ(x, y) as in (4.54). For two pseudo-opposite modules Q1,Q2 over

U , the transformation rule T (Q1,Q2) : Fock(U ;Q1)→ Fock(U ;Q2) is defined in

terms of jet potentials (reconstructed thus) in the same way as in Definition 4.64:

exp
(
WQ2(x, y)

)
= exp
(�
2
Δμν(Q1,Q2)∂yμ∂yν

)
exp
(
WQ1(x, y)

)
.

This can also be described by the Feynman rule in Definition 4.64.

REMARK 4.82

For parallel Q, the above definition reduces to the original definitions of local

Fock spaces and the transformation rule. Multipoint correlation functions under

a parallel Q can be obtained by the covariant derivative ∇Q from zero-point cor-

relation functions. The transformation rule for general pseudo-opposite modules

satisfies the cocycle condition: the same proof as Proposition 4.70 works.

Let Q be a possibly curved pseudo-opposite module over U . The reconstruction of

multipoint correlation functions C
(g)
Q;μ1,...,μn

from the data {C(1)
Q;μ,C

(2)
Q ,C

(3)
Q , . . .}

in Proposition 4.79 was implicit. We can describe it in a more explicit and intrinsic

way, without reference to a parallel pseudo-opposite module. For this purpose,

we introduce the following “background torsion” ΛQ associated to Q.

DEFINITION 4.83

Let Q be a pseudo-opposite module. The (background) torsion of Q is an operator

ΛQ : Ω
1
◦ ×Ω1

◦→Ω1
◦ defined by

ΛQ(ω1, ω2) = Ω∨(∇̃∨Π∗ϕ1,Π
∗ϕ2),
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where ϕi := (KS∗)−1ωi, i ∈ {1,2}, and Π: pr∗ F[z−1]→ pr∗ F is the projection

along Q. Recall that ∇̃∨ : pr∗ F[z−1]∨→Ω1 ⊗̂ pr∗ F[z−1]∨ is the connection dual

to ∇̃ (see Section 4.6).

LEMMA 4.84

(1) The operator ΛQ(ω1, ω2) is symmetric, is O-bilinear, and takes values in

pr∗Ω1
M.

(2) A pseudo-opposite module Q is parallel if and only if ΛQ = 0.

Proof

Write ϕi := (KS∗)−1ωi. Because Ω∨(Π∗ϕ1,Π
∗ϕ2) = 0, we have

0 = dΩ∨(Π∗ϕ1,Π
∗ϕ2) = Ω∨(∇̃∨Π∗ϕ1,Π

∗ϕ2) +Ω∨(Π∗ϕ1, ∇̃∨Π∗ϕ2).

The right-hand side equals ΛQ(ω1, ω2) − ΛQ(ω2, ω1). By definition, ΛQ is O-

linear in ω2. Thus, it is also O-linear in ω1. Note that, for a local coordinate

system {ti, xi
n}n≥1,0≤i≤N on L, we have ∇̃∨

n,i(pr
∗Q)⊥ ⊂ (pr∗Q)⊥ for n≥ 1, where

we write ∇̃∨
n,i := ∇̃∨

∂/∂xi
n
. This is because pr∗Q is “constant” along the fiber of

pr : L→M. Thus,〈
ΛQ(ω1, ω2), ∂n,i

〉
=Ω∨(∇̃∨

n,iΠ
∗ϕ1,Π

∗ϕ2) = 0, n≥ 1,

since Π∗ϕ1 ∈ (pr∗Q)⊥ ⊂ pr∗ F[z−1]∨. This proves part (1). Note that Q is parallel

if and only if ∇∨ preserves Q⊥ = Π∗F∨. This happens if and only if ∇∨(Π∗F∨)

is perpendicular to Π∗F∨ with respect to Ω∨, since Π∗F∨ is maximally isotropic.

Part (2) follows. �

We use the following coordinate expression:

ΛQ(dx
μ, dxν) = ΛQ

μν
ρ dxρ =ΛQ

μν
i dti,

where {xμ} = {ti, xi
n} is a local coordinate system on L and {ti}Ni=0 is a local

coordinate system on M. We need to generalize Propositions 4.44 and 4.45 to

curved pseudo-opposite modules.

PROPOSITION 4.85 (cf. Propositions 4.44, 4.45)

Let Q1, Q2 be possibly curved pseudo-opposite modules, and let Δ =Δ(Q1,Q2)

be the propagator.

(1) We have

dΔ(ω1, ω2) =Δ(∇Q1ω1, ω2) +Δ(ω1,∇Q2ω2) + ΛQ1(ω1, ω2)−ΛQ2(ω1, ω2).

(2) We have

∇Q1
μ Δνρ(:= ∂μΔ

νρ +Γ(1)ν

μσΔ
σρ +Γ(1)ρ

μσΔ
νσ) = ΛQ1

νρ
μ −ΛQ2

νρ
μ +ΔνσC(0)

σμτΔ
τρ,

where Γ(1)ν

μρ are Christoffel coefficients of ∇Q1 (see (4.36)).
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Proof

Part (1) is essentially shown in the proof of Proposition 4.44. In fact, this formula

appears in (4.35). The last two terms of (4.35), which vanish there, correspond

to ΛQ1(ω1, ω2)−ΛQ2(ω1, ω2).

Part (2) is also similar to the proof of Proposition 4.45(2). Using Part (1),

we have

(∇Q1Δ)(ω1, ω2) = dΔ(ω1, ω2)−Δ(∇Q1ω1, ω2)−Δ(ω1,∇Q1ω2)

= ΛQ1(ω1, ω2)−ΛQ2(ω1, ω2) +Δ
(
ω1, (∇Q2 −∇Q1)ω2

)
.

The conclusion follows from Proposition 4.45(1). �

Let Q be a possibly curved pseudo-opposite module, and let P be a parallel

pseudo-opposite module, both defined over U . Let CQ = {C(g)
Q;μ1,...,μn

} be the

correlation functions under Q corresponding to an element CP = {C(g)
P;μ1,...,μn

} ∈
Fock(U ;P) (see Definition 4.74). By differentiating the Feynman rule expressing

C
(g)
Q;μ1,...,μn

in terms of C
(h)
P;ν1,...,νm

and Δ(P,Q), we obtain the following anomaly

equation.

THEOREM 4.86 (Anomaly equation)

Multipoint correlation functions under a possibly curved pseudo-opposite module

Q satisfy the following anomaly equation (see (4.42) for the notation for covariant

derivatives):

(4.55)

C
(g)
Q;μ1...μn

=∇Q
μ1
C

(g)
Q;μ2...μn

+
1

2

∑
{2,...,n}=I�J

k+l=g

C
(k)
Q;μI ,α

ΛQ
αβ
μ1

C
(l)
Q;μJ ,β

+
1

2
C

(g−1)
Q;μ2...μnαβ

ΛQ
αβ
μ1

,

where μI stands for μi1 , . . . , μip if I = {i1, . . . , ip} and μJ is similar.

Proof

The argument is very similar to the proof of (Jetness) in Lemma 4.67. We have

(cf. (4.52))

∇Q
νC

(g)
Q;μ1,...,μn

=∇P
νC

(g)
Q;μ1,...,μn

+ (∇Q −∇P)νC
(g)
Q;μ1,...,μn

.

The second term here corresponds to the modification of legs depicted in (4.53)

by Proposition 4.45(1), and the first term is the sum of the vertex derivative

Cvert and the propagator derivative Cprop. The vertex derivative Cvert is the

same as in Lemma 4.67, but the propagator derivative Cprop has extra contribu-

tions from −ΛQ, because ∇P
μΔ(P,Q)νρ =−ΛQ

νρ
μ +Δ(P,Q)νσC

(0)
σμτΔ(P,Q)τρ by

Proposition 4.85(2). Hence, the difference from the computation in Lemma 4.67

arises from the insertion of −ΛQ at internal edges. The second and third terms on

the right-hand side of (4.55) correspond, respectively, to the cases where (i) the

chosen edge separates the graph or (ii) the chosen edge does not separate the
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graph. The factor 1/2 comes from automorphisms exchanging the two branches

of the edge. �

REMARK 4.87

The anomaly equation gives a substitute for (Jetness) for correlation functions

under a curved pseudo-opposite module. Note that the parallel pseudo-opposite

module P does not appear explicitly in the anomaly equation. Therefore, we can

define the local Fock space for Q as the set of symmetric tensors {C(g)
Q;μ1,...,μn

:

g ≥ 0, n ≥ 0,2g − 2 + n > 0} satisfying the conditions (Yukawa), (Grading and

filtration), and (Pole) in Definition 4.56 and the anomaly equation (4.55). The

condition (Curvature) is contained in the anomaly equation (see Remark 4.90).

EXAMPLE 4.88

The anomaly equation allows us to calculate C
(g)
Q;μ1...μn

iteratively in terms of

C
(h)
Q , h≤ g, C

(1)
Q;νdx

ν , C
(0)
τρσ, and their ∇Q-derivatives. We also need ΛQ and its

derivatives in the iteration process. For example,

C
(0)
1234 =∇1C

(0)
123,

C
(0)
12345 =∇1∇2C

(0)
345 +
[
C

(0)
23αΛ

αβ
1 C

(0)
45β + (2↔ 4) + (2↔ 5)

]
,

C
(0)
123456 =∇1∇2∇3C

(0)
456

+
1

2

∑
{3,4,5,6}=I�J

(
(∇1C

(0)
Iα )Λαβ

2 C
(0)
Jβ +C

(0)
Iα (∇1Λ

αβ
2 )C

(0)
Jβ

+C
(0)
Iα Λαβ

2 (∇1C
(0)
Jβ )
)
+

∑
{2,3,4,5,6}=I�J,|I|=3,|J|=2

C
(0)
Iα Λαβ

1 C
(0)
Jβ ,

C
(1)
12 =∇1C

(1)
2 +

1

2
C

(0)
2αβΛ

αβ
1 ,

C
(1)
123 =∇1∇2C

(1)
3 +

1

2
(∇1C

(0)
3αβ)Λ

αβ
2 +

1

2
C

(0)
3αβ(∇1Λ

αβ
2 )

+C(1)
α Λαβ

1 C
(0)
23β +

1

2
(∇2C

(0)
3αβ)Λ

αβ
1 ,

C
(2)
1 =∇1C

(2) +
1

2
C(1)

α Λαβ
1 C

(1)
β ,

where we omit the super/subscript Q on ∇, Λ, and C
(g)
μ1,...,μn . (Here we used

the numbers 1,2,3,4,5,6 in place of small Greek letters; ∇1∇2C
(0)
345 denotes

the dx1⊗ dx2⊗ dx3⊗ dx4⊗ dx5-component of ∇2Y .) It is not obvious that these

formulas give symmetric tensors C
(g)
Q;μ1,...,μn

, but this is ensured by general theory.

We now calculate the curvature of the connection ∇Q and relate it to the curva-

ture two-form ϑQ (Definition 4.77) which appears in the condition (Curvature)

in Proposition 4.79.
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PROPOSITION 4.89 (Curvature)

Let Q be a pseudo-opposite module, and let Λ=ΛQ be the torsion of Q. Let (∇Q)2

denote the curvature of ∇Q on Ω1
◦, which is an End(Ω1

◦)-valued two-form on L◦.

(Note that it is the negative of the transpose of the curvature on the tangent

bundle.) We also use a local coordinate system {ti}Ni=0 on M which has Roman

letters as indices.

(1) The curvature of ∇Q is given by

(∇Q)2dxν =C(0)
μ1ρτΛ

τν
μ2
(dxμ1 ∧ dxμ2)⊗ dxρ =C

(0)
ijkΛ

kν
l (dti ∧ dtl)⊗ dtj .

(2) The curvature two-form ϑQ is half of the trace of (∇Q)2:

ϑQ =
1

2
Tr
(
(∇Q)2
)
=

1

2
C

(0)
ijkΛ

jk
l dti ∧ dtl

=−1

4

N∑
a=0

N∑
b=0

TrF0(ΠQ∇aΠQ∇b −ΠQ∇bΠQ∇a)dt
a ∧ dtb.

(4.56)

The trace here makes sense, since (∇Q)2dxν above lies in the finite-rank subbun-

dle pr∗Ω2
M ⊗ pr∗Ω1

M.

Proof

By Proposition 4.45(1), for a reference parallel pseudo-opposite module P, we

have

∇Q
μdx

ν =∇P
μdx

ν +C(0)
μρσΔ

σνdxρ,

where Δ =Δ(P,Q). Because ∇P is flat, one can calculate the curvature of ∇Q

by regarding the tensor C
(0)
μρσΔσν as the Christoffel symbol:

[∇Q
μ1
,∇Q

μ2
]dxν

=
[
∇P

μ1
(C(0)

μ2ρσΔ
σν)−∇P

μ2
(C(0)

μ1ρσΔ
σν)

+C(0)
μ1ρσΔ

στC
(0)
μ2τσ′Δ

σ′ν −C(0)
μ2ρσΔ

στC
(0)
μ1τσ′Δ

σ′ν
]
dxρ.

This formula can be easily shown when the xμ’s are flat coordinates with respect

to ∇P. Then observe that the right-hand side is tensorial with respect to μ1, μ2,

ρ, ν. By Proposition 4.85, we have ∇P
μΔ

νρ = −Λνρ
μ +ΔντC

(0)
τμσΔσρ. Using this

we arrive at

[∇Q
μ1
,∇Q

μ2
]dxν = (C(0)

μ1ρτΛ
τν
μ2
−C(0)

μ2ρτΛ
τν
μ1
)dxρ.

This proves part (1). Because ∇P is torsion-free, ϑQ = dωPQ is the antisym-

metrization of ∇PωPQ ∈ (Ω1
◦)

⊗2, that is (see (4.41)),

dωPQ =
1

2
∇P

σ(C
(0)
μνρΔ

νρ)dxσ ∧ dxμ.

The first line of (4.56) follows from this and ∇P
μΔ

νρ =−Λνρ
μ +ΔντC

(0)
τμσΔσρ. To

see the second line of (4.56), note that the trace of (∇Q)2 on Ω1
◦ is the negative
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of the trace of (∇Q)2 on Θ◦ and, therefore, is the negative of the trace of the

curvature of the connection ΠQ∇̃ on pr∗ F. On the other hand, the operator

ΠQ∇aΠQ∇b − ΠQ∇bΠQ∇a vanishes on zF (since ∇a∇b = ∇b∇a) and defines

an OM-linear endomorphism of F0 = F/zF; this means that the trace of the

curvature operator ΠQ∇aΠQ∇b−ΠQ∇bΠQ∇a on F is well defined and coincides

with the trace of the induced operator on F0. �

REMARK 4.90

Proposition 4.89(2) says, heuristically, that one can think of ϑQ as the curvature

of a line bundle “det(Ω1
◦)

1/2.” The anomaly equation in Theorem 4.86 at genus

one gives

C(1)
μν =∇Q

μC
(1)
ν +

1

2
C

(0)
αβνΛQ

αβ
μ .

The fact that C
(1)
μν is symmetric now implies the curvature condition in Proposi-

tion 4.78. In fact, we have

d(C(1)
ν dxν) = (∇Q

μC
(1)
ν )dxμ ∧ dxν =

1

2
C

(0)
αβμΛ

αβ
ν dxμ ∧ dxν = ϑQ

by Proposition 4.89(2). Therefore, the curvature condition is a special case of the

anomaly equation.

4.14. Logarithmic case
We have hitherto studied the case where the connection ∇ of the underlying

cTP structure is smooth. In this section we allow logarithmic singularities for

the connection—in other words, we consider log-cTP structures rather than cTP

structures—and generalize the construction of a Fock sheaf to this case. This

extra generality is important in applications to mirror symmetry: genus-zero

Gromov–Witten theory (or quantum cohomology) naturally defines a log-cTEP

structure near the large-radius limit point. Almost all the discussions in this

section are parallel to the previous ones.

4.14.1. log-cTP and log-cTEP structures

We introduce the notions of log-cTP and log-cTEP structures (cf. Definition 4.4).

As before, we write M for the base complex manifold and Â1 = Spf C[[z]] for the

formal neighborhood of the origin in C. Let (−) : M× Â1→M× Â1 denote the

map sending (t, z) to (t,−z). For a normal crossing divisor D ⊂M, we write

Ω1
M(logD) for the sheaf of one-forms on M with logarithmic poles along D.

This is a locally free sheaf; its dual, the logarithmic tangent sheaf, is denoted by

ΘM(logD).

DEFINITION 4.91 (cf. Definition 4.4)

Let D be a normal crossing divisor in M.
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(1) A log-cTP structure (F,∇, (·, ·)F) with base (M,D) consists of a locally

free OM[[z]]-module F of rank N + 1 and a meromorphic flat connection

∇ : F→Ω1
M(logD)⊗OM z−1F

together with a nondegenerate pairing

(·, ·)F : (−)∗F⊗OM[[z]] F→OM[[z]]

which satisfy the properties listed in Definition 4.4(1).

(2) A log-cTEP structure with base (M,D) is a log-cTP structure with base

(M,D) such that the connection ∇ is extended in the z-direction with a pole

of order 2 along z = 0. More precisely, it is a log-cTP structure (F,∇, (·, ·)F)
equipped with an OM-module map ∇z∂z : F→ z−1F satisfying the properties

listed in Definition 4.4(2). Combining the M-direction and the z-direction, we

have a meromorphic flat connection

∇ : F→
(
Ω1

M(logD)⊕OMz−1dz
)
⊗OM z−1F.

We sometimes refer to D as the singularity divisor.

REMARK 4.92

A closely related notion of log-trTLEP structure has been introduced by

Reichelt [99].23

REMARK 4.93

log-cTP and log-cTEP structures should be viewed as sheaves on M× Â1. The

letter “c” for log-cTP and log-cTEP means the completion with respect to the

z-adic topology. One can similarly define the corresponding analytic structures

over M×C: these are log-TP or log-TEP structures (cf. Section 4.1).

EXAMPLE 4.94

A key example is the A-model log-cTEP structure given by the quantum coho-

mology of a smooth projective variety X . Roughly speaking, this is obtained

from the A-model cTEP structure (Example 4.3, Remark 4.5) by taking the

quotient of the base by H2(X; 2πiZ) and partially compactifying it by adding a

normal crossing divisor. We use the notation from Section 2. Let H2(X; 2πiZ)

act on the vector space HX ⊗ C by translation. By the divisor equation, the

(extended) Dubrovin connection (see Section 2.4) is invariant under this action

and descends to the quotient space HX ⊗C/H2(X; 2πiZ). The quotient space is

partially compactified to CN+1 via the map

HX ⊗C/H2(X; 2πiZ) ↪→CN+1,[
t=

N∑
i=0

tiφi

]
�−→ (t0, q1, . . . , qr, t

r+1, . . . , tN ),

23trTLEP stands for trivial, twistor, logarithmic, extension, pairing.
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where qi = et
i

for 1≤ i≤ r. The complement of the open embedding is the normal

crossing divisor q1q2 · · · qr = 0. The partial compactification here depends on the

choice of a nef basis φ1, . . . , φr of H2(X;Z). Suppose that F 0
X is convergent in

the sense of Section 2.3. Then the A-model log-cTEP structure is defined over

the base (MA,D),

MA =
{
(t0, q1, . . . , qr, t

r+1, . . . , tN ) ∈CN+1 : |ti|< ε, |qi|< ε
}
,

D = {q1q2 · · · qr = 0},

with ε > 0 sufficiently small, by the following data (cf. (4.1)):

• F=HX ⊗Q OMA
[[z]];

• ∇= d− 1
z ((φ0∗)dt0+

∑r
i=1(φi∗)dqiqi

+
∑N

j=r+1(φj∗)dtj)+( 1
z2 (E∗)+ 1

zμ)dz;

• ((−)∗α,β)F =
∫
X
α(−z)∪ β(z).

RECALL 4.95

The following objects associated to a log-cTP structure (F,∇, (·, ·)F) are defined

exactly as in the nonlogarithmic case (we do not repeat their definitions):

• the dual sheaves (znF)∨, F[z−1]∨ (see (4.3));

• the symplectic pairing Ω: F[z−1]⊗OM F[z−1]→OM (see (4.2));

• the dual symplectic pairing Ω∨ : F[z−1]∨ ⊗OM F[z−1]∨→OM (see (4.5));

• the dual flat connection ∇∨ : (z−1F)∨→Ω1
M(logD)⊗OM F∨ (see (4.4));

• the dual frame xi
n : F[z

−1]|U →OU , n ∈ Z, 0≤ i≤N , associated to a triv-

ialization F|U ∼=CN+1 ⊗OU [[z]] over U (see (4.7)).

4.14.2. The total space of a log-cTP structure

Let (F,∇, (·, ·)F) be a log-cTP structure with base (M,D).

DEFINITION 4.96 (cf. Definition 4.7)

The total space L of a log-cTP structure (F,∇, (·, ·)F) is the total space of the

infinite-dimensional vector bundle associated to zF. As a set, L consists of pairs

(t,x) such that t ∈M and x ∈ zFt. We write pr : L→M for the natural projec-

tion. We equip L with the structure of a ringed space as in Definition 4.7; we

denote by O the structure sheaf of L.

An algebraic local coordinate system on L is given similarly to the nonlogarith-

mic case; for the sake of exposition we shall always use local coordinates of the

following type, which are compatible with logarithmic singularities.

DEFINITION 4.97

Let U ⊂ M be a coordinate neighborhood with coordinates {t0, q1, . . . , qr,
tr+1, . . . , tM} such that D ∩ U is given by {q1q2 · · · qr = 0}. Choose a trivial-

ization of F|U ∼=CN+1⊗OU [[z]] over U , and define the corresponding dual frame

xi
n ∈ F[z−1]∨. We call the set
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{t0, q1, . . . , qr, tr+1, . . . , tM} ∪ {xi
n : 0≤ i≤N,n≥ 1}

an algebraic local coordinate system on L. We also write qi = et
i

for 1≤ i≤ r, so

that we have

dqi
qi

= dti and qi
∂

∂qi
=

∂

∂ti
(1≤ i≤ r).

Abusing notation, we write f(t) = f(t0, t1, . . . , tr, tr+1, . . . , tM ) to denote a func-

tion f : U →C on U , where the identification ti = log qi with 1≤ i≤ r is under-

stood.

Using algebraic local coordinates on L|U , one has (as before)

O
(
pr−1(U)

)
=O(U)[xi

n : n≥ 1,0≤ i≤N ].

The ring O(pr−1(U)) is equipped with a grading and filtration as in Defini-

tion 4.7.

4.14.3. Miniversality

Let (F,∇, (·, ·)F) be a log-cTP structure with base (M,D). Here and hereafter we

restrict to the case whereM =N , that is, dimM= rankF. Choose a trivialization

F|U ∼=CN+1 ⊗OU [[z]] over U . We can write the connection ∇ in the form

(4.57) ∇s= ds− 1

z
C(t, z)s

with

(4.58) C(t, z) =
N∑
i=0

Ci(t, z)dti = C0(t, z)dt0 +
r∑

i=1

Ci(t, z)
dqi
qi

+

N∑
j=r+1

Cj(t, z)dtj ,

where s ∈CN+1⊗OU [[z]]∼= F|U and Ci(t, z) ∈ End(CN+1)⊗OU [[z]]. The residual

part C(t,0) = (−z∇)|z=0 determines a section of End(F0)⊗Ω1
U (logD), indepen-

dently of the choice of trivialization.

EXAMPLE 4.98

In the case of the A-model log-cTEP structure (Example 4.94), we have C(t, z) =
(φ0∗)dt0 +

∑r
i=1(φi∗)dqiqi

+
∑N

i=r+1(φi∗)dti.

DEFINITION 4.99 (cf. Definition 4.8)

For a log-cTP structure (F,∇, (·, ·)F), we define

F◦
0,t :=
{
x1 ∈ F0,t : ΘM(logD)t→ F0,t, v �→ ιvC(t,0)x1 is an isomorphism

}
,

L◦ :=
{
(t,x) ∈ L : t ∈M,x ∈ zFt, (x/z)|z=0 ∈ F◦

0,t

}
,

F◦
0 :=
⋃
t∈M

F◦
0,t.

These are Zariski-open subsets of, respectively, F0,t, L, and F0. If, for every point

t ∈M, F◦
0,t is nonempty, then we say that (F,∇, (·, ·)F) is miniversal. A miniversal

log-cTP structure necessarily satisfies dimM= rankF.



A Fock sheaf for Givental quantization 777

Henceforth, all log-cTP structures are assumed to be miniversal unless otherwise

stated. Choose a trivialization of F|U , and present the connection ∇ in terms of

the trivialization as in (4.57) and (4.58). The discriminant in the logarithmic

situation is defined to be (cf. (4.10))

(4.59) P (t, x1) := (−1)N+1 det
(
C0(t,0)x1,C1(t,0)x1, . . . ,CN (t,0)x1

)
.

This is a polynomial in x1 of degree N + 1 and belongs to O(U)[x0
1, . . . , x

N
1 ].

The set L◦ is the complement of the zero-locus of P (t, x1). More invariantly,

P (t, x1)dt
0 ∧ · · · ∧ dtN should be thought of as a section of the line bundle

pr∗(det(F0)⊗ΩN+1
M (logD)) over L, and L◦ is the complement of the zero-locus.

The ring of regular functions over pr−1(U)◦ := pr−1(U)∩ L◦ is

O
(
pr−1(U)◦

)
=O(U)

[
{xi

n}n≥1,0≤i≤N , P (t, x1)
−1
]
.

As before, the grading and filtration on O(pr−1(U)) descends to O(pr−1(U)◦).

4.14.4. Logarithmic one-forms and vector fields on L

We need to consider the sheaves of logarithmic one-forms and vector fields on

the total space L. In terms of algebraic local coordinates {ti, qj = et
j

, xk
n}, they

are defined by

Ω1(logD) =
N⊕
j=0

Odtj ⊕
∞⊕

n=1

N⊕
i=0

Odxi
n,

Θ(logD) = H om
(
Ω1(logD),O

)
=

N∏
j=0

O∂j ×
∞∏

n=1

N∏
i=0

O∂n,i,

where we set ∂j = ∂/∂tj and ∂n,i = ∂/∂xi
n. Recall that dti = dqi/qi and ∂i =

qi(∂/∂qi) for i = 1, . . . , r. The grading and filtration on Ω1(logD) are given by

(4.11).

4.14.5. The Yukawa coupling and the Kodaira–Spencer map

The Yukawa coupling and Kodaira–Spencer map can also be adapted to the

logarithmic setting. Let {ti, qj = et
j

, xk
n} be an algebraic local coordinate sys-

tem on the total space L, and write the connection endomorphism as C(t, z) =∑N
i=0 Ci(t, z)dti (see (4.58)).

DEFINITION 4.100 (cf. Definition 4.10)

The Yukawa coupling is a cubic tensor

Y =

N∑
i=0

N∑
j=0

N∑
k=0

C
(0)
ijkdt

i ⊗ dtj ⊗ dtk ∈
((
Ω1(logD)

)⊗3)2
−3

,

where

C
(0)
ijk(t,x) =

(
Ci(t,0)x1,Cj(t,0)Ck(t,0)x1

)
F0

with x1 = (x/z)|z=0. Recall again that dti = dqi/qi for i= 1, . . . , r.
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The pulled-back sheaves pr∗(znF), pr∗ F[z−1], pr∗(znF)∨, pr∗ F[z−1]∨ on L are

defined as in (4.12). The connection ∇ induces a flat connection ∇̃ := pr∗∇ on

pr∗ F[z−1] (cf. (4.13) and Section 4.6)

∇̃ : pr∗ F[z−1]→Ω1(logD) ⊗̂ pr∗
(
F[z−1]
)

such that ∇̃pr∗(znF)⊂Ω1(logD) ⊗̂ pr∗(zn−1F). The dual connection

∇̃∨ : pr∗ F[z−1]∨→Ω1(logD) ⊗̂ pr∗ F[z−1]∨

is defined by 〈∇̃∨ϕ, s〉 := d〈ϕ, s〉−〈ϕ, ∇̃s〉. The explicit presentation (4.19) of ∇̃∨

holds also in the logarithmic case; we also have a commutative diagram similar

to (4.20).

DEFINITION 4.101 (cf. Definition 4.11)

Define the tautological section x of pr∗(zF) by

x(t,x) = x,

where (t,x) denotes the point x ∈ zFt on L. The Kodaira–Spencer map

KS: Θ(logD) → pr∗ F and the dual Kodaira–Spencer map KS∗ : pr∗ F∨ →
Ω(logD) are defined by

KS(v) = ∇̃vx, KS∗(ϕ) = ϕ(∇̃x).

The maps KS and KS∗ are isomorphisms over L◦ ⊂ L.

NOTATION 4.102

As before we denote by Θ◦(logD) the restriction of Θ(logD) to L◦ ⊂ L, and we

denote by Ω1
◦(logD) the restriction of Ω1(logD) to L◦ ⊂ L.

4.14.6. Opposite modules and logarithmic Frobenius manifolds

We extend the notion of (pseudo-)opposite modules to the setting of log-cTP

structures.

DEFINITION 4.103 (cf. Definition 4.15)

A pseudo-opposite module P for a log-cTP structure (F,∇, (·, ·)F) is an OM-

submodule P of F[z−1] satisfying the conditions

(Opp1) (Opposedness) F[z−1] = F⊕ P and

(Opp2) (Isotropy) Ω(P,P) = 0.

A pseudo-opposite module P is said to be parallel if it satisfies

(Opp3) ∇P⊂Ω1
M(logD)⊗ P.

If P satisfies (Opp1)–(Opp3) and

(Opp4) (z−1-linearity) z−1P⊂ P,

then it is called an opposite module.
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Suppose that (F,∇, (·, ·)F) is a log-cTEP structure. An opposite module P

for the underlying log-cTP structure is said to be homogeneous if it satisfies

(Opp5) (Homogeneity) ∇z∂zP⊂ P.

EXAMPLE 4.104 (cf. Example 4.16)

The A-model log-cTEP structure (Example 4.94) is equipped with a standard

homogeneous opposite module Pstd =HX ⊗Q z−1OMA
[z−1].

An opposite module always exists in a formal neighborhood of a point outside the

singularity divisor D by virtue of Lemma 4.17. However, it is not clear whether

Lemma 4.17 can be generalized to a point on the divisor D. In practice, in a

geometric example such as the A-model log-cTEP structure, one can often find

an opposite module that extends across D.

Similarly to Section 4.5, by choosing an opposite module P and a primitive

section ζ for a miniversal log-cTP (or log-cTEP) structure, one can equip the

base with a logarithmic Frobenius manifold structure (with or without Euler

vector field) in the sense of Reichelt [99]. The argument is completely parallel to

Proposition 4.18 and Remark 4.22, and we give only the statement.

PROPOSITION 4.105 (cf. Proposition 4.18, Remark 4.22, [99, Propositions 1.10, 1.11])

Consider a log-cTP structure (F,∇, (·, ·)F) with base (M,D). Let P be an opposite

module for (F,∇, (·, ·)F) over U .

(i) The natural maps F0 = F/zF← F∩ zP→ zP/P are isomorphisms of OU -

modules.

(ii) We have F= (F∩ zP)⊗C[[z]]∼= (zP/P)⊗C[[z]], which we call a flat trivi-

alization. Note that zP/P is a locally free coherent OU -module with a logarithmic

flat connection, and let ∇0 : zP/P→Ω1
U (logD)⊗OU

(zP/P) denote the flat con-

nection induced by ∇.

(iii) Under the flat trivialization, the connection ∇ takes the form

∇=∇0 − 1

z
C(t),

where C(t) ∈Ω1
U (logD)⊗OU

End(zP/P) is independent of z.

(iv) Under the flat trivialization, the pairing (·, ·)F induces and can be recov-

ered from a z-independent symmetric pairing

(·, ·)zP/P : (zP/P)⊗ (zP/P)→OU ,

which is flat with respect to ∇0.

(v) Assume that there exists a section ζ of F over U which is flat with respect

to ∇0 in the flat trivialization and whose image under F→ F0 = F/zF lies in F◦
0.

(This assumption implies the miniversality of (F,∇, (·, ·)F).) We call such a sec-

tion ζ a primitive section associated to P. Then the base U carries the structure

of a logarithmic Frobenius manifold without Euler vector field. It consists of
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– a flat symmetric OU -bilinear metric g : ΘU (logD)⊗OU
ΘU (logD)→OU ,

defined by

g(v1, v2) = (z∇v1ζ, z∇v2ζ)F;

– a commutative and associative product ∗ : ΘU (logD) ⊗OU
ΘU (logD)→

ΘU (logD), defined by

z∇v1z∇v2ζ =−z∇v1∗v2ζ;

– a flat identity vector field e ∈ΘU (logD) for the product ∗, defined by

−z∇eζ = ζ

such that the connection ∇λ
v = ∇LC

v − λ(v∗) on the logarithmic tangent sheaf

ΘU (logD) is a flat pencil of connections with parameter λ. Here ∇LC denotes

the Levi-Civita connection for the metric g.

(vi) Suppose now that (F,∇, (·, ·)F) is a miniversal log-cTEP structure with

base (M,D). Miniversality implies that there exists a unique logarithmic vector

field E ∈ΘM(logD) such that

(∇z∂z +∇E)F⊂ F.

This is called the Euler vector field. Suppose that we have a homogeneous opposite

module P for (F,∇, (·, ·)F) over U . This defines a flat trivialization of F as above.

Suppose also that there exists a section ζ of F over U such that ζ is flat with

respect to ∇0 in the flat trivialization, satisfies the homogeneity condition

(∇z∂z +∇E)ζ =−
ĉ

2
ζ

for some ĉ ∈C, and is such that the image of ζ under F→ F0 = F/zF lies in F◦
0.

Then U carries the structure of a logarithmic Frobenius manifold. It is given by

the structures (g,∗, e) from part (v) and the Euler vector field E, which satisfy

the additional properties listed in (4.17).

EXAMPLE 4.106

The A-model log-cTEP structure (Example 4.94) equipped with the standard

homogeneous opposite module Pstd (Example 4.104) yields the standard loga-

rithmic Frobenius manifold structure on the base MA.

4.14.7. Flat connection on the total space

A pseudo-opposite module P determines flat connections on the logarithmic tan-

gent sheaf and logarithmic cotangent sheaf of L◦, as follows.

DEFINITION 4.107 (cf. Definition 4.23)

Let P be a pseudo-opposite module for a log-cTP structure (F,∇, (·, ·)F), and let

Π: F[z−1]→ F be the projection along P. The composition of the maps
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pr∗ F
∇̃

Ω1(logD) ⊗̂ pr∗(z−1F)
id⊗Π

Ω1(logD) ⊗̂ pr∗ F,

pr∗ F∨ Π∨

pr∗(z−1F)∨
∇̃∨

Ω1(logD)⊗ pr∗ F∨

(restricted to L◦) with the Kodaira–Spencer isomorphisms KS: Θ◦(logD)→
pr∗ F, KS∗ : pr∗ F∨→Ω1

◦(logD) induces connections

(4.60)
∇ : Θ◦(logD)→Ω1

◦(logD) ⊗̂Θ◦(logD),

∇ : Ω1
◦(logD)→Ω1

◦(logD)⊗Ω1
◦(logD),

whereΩ1
◦(logD)⊗̂Θ◦(logD) := lim←−n

(Ω1
◦(logD)⊗(Θ◦(logD)/KS−1(pr∗(znF)))).

The connection on Ω1
◦(logD) also induces the connection on logarithmic n-

tensors

∇ : Ω1
◦(logD)⊗n→Ω1

◦(logD)⊗Ω1
◦(logD)⊗n.

The connections in (4.60) are dual to each other. The argument of Proposi-

tion 4.24 shows the following.

PROPOSITION 4.108

The flat connection ∇ on Θ◦(logD) associated to a pseudo-opposite module P

is torsion-free. It is flat if P is parallel.

In the nonlogarithmic case, given a parallel pseudo-opposite module, we con-

structed in Section 4.7 the genus-zero potential and a flat coordinate system on

the formal neighborhood L̂
◦
t of L◦

t in L◦. The construction there does not work if

t is on the singularity divisor D, but works if t is away from D.

4.14.8. Propagators

In the logarithmic case, propagators are defined as logarithmic bivector fields.

DEFINITION 4.109 (cf. Definition 4.43)

Let P1, P2 be pseudo-opposite modules for the log-cTP structure (F,∇, (·, ·)F).
Let Πi : F[z

−1]→ F, i ∈ {1,2}, be the projection along Pi defined by the decom-

position F[z−1] = Pi ⊕ F. The propagator Δ=Δ(P1,P2) ∈H omO(Ω1
◦(logD)⊗

Ω1
◦(logD),O) is defined by

Δ(ω1, ω2) = Ω∨(Π∗
1KS∗−1 ω1,Π

∗
2KS∗−1 ω2), ω1, ω2 ∈Ω1

◦(logD).

The logarithmic bivector field Δ is identified, via the Kodaira–Spencer isomor-

phism KS∗, with the pushforward along Π1×Π2 of the Poisson bivector field on

F[z−1] defined by Ω∨.

The propagator in the logarithmic case satisfies the same properties as in the

nonlogarithmic case. The proofs are completely parallel and are omitted.
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PROPOSITION 4.110 (cf. Propositions 4.44, 4.45)

Let P1,P2 be pseudo-opposite modules for the log-cTP structure (F,∇, (·, ·)F), and
let Δ=Δ(P1,P2) be the propagator. Then the following hold.

(1) Δ is symmetric, that is, Δ(ω1, ω2) =Δ(ω2, ω1).

(2) (∇P2 −∇P1)ω = ι(ιωΔ)Y for ω ∈Ω1
◦(logD).

(3) If P1,P2 are parallel, we have (∇P1Δ)(ω1 ⊗ ω2) = ι(ιω1Δ⊗ ιω2Δ)Y for

ω1, ω2 ∈Ω1
◦(logD).

PROPOSITION 4.111 (cf. Proposition 4.46)

Let P1,P2,P3 be pseudo-opposite modules, and let Δij =Δ(Pi,Pj), i, j ∈ {1,2,3},
be the propagators. Then Δ13 =Δ12 +Δ23.

4.14.9. Local Fock space

Let {ti, qj = et
j

, xi
n} denote an algebraic local coordinate system on L as in Def-

inition 4.97. We write the coordinates {t0, log q1, . . . , log qr, tr+1, . . . , tN , xi
n} as

{xμ} and use similar tensor notation as before, for example, writing the Yukawa

coupling and propagator as

Y =C(0)
μνρdx

μ ⊗ dxν ⊗ dxρ, Δ=Δμν∂μ ⊗ ∂ν ,

where ∂ν = ∂/∂xν .

DEFINITION 4.112 (cf. Definition 4.56)

Consider a miniversal log-cTP structure (F,∇, (·, ·)F) with base (M,D). Let P

be a parallel pseudo-opposite module over an open set U ⊂M, and let ∇=∇P

be the associated flat connection on L◦. Let P = P (t, x1) denote the discriminant

(4.59). The local Fock space Fock(U ;P) consists of collections

C =
{
∇nC(g) ∈

(
Ω1(logD)

)⊗n(
pr−1(U)◦

)
: g ≥ 0, n≥ 0,2g− 2 + n > 0

}
of completely symmetric logarithmic n-tensors on pr−1(U)◦ such that the follow-

ing conditions hold:

(Yukawa) ∇3C(0) is the Yukawa coupling Y in Section 4.14.5;

(Jetness) ∇(∇nC(g)) =∇n+1C(g);

(Grading and filtration) ∇nC(g) ∈ ((Ω1(logD))⊗n(pr−1(U)◦))2−2g
3g−3;

(Pole) P∇C(1) extends to a regular one-form on pr−1(U), and for g ≥ 2,

C(g) ∈ P−(5g−5)O(U)[x1, x2, Px3, . . . , P
3g−4x3g−2].

In local coordinates {xμ}, we write

∇nC(g) =C
(g)
μ1···μndx

μ1 ⊗ · · · ⊗ dxμn

and refer to ∇nC(g) or C
(g)
μ1···μn as n-point correlation functions.

4.14.10. Transformation rule

As before we encode elements of the local Fock space Fock(U ;P) by jet poten-

tials on the total space of the logarithmic tangent bundle Θ(logD)|pr−1(U)◦ .
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The transformation rule in the logarithmic case is then described in terms of jet

potentials.

Let {yμ} denote the fiber coordinates of the logarithmic tangent bundle

Θ(logD) dual to {∂/∂xμ}, so that (x, y) denotes a point in the total space of

Θ(logD)|pr−1(U)◦ .

DEFINITION 4.113 (cf. Definition 4.62)

Given an element C = {∇nC(g)}g,n of Fock(U ;P), we set

W(x, y) =
∞∑
g=0

�g−1Wg(x, y),

where

Wg(x, y) =
∞∑

n=max(3−2g,0)

1

n!
C(g)

μ1,...,μn
(x)yμ1 · · · yμn .

We callWg the genus-g jet potential and exp(W) the total jet potential associated

to C .

DEFINITION 4.114 (cf. Definition 4.64)

Let P1,P2 be parallel pseudo-opposite modules for the log-cTP structure

(F,∇, (·, ·)F). Let Δ denote the propagator Δ(P1,P2). The transformation rule

T (P1,P2) : Fock(U ;P1)→ Fock(U ;P2) is a map which assigns, to the jet potential

exp(W) for an element of Fock(U ;P1), the jet potential exp(Ŵ) for an element

of Fock(U ;P2) given by

(4.61) exp
(
Ŵ(x, y)

)
= exp
(�
2
Δμν∂yμ∂yν

)
exp
(
W(x, y)

)
.

The transformation rule can be also expressed via a Feynman rule. In the notation

of Definition 4.64, we have

Ĉ(g)
μ1,...,μn

=
∑
Γ

1

|Aut(Γ)| ContΓ
(
{C(h)

ν1,...,νm
},Δ
)
μ1,...,μn

,

where {C(g)
μ1,...,μn} are the correlation functions associated to W and {Ĉ(g)

μ1,...,μn}
are the correlation functions associated to Ŵ .

PROPOSITION 4.115 (cf. Lemmas 4.67–4.69)

The transformation rule in Definition 4.114 is well defined, that is, it preserves

the conditions (Yukawa), (Jetness), (Grading and filtration), and (Pole) in the

definition of the local Fock space Fock(U ;Pi).

Proof

We argue as in Section 4.12 using the coordinate system

{xμ}= {t0, log q1, . . . , log qr, tr+1, . . . , tN , xi
n}
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associated to the algebraic local coordinate system {t0, q1, . . . , qr, tr+1, . . . , tN , xi
n}

in Definition 4.97. The Yukawa coupling does not change: Ĉ
(0)
μνρ =C

(0)
μνρ under the

transformation rule (see (4.50)) and the condition (Yukawa) holds. The condition

(Jetness) for Ĉ
(g)
μ1,...,μn follows from the same argument as in Lemma 4.67, using

Proposition 4.110 instead of Proposition 4.45. The analogues of Propositions 4.54

and 4.55 hold in the logarithmic case, and the condition (Grading and filtration)

for {Ĉ(g)
μ1,...,μn} follows from them and the argument in Lemma 4.68. Regarding

the condition (Pole), we can repeat the argument of Lemma 4.69 to show that

Ĉ(g) for g ≥ 2 belongs to P−(5g−5)O(U \D)[x1, x2, Px3, P
2x4, . . . , P

3g−4x3g−2].

(The argument there only applies to t ∈ U \D, as a flat coordinate system exists

only at such t.) On the other hand, Ĉ(g) belongs to O(pr−1(U)◦) by the Feynman

rule. The condition (Pole) now follows from Hartogs’s extension theorem. �

The transformation rule satisfies the cocycle condition by virtue of Proposi-

tion 4.111.

PROPOSITION 4.116 (cf. Proposition 4.70)

The transformation rule (4.61) satisfies the cocycle condition: if P1, P2, P3 are

parallel pseudo-opposite modules for F over U and Tij = T (Pi,Pj) is the trans-

formation rule from Fock(U ;Pi) to Fock(U ;Pj), then T13 = T23 ◦ T12.

4.14.11. Fock sheaf

We now define the Fock sheaf in the logarithmic case.

ASSUMPTION 4.117 (cf. Assumption 4.71)

There is an open covering {Uα}α∈A of M such that for each α ∈A there exists

a parallel pseudo-opposite module Pα for F over Uα.

DEFINITION 4.118 (cf. Definition 4.72)

Suppose that Assumption 4.117 holds. We define the Fock sheaf to be the sheaf

of sets onM obtained by gluing the local Fock spaces Fock(Uα;Pα), α ∈A, using

the transformation rule

T (Pα,Pβ) : Fock(Uαβ ;Pα)→ Fock(Uαβ ;Pβ), α, β ∈A,

over Uαβ = Uα ∩Uβ .

REMARK 4.119

Note that the Fock sheaf in the logarithmic case is a sheaf over all of M, not

just over M\D.

4.14.12. Correlation functions under curved opposite modules

The discussion in Section 4.13 can be easily adapted to the logarithmic setting.

The difference one-form ωPQ (4.41) for pseudo-opposite modules P, Q is now the

pullback of a logarithmic form in Ω1
M(logD). The curvature two-form ϑQ = dωPQ
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(where P is a parallel pseudo-opposite module) in Definition 4.77 is the pullback

of a logarithmic form in Ω2
M(logD). We now give a definition of the local Fock

space and the transformation rule for a general pseudo-opposite module in the

logarithmic setting, leaving the necessary details to the reader.

DEFINITION 4.120 (cf. Definition 4.81, Proposition 4.79)

Consider a log-cTP structure (F,∇, (·, ·)F). Let Q be a (not necessarily parallel)

pseudo-opposite module over U . The local Fock space Fock(U ;Q) consists of

collections {C(1)
Q,μdx

μ,C
(1)
Q ,C

(2)
Q ,C

(3)
Q , . . .}

C
(1)
Q,μdx

μ ∈Ω1(logD)
(
pr−1(U)◦

)
,

C
(g)
Q ∈O

(
pr−1(U)◦

)
with g ≥ 2

such that the following conditions hold:

(Grading and filtration) C
(1)
Q;μdx

μ ∈ (Ω1(logD))00, C
(g)
Q ∈O2−2g

3g−3;

(Curvature) d(C
(1)
Q;μdx

μ) = ϑQ;

(Pole) P (C
(1)
Q;μdx

μ) extends to a regular one-form on pr−1(U), and for g ≥ 2,

C
(g)
Q ∈ P−(5g−5)O(U)[x1, x2, Px3, P

2x4, . . . , P
3g−4x3g−2],

where P = P (t, x1) is the discriminant (4.59).

Following the procedure in Proposition 4.79 in the logarithmic context, we can

reconstruct multipoint correlation functions {C(g)
Q;μ1,...,μn

} from the element

{C(1)
Q,μdx

μ,C
(1)
Q ,C

(2)
Q ,C

(3)
Q , . . .} in Fock(U ;Q); these multipoint functions again

satisfy the conditions (Yukawa), (Grading and filtration), and (Pole) in Defi-

nition 4.112. (They do not necessarily satisfy (Jetness).) The transformation rule

T (Q1,Q2) : Fock(U ;Q1)→ Fock(U ;Q2) for two pseudo-opposite modules Q1, Q2

is defined in terms of these multipoint correlation functions and the Feynman

rule as in Definition 4.112 as

C
(g)
Q2;μ1,...,μn

=
∑
Γ

1

|Aut(Γ)| ContΓ
(
{C(h)

Q1;ν1,...,νm
};Δ(Q1,Q2)

)
μ1,...,μn

or, equivalently, in terms of the corresponding jet potentials as in (4.61).

4.14.13. Anomaly equation

Finally we remark on the anomaly equation in the logarithmic setting. The back-

ground torsion ΛQ (Definition 4.83) is defined as an operator

ΛQ : Ω
1
◦(logD)⊗Ω1

◦(logD)→ pr∗Ω1
M(logD).

This vanishes if and only if Q is parallel and satisfies the same properties as

in Proposition 4.85. The multipoint correlation functions C
(g)
Q;μ1,...,μn

under a

pseudo-opposite module Q satisfy the same anomaly equation as before, namely,
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C
(g)
Q;μ1...μn

=∇Q
μ1
C

(g)
Q;μ2...μn

+
1

2

∑
{2,...,n}=S1�S2

k+l=g

C
(k)
Q;S1,α

ΛQ
αβ
μ1

C
(l)
Q;S2,β

+
1

2
C

(g−1)
Q;μ2...μnαβ

ΛQ
αβ
μ1

.

The curvature formulae in Proposition 4.89 also hold in the logarithmic setting:

here the curvature of ∇Q is an End(Ω1
◦(logD))-valued logarithmic two-form

on L◦.

5. Global quantization and Givental quantization

In this section we explain the relationship between Givental [61] quantization

and the global quantization constructed in Section 4. Givental defined the quan-

tized operator Û for a linear symplectic transformation U ∈ Sp(H) by specifying

a certain normal ordering of quadratic Hamiltonians. When U is given by an

upper-triangular loop group element R = R(z) ∈ LGL+(H
C
X), Givental showed

that R̂ acts on certain ancestor potentials satisfying the tameness condition. In

Sections 5.1–5.2, we will see that Givental’s operator R̂ on ancestor Fock spaces

(see Definition 5.7) arises from our transformation rule (Definition 4.64) in the

formal neighborhood of a point of L◦. In Section 5.3, we adapt the global quanti-

zation formalism in Section 4 to the L2-setting and explain that an L2-version of

the transformation rule matches with Givental’s quantized operators for general

(not necessarily upper- or lower-triangular) symplectic transformations.

5.1. Ancestor Fock space
Let K be a field containing Q, and let V be a finite-dimensional K-vector space

equipped with a symmetric nondegenerate pairing

〈·, ·〉V : V ⊗K V →K.

Recall Givental’s tameness condition (4.45). We now introduce a Fock space for

“ancestor potentials” as the set of certain formal power series on V [[z]] which

satisfy tameness. Let (q0, q1, q2, . . . ) be a sequence of variables in V , and denote

a general element of V [[z]] by

q=

∞∑
n=0

qnz
n.

Choosing a basis {ei}Ni=0 of V , we write qn =
∑N

i=0 q
i
nei. For D ∈ zV [[z]], we

introduce the coordinate system y=
∑∞

n=0 ynz
n on V [[z]] shifted by D

y= q+D.

By writing D=
∑∞

n=1Dnz
n =
∑∞

n=1

∑N
i=0D

i
nz

nei, yn =
∑N

i=0 y
i
nei, this gives

yin =

{
qi0, n= 0,

qin +Di
n, n≥ 1.
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In other words, y is an affine coordinate system on V [[z]] centered at q(z) =

−D. This shift of coordinates is called the dilaton shift (cf. Section 3.2). The

following notions of ancestor Fock space and rationality for ancestor potentials

were originally worked out in a joint project with Hsian-Hua Tseng (see also

[34]).

DEFINITION 5.1 (Ancestor Fock space)

Let V and D be as above. The ancestor Fock space AFock(V,D) consists of formal

power series

A= exp
( ∞∑
g=0

�g−1Fg
)

with Fg ∈K[{yin}n≥2,0≤i≤N ][[y00 , . . . , y
N
0 , y01 , . . . , y

N
1 ]] such that

F0|y=0 =
∂F0

∂yil

∣∣∣
y=0

=
∂2F0

∂yi1l1 ∂y
i2
l2

∣∣∣
y=0

= 0,

F1|y=0 = 0,

∂nFg

∂yi1l1 · · ·∂y
in
ln

∣∣∣
y=0

= 0 if l1 + · · ·+ ln > 3g− 3 + n.

(5.1)

An element A of AFock(V,D) should be considered as a function on the formal

neighborhood of q(z) = −D ∈ zV [[z]]. We call Fg the genus-g potential of A.
Condition (5.1) is referred to as the tameness of the genus-g potential (cf. the

corresponding conditions (4.44), (4.45) in the discussion of global quantization).

When comparing with (4.45), note that the third line of (5.1) automatically

implies

∂nFg

∂yi1l1 · · ·∂y
in
ln

∣∣∣
y0=0

= 0 if l1 + · · ·+ ln > 3g− 3 + n.

DEFINITION 5.2 (Rationality)

An element A of AFock(V,D) is said to be rational if there exists a polynomial

P ∈K[V ∨] on V with P (−D1) = 1 such that, whenever (g,n) �= (1,0),

(5.2)
∂nFg

∂yi1l1 · · ·∂y
in
ln

∣∣∣
y=y1z=(q1+D1)z

=
fg,L,I(q1)

P (q1)5g−5+2n−(l1+···+ln)

for some polynomials fg,L,I ∈K[V ∨], where L= {l1, . . . , ln} and I = {i1, . . . , in}.
By tameness (5.1), 5g−5+2n− (l1+ · · ·+ ln) = 3g−3+n− (l1+ · · ·+ ln)+2g−
2 + n is positive unless the derivative vanishes or (g,n) = (1,0). We call P the

discriminant of A. We denote by AFockrat(V,D, P ) the set of rational elements

in AFock(V,D) with discriminant P .

REMARK 5.3

A potential satisfying tameness (5.1) and rationality (5.2) can be expanded in
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the form

Fg = δg,1c
(1)(q1) +

∑
n:2g−2+n>0

1

n!

∑
L:L=(l1,...,ln)
lj �=1 for all j

l1+···+ln≤3g−3+n

∑
I=(i1,...,in)

c
(g)
L,I(q1)q

i1
l1
· · · qinln

with

∂c(1)(q1)

∂qi1
=

f1,1,i(q1)

P (q1)
, c

(g)
L,I(q1) =

fg,L,I(q1)

P (q1)5g−5+2n−(l1+···+ln)

for some polynomials f1,1,i, fg,L,I(q1) ∈K[V ∨]. The genus-one term c(1)(q1) is in

general not a rational function (see Example 5.4 below). Given tameness, we can

rephrase the rationality condition as

∂nFg

∂qi1l1 · · ·∂q
in
ln

∈ P (q1)
−(5g−5+2n−(l1+···+ln))K

[
q1, q2, P (q1)q3, P (q1)

2q4, . . .
]
[[P (q1)

−2q0]]

for 2g− 2 + n > 0 (cf. (4.48)).

EXAMPLE 5.4

The ancestor Gromov–Witten potential Apt,t of a point (2.14) does not depend

on t ∈Hpt
∼=Q and coincides with the descendant potential Zpt in (2.11). This

is called the Witten–Kontsevich τ -function and is denoted by τ(q). It defines an

element of AFockrat(Hpt,1,−q1) via the dilaton shift (Section 3.2)

qn = yn − δn,1.

In fact, applying the dilaton equation, we find that

(5.3)

Fg
pt =−

1

24
log(−q1)δg,1

+
∑

n:2g−2+n>0

1

n!

∑
l1,...,ln≥0

lj �=1 for all j
l1+···+ln=3g−3+n

〈ψl1
1 , . . . , ψln

n 〉ptg,n
(−q1)2g−2+n

ql1 · · · qln .

Hence, we can take P (q1) =−q1. Note that l1+ · · ·+ ln = 3g− 3+n implies that

2g− 2 + n= 5g− 5 + 2n− (l1 + · · ·+ ln).

DEFINITION 5.5 (Shift isomorphism)

(1) For ξ ∈ z2V [[z]], the shift of coordinates ỹ = y + ξ preserves tameness

(5.1) and defines a canonical isomorphism

Tξ : AFock(V,D)∼=AFock(V,D+ ξ) for ξ ∈ z2V [[z]].

Thus, AFock(V,D) essentially depends only on the leading term zD1 of D.

(2) Let P ∈K[V ∨], D=
∑

n≥1Dnz
n ∈ zV [[z]], and ξ =

∑
n≥1 ξnz

n ∈ zV [[z]]

be such that P (−D1) = 1 and P (−D1 − ξ1) �= 0. A truncated Taylor expansion
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with respect to the shifted coordinate ỹ= y+ ξ defines an isomorphism

Tξ : AFockrat(V,D, P )∼=AFockrat
(
V,D+ ξ, P/P (−D1 − ξ1)

)
.

This is given by TξA= exp(
∑∞

g=0 �
g−1TξFg) with

TξFg =
∑

n:2g−2+n>0

∑
L=(l1,...,ln)
lj �=1 for all j

∑
I=(i1,...,in)

1

n!

× ∂nFg

∂yi1l1 · · ·∂y
in
ln

∣∣∣
y=(ỹ1−ξ1)z

(ỹi1l1 − ξi2l1 ) · · · (ỹ
in
ln
− ξinln ),

where we set ξi0 = 0 and ξn =
∑N

i=0 ξ
i
n for n≥ 1. It is easy to check that this shift

preserves tameness (5.1) and rationality (5.2). Note that the Taylor expansion of

TξF1 is truncated so that it is zero at the shifted origin ỹ= 0.

Let (V, 〈·, ·〉V ), (W, 〈·, ·〉W ) be K-vector spaces with perfect pairings. A K[[z]]-

module isomorphism R : V [[z]]→W [[z]] is said to be unitary if it satisfies〈
R(−z)v1,R(z)v2

〉
W

= 〈v1, v2〉V
for all v1, v2 ∈ V . In this slightly more abstract setting, Givental’s propagator

from Section 4.8.1 can be described as follows.

DEFINITION 5.6 (see [61])

Let R : V [[z]]→W [[z]] be a unitary isomorphism. Givental’s propagator associated

to R is a bivector field Δ on V [[z]] defined by

Δ=

∞∑
n=0

∞∑
m=0

N∑
i=0

N∑
j=0

Δ(n,i),(m,j) ∂

∂qin
⊗ ∂

∂qjm

with

∞∑
n=0

∞∑
m=0

N∑
i=0

N∑
j=0

Δ(n,i),(m,j)(−1)n+mwnzm =
〈
ei,

R(w)†R(z)− id

z +w
ej
〉
V
,

where {ei} is a basis of V dual to {ei} with respect to 〈·, ·〉V , and R(w)† denotes

the adjoint of R(w) with respect to 〈·, ·〉V and 〈·, ·〉W . (Unitarity implies that

R(w)† =R(−w)−1.)

DEFINITION 5.7 (see [61])

For a unitary isomorphism R : V [[z]]→W [[z]], the quantized operator

R̂ :AFock(V,D)→AFock(W,RD)

is defined as follows. For a given element A∈AFock(V,D), we set

Ã= exp
(�
2
Δ
)
A∈AFock(V,D),
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where Δ is Givental’s propagator associated to R, and then push Ã forward

along the identification R(z) : V [[z]]∼=W [[z]], so that

(R̂A)(q) := Ã(R−1q).

THEOREM 5.8 (see [63], [34])

The quantized operator R̂ is well defined, that is, it preserves the tameness con-

dition (5.1). Moreover, R̂ preserves rationality and induces an operator

R̂ : AFockrat(V,D, P )−→AFockrat(W,RD, P ◦R−1
0 ),

where R=R0 +R1z +R2z
2 +R3z

3 + · · · with Rn ∈ EndK(V,W ).

REMARK 5.9

When combined with the shift isomorphism in Definition 5.5, the quantized oper-

ator gives a map

TD′−RD ◦ R̂ : AFock(V,D)−→AFock(W,D′)

for D ∈ zV [[z]], D′ ∈ zW [[z]] such that D′ −RD ∈ z2W [[z]]. On the subspace of

rational elements, we have a map

TD′−RD ◦ R̂ : AFockrat(V,D, P )−→AFockrat
(
V,D′, P ◦R−1

0 /P (−R−1
0 D′

1)
)

when D′ =
∑∞

n=1D
′
nz

n ∈ zW [[z]] satisfies P (−R−1
0 D′

1) �= 0.

5.2. Global quantization is compatible with Givental quantization
We now show that Givental’s quantized operator on ancestor Fock spaces (Def-

inition 5.7) arises from our transformation rule (Definition 4.64) in the formal

neighborhood of a point of L◦. Suppose that we are given a miniversal24 cTP

structure (F,∇, (·, ·)F) over M as in Definition 4.4. A unitary frame at t ∈M is

a C[[z]]-linear isomorphism

Φ: V [[z]]∼= Ft

with a C-vector space V such that

〈v1, v2〉V :=
(
Φ(v1),Φ(v2)

)
F

is independent of z for any v1, v2 ∈ V . A unitary frame Φ admits a unique exten-

sion to an isomorphism V ((z))∼= Ft[z
−1] of C((z))-modules, which we also denote

by Φ. The following lemma is obvious from the proof of Lemma 4.17.

LEMMA 5.10

Let V be a vector space over C of dimension (N + 1) = rankF. A unitary frame

Φ: V [[z]]∼= Ft at t ∈M defines a unique opposite module P over the formal neigh-

borhood of t such that Pt =Φ(z−1V [z−1]). Conversely, any opposite module over

24See Assumption 4.9 for miniversality.
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the formal neighborhood of t determines a gauge-equivalence class of unitary

frame.

DEFINITION 5.11 (Formalization map)

Let P be an opposite module over an open set U . By the preceding lemma, P asso-

ciates to a point t ∈ U a unitary frame Φ: V [[z]]∼= Ft such that Φ(z−1V [z−1]) =

Pt, where V is a C-vector space. Let e0, . . . , eN be a basis of V . Recall from

Definition 4.28 that the trivialization Φ−1 : Ft
∼= V [[z]] =

⊕N
i=0C[[z]]ei and the

opposite module P define a flat coordinate system {qin}n≥0,0≤i≤N on the formal

neighborhood L̂
◦
of L◦

t . Write

q=

∞∑
n=0

N∑
i=0

qineiz
n : L̂

◦
−→ V [[z]].

Take a point x ∈ L◦
t , and let −D= q|x ∈ zV [[z]] be the coordinate of x. The formal-

ization map Forx : Fock(U ;P)→AFock(V,D) is defined by the Taylor expansion

Forx(C ) = exp
( ∞∑
g=0

∑
n:2g−2+n>0

∑
l1,...,ln≥0

∑
0≤i1,...,in≤N

�g−1

n!

× ∂nC(g)

∂qi1l1 · · ·∂q
in
ln

(x)yi1l1 · · ·y
in
ln

)
,

where C = {∇nC(g)} ∈ Fock(U ;P) and y=
∑∞

n=0

∑N
i=0 y

i
neiz

n =D+ q.

REMARK 5.12

(1) The formalization Forx(C ) is nothing but the jet potential exp(W(x, y))

(Definition 4.62) at the point x. A small difference here is that Forx(C ) is written

in a specific coordinate system {yin} on TxL
◦, induced by the flat coordinate

system {qin} associated to a trivialization of Fpr(x), whereas the jet potential is

defined abstractly without a specific choice of coordinates.

(2) Because C(0), ∇C(0), ∇2C(0), and C(1) are not defined, the Taylor series

Forx(C ) is truncated at genera zero and one.

LEMMA 5.13

The image of the formalization map Forx lies in the subspace AFockrat(V,D, Pt,D1)

of rational elements with discriminant

Pt,D1(q1) = P (t, q1)/P (t,−D1), q1 ∈ V,

where P (t, q1) is the discriminant (4.10) on the total space L written in terms

of the unitary frame Φ which we used to define Forx. Moreover, we have the

commutative diagram
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Fock(U ;P)
Forx

AFockrat(V,D, Pt,D1)

TD′−D

Fock(U ;P)
Forx′

AFockrat(V,D
′, Pt,D′

1
)

where D′ is an element of zV [[z]] such that x′ =Φ(−D′) ∈ L◦
t and the right vertical

arrow is the shift isomorphism defined in Definition 5.5.

Proof

The tameness of the formalization was established in (4.45), and rationality was

established in Proposition 4.60. The commutativity of the diagram is obvious

from the definition. �

THEOREM 5.14

The transformation rule for the Fock sheaf is compatible with Givental’s quantized

operator R̂ in the following sense. Let P, P′ be two opposite modules over U , and

let Φ: V [[z]]∼= Ft, Φ
′ : V ′[[z]]∼= Ft be the corresponding unitary frames at t ∈ U via

Lemma 5.10. Let R denote the unitary isomorphism

R := Φ′−1 ◦Φ: V [[z]]
∼=−→ V ′[[z]],

and let D ∈ zV [[z]], D′ ∈ zV ′[[z]] be such that x=Φ(−D) ∈ L◦
t and x′ =Φ′(−D′) ∈

L◦
t . Let P (t, q1), q1 ∈ V , P ′(t, q′1), and q′1 ∈ V ′ be the discriminants (4.10) written

in terms of the trivializations Φ and Φ′, respectively. Then we have P ′(t, q′1) =

P (t,R−1
0 q′1) for R0 =R|z=0. Set

Pt,D1(q1) = P (t, q1)/P (t,−D1), P ′
t,D′

1
(q′1) = P ′(t, q′1)/P

′(t,−D′
1).

Then there is a commutative diagram

Fock(U ;P)
T (P,P′)

Forx

Fock(U ;P′)

Forx′

AFockrat(V,D, Pt,D1)
TD′−RD◦R̂

AFockrat(V
′,D′, P ′

t,D′
1
)

Proof

By definition, the formalization map Forx assigns to a Fock space element the jet

potential at x viewed as a function on V [[z]], where V [[z]] is identified with Θx via

dq= Φ−1 ◦KS: Θx
∼= V [[z]]. On the other hand, we showed in Proposition 4.49

that Givental’s propagator coincides with the propagator for global quantization

written in the frame V [[z]]∼=Θx. The statement follows immediately from this,

the definitions of T (P,P′) and R̂, and Lemma 5.13. �
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5.3. Global quantization in the L2-setting
We now describe global quantization in the L2-setting and explain its relation

to Givental’s quantization. In particular, we describe the quantization Û of a

symplectic transformation U ∈ Sp(H) which is not necessarily lower or upper

triangular. One may note a similarity between the L2-formalism in this section

and the Segal–Wilson [107] Grassmannian, whereas the general theory in Sec-

tion 4 is closer in spirit to the Sato [106] Grassmannian. The L2-formalism here

also follows closely the heuristic argument in Section 3. Since the discussion is

analogous to Section 4, we will omit most of the details.

In this section, we fix a miniversal TP structure (F =O(F ),∇, (·, ·)F ) with
base M. We write (F,∇, (·, ·)F) for the corresponding cTP structure. Consider

the space

Ht = L2
(
{t} × S1, F

)
of L2-sections over {t} × S1. This has a nondegenerate symplectic form

Ωt(u, v) =
1

2πi

∫
S1

(
u(−z), v(z)

)
F dz

and contains the Lagrangian subspace

Ft :=
{
s(z) ∈Ht :

s is the boundary value of a holomorphic section over {t} ×D
}
,

where D= {z ∈C : |z|< 1} is the unit open disk. The pair (Ht,Ωt) is an analogue

of Givental’s symplectic space (Section 3.1), and Ft corresponds to a tangent

space to the Givental cone (Section 3.3). We fix a separable complex Hilbert space

H equipped with an orthonormal basis25 {eα, fα : α ∈ Z≥0} and a symplectic form

Ω(eα, fβ) = δαβ , Ω(eα, eβ) = Ω(fα, fβ) = 0.

We call {eα, fα} the Darboux basis of H. We write {pα, qα : α ∈ Z≥0} for the

dual linear coordinates on H, so that we have Ω =
∑

α dpα ∧ dqα. We have the

standard decomposition H=H+ ⊕H−, where H+ is spanned by fα and H− is

spanned by eα. We write

p=

∞∑
α=0

pαf
α ∈H−, q=

∞∑
α=0

qαeα ∈H+

for variables in H±.

DEFINITION 5.15 (cf. unitary frame in Section 5.2)

A Darboux frame of the TP structure (F ,∇, (·, ·)F ) at t ∈M is an isomorphism

Φt : H→Ht

of topological vector spaces such that

25The L2-metric does not play a role.
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(1) Φt intertwines the symplectic forms Ω and Ωt;

(2) the projection Φ−1
t (Ft)→H+ along H− is an isomorphism.

Suppose that a Darboux frame Φt at t is given. When t′ is close to t, parallel

translation by ∇ defines a symplectic isomorphism

Ptt′ : Ht
∼=Ht′ ,

and thus, the Darboux frame Φt induces a frame Φt′ = Ptt′ ◦ Φt : H ∼=Ht′ that

respects the symplectic forms. We note that condition (2) remains true for Φt′

whenever t′ is sufficiently close to t. Therefore, a Darboux frame at any point

extends to its small neighborhood by parallel translation.

EXAMPLE 5.16

Suppose that we have a trivialization φ : CN+1 ⊗OC× ∼=F|{t}×C× such that

• (φ(ei)(−z), φ(ej)(z))F = δij ;

• letting F (∞) be the extension of F|{t}×C across z =∞ such that the sec-

tions {φ(ei) : 0≤ i≤N} extend to z =∞ and form a basis there, we have that

F (∞) is trivial as a holomorphic vector bundle over P1.

This induces a Darboux frame by identifying H with the space L2(S1,CN+1)

equipped with the Darboux basis {ei(−z)−n−1, eiz
n : n≥ 0,0≤ i≤N}. The sub-

space H+ corresponds to the space of nonnegative Fourier series
∑

n≥0 anz
n,

and the subspace H− corresponds to the space of strictly negative Fourier series∑
n<0 anz

n. Condition (2) follows from the triviality of F (∞).

EXAMPLE 5.17

This is a special case of Example 5.16. Suppose that the genus-zero Gromov–

Witten potential F 0
X is convergent. Then the fundamental solution L(t, z) (see

(2.7)) with Q= 1 defines a Darboux frame of the A-model TP structure (Exam-

ple 4.3) by identifying H with Givental’s symplectic vector space (Section 3.1)

for X .

EXAMPLE 5.18

We say that a parallel pseudo-opposite module P for (F,∇, (·, ·)F) is compatible

with the L2-structure if

• every element of Pt ⊂ Ft[z
−1] extends to a holomorphic section of F |{t}×D∗

over the unit punctured disk D∗ = {z ∈C : 0< |z|< 1} and has an L2-boundary

value along S1; thus, Pt is a subspace of Ht = L2({t} × S1, F );

• the L2-closure Pt of Pt is complementary to Ft, that is, Ht = Pt ⊕ Ft.

Then we can find a Darboux frame Φt such that Φt(H−) = Pt. When this holds,

we say that the Darboux frame Φt is compatible with P. Given a Darboux frame,

one may not be able to find a parallel pseudo-opposite module compatible with
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the Darboux frame. Darboux frames from Example 5.16 are compatible with the

corresponding opposite modules.

Let Φ be a Darboux frame extended by parallel translation to a simply connected

open set U ⊂M. We consider the map from the L2-subspace L2(L◦)|U (see

Remarks 4.39, 4.41) into H:

ι : L2(L◦)|U →H, (t,x) �→Φ−1
t x.

Miniversality implies that the differential dι is injective and that

dι(T(t,x)L
2(L◦)) = Φ−1

t Ft. Therefore, ι is a Lagrangian immersion. The image

L= ι(L2(L◦)|U ) is preserved by multiplication by C×, and we call it the Givental

cone associated to the Darboux frame Φ. The projection L→H+ along H− is a

local isomorphism (by the inverse function theorem for Hilbert manifolds), and

therefore, L can be locally written as the graph

L=
{
(p,q) ∈H : pα =

∂C(0)

∂qα

}
of the differential of a holomorphic function26 C(0) : H+→C. The function C(0)

is defined up to a constant; we can fix the constant ambiguity by requiring that

C(0) is homogeneous of degree two with respect to the dilation of coordinates q.

Thus, we have

C(0) =
1

2

∞∑
α=0

qα
∂C(0)

∂qα
=

1

2
Ω(p,q)

∣∣∣
L
.

We call C(0) the genus-zero potential associated to Φ. This is an L2-version of the

genus-zero potential in Section 4.7 (see also Remark 4.39). The third derivative

C
(0)
αβγ =

∂C(0)

∂qα ∂qβ ∂qγ

coincides with the Yukawa coupling on L2(L◦) via the projection L2(L◦)�H→
H+. (Here � means an immersion.)

DEFINITION 5.19

Let Φ1, Φ2 be Darboux frames of the TP structure (F ,∇, (·, ·)F ) at t. We say

that Φ1 and Φ2 are close if the map

Π+Φ
−1
2 Φ1 : H−

Φ1−−→Ht
Φ−1

2−−−→H Π+−−→H+

is of trace class. Here Π+ denotes the projection along H−. Being close is an

equivalence relation.

Given two Darboux frames Φ1,Φ2, we have a symplectic transformation U such

that Φ1 =Φ2U. We write U in the block matrix form

26For holomorphic functions in infinite dimensions, we refer the reader to [22].
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(5.4) U=

(
A B

C D

)
,

where A ∈ Hom(H−,H−), B ∈ Hom(H+,H−), C ∈ Hom(H−,H+), and D ∈
Hom(H+,H+). The frame Φ1 is close to Φ2 if and only if C is of trace class.

Using the basis {eα, fα}, we regard A,B,C,D as infinite matrices, writing Aeβ =

Aα
βeα, Bfβ = Bαβe

α, Ceβ = Cαβfα, and Dfβ =Dα
βfα. The symplectic prop-

erty of U implies that

U−1 =

(
DT −BT

−CT AT

)
,

where “T” stands for the transpose. In particular, we see that Φ1 is close to Φ2

if and only if Φ2 is close to Φ1.

EXAMPLE 5.20

All Darboux frames arising from the method of Example 5.16 are close to each

other. In fact, the symplectic transformation U relating two Darboux frames

in Example 5.16 is given by the multiplication by a loop group element γ(z) ∈
C∞(S1,GLN+1(C)), which is the gauge transformation between the two triv-

ializations. In this case, the operator C ∈ Hom(H−,H+) is given by f(z) �→
[γ(z)f(z)]+ with f(z) ∈ H−. It is easy to see that this defines a linear opera-

tor of trace class (see, e.g., [107, Proposition 2.3]). If moreover γ(z) is a Laurent

polynomial loop, we can see that C is a finite-rank operator. (This is the typical

situation when U arises from the monodromy of a TEP structure.)

Let Li, i ∈ {1,2}, be the Givental cones associated to the Darboux frame Φi,

i ∈ {1,2}. The symplectic transformation U maps L1 isomorphically onto L2:

UL1 = L2. By identifying the two Givental cones via U, we will mainly work

with L1. For a point x ∈ L1, we have H = TxL1 ⊕H− = TxL1 ⊕ U−1H−. Thus,

the symplectic form Ω defines two isomorphisms

�1 : H− ∼= (TxL1)
′, v �→ ιvΩ=Ω(v, ·),

�2 : U
−1H− ∼= (TxL1)

′, v �→ ιvΩ=Ω(v, ·),
(5.5)

where (TxL1)
′ means the topological dual of TxL1. We define the propagator in

the L2-setting as follows.

DEFINITION 5.21 (cf. Definition 4.43)

The propagator Δ=Δ(Φ1,Φ2) associated to the two Darboux frames Φ1, Φ2 is

the bivector field Δ on L1 defined by

Δ(v1, v2) = Ω
(
�−1
1 (v1), �

−1
2 (v2)
)

with v1, v2 ∈ (TxL1)
′.

The propagator is symmetric.
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The projection L1→H+ along H− defines a local coordinate system (q0, q1,

q2, q3, . . . ) on L1. We will find a coordinate expression for the propagator. We

write Δαβ = Δ(dqα, dqβ). Let C(0) denote the genus-zero potential associated

with Φ1. Define τ to be the matrix with coefficients

ταβ =
∂2C(0)

∂qα ∂qβ
.

This defines a bounded bilinear form H+ ×H+→ C; it can also be viewed as a

bounded linear operator H+→H−.

LEMMA 5.22

The operator Cτ +D : H+→H+ is an isomorphism, and the propagator is given

by

Δαβ =−
[
(Cτ +D)−1C

]αβ
.

In particular, if Φ1 and Φ2 are close, then the propagator Δαβ is of trace class

as a linear operator (TxL1)
′→ TxL1.

Proof

The projection L2→H+ along H− introduces coordinates (q0, q1, q2, . . . ) on L2.

The tangent map H+
∼= TxL1→ TU(x)L2

∼=H+ of U is given in these coordinates

as

q �→
(
τq

q

)
U�−−−→
(
(Aτ +B)q

(Cτ +D)q

)
�→ (Cτ +D)q.

Thus, Cτ + D is a linear isomorphism. These coordinates on L1, L2 identify

the cotangent spaces (TxL1)
′, (TU(x)L2)

′ with H−. Using these coordinatizations

and the above identification TxL1
∼= TU(x)L2, we can view the propagator as the

bilinear form (TxL1)
′ × (TU(x)L2)

′→C given by

p1 × p2 �−→Ω(p1,U
−1p2) =−p1 · (CTp2).

Since the covector p2 ∈ (TU(x)L2)
′ corresponds to the covector (Cτ +D)Tp2 ∈

(TxL1)
′, the conclusion follows. �

We give a definition of the local Fock space in the L2-setting. The definition here

is very simple.

DEFINITION 5.23 (cf. Definition 4.56)

Let Φ be a Darboux frame, and let L be the Givental cone associated to Φ. For

an open subset U of L, the local Fock space FockL2(U ,Φ) consists of tuples

{dC(1),C(2),C(3), . . .},

where dC(1) is a holomorphic closed one-form on U and C(g), g ≥ 2, are holo-

morphic functions on U . We call C(g) the genus-g potential.
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REMARK 5.24

Suppose that a Darboux frame Φ is compatible with a parallel pseudo-opposite

module P. When U ⊂ L is the image of an open subset of L2(L◦)|U , there is a

natural restriction map Fock(U ;P)→ FockL2(U ;Φ).

REMARK 5.25

The n-fold derivative of the genus-g potential defines an n-tensor

C(g)
α1...αn

=
∂nC(g)

∂qα1 · · ·∂qαn
.

At each point x ∈ L, this defines a bounded multilinear form on TxL.

We now describe the transformation rule in the L2-setting. Let Φ1, Φ2 be Dar-

boux frames which are close to each other in the sense of Definition 5.19. Let Li

be the Givental cone associated to Φi for i= 1,2, and let Δ =Δ(Φ1,Φ2) be the

propagator. Let U=Φ−1
2 Φ1 be the symplectic transformation. As usual we intro-

duce coordinates on L1 by the projection L1→H+ along H−, and we regard the

genus-zero potential C(0) associated to Φ1 as a function on L1. We have another

genus-zero potential Ĉ(0) : H+→C associated to the Darboux frame Φ2. Via the

identification U : L1

∼=−→L2 followed by the projection L2→H+, we also regard

Ĉ(0) as a function on L1. Although the functions C(0), Ĉ(0) do not match, the

third derivatives match,

C
(0)
αβγ = Ĉ

(0)
αβγ ,

as they are the Yukawa coupling.

DEFINITION 5.26 (Transformation rule in the L2-setting; cf. Definition 4.64)

Let Φ1,Φ2 be Darboux frames which are close to each other. We use notation as

above. Let U ⊂ L1 be an open subset. For an element {dC(1),C(2),C(3), . . .} of

FockL2(U ;Φ1), we define a tuple

{Ĉ(g)
α1,...,αn

: g ≥ 0, n≥ 0,2g− 2 + n > 0}

of holomorphic tensors on U by the same Feynman rule as in Definition 4.64,

Ĉ(g)
α1,...,αn

=
∑
Γ

1

|Aut(Γ)| ContΓ
(
{C(h)

β1,...,βm
},Δ
)
α1,...,αn

,

where Γ ranges over all decorated stable graphs with legs α1, . . . , αn as in Defi-

nition 4.64. We can check, by a similar argument to the previous case, that the

new correlators satisfy the jetness condition

∂Ĉ
(g)
α1...αn

∂qβ
= Ĉ

(g)
βα1...αn

,
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and therefore, they are determined by the tuple {dĈ(1), Ĉ(2), Ĉ(3), . . .}. We can

regard Ĉ
(g)
α1...αn as a tensor on U(U)⊂L2 via the identification U : L1

∼= L2. There-

fore, we obtain a transformation rule

Û : FockL2(U ;Φ1)→ FockL2

(
U(U);Φ2

)
sending {dC(1),C(2),C(3), . . .} to {dĈ(1), Ĉ(2), Ĉ(3), . . .}. Integrating dC(1) and

dĈ(1) locally to holomorphic functions C(1) and Ĉ(1), we consider the total poten-

tials

Z = exp
(1
�
C(0) +C(1) +C(2)�+C(3)�2 + · · ·

)
,

Ẑ = exp
(1
�
Ĉ(0) + Ĉ(1) + Ĉ(2)�+ Ĉ(3)�2 + · · ·

)
.

With this notation, we write

Ẑ ∝ ÛZ,

where ∝ indicates that we have a constant ambiguity at genus one.

REMARK 5.27

In the above definition, it is important that Φ1 and Φ2 are close to each other

in the sense of Definition 5.19. The closeness implies that Δ is of trace class by

Lemma 5.22 and, thus, ensures that the contraction Cont(Γ)α1...αn =

ContΓ({C(h)
β1...βm

},Δ)α1...αn over a graph Γ defines a bounded multilinear form

on TxL1. We can prove this by induction on the number of edges: by removing

one edge from Γ we can write

Cont(Γ)α1...αn

=

{
Cont(Γ1)αi1 ...αik

β1Δ
β1β2 Cont(Γ2)αj1 ...αjl

β2 separating case,

Cont(Γ′)α1...αnβ1β2Δ
β1β2 nonseparating case,

where {i1, . . . , ik} � {j1, . . . , jl} = {1, . . . , n}. In the former case, the well-

definedness follows from the fact that Δ is a bounded bilinear form and the

induction hypothesis; in the latter case it follows from the fact that Δ is of trace

class and the induction hypothesis.

REMARK 5.28

The jetness of the new correlation functions Ĉ
(g)
α1...αn follows from the formula

∂αΔ= (Cτ +D)−1C(∂ατ)(Cτ +D)−1C =Δ(∂ατ)Δ.

This is an analogue of Proposition 4.45(2).

The following proposition is obvious from the definition.

PROPOSITION 5.29

Let Φ1, Φ2 be Darboux frames, and let P1, P2 be parallel pseudo-opposite modules
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for the cTP structure (F,∇, (·, ·)F) over U . Suppose that Φi is compatible with Pi

for i= 1,2. Then the transformation rule Û above coincides with the transforma-

tion rule T (P1,P2) from Definition 4.64 under the identification L2(L◦)|U ∼= L1.

REMARK 5.30

Here we describe the relationship to Givental’s [61] quantization of a symplectic

transformation U ∈ Sp(H). In Givental’s formalism, we regard the total potential

Z (resp., Ẑ) as a function on H+ via the projection L1→H+ along H− (resp.,

via the projection L2 →H+ along H−). We assume that the component C ∈
Hom(H−,H+) of U (see (5.4)) is of trace class as before. There are two cases:27

Lower triangular U preserves H−, that is, C = 0;

Upper triangular U preserves H+, that is, B = 0.

We describe Givental’s quantized operator Û in these two cases. More generally

we decompose U into the product U+U− of a lower-triangular transformation

U− and an upper-triangular transformation U+ and define Û= Û+Û−.

In the lower-triangular case, Û acts on the higher-genus potentials C(1),

C(2),C(3), . . . by the change of variables q→D−1q and on the genus-zero poten-

tial C(0) by the same change of variables followed by the shift by a quadratic

function. We define (see [61, Proposition 5.3] and Remark 3.3)

(ÛZ)(q) = e
1
2�Ω(BD−1q,q)Z(D−1q).

This coincides with our transformation rule in Definition 5.26, as in this case we

have Δ= 0 and the transformation rule is essentially a coordinate change.

In the upper-triangular case, the quantized operator Û is more complicated.

The symplectic condition for U now reads

A= (DT)−1, ATC =CTA.

Givental’s propagator V is defined by the formula (cf. Section 4.8.1)

V αβ =−(ATC)αβ =−(D−1C)αβ .

This is a symmetric tensor of trace class. Givental’s propagator V arises from

the definition of Δ by replacing (TxL)′ in the isomorphisms (5.5) with (H+)
′,

namely, if we write �1 : H− ∼= (H+)
′, �2 : U

−1H− ∼= (H+)
′ for the isomorphisms

given by the symplectic form, we have

V αβ =Ω(�−1
1 dqα, �−1

2 dqβ).

Givental’s quantized operator Û is given by the formula (see [61, Proposition 7.3])

(5.6) (ÛZ)(q) =
(
exp
(�
2
V αβ∂qα∂qβ

)
Z
)
(D−1q).

We show that the right-hand side is well defined if U is close to the identity (in

the operator norm) and gives the same result as the transformation rule from

27Unfortunately these terminologies are opposite to the shape of the matrix U.
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Definition 5.26. Suppose that the total potential Z is defined in a neighborhood of

q1 ∈H+ which is the projection of x= (p1,q1) ∈ L1 to H+. Here p1 = dC(0)(q1).

Let

q2 = [Ux]+ =Cp1 +Dq1

denote the projection of the point Ux ∈ L2 to H+. We show that the total poten-

tial Ẑ = ÛZ is well defined in a neighborhood of q2 (when U is close to the

identity): we shall evaluate the right-hand side of (5.6) at q= q2. We also write

(5.7) q′
2 =D−1q2 =D−1Cp1 + q1 =−V p1 + q1

and assume that Z is analytically continued to q′
2. This is possible if V p1 is

small, so if U is close to the identity. The formula (5.6) can be written as a

similar Feynman rule

Ĉ(g)(q2) =
∑
Γ

1

|Aut(Γ)| ContΓ
({

C(h)
α1...αn

(q′
2)
}
, V
)
,

where Γ now ranges over connected decorated graphs without legs which are not

necessarily stable: we allow genus-zero vertices of Γ to have one or two incident

edges. There are infinitely many such graphs, and the convergence of the above

sum is nontrivial. We consider the following process of collapsing graphs and

reduce the above sum to a sum over stable graphs. Let Γ be a possibly unstable

decorated graph without legs. We collapse every subtree of Γ consisting of genus-

zero vertices to its root vertex (see Figure 3). Let Γ′ be the graph obtained from

Γ by this tree collapsing. The graph Γ′ can still be unstable, as it can contain

genus-zero two-valent vertices. This happens if Γ′ is an affine An graph as in

Figure 5 or if Γ′ contains An subgraphs as in Figure 4. If Γ′ is not an affine

An graph, we collapse every An subgraph of Γ′ to an edge to obtain a stable

graph Γ′′.

Figure 3. Collapsing subtrees: black vertices are of genus zero and white vertices in Γ′ are of genus at least

one or have more than two edges.
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Figure 4. An subgraph: the encircled vertices are either of higher genus g ≥ 1 or have more than two edges;

uncircled vertices are of genus zero.

Figure 5. Affine An graphs: all vertices are of genus zero.

We first compute the contribution of tree graphs with only genus-zero ver-

tices. We claim that

[V p1]
α = V αβ

(
the sum of contributions of trees

with one leg labelled by β

)
.

Using (5.7), we have

[V p1]
α =
[
V dC(0)(q1)

]α
=
[
V dC(0)(q′

2 + V p1)
]α

=

∞∑
n=0

∑
γ1,...,γn

1

n!
V αβC

(0)
βγ1...γn

(q′
2)[V p1]

γ1 · · · [V pq]
γn .

We can use this equation28 recursively to solve for V p1 for a given q′
2: the answer

can be written as the sum over tree graphs. The claim follows. This sum over

tree graphs converges if ‖V ‖ is small, so if U is close to the identity.

We fix a graph Γ′ and sum over contributions from all the graphs which

collapse to Γ′. This amounts to replacing each vertex term C
(g)
α1...αk(q

′
2) with

C(g)
α1...αk

(q1) =C(g)
α1...αk

(q′
2 + V p1) =

∞∑
n=0

1

n!
C

(g)
α1...αkβ1...βn

(q′
2)[V p1]

β1 · · · [V p1]
βn ,

where we again used the relation (5.7). The Taylor series is convergent if V p1

is sufficiently small. In other words, the contribution of each Γ′ is given by the

contraction

1

Aut(Γ′)
ContΓ′
(
C(h)

α1...αn
(q1), V

)
.

28We can view V p1 as a fixed point for the mapping x �→ V dC(0)(q′
2 + x): if V is sufficiently

small, we have a unique fixed point in a neighborhood of x = 0 by the contraction mapping
principle. The sum over trees in question is precisely the limit of the sequence {xn} defined

recursively by xn+1 = V dC(0)(q′
2 + xn) together with x0 = 0.
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We now fix a stable decorated graph Γ′′ and sum over contributions from all Γ′

which collapse to Γ′′. This amounts to replacing the propagator V αβ with(
1− V τ(q1)

)−1
V

=

∞∑
n=0

∑
γ1,...,γn

V αγ1τγ1γ2(q1)V
γ2γ3τγ3γ4(q1)V

γ4γ5 · · · τγn−1γn(q1)V
γnβ ,

where we set ταβ(q) = C
(0)
αβ (q). Each summand is a contribution from an An

graph. On the other hand, by Lemma 5.22, the propagator of Definition 5.21 is

given by

Δ(q1) =−
(
Cτ(q1) +D

)−1
C =
(
1− V τ(q1)

)−1
V.

Therefore, the contribution of each stable graph Γ is

1

|Aut(Γ)| ContΓ
(
C(h)

α1...αn
(q1),Δ(q1)

)
.

We have shown that Givental’s quantized operator matches with our transfor-

mation rule except possibly at genus one. At genus one, we need to compute the

contribution from affine An graphs Γ′. This is

log det
(
1− V τ(q1)

)
=

∞∑
n=1

1

n
Tr
((
V τ(q1)

)n)
,

where 1/n is the symmetry factor of the affine An graph. This sum converges

if V is small. Recall that an operator has a determinant if it differs from the

identity by an operator of trace class. Therefore, we have

Ĉ(1)(q2) =C(1)(q1) + logdet
(
1− V τ(q1)

)
.

This gives an integrated form of the genus-one transformation rule.

6. The Gromov–Witten wave function

We next explain how one can regard the Gromov–Witten potential of X as

a section of the Fock sheaf associated to the genus-zero Gromov–Witten theory

of X . For this, we need the following convergence assumption on Gromov–Witten

potentials.

ASSUMPTION 6.1 (Convergence)

(1) The genus-zero Gromov–Witten potential F 0
X converges in the sense of

Section 2.3; in particular, its restriction to Q1 = · · ·=Qr = 1 defines an analytic

function on a region MA ⊂ HX ⊗ C of the form (2.4). We denote by ∗ the

analytic quantum product over MA defined by the third derivatives (see (2.3))

of F 0
X |Q1=···=Qr=1.
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(2) Recall that, for any target space X , the genus-g ancestor potential F̄g
X ,

g = 0,1,2, . . . (see (2.13)), can be expanded as a power series in y0, y2, y3, y4,. . . ,

F̄g
X = δg,1c

(1)(t, y1;Q)

+
∑

n : 2g−2+n>0

1

n!

∑
L=(l1,...,ln)

l1+···+ln≤3g−3+n
lj �=1 for all j

∑
I=(i1,...,in)

c
(g)
L,I(t, y1;Q)yi1l1 · · ·y

in
ln
,

where each coefficient c
(g)
L,I(t, y1;Q) belongs to

Q[[t0, et
1

Q1, . . . , e
trQr, t

r+1, . . . , tN ]][[y01 , . . . y
N
1 ]].

(This follows from the divisor equation.) In particular, the restriction to Q1 =

· · ·=Qr = 1 makes sense. We assume that the restriction

c
(g)
L,I(t, y1) = c

(g)
L,I(t, y1;Q)|Q1=···=Qr=1

takes the form

(6.1)
∂c(1)(t, y1)

∂yi1
=

f1,1,i(t, q1)

det(−q1∗)
, c

(g)
L,I(t, y1) =

fg,L,I(t, q1)

det(−q1∗)5g−5+2n−(i1+···+in)
,

under the dilaton shift q1 = y1 − 1, for some polynomials (cf. the rationality

condition appearing in Remark 5.3)

f1,1,i(t, q1), fg,L,I(t, q1) ∈Q[[t0, et
1

, . . . , et
r

, tr+1, . . . , tN ]][q01 , . . . , q
N
1 ].

(3) The polynomials f1,1,i(t, q1), fg,L,I(t, q1) in (2) are convergent as func-

tions in t and belong to O(MA)[q
0
1 , . . . , q

N
1 ].

REMARK 6.2

Assumption 6.1 is equivalent to the notion of convergence for the total ancestor

potential AX introduced in [34, Definition 3.13]; it implies that AX is an element

of AFockrat(HX ,1z,det(−q1∗t)) for t ∈MA. We showed in [34, Theorem 6.5] that

Assumption 6.1 is satisfied when the quantum cohomology of X is convergent

and generically semisimple.

REMARK 6.3

It is not difficult to show that the rationality condition (6.1) holds at genera

zero and one. For example, at genus one, the term c(1)(t, y1) appearing in the

assumption is given by [45] as

c(1)(t, y1) =−
1

24
log sdet(−q1∗t),

where sdet(−q1∗t) = detev(−q1∗t)/detodd(−q1∗t) denotes the superdeterminant

of the quantum product (−q1∗t) on the total cohomology ring Heven(X) ⊕
Hodd(X). Note that the determinant det(−q1∗) in the assumption is the one

on the even part. One can easily check that, when q1, t are in Heven(X), every

irreducible factor of detodd(−q1∗t) is a factor of deteven(−q1∗t), and thus, the

rationality condition (6.1) holds for c(1)(t, y1).
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Assumption 6.1 ensures that F̄g
X |y0=0,Q1=···=Qr=1 for g ≥ 2 and

d(F̄1
X |y0=0,Q1=···=Qr=1) depend analytically on t ∈MA, rationally on y1, and

polynomially on y2, . . . , y3g−2. Therefore, the following definition makes sense.

DEFINITION 6.4 (Gromov–Witten wave function)

Suppose that Assumption 6.1 holds. Then we have the A-model cTEP structure

(F,∇, (·, ·)F) over MA (see Example 4.3 and Remark 4.5). The associated Fock

sheaf FockX over MA is called the A-model Fock sheaf for X . Let {φi}Ni=0 be

a homogeneous basis of HX as in Section 2.2, and let {ti, xi
n}n≥1,0≤i≤N be the

corresponding algebraic coordinates on the total space L of the A-model cTEP

structure. Let Pstd denote the standard opposite module from Example 4.16.

The Gromov–Witten potentials of X define a Gromov–Witten wave function

CX = {∇nC
(g)
X }g,n ∈ FockX(MA;Pstd) by

∇3C
(0)
X = Y

=
N∑
i=0

N∑
j=0

N∑
k=0

dti ⊗ dtj ⊗ dtk
∫
X

(φi ∗ φj ∗ x1)∪ (φk ∗ x1)
∣∣∣
Q1=···=Qr=1

,

∇C
(1)
X = d
(
F 1
X(t) + F̄1

X

)
|y0=0,Q1=···=Qr=1,

C
(g)
X = F̄g

X |y0=0,Q1=···=Qr=1 (g ≥ 2),

and their covariant derivatives with respect to ∇ = ∇Pstd . Here we used the

dilaton shift

yin = xi
n + δ1nδ

i
0, n≥ 1,

to identify the variables {ti, yin} on the right-hand side with the coordinates

{ti, xi
n} on L, and F 1

X(t) is the nondescendant genus-one Gromov–Witten poten-

tial

F 1
X(t) =

∞∑
n=0

∑
d∈NE(X)
(n,d) �=(0,0)

Qd

n!
〈t, . . . , t〉1,n,d

with t =
∑N

i=0 t
iφi. (Assumption 6.1 implies, in particular, that

F 1
X(t)|Q1=···=Qr=1 converges on MA.)

REMARK 6.5

Supposing again that Assumption 6.1 holds, we have the A-model log-cTEP

structure (Example 4.94) with base (MA,D) and the associated Fock sheaf

FockX over MA. The Gromov–Witten wave function CX extends to an element

of FockX(MA;Pstd), where Pstd is the standard opposite module from Exam-

ple 4.104.

REMARK 6.6

One can check that the Gromov–Witten wave function satisfies the conditions
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(Yukawa), (Jetness), (Grading and filtration), and (Pole) in Definition 4.56. The

conditions (Yukawa) and (Jetness) are obvious. The dilaton equation (see, e.g.,

[1, Theorem 8.3.1])

〈α1ψ̄
k1
1 , . . . , αmψ̄km

m , ψ̄m+1 : t, . . . , t〉Xg,1+m+n,d

= (2g− 2 +m)〈α1ψ̄
k1
1 , . . . , αmψ̄km

m : t, . . . , t〉Xg,m+n,d

shows that we have, for g ≥ 1,

∞∑
n=0

N∑
i=0

(δn,1δi,0 − yin)
∂

∂yin
F̄g

X = (2g− 2)F̄g
X + δg,1

1

24
F 1
X(t),

where the last term arises from the unstable term (g,m) = (1,0) and the fact

that
∫
M1,1

ψ = 1
24 . This means that the function F̄g

X for g ≥ 2 (or the one-form

dF̄1
X at genus one) is homogeneous of degree 2− 2g with respect to the dilaton-

shifted variables xi
n =−δn,1δi,0+yin. The grading condition follows. The filtration

condition follows from the dimension formula dimMg,n = 3g− 3 + n (see (4.8)).

The condition (Pole) follows from Assumption 6.1, in particular, from (6.1).

For the rest of this section (Section 6) we will assume that Assumption 6.1 holds.

In our previous paper [34], we studied analytic properties of various Gromov–

Witten potentials under this assumption. We need to review some of these results.

Recall from Remark 4.40 that we have the nuclear subspace of the total space L

of the A-model cTEP structure

N (L) =
{
(t,x) ∈ L : t ∈MA, sup

0≤i≤N,l≥0

(
enl|xi

l|/l!
)
<∞ for all n≥ 0

}
.

As we explained in Example 4.42, there is a holomorphic mapping (see (4.31))

(6.2) q=
[
M(t, z)x

]
+
|Q1=···=Qr=1 : N (L)−→HNF

+

taking values in the positive part of a nuclear version of Givental’s symplectic

space (4.32). Here M(t, z) is the inverse fundamental solution (2.8) in Gromov–

Witten theory. This map q is a local isomorphism between N (L◦) and HNF
+ (see

[34, Section 8.5]) and gives a flat coordinate system on N (L◦) with respect to

∇Pstd . For (t,x) = (t,−z1), we have q=−z1+ t.

We showed in [34, Theorem 7.9] that the total descendant potential ZX is NF-

convergent under Assumption 6.1, that is, that the power series (2.10) defining

each genus-g descendant potential Fg
X converges uniformly and absolutely on an

infinite-dimensional polydisk of the form

(6.3)

{
|til|< ε l!

Cl , 0≤ i≤N, l≥ 0,

|Qi|< ε, 0≤ i≤N,

for some ε > 0 and C > 0 independent of g. Define an open subset U ⊂HNF
+ by

(6.4) U :=
⋃

δ∈H2(X;C)
�(δi)<log ε

[
e−δ/z
(
−1z +

{
t ∈HNF

+ : |til|< εl!/Cl,0≤ i≤N, l≥ 0
})]

+
,
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where ε, C are the constants in (6.3) and we write t =
∑∞

l=0

∑N
i=0 t

i
lφiz

l. The

divisor equation justifies the following definition (see [34, Lemma 8.1]).

DEFINITION 6.7 ([34, Definition-Proposition 8.2])

Under Assumption 6.1, there is an analytic function Fg
X,an : U →C such that

Fg
X,an

(
[e−δ/zq]+

)
=Fg

X(q)|Q1=eδ1 ,...,Qr=eδr

+ δg,0
1

2
Ω
(
e−δ/zq, [e−δ/zq]+

)
− δg,1

1

24

∫
X

δ ∪ cD−1(X),

where δ =
∑r

i=1 δiφi ∈H2(X;C) and q= t− z1 are chosen so that Qi = eδi and

til satisfy (6.3). We call Fg
X,an the specialization of Fg

X to Q1 = · · ·=Qr = 1. Note

that the domain U contains the locus −z1+ t with t in a neighborhood (2.4) of

the large-radius limit.

THEOREM 6.8 (Analytic version of the ancestor-descendant relation; cf. Section 3.5)

When t ∈MA is sufficiently close to the large-radius limit (2.4) and x ∈ zHNF
+

is sufficiently close to −z1, the flat coordinate q= [M(t, z)x]+|Q1=···=Qr=1 from

(6.2) of the point (t,x) ∈ N (L) lies in the domain U for Fg
X,an. For g ≥ 1 and

for such (t,x) ∈N (L), we have

Fg
X,an(q) = δg,1F

1
X(t) + F̄g

t |y0=0,y1=x1−1,yl=xl(l≥2),Q1=···=Qr=1.

In particular, in a neighborhood of such a point (t,x) ∈N (L), the Gromov–Witten

wave function (Definition 6.4) can be written in terms of flat coordinates (6.2)

as

∇3C
(0)
X = Y =

∞∑
l=0

∞∑
m=0

∞∑
n=0

N∑
i=0

N∑
j=0

N∑
h=0

∂3F0
X,an(q)

∂qil ∂q
j
n ∂qhm

dqil ⊗ dqjn ⊗ dqhm,

∇C
(1)
X = dF1

X,an(q),

C
(g)
X =Fg

X,an(q) for g ≥ 2.

Proof

By (2.9), M(t, z) satisfies

eδ/zM(t, z)|Q1=···=Qr=1 =M(t− δ, z)|Q1=eδ1 ,...,Qr=eδr

for δ =
∑r

i=1 δiφi ∈H2(X;C). Since q ∈ U , we can write q= [e−δ/zq̃]+ for some

δ ∈H2(X;C) with �(δi)< log ε and q̃=−z1+ t with |til|< εl!/Cl. Then

q̃= [eδ/zq]+ =
[
eδ/zM(t, z)x

]
+
|Q1=···=Qr=1 =

[
M(t− δ, z)x

]
+
|Q1=eδ1 ,...,Qr=eδr .

Thus, we have for g ≥ 1

Fg
X,an(q) =F

g
X(q̃)|Q1=eδ1 ,...,Qr=eδr − δg,1

1

24

∫
X

δ ∪ cD−1(X) (by definition)
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= δg,1

(
F 1
X(t− δ)− 1

24

∫
X

δ ∪ cD−1(X)
)

+ F̄g
t−δ|y0=0,y1=x1+1,xl=yl(l≥2),Q1=eδ1 ,...Qr=eδr

by the original version of the ancestor-descendant relation (Section 3.5). The

conclusion follows from the divisor equation for F 1
X(t) and F̄g

t . The formula for

∇3C
(0)
X appeared in Example 4.42 and (4.34). �

6.1. The jet-descendant relation
We next give a generalization of the ancestor-descendant relation—called the

jet-descendant relation—which justifies the name “jet” for the jet potential WX

(2.15) in Gromov–Witten theory. For a sequence (t0, t1, t2, . . . ) of variables inHX ,

we write t(ψ) =
∑∞

n=0 tkψ
k. Define generalized (inverse) fundamental solutions

(cf. (2.7) and (2.8)) by

L(t, z)v = v+
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈 v

z −ψ
, t(ψ), . . . , t(ψ), φε

〉X
0,n+2,d

φε,

M(t, z)v = v+
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!

〈 φε

−z − ψ
, t(ψ), . . . , t(ψ), v

〉X
0,n+2,d

φε.

A result of Dijkgraaf–Witten [45] (see also [64, (2)], [57, Proposition 4.6]) shows

that

L(t, z) = L
(
τ(q), z
)
, M(t, z) =M

(
τ(q), z
)
,(6.5)

for

(6.6) τ(q) :=

N∑
ε=0

∂2F0
X

∂q00 ∂q
ε
0

(q)φε

and, thus, that M(t, z) = L(t, z)−1. (Recall from Section 2.4 that M(t, z) =

L(t, z)−1.) Here the dilaton shift q=−z1+ t is used.

THEOREM 6.9 (Jet-descendant relation)

We regard the jet potential WX =
∑∞

g=0 �
g−1W g

X from (2.15) in Gromov–Witten

theory as a function of q = −z1 + t = −z1 +
∑∞

n=0 tnz
n and y =

∑∞
n=0 ynz

n.

Introduce a new variable s=
∑∞

n=0 snz
n, sn ∈HX , depending on (q,y) as

(6.7) s=
[
M(t, z)y

]
+
.

Then we have

(6.8)

Wg
X =Fg

X(q+ s) for g ≥ 2,

W1
X =F1

X(q+ s)−F1
X(q),

W0
X =
[
F0

X(q+ s)
]
≥3

,
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where [F0
X(q+ s)]≥3 denotes the degree-at-least-three part with respect to s, that

is, the Taylor expansion of F0
X(q+s) in s with the constant, linear, and quadratic

terms removed.

Proof

The proof is a straightforward generalization of the argument in [81] and [33]. The

key point is the following comparison of ψ-classes. Let ψi denote the cotangent

line class on Xg,m+l,d, and let ψ̄i denote the cotangent line class pulled back from

Mg,m (both at the ith marking). Then the class ψi− ψ̄i is virtually Poincaré dual

to the divisor consisting of stable maps whose ith marking is on a component

contracted under the forgetful morphism Xg,m+l,d→Mg,m, that is,

ψi − ψ̄i =
∑

L1�L2={1,...,l}

∑
d=d1+d2

[X0,3+|L1|,d1
×X X0,m+|L2|,d2

]vir.

For any cohomology-valued polynomials a1(ψ, ψ̄), . . . , am(ψ, ψ̄) in two variables

ψ and ψ̄, we write〈
a1(ψ, ψ̄), . . . , am(ψ, ψ̄)

〉
g,m

(t)

=
∑

d∈NE(X)

∞∑
l=0

Qd

l!

〈
a1(ψ1, ψ̄1), . . . , am(ψm, ψ̄m) : t(ψm+1), . . . , t(ψm+l)

〉X
g,m+l,d

,

where t(ψi) =
∑∞

n=0 tnψ
n
i as before. Then the above relation shows that

〈φiψ
a+1ψ̄b, . . . 〉g,m(t)

= 〈φiψ
aψ̄b+1, . . . 〉g,m(t) +

N∑
ε=0

〈φiψ
a, φε〉0,2(t)〈φεψ̄b, . . . 〉g,m(t),

where dots denote arbitrary insertions and are the same in all places. Using this

repeatedly, we find that

〈φiψ
n, . . . 〉g,m(t)

= 〈φiψ̄
n, . . . 〉g,m(t) +

n−1∑
k=0

N∑
ε=0

〈φiψ
k, φε〉0,2(t)〈φεψ̄n−k−1, . . . 〉g,m(t).

Multiplying by sin and summing over all n≥ 0 and 0≤ i≤N yields〈
s(ψ), . . .

〉
g,m

(t) =
〈
y(ψ̄), . . .

〉
g,m

(t)

for s(ψ) =
∑∞

n=0

∑N
i=0 s

i
nφiψ

n and y(ψ̄) =
∑∞

n=0

∑N
i=0 y

i
nφiψ̄

n, where y is given

by

yin = sin +
∞∑
l=0

N∑
j=0

sjl+n+1〈φjψ
l, φi〉0,2(t).

This is equivalent to y= [L(t, z)s]+ and to (6.7). Repeating the same argument

at other markings gives〈
s(ψ), . . . , s(ψ)

〉
g,m

(t) =
〈
y(ψ̄), . . .y(ψ̄)

〉
g,m

(t).
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Note that the right-hand side makes sense only for 2g− 2+m> 0. We have, for

g ≥ 2,

Fg
X(q+ s) =

∞∑
m=0

1

m!

〈
s(ψ), . . . , s(ψ)

〉
g,m

(t)

=

∞∑
m=0

1

m!

〈
y(ψ̄), . . . ,y(ψ̄)

〉
g,m

(t) =Wg
X .

For g = 0 or 1, restricting the above summation to the range m ≥ 3 or m ≥ 1,

respectively, yields the remaining parts of (6.8). �

REMARK 6.10

When restricted to q = −z1 + t and y0 = 0, the jet-descendant relation above

reduces to the ancestor-descendant relation from Section 3.5.

Next we study the analyticity of the Gromov–Witten jet potential WX from

(2.15) and discuss the specialization to Q1 = · · · = Qr = 1. More precisely, we

regard WX as a formal power series in y =
∑∞

n=0 ynz
n with coefficients in ana-

lytic functions in q = −z1 + t = −z1 +
∑∞

n=0 tnz
n. Firstly recall that, under

Assumption 6.1, the descendant potentials Fg
X , g = 0,1,2, . . . , are NF-convergent

on the region (6.3). This means that the function τ(q) introduced in (6.6) is also

convergent on the same region. Since τ(q)|Q=t=0 = 0, after taking a bigger C or

a smaller ε if necessary, M(t, z) =M(τ(q), z) is convergent on the region (6.3).

Thus, Theorem 6.9 implies that each Taylor coefficient of Wg with respect to y

converges to an analytic function on the region (6.3). The divisor equation shows

that

Wg
X

(
[e−δ/zq]+,y

)
=Wg

X(q,y)|Q1→eδ1Q1,...,Qr→eδrQr
.

This justifies the following definition (cf. Definition 6.7).

DEFINITION 6.11

Let U ⊂HNF
+ be the domain in (6.4). Under Assumption 6.1, there exists a formal

power series Wg
X,an(q,y) in the variable y=

∑∞
n=0

∑N
i=0 y

i
nφiz

n with coefficients

in analytic functions in q over U with the property that

Wg
X,an

(
[e−δ/zq]+,y

)
=Wg

X(q,y)|Q1=eδ1 ,...,Qr=eδr ,

where (t = q + z1,Qi = eδi) lies in the convergence domain (6.3) for Wg
X . We

refer to Wg
X,an as the specialization of Wg

X to Q1 = · · ·=Qr = 1.

The divisor equation for F̄g
X implies that

(6.9) Wg
X,an|q=−z1+t = F̄g

t |Q1=···=Qr=1
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as a formal power series in y, for t in a neighborhood (2.4) of the large-radius

limit. Let τan : U →HX ⊗C be the holomorphic map defined by (cf. (6.6))

τan(q) =

N∑
ε=0

∂2F0
X,an

∂q00 ∂q
ε
0

(q)φε.

One can check directly from the definition of F0
X,an that

(6.10) τan
(
[e−δ/zq]+

)
= τ(q)|Q1=eδ1 ,...,Qr=eδr + δ

when (t= q+ z1,Qi = eδi) satisfy (6.3). The theorem below follows from a rou-

tine application of the divisor equation, much as in Theorem 6.8. We leave the

details to the reader.

THEOREM 6.12 (Analytic version of jet-descendant relation)

Let q ∈HNF
+ be in the convergence domain (6.4) for Fg

X,an and Wg
X,an. Then

Wg
X,an(q,y) =F

g
X,an(q+ s), g ≥ 2,

W1
X,an(q,y) =F1

X,an(q+ s)−F1
X,an(q),

W0
X,an(q,y) =

[
F0

X,an(q+ s)
]
≥3

,

where s = [M(τan(q), z)y]+|Q1=···=Qr=1. These are identities of formal power

series in y.

LEMMA 6.13

(1) Let x =
∑∞

n=1 xnz
n and q =

∑∞
n=0 qnz

n be variables in zHX [[z]] and

HX [[z]], respectively. The formula q= [M(t, z)x]+ defines an isomorphism over

the Novikov ring Λ between the formal neighborhood of (t,x) = (0,−z1) in HX ×
zHX [[z]] and the formal neighborhood of q=−z1 in HX [[z]]. The inverse map is

given by

t= τ(q), x=
[
L
(
τ(q), z
)
q
]
+
,

where τ is given in (6.6).

(2) Let t ∈MA be sufficiently close to the large-radius limit point, and let

x ∈ HNF
+ be sufficiently close to −z1 so that the flat coordinate q =

[M(t, z)x]+|Q1=···=Qr=1 from (6.2) of the point x = (t,x) ∈ N (L◦) lies in the

domain U ⊂HNF
+ of F0

X,an from (6.4). Then we have t= τan(q).

Proof

(1) It was explained in [34, Remark 8.4] that q= [M(t, z)x]+ defines an isomor-

phism between the formal neighborhoods of (t,x) = (0,−z1) and q=−z1. Since
L(t, z) =M(t, z)−1, we have

x=
[
L(t, z)q

]
+
.

The variable t is determined implicitly by the equation [L(t, z)q]0 = 0, where

[· · · ]0 denotes the coefficient of z0. It now suffices to show that [L(τ(q), z)q]0 = 0.
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By (6.5), we have [L(τ(q), z)q]0 = [L(t, z)q]0 under the dilaton shift q=−z1+t.

Then[
L(t, z)q

]
0
=
[
q+
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

〈 q

z −ψ
, t(ψ), . . . , t(ψ), φε

〉
0,2+n,d

Qd

n!
φε
]
0

= q0 +

∞∑
n=0

N∑
i,ε=0

qin+1

∂2F0
X

∂qin ∂q
ε
0

φε.

The string equation (see [64]) shows that the last expression is identically zero.

(2) This follows from Part (1), (6.10), and an argument similar to that in

the proof of Theorem 6.8. �

THEOREM 6.14

Let CX denote the Gromov–Witten wave function (Definition 6.4) of X. Let

t ∈MA be sufficiently close to the large-radius limit point, and let x ∈ HNF
+ be

sufficiently close to −z1 so that the flat coordinate q= [M(t, z)x]+|Q1=···=Qr=1

from (6.2) of the point x= (t,x) ∈N (L◦) lies in the domain U ⊂HNF
+ for Fg

X,an

and Wg
X,an. Let Forx be the formalization map (Definition 5.11) at x associated

to the standard unitary frame HX ⊗C[[z]]→ Ft of the A-model cTEP structure.

Then we have

Forx CX = exp
( ∞∑
g=0

�g−1Wg
X,an(q,y)

)
as a formal power series in y. In particular, by (6.9),

Forx CX =AX,t|Q1=···=Qr=1

when x= (t,x) = (t,−z1).

Proof

Recall that the formalization map (Definition 5.11) at x= (t,x) is defined as a

truncated Taylor expansion of the potential with respect to the flat coordinates

associated to a given unitary frame of Ft. The standard unitary frame at t ∈HX

defines the following flat coordinate system on L◦ (see Definition 4.28 and (4.21))

(t+ s,x) �→ qt =
[
M(t, z)−1M(t+ s, z)x

]
+
|Q1=···=Qr=1.

Note that the inverse fundamental solution in (4.21) is normalized by the con-

dition that it is the identity at t and so we need the factor M(t, z)−1 here.

This is related to the flat coordinate q in (6.2) by a linear transformation

qt = [M(t, z)−1q]+|Q1=···=Qr=1. Also, by Lemma 6.13, we have t = τan(q). The

analytic version of the ancestor-descendant relation (Theorem 6.8) shows that

Forx(CX) is a truncated Taylor expansion of exp(
∑∞

g=0 �
g−1Fg

X,an(q)) with

respect to qt. Since the coordinate change q �→ qt here is the same as the coor-

dinate change y �→ s of jet coordinates in the jet-descendant relation (Theo-

rem 6.12), the conclusion follows. �
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REMARK 6.15

Theorem 6.14 shows that the jet potential (2.15) in Gromov–Witten theory can

be identified with the jet potential (Definition 4.62) associated with the Gromov–

Witten wave function.

COROLLARY 6.16

With notation as in Theorem 6.14, the formalization of the Gromov–Witten wave

function at x= (t,x) ∈ L◦ associated to the standard unitary frame HX ⊗C[[z]]→
Ft is given by

Forx CX = exp

(
−F̄1

X,t

∣∣∣
y=x+z1,Q1=···=Qr=1

)
AX,t

∣∣∣
y→y+x+z1,Q1=···=Qr=1

.

Proof

Combine the latter statement of Theorem 6.14 with Lemma 5.13. �

7. The semisimple case

In this section we use Givental’s formula for the higher-genus potentials associ-

ated to a semisimple Frobenius manifold to define a canonical global section of

the Fock sheaf for any tame semisimple cTEP structure. This global section is

called the Givental wave function. We use a theorem of Teleman to show that

if X has generically semisimple quantum cohomology, then the Givental wave

function for the A-model cTEP structure associated to X coincides with the

Gromov–Witten wave function for X .

7.1. Semisimple opposite module
Recall from Definition 4.4 that a cTEP structure is a cTP structure such that the

connection ∇ is extended in the z-direction with a pole of order 2 along z = 0.

Let U : F0→ F0 denote the residual part of the connection defined by

U : F0→ F0, U [α] = [z2∇∂zα] for α ∈ F.

The flatness of the pairing implies that U is self-adjoint with respect to (·, ·)F0 .

DEFINITION 7.1

A cTEP structure (F,∇, (·, ·)F) over M is said to be tame semisimple at t ∈M
if the residual part U ∈ End(F0,t) at t is a semisimple endomorphism without

repeated eigenvalues.

The following proposition shows that any tame semisimple cTEP structure of

rank N +1 is locally isomorphic to the A-model cTEP structure (Remark 4.5) of

N+1 points. This can be viewed, modulo the treatment of the pairing, as a special

case of the classical Levelt–Turrittin theorem on the formal structure of irregular

connections (see, e.g., [102, Chapter II, Theorem 5.7]). In fact, the existence of a

pairing makes the proof easier. In the context of semisimple Frobenius manifolds,
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similar results have appeared in the work of Dubrovin [50, Lecture 4] and Givental

[62, Section 1.3].

PROPOSITION 7.2

Suppose that a cTEP structure (F,∇, (·, ·)F) is tame semisimple at t0 ∈M. Then

there exists a trivialization over a neighborhood of t0

Φss : C
N+1 ⊗O[[z]]∼= F

such that (Φss(ei),Φss(ej))F = δij and

Φ∗
ss∇=

N⊕
i=0

(
d− d(ui/z)

)
,

where u0, . . . , uN are the eigenvalues of U . Moreover, the trivialization Φss is

unique up to reordering and changing the signs of the basis elements: ei �→ ±eσ(i),
σ ∈SN+1. We call Φss the semisimple trivialization of (F,∇, (·, ·)F).

Proof

The operator U has distinct eigenvalues u0, . . . , uN in a neighborhood of t0.

Throughout the proof, we fix this neighborhood and work over it. Let δi ∈ F0,

i ∈ {0, . . . ,N}, be the eigensection of U with eigenvalue ui. We normalize δi by the

condition (δi, δi)F0 = 1. Because U is self-adjoint, it follows that (δi, δj)F0 = δij .

There exist lifts δ̂i ∈ F of δi such that (δ̂i, δ̂j)F = 1. In the local basis δ̂0, . . . , δ̂N ,

we write the connection in the form

∇= d− 1

z

∑
j

Cj(z)dt
j +
(
U + zV (z)

)dz
z2

,

where {tj} is a local coordinate system on M, U = diag(u0, . . . , uN ), and Cj(z),

V (z) ∈ End(CN+1)⊗O[[z]]. The fact that ∇ preserves (·, ·)F implies that V (−z)+
V (z)T = 0.

If we have a trivialization Φss satisfying the conditions in the statement, then

[Φss(ei)] is an eigenvector of U of eigenvalue ui and ([Φss(ei)], [Φss(ei)])F0 = 1.

Therefore, up to the choice of signs of δ̂i, we have(
Φss(e0), . . . ,Φss(eN )

)
= (δ̂0, . . . , δ̂N )R(z)

for some (N + 1,N + 1)-matrix R(z) with entries in O[[z]] such that R(0) = I .

It thus suffices to show that there exists a unique gauge transformation R(z) ∈
GL(N + 1,O[[z]]) such that R(0) = I and

R(z)−1 ◦∇ ◦R(z) = d− d(U/z),(7.1)

R(−z)TR(z) = id .(7.2)

The differential equation (7.1) in the z-direction is

∂zR+ z−2[U,R] + z−1V R= 0.
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Writing V (z) = V0 + V1z + V2z
2 + · · · and R(z) = I +R1z +R2z

2 + · · · , we find

[U,R1] + V0 = 0,

R1 + [U,R2] + V1 + V0R1 = 0,

nRn + [U,Rn+1] + Vn + Vn−1R1 + · · ·+ V0Rn = 0 (n≥ 1).

(7.3)

We claim that (7.3) can be solved inductively and uniquely. The off-diagonal part

of R1 can be determined from the first equation

(R1)ij =−
(V0)ij
ui − uj

, i �= j.

Here the solvability is ensured by (V0)ii = 0, which holds because V0 is antisym-

metric. The second equation gives the diagonal part of R1

(R1)ii =−(V1)ii −
∑
j:j �=i

(V0)ij(R1)ji.

Similarly, we can solve for R2,R3, . . . inductively. We check that R constructed

in this way satisfies unitarity (7.2). From the differential equation for R, we find

∂

∂z

(
R(−z)TR(z)

)
=− 1

z2
[
U,R(−z)TR(z)

]
.

Writing R(−z)TR(z) = I +M1z +M2z
2 + · · · gives

[U,M1] = 0,

nMn =−[U,Mn+1] (n≥ 1).

The first equation shows that M1 is diagonal. The second equation with n = 1

shows that M1 is off-diagonal. Thus, M1 = 0. Hence, [U,M2] = 0 and M2 is

diagonal. The second equation with n = 2 shows that M2 is off-diagonal and

M2 = 0. Repeating this, we find that Mn = 0 for all n≥ 1.

Finally we show that R(z) satisfies the differential equation (7.1) in the

t-direction. Note that R(z) in the above construction depends analytically on

t ∈M. We can write

(7.4) R(z)−1 ◦∇ ◦R(z) = d− 1

z

∑
j

Aj(z)dt
j +U

dz

z2

for some Aj(z) ∈ End(CN+1)⊗O[[z]]. The flatness of the connection yields

∂jU −Aj(z) + z∂zAj − z−1
[
Aj(z),U

]
= 0.

Writing Aj(z) =Aj,0 +Aj,1z +Aj,2z
2 + · · · , we have

−[Aj,0,U ] = 0,

∂jU −Aj,0 − [Aj,1,U ] = 0,

−[Aj,2,U ] = 0,

(n− 1)Aj,n − [Aj,n+1,U ] = 0 (n≥ 2).
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The first equation shows that Aj,0 is a diagonal matrix. The second equation

shows that Aj,0 = ∂jU and [Aj,1,U ] = 0. Hence, Aj,1 is diagonal. The third equa-

tion shows that Aj,2 is diagonal. The fourth equation with n = 2 shows that

Aj,2 = 0 and that Aj,3 is diagonal. Repeating this, we find that Aj,n = 0 for all

n≥ 2. It remains to show that Aj,1 = 0. We know that ∇ preserves the pairing

(·, ·)F and that R(z) is unitary (7.2); thus, the connection (7.4) also preserves

the diagonal pairing. This shows that Aj(−z)T = Aj(z). In particular, Aj,1 is

antisymmetric. As we have already seen that Aj,1 is diagonal, Aj,1 = 0. �

DEFINITION 7.3

Let (F,∇, (·, ·)F) be a cTEP structure which is tame semisimple over an open set

Mss ⊂M. The semisimple opposite module for (F,∇, (·, ·)F) is an opposite mod-

ule Pss overMss such that, for any point t ∈Mss and a semisimple trivialization

Φss (Proposition 7.2) over a neighborhood of t, we have

Pss =Φss

(
CN+1 ⊗ z−1O[z−1]

)
in the neighborhood. The opposite module Pss is independent of the choice of Φss.

REMARK 7.4

Even if the semisimple trivialization Φss has monodromy, the semisimple opposite

module Pss is single-valued on the tame semisimple locus Mss. The semisimple

opposite module is automatically homogeneous: ∇z∂zPss ⊂ Pss.

When a cTEP structure is tame semisimple and miniversal, the semisimple oppo-

site module defines a (rather trivial) Frobenius manifold structure on the base

by Proposition 4.18 and Remark 4.22. Miniversality implies that the eigenval-

ues u0, . . . , uN form a local coordinate system. The following proposition follows

straightforwardly from Proposition 7.2.

PROPOSITION 7.5

Let (F,∇, (·, ·)F) be a cTEP structure which is tame semisimple over an open

set Mss ⊂M. The semisimple opposite module Pss over Mss defines a Frobe-

nius manifold structure on Mss which is isomorphic to the quantum cohomology

Frobenius manifold of (N + 1) points. It is given by

• the flat metric

g
( ∂

∂ui
,

∂

∂uj

)
= δij ,

• the semisimple product

∂

∂ui
∗ ∂

∂uj
= δij

∂

∂ui
,

• the flat identity vector field e=
∑N

i=0 ∂/∂ui,

• the Euler vector field E =
∑N

i=0 ui(∂/∂ui),
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where u0, . . . , uN are the eigenvalues of the residual part U ; these are flat coordi-

nates for this Frobenius manifold.

7.2. A section of the Fock sheaf via Givental’s formula
Givental [62], [64], [61] has defined an abstract ancestor potential associated to

any semisimple Frobenius manifold. We will see that Givental’s formula gives

rise to a global section of the Fock sheaf associated to a semisimple Frobenius

manifold (or more generally to a semisimple cTEP structure).

7.2.1. Givental’s abstract potential

DEFINITION 7.6 (cTEP structure associated to a Frobenius manifold)

Let (M,∗, e, g,E) be a Frobenius manifold (see Proposition 4.18 and Remark 4.22

for the notation). The Dubrovin connection defines a miniversal cTEP structure

(F,∇, (·, ·)F) over M:

F= TM[[z]],

∇=∇LC − 1

z

N∑
i=0

( ∂

∂ti
∗
)
dti + (E∗)dz

z2
+ μ

dz

z
,

(
α(z), β(z)

)
F
= g
(
α(−z), β(z)

)
for α(z), β(z) ∈M[[z]],

where {ti}Ni=0 is a local coordinate system onM, ∇LC is the Levi-Civita connec-

tion of g, and μ= (1− D
2 ) id−∇LCE ∈ End(TM) with D the conformal dimen-

sion. This cTEP structure is equipped with the standard homogeneous opposite

module

Pstd = z−1TM[z−1]

and the standard unitary frame id: TuM[[z]]∼= Fu.

Let (M,∗, e, g,E) be a Frobenius manifold such that the Euler multiplication E∗
is semisimple with distinct eigenvalues u0, . . . , uN . Such a Frobenius manifold is

said to be tame semisimple. Then the corresponding cTEP structure is tame

semisimple. It is known that the coordinate vector fields ∂/∂ui, i ∈ {0, . . . ,N},
form an idempotent frame for TM

∂

∂ui
∗ ∂

∂uj
= δij

∂

∂ui
.

We set

Δi = g
( ∂

∂ui
,
∂

∂ui

)−1

.

By Proposition 7.2 and its proof, we locally have a semisimple trivialization

Φss : CN+1 ⊗O[[z]]∼= TM[[z]] such that

Φss(ei) =
√

Δi
∂

∂ui
+O(z).
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In view of Example 5.4, the product of Witten–Kontsevich τ -functions

T (q) =
N∏
i=0

τ(qi) with q= (q0, . . . ,qN ) ∈CN+1[[z]]

is an element of AFockrat(C
N+1, (1, . . . ,1),

∏N
i=0(−qi1)). This is the descendant

potential of (N+1) points.29 For each u ∈M, Φss,u defines a unitary isomorphism

between CN+1[[z]] and TuM[[z]], and we have a quantized operator

Te−Φss,u(1,...,1) ◦ Φ̂ss,u :

AFockrat

(
CN+1, (1, . . . ,1),

N∏
i=0

(−qi1)
)
−−−−→AFockrat

(
TuM, e,det(−q1∗)

)
by Theorem 5.8 and Remark 5.9.

DEFINITION 7.7 (Givental’s formula [61])

The abstract ancestor potential Aabs
u is the element of AFockrat(TuM, e,

det(−q1∗)) given by

Aabs
u = Te−Φss,u(1,...,1)Φ̂ss,uT .

REMARK 7.8

The abstract potential Aabs
u does not depend on the choice of a semisimple trivi-

alization Φss (see [34, Proposition 4.3]). Let us study what the shift isomorphism

Te−Φss,u(1,...,1) does to Φ̂ss,uT . Note that the genus-one potential F̂1 of Φ̂ss,uT
satisfies

F̂1|q0=0,q1=−e =

N∑
i=0

− 1

24
log
(
[Φ−1

ss,ue]
i|z=0

)
=

1

48

N∑
i=0

logΔi(u).

The shift isomorphism at genus one is a truncated Taylor expansion, and this

amounts to subtracting the value at the new base point q=−ez. Thus, we can

write

Aabs
u = e−

1
48

∑
i logΔ

i(u)Φ̂ss,uT .

This is the original form of Givental’s formula.

7.2.2. A global section of the Fock sheaf associated to a semisimple cTEP struc-

ture

We regard the genus-g ancestor potential Fg
pt of a point as a function of the coor-

dinates (q0, q1, q2, . . . ) via the dilaton shift qn = yn−δn,1 (see Example 5.4). When

restricted to q0 = 0, Fg
pt only depends on finitely many variables q1, . . . , q3g−2. In

this section we write

Fg
pt(0, q1, q2, . . . , q3g−2) =Fg

pt|q0=0,

29For N + 1 points, the descendant potential and the ancestor potential are the same.
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making the argument explicit. Note that q5g−5
1 Fg

pt|q0=0 is a polynomial for g ≥ 2,

F1
pt|q0=0 =− 1

24 log(−q1), and F0
pt|q0=0 = 0 (see (5.3)).

DEFINITION 7.9

Let (F,∇, (·, ·)F) be a miniversal cTEP structure which is tame semisimple over

a nonempty open subset Mss ⊂M. Let u0, . . . , uN be the eigenvalues of the

residual part U , as in Proposition 7.5; these give local coordinates on Mss. Let

{ui, x
i
n}n≥1,0≤i≤N be the local coordinate system on L associated to a semisimple

trivialization Φss of F as in Proposition 7.2. Define an element Css = {∇nC
(g)
ss }n,g

of Fock(Mss;Pss) (see Definition 4.56) by

∇3C(0)
ss = Y =

N∑
i=0

(xi
1)

2(dui)
⊗3,

∇C(1)
ss =

N∑
i=0

dF1
pt(0, x

i
1) =−

N∑
i=0

1

24

dxi
1

xi
1

,

C(g)
ss =

N∑
i=0

Fg
pt(0, x

i
1, x

i
2, . . . , x

i
3g−2), g ≥ 2,

and their covariant derivatives with respect to ∇=∇Pss . The global section of

the Fock sheaf (Definition 4.72) over Mss given by Css is called the Givental

wave function. This does not depend on the choice of a semisimple trivializa-

tion Φss.

REMARK 7.10

It is easy to see that Css satisfies the conditions in Definition 4.56. The condition

(Grading and filtration) follows from (5.3). The discriminant (4.10) is given by

P (t, x1) =
∏N

i=0(−xi
1). Thus, the condition (Pole) also follows from (5.3).

REMARK 7.11

The element Css can be identified with the Gromov–Witten wave function for

(N + 1) points which was introduced in Definition 6.4. (The Gromov–Witten

potential of (N + 1) points satisfies the necessary convergence condition stated

in Assumption 6.1.)

REMARK 7.12

Given any pseudo-opposite module P over an open subset U ⊂Mss, the Givental

wave function gives rise to the element CP = T (Pss,P)Css ∈ Fock(U ;P) over U .

We call CP the (local) presentation of the Givental wave function under P.
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LEMMA 7.13

With notation as in Definition 7.9, the equality

∇nC(g)
ss =

N∑
i=0

∑
l1,...,ln≥0

〈ψl1
1 , . . . , ψln

n 〉ptg,ndxi
l1 ⊗ · · · ⊗ dxi

ln

holds along the locus {xi
1 =−1, xi

2 = xi
3 = · · ·= 0 : 0≤ i≤N} ⊂ L, where we set

xi
0 = ui on the right-hand side. In other words, we have

For−zΦss,u(1,...,1) Css = T in AFockrat

(
CN+1, (1, . . . ,1),

N∏
i=0

(−qi1)
)
,

where For−zΦss,u(1,...,1) is the formalization map (Definition 5.11) associated to

the semisimple trivialization Φss,u at u ∈M.

Proof

The formula For−zΦss,u(1,...,1) Css = T was proved more generally for a Gromov–

Witten wave function in Theorem 6.14; this lemma is a special case where X

consists of (N + 1) points. Thus, it suffices to show that the former statement

is equivalent to the latter. For simplicity we consider the case N +1= dimM=

1; the general case is similar. Take a point u∗ ∈ Mss. Under the semisimple

trivialization, the inverse fundamental solution M appearing in (4.22) is given

by

M(u, z) = e−(u−u∗)/z.

Therefore, the flat coordinates q associated to the unitary frame Φss are given

by (see (4.21))

(7.5) q= [e−(u−u∗)/zx]+

with x=
∑∞

n=1 xnz
n, q=
∑∞

n=0 qnz
n. This shows that

du= dq0, dxn = dqn (n≥ 1)

at the point (u,x) = (u∗,−z) ∈ Lu∗ . The conclusion follows from the definition

of the formalization map. �

THEOREM 7.14

Let (F,∇, (·, ·)F) be the tame semisimple cTEP structure associated to a tame

semisimple Frobenius manifold M. Let Cstd = T (Pss,Pstd)Css ∈ Fock(M;Pstd)

denote the presentation of the Givental wave function of (F,∇, (·, ·)F) under the

standard opposite module Pstd (see Remark 7.12). Then we have

For−ze(Cstd) =Aabs
u ,

where For−ze is the formalization map at −ze ∈ L◦
u associated with the standard

unitary frame TuM[[z]]∼= Fu (see Definition 5.11 and Lemma 5.13) and Aabs
u is

the abstract potential in Definition 7.7.
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Proof

Combine Theorem 5.14, Lemma 7.13, and the definition of the abstract potential.

�

The quantum cohomology of X is said to be generically semisimple if the ana-

lytic quantum product ∗ (see Assumption 6.1(1)) is semisimple (i.e., isomorphic

as a ring to a direct sum of copies of C) over an open dense subset of MA.

This is equivalent to ∗ being semisimple at a single point. Then the Euler mul-

tiplication E∗ (see (2.5)) has no repeated eigenvalues on an open dense subset

Mss
A ⊂MA, and the A-model cTEP structure is tame semisimple over Mss

A (see

Definition 7.1). In particular, the Givental wave function defines a section of the

A-model Fock sheaf FockX overMss
A . The following is a reformulation of a result

of Teleman.

THEOREM 7.15 (Teleman [109, Theorem 1])

When the quantum cohomology of X is generically semisimple, the Gromov–

Witten wave function (Definition 6.4) coincides with the Givental wave function

(Definition 7.9).

Proof

Both wave functions are uniquely determined by their formalizations at (t,−z) ∈
L◦ with t ∈Mss

A with respect to the standard opposite module Pstd (see Exam-

ple 4.16). Theorem 6.14 shows that the formalization of the Gromov–Witten

wave function is the geometric ancestor potential AX,t (with Q1 = · · ·=Qr = 1).

Theorem 7.14 shows that the formalization of the Givental wave function is the

abstract ancestor potential given by Givental’s formula (Definition 7.7). Teleman

[109] showed that the geometric ancestor potential coincides with the abstract

one (see also [34, Theorems 6.4, 6.5]). The conclusion follows. �

REMARK 7.16

The Givental wave function is automatically a “modular function” in the fol-

lowing sense. Let (F,∇, (·, ·)F) be a tame semisimple cTEP structure over M,

and let π : M̃ →M be the universal cover. Let C be the Givental wave func-

tion associated to (F,∇, (·, ·)F). Suppose that we have an opposite module P for

π�(F,∇, (·, ·)F) over the universal cover M̃. The pullback π�C of the Givental

wave function is obviously invariant under the group Γ = π1(M) of deck trans-

formations; however, its presentation CP = (π�C )P with respect to P is not nec-

essarily so since the opposite module P may not be single-valued onM. Instead,

we have the transformation property

(7.6) γ�CP = T (P, γ�P)CP

with respect to γ ∈ Γ, since γ�CP = Cγ	P. Suppose, moreover, that the cTEP

structure (F,∇, (·, ·)F) is the restriction of a TEP structure (F =O(F ),∇, (·, ·)F )
to the formal neighborhood of z = 0 and that the opposite module P defines an
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extension of F across z =∞ (see Remark 4.21). In this case, one can rephrase

(7.6) using the L2-formalism in Section 5.3 as follows. The monodromy of

(F ,∇, (·, ·)F ) along γ defines a symplectic transformation

Uγ : Ht→Ht,

where we recall that Ht = L2({t}×S1, F ). Then the total potential Z associated

to CP (see Definition 5.26) transforms under Γ as

Z(γ−1t)∝ ÛγZ(t), γ ∈ Γ.

The quantization Ûγ here was defined in Section 5.3.

8. The Fock sheaf and mirror symmetry

In this section we discuss applications of our global quantization formalism in the

context of mirror symmetry. We consider two cases: mirrors of toric orbifolds and

mirrors of Calabi–Yau hypersurfaces. In the former case, we construct a global

section of the B-model Fock sheaf using Givental’s formula, thereby proving a

higher-genus version of Ruan’s crepant transformation conjecture for toric orb-

ifolds. In the latter case, the existence of a global section of the B-model Fock

sheaf (which corresponds under mirror symmetry to the Gromov–Witten wave

function) is conjectural (cf. recent work of Costello–Li [43]).

8.1. The crepant transformation conjecture in the toric case
A mirror partner of a “Fano-like” manifold X is conjecturally given by a so-

called Landau–Ginzburg model, which is a pair (Ť ,W ) where Ť is a (noncom-

pact) Calabi–Yau manifold and W : Ť → C is a holomorphic function. Suppose

that X has generically semisimple quantum cohomology and has a family of

Landau–Ginzburg models Wy : Ťy → C, y ∈MB, as a mirror. The space MB

here parameterizes the Landau–Ginzburg models; we call it the B-model moduli

space. Under mirror symmetry, the Kähler moduli space MA ∩H2(X;C) of X

is identified with a small open patch of MB, and the small quantum cohomol-

ogy ring of X should be identified with the family of Jacobi rings for Wy on

this patch. Furthermore, the A-model TEP structure (Example 4.3) constructed

from X should be identified with the B-model TEP structure constructed from

Wy . Our assumption that X has generically semisimple quantum cohomology

corresponds to the condition that, for generic y, all critical points of Wy are

isolated and nondegenerate. In such a situation, we can extend the total descen-

dant Gromov–Witten potential ZX to a global section of the B-model Fock sheaf

over an extended B-model moduli spaceMext
B ; this is the Givental wave function

for the extended B-model TEP structure. Furthermore, it can happen that this

global section restricts, on another small open patch of MB, to the Gromov–

Witten potential ZY of another space Y which would typically be K-equivalent

(or derived equivalent) to X . Thus, the global section ZX of the A-model Fock

sheaf for X would coincide, after analytic continuation, with the global section
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ZY of the A-model Fock sheaf for Y . This gives a higher-genus version of Yong-

bin Ruan’s conjecture about the relationship between Gromov–Witten theory

and crepant birational transformation. We illustrate this in the toric setting.

Givental [58] and Hori–Vafa [69] have described a Landau–Ginzburg model

that gives a mirror to a toric variety. Here the Calabi–Yau manifold Ť is (C×)D,

and the superpotential W : Ť → C is a Laurent polynomial function on (C×)D

with Newton polytope equal to the fan polytope of the toric variety. The B-model

TEP structure in this context has been studied by many people, including Sabbah

[101], Barannikov [7], Douai–Sabbah [46], [47], Coates–Iritani–Tseng [38], Iritani

[71], and Reichelt–Sevenheck [100]. In the rest of this section (Section 8.1) we

consider the mirrors to certain toric orbifolds, following closely the exposition in

[71, Section 3].

8.1.1. Toric orbifolds as geometric invariant theory (GIT) quotients

Borisov–Chen–Smith [14] construct toric Deligne–Mumford stacks from so-called

stacky fans. Let X be the toric Deligne–Mumford stack corresponding to the

stacky fan (N;Σ; b1, . . . , bm), so that

• N is a finitely generated abelian group;

• Σ is a rational simplicial fan in NR =N⊗Z R;

• b1, . . . , bm ∈ N are such that their images in NR generate the one-

dimensional cones of Σ.

Let Δ⊂NR denote the convex hull of b1, . . . , bm. This is called the fan polytope

of X . We assume the following.

• X is an orbifold, that is, the generic isotropy of X is trivial. This amounts

to requiring that N is torsion-free.

• The coarse moduli space of X is projective. This amounts to requiring that

Δ contains the origin in its strict interior and that Σ admits a strictly convex

piecewise-linear function.

• X is weak Fano. This amounts to requiring that b1, . . . , bm lie on the bound-

ary of Δ.

• Δ∩N generates N over Z.

We now explain how to construct X as a GIT quotient.

Set Δ∩N= {b1, . . . , bm, bm+1, . . . , bn}, with n≥m, and define a lattice L⊂
Zn by the exact sequence

(8.1) 0 L Zn
β

N 0,

where β is the homomorphism that sends the ith standard basis vector ei to bi.

The torus T := L⊗C× acts on Cn via the inclusion T⊂ (C×)n induced by L⊂ Zn.

We denote by AΣ the set of anticones, that is, the set of subsets I ⊂ {1, . . . , n}
such that I contains {m+1, . . . , n} and such that {bi : i ∈ {1, . . . , n} \ I} spans a
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cone of the fan Σ. Set

UΣ =Cn \
⋃

I /∈AΣ

CI ,

where CI = {(z1, . . . , zn) ∈ Cn : zi = 0 for i /∈ I}. The toric Deligne–Mumford

stack X is constructed as the quotient stack

(8.2) X = [UΣ/T].
Let M : Zn → L∨ = Hom(L,Z) be the map dual to the inclusion L ⊂ Zn.

The vector space L∨
R = L∨ ⊗ R is canonically identified with H≤2

CR(X) (see [71,

Remark 3.5]). The extended Kähler cone is a cone CX ⊂ L∨
R defined by

CX =
⋂

I∈AΣ

M(RI
>0).

Under the identification L∨
R
∼= H≤2

CR(X), this matches with the product of the

ordinary Kähler (or ample) cone Amp(X) ⊂H2(X;R) and the rays generated

by positive generators of the twisted sectors in H≤2
CR(X) and 1 ∈H0(X) (see [71,

Lemma 3.2]). The extended anticanonical class −Kext
X :=M(e1 + · · ·+ en) ∈ L∨

projects to the usual anticanonical class −KX ∈H2(X) and lies in the closure

CX of CX by the weak-Fano condition. The space L∨ is the space of stability

conditions for the action of T on Cn, and for any stability condition θ in the

extended Kähler cone CX , we have that the GIT (stack) quotient [Cn//θT] is

equal to X , because [Cn//θT] = [UΣ/T] as in (8.2).

8.1.2. Birational toric orbifolds arising from the variation of GIT

We can have several different projective stacky fan structures with the same fan

polytope Δ. The corresponding toric stacks are birational and are related by the

variation of GIT. Reversing the above construction, start now with an integral

polytope Δ ⊂ NR such that the origin is contained in its strict interior and

such that Δ ∩N generates N over Z. Set Δ ∩N= {b1, . . . , bn} as before. These

vectors define the exact sequence (8.1) and, thus, define an action of T := L⊗C×

on Cn. A character θ ∈ L∨ = Hom(T,C×) of T defines a stability condition for

this action. Set Ceff =M(Rn
≥0), where M : Zn→ L∨ denotes the map dual to the

inclusion L ⊂ Zn as before; this is a strictly convex cone. Also define W ⊂ Ceff

to be the union of the cones M(RI
≥0) for all subsets I ⊂ {1, . . . , n} such that

{M(ei) : i ∈ I} does not span L∨
R over R. The walls W give a wall and chamber

structure on Ceff ; this is the secondary fan of Gelfand–Kapranov–Zelevinsky [56].

The GIT (stack) quotient Xθ := [Cn//θT] is empty unless the stability parameter

θ lies in Ceff . If θ ∈Ceff \W, then there are no strictly θ-semistable points in Cn.

Take θ ∈Ceff \W, and set Aθ = {I ⊂ {1, . . . , n} : θ ∈M(RI
>0)}. The corresponding

GIT quotient Xθ is the projective toric Deligne–Mumford stack given by the

following stacky fan on N:

• bi is a specified generator of a one-dimensional cone if and only if

{1, . . . , n} \ {i} ∈ Aθ;

• a subset {bi : i ∈ I} spans a cone of the fan if and only if {1, . . . , n}\I ∈Aθ.
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Note that Aθ coincides with the set of anticones for this fan. The corresponding

extended Kähler cone Cθ :=
⋂

I∈Aθ
M(RI

>0) is the connected component of Ceff \
W containing θ. The toric stack Xθ depends on θ only via the chamber Cθ. The

fan polytope of Xθ is a polytope contained in Δ and contains the origin in its

interior.

Let Toric(Δ) denote the set of smooth projective toric stacks arising in this

way; they are parameterized by connected components of Ceff \W, that is, by

maximal cones in the secondary fan. When a chamber Cθ ⊂ Ceff \W contains

the vector M(e1 + · · · + en) in its closure, the corresponding toric stack Xθ is

weak Fano. In this case, the fan polytope of Xθ coincides with Δ, and all the

generators of one-dimensional cones of the stacky fan lie in the boundary of Δ

(see [71, Lemma 3.3]). Let Crep(Δ) ⊂ Toric(Δ) denote the subset consisting of

toric stacks corresponding to a chamber Cθ with M(e1 + · · ·+ en) ∈ Cθ. Toric

stacks from Crep(Δ) are all K-equivalent and also derived equivalent to each

other, via a composition of Fourier–Mukai transformations (see [77], [37]).

8.1.3. Mirror Landau–Ginzburg models

Let X be a toric Deligne–Mumford stack, as in Section 8.1.1. The mirror of X

is given by a family of Laurent polynomials Wa on Ť = Hom(N,C×) ∼= (C×)D

parameterized by a= (a1, . . . , an) ∈ (C×)n:

(8.3) Wa(x) =
n∑

i=1

aix
bi .

The torus Ť =Hom(N,C×) acts on the product (C×)n × Ť by

(a1, . . . , an, x) �−→ (λb1a1, . . . , λ
bnan, λ

−1 · x), λ ∈ Ť ,

and the potential Wa(x) is invariant under this action. The family of Laurent

polynomials {Wa}a∈(C×)n therefore descends to give a family over the quotient

space MB := (C×)n/Ť :

(
(C×)n × Ť

)
/Ť

W

pr

C

MB

where pr is the projection to the first factor and W([a,x]) =Wa(x). Note that

MB is identified with Hom(L,C×) = L∨ ⊗C× via the exact sequence (8.1). For

y ∈MB, we write Ťy := pr−1(y)∼= Ť and write Wy for the Laurent polynomial

W restricted to Ťy . The parameter spaceMB is partially compactified to a toric

varietyMB defined by the secondary fan in L∨
R =Hom(L,R). Note that all toric

stacks from Crep(Δ) have the same mirror family, but each of them corresponds to

a different torus fixed point in the secondary toric varietyMB. We call the fixed

point in MB corresponding to a toric stack X ∈ Crep(Δ) the large-radius limit

point for X and denote it by oX . (A toric stack X from Toric(Δ) \ Crep(Δ) also
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corresponds to a fixed point oX ∈MB, but in this case X either is nonweak Fano

or has a fan polytope different from Δ; for such X , genus-zero mirror symmetry

in the form stated below does not hold.)

8.1.4. The B-model TEP structure

We now construct the B-model TEP structure from the Landau–Ginzburg model.

Let M◦
B ⊂MB denote the (nonempty) Zariski-open subset parameterizing non-

degenerate Laurent polynomials. Here a Laurent polynomial Wa is said to be

nondegenerate (see [83, Définition 1.19]) if, for every face F ⊂Δ of dimension

0 ≤ dimF < D, the Laurent polynomial WF,a :=
∑

i:bi∈F aix
bi has no critical

points in Ť . There is a local system R∨
Z of relative homology groups overM◦

B×C×

such that

R∨
Z,(y,z) =HD

(
Ťy,
{
x ∈ Ťy :�

(
Wy(x)/z

)
� 0
}
;Z
)

for (y, z) ∈M◦
B ×C× (see [71, Proposition 3.12]). By Morse theory and Kouch-

nirenko’s theorem [83], we find that R∨
Z,(y,z) is free of rank Vol(Δ), with basis

given by Lefschetz thimbles of Wy , and that the intersection pairing between the

fibers at (y,−z) and (y, z)

I∨ : R∨
Z,(y,−z) ×R∨

Z,(y,z)→ Z

is perfect. Here Vol(·) denotes a normalized volume such that the standard sim-

plex has volume one. Dualizing, we obtain a local system RZ = Hom(R∨
Z ,Z)

of relative cohomology groups equipped with a perfect pairing I : RZ,(y,−z) ×
RZ,(y,z) → Z. We write R = RZ ⊗ OM◦

B×C× for the corresponding locally free

sheaf; this carries a flat connection∇GM and a pairing I : (−)∗R⊗R→OM◦
B×C× ,

where (−) : M◦
B ×C→M◦

B ×C is the map sending (y, z) to (y,−z) as before.
Let ω denote the invariant holomorphic volume form on the torus Ť such

that
∫
ŤR

ω = (2πi)D with ŤR =Hom(N,R>0). An oscillatory differential form of

the form

exp
(
Wy(x)/z

)
φ(x)ω with φ(x) ∈C[Ťy]

defines a section of R via integration over Lefschetz thimbles. By requiring that

these sections extend across z = 0, we can define a locally free extension FB of

R to M◦
B ×C; this extension is denoted by R(0) in [71, Section 3.3.2]. The flat

connection ∇GM extends to a meromorphic flat connection on FB with poles

along z = 0. The B-model TEP structure30 is given by the data (FB,∇B, (·, ·)B),
where

• FB is as defined above, and this is a locally free sheaf of rank Vol(Δ) over

M◦
B ×C;

30The shift −D
2

dz
z

of the connection was introduced implicitly in [71, (53)] as a factor

(−2πz)−D/2 in oscillatory integrals; this also shifts the pairing by the factor (2πiz)−D [71,

(56)]. Note that I is flat with respect to ∇GM, and (·, ·)B is flat with respect to ∇. The sign

factor (−1)
D(D−1)

2 was missing in [71]. See [73, footnote 16].
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• ∇B =∇GM − D
2

dz
z ;

• (s1, s2)B = (−1)D(D−1)
2 (2πiz)−DI(s1, s2) is a pairing (−)∗FB ⊗ FB →

OM◦
B×C.

See [101], [46], [47], and [100] for an algebraic construction of the B-model

TEP structure via the Fourier–Laplace transformation of the Gauss-Manin sys-

tem associated to Wy . The B-model TEP structure can be also described as a

Gelfand–Kapranov–Zelevinsky (GKZ) system associated to the fan polytope Δ

(see [71], [100]).

8.1.5. The mirror map and an isomorphism of TEP structures

Mirror symmetry gives an isomorphism between the A-model TEP structure

(Example 4.3) and the B-model TEP structure, as we now explain. First we

recall the Galois action (see [71, Section 2.2]) on the A-model TEP structure.

In general, the A-model TEP structure of a smooth Deligne–Mumford stack

X has a discrete symmetry given by the sheaf cohomology H2(X;Z) of the

underlying topological stack X . The base space H•
CR(X) of the A-model TEP

structure carries an action of H2(X;Z), and the TEP structure descends to the

quotient space H•
CR(X)/H2(X;Z). (This is essentially due to the divisor equa-

tion.) Let (FA,∇A, (·, ·)A)/H2(X;Z) denote the A-model TEP structure over

(H•
CR(X)/H2(X;Z))×C. Let X be a toric stack from Crep(Δ); recall that there

is a corresponding large-radius limit point oX ∈MB. The mirror theorems for

toric varieties (see [60]) and toric Deligne–Mumford stacks (see [32]) imply, by

[71, Proposition 4.8], that there exist an open neighborhood UX of oX in MB, a

mirror map τ : UX ∩M◦
B→H≤2

CR(X)/H2(X;Z), and a mirror isomorphism

Mir :
(
FB,∇B, (·, ·)B

)
|(UX∩M◦

B)×C
∼= (τ × id)∗

((
FA,∇A, (·, ·)A

)
/H2(X;Z)

)
such that

Mir
([
exp
(
Wy(x)/z

)
ω
])

= 1.

The open set UX ∩ M◦
B here is isomorphic to the punctured polydisk

{(q1, . . . , qr) ∈ (C×)r : |qa| < ε} for some ε > 0 (see [71, Lemma 3.8]) and the

A-model TEP structure is convergent on the image of the mirror map.

8.1.6. The extended B-model TEP structure

Our global quantization formalism is based on a miniversal TP structure

(Assumption 4.9), but the B-model TEP structure just discussed is not miniver-

sal. So we need to unfold it to a miniversal TEP structure. We use a reconstruc-

tion theorem due to Hertling–Manin [68, Theorem 2.5, Lemma 3.2] to show that,

for generic y ∈M◦
B, the germ (FB,∇B, (·, ·)B)|(MB,y)×C of a TEP structure at y

can be extended to a miniversal TEP structure over (M◦
B, y)× (CVol(Δ)−r,0)×C,

where r = dimMB = n−D. For this, we need to check Hertling–Manin’s injectiv-

ity condition (IC) and generation condition (GC). The condition (IC) says that

there exists a local section ζ near y such that the map TyM◦
B→FB|(y,0) defined
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by v �→ z∇B
v ζ|(y,0) is injective. The condition (GC) says that the iterated deriva-

tives z∇B
v1 · · ·z∇B

vk
ζ|(y,0) with respect to local vector fields v1, . . . , vk ∈ TM◦

B gen-

erate the fiber FB|(y,0). We claim that (IC) and (GC) hold for ζ = [exp(Wy/z)ω]

and for generic y. Since the mirror map τ is an embedding and since (IC) holds

for the A-model TEP structure, we deduce that (IC) holds for the B-model TEP

structure at generic y ∈M◦
B. Since the B-model TEP structure is isomorphic to

a GKZ system (see [71, Proof of Proposition 4.8]) and since the GKZ system is

by definition cyclic, (GC) holds. By the universality of the unfolding (see [68,

Definition 2.3]), these local unfoldings glue together (see [35]) to give a global

unfolding (Fext
B ,∇B,ext, (·, ·)B,ext) of (FB,∇B, (·, ·)B) over an extended B-model

moduli space Mext
B , which is a complex manifold of dimension Vol(Δ) contain-

ing a Zariski-open subset of M◦
B as a submanifold. Moreover, by universality

again, the mirror map τ and the mirror isomorphism Mir can be extended to a

neighborhood U ext
X of UX ∩M◦

B in Mext
B , where X ∈ Crep(Δ), as

τ ext : U ext
X →H•

CR(X)/H2(X;Z),

Mirext :
(
Fext

B ,∇B,ext, (·, ·)B,ext

)
|Uext

X ×C

∼= (τ ext × id)∗
((
FA,∇A, (·, ·)A

)
/H2(X;Z)

)
.

(More precisely, we need here the convergence of the A-model TEP structure

over a full-dimensional base, but this follows from the reconstruction argument

(see [68, Lemma 2.9] and [25, Section 5.5]).)

8.1.7. Conclusion

Let FockB denote the Fock sheaf over Mext
B associated to the extended B-model

TEP structure (Fext
B ,∇B,ext, (·, ·)B,ext). We call it the B-model Fock sheaf. Via the

mirror isomorphism, FockB restricts to the A-model Fock sheaf of X over U ext
X .

The extended B-model TEP structure is tame semisimple (Definition 7.1) on an

open dense subset Mext
B,ss of Mext

B , because the Jacobi ring of Wy is semisimple

for a generic y ∈M◦
B (see [71, Proposition 3.10]). Therefore, FockB admits the

Givental wave function (Definition 7.9) over Mext
B,ss, and by Theorem 7.15 (Tele-

man’s theorem), this coincides with the Gromov–Witten wave function of X over

U ext
X . This proves the following result.

THEOREM 8.1

There exists a global section CB of the B-model Fock sheaf FockB such that,

for every X ∈ Crep(Δ), CB restricts to the Gromov–Witten wave function of

X over the neighborhood U ext
X of the large-radius limit point oX of X, under

the identification FockB|Uext
X

∼= FockX given by genus-zero mirror symmetry. In

particular, the Gromov–Witten wave functions CX associated to X ∈ Crep(Δ)

coincide with each other after analytic continuation.

This is a higher-genus version of Ruan’s crepant transformation conjecture. Note

that analytic continuation for sections of a Fock sheaf makes sense since we
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have the “identity theorem” for its sections, just like the identity theorem for

holomorphic functions. Note also that the B-model Fock sheaf FockB depends

only on the cTEP structure underlying the extended B-model TEP structure

(Fext
B ,∇B,ext, (·, ·)B,ext): as discussed in Remark 1.7, the analytic structure of the

Fock sheaf is independent of the choice of a lift of the cTEP structure to a TEP

structure. On the other hand, the lift to a TEP structure constitutes a crucial

piece of information in the genus-zero crepant transformation conjecture. It also

plays a role in Corollary 8.2 below.

We can rephrase Theorem 8.1 in terms of the L2-formalism in Section 5.3, as

follows. Mirror symmetry implies that, for any X1, X2 ∈ Crep(Δ), the A-model

TEP structures of Xi for i = 1,2 are analytically continued to each other over

the B-model moduli spaceMext
B . Recall from Example 5.17 that the fundamental

solution Li = Li(τ, z) of the Dubrovin connection of Xi (see (2.7)) defines a

Darboux frame for the A-model TEP structure of Xi. The solution Li can be

analytically continued along any path inMext
B to yield a frame Li of the B-model

TEP structure (Fext
B ,∇B,ext, (·, ·)B,ext) over the universal covering M̃ext

B ofMext
B

Li : HXi
∼=−−−→ L2
(
{t} × S1,Fext

B |{t}×S1

)
with t ∈ M̃ext

B ,

where HXi is Givental’s symplectic vector space (Section 3.1) for Xi. The frame

Li satisfies the transversality condition in Definition 5.15(2) over an open dense

subset of M̃ext
B and, thus, gives a Darboux frame there. Then Givental’s wave

function CB ∈ FockB induces an element of the Fock space in the L2-setting

(Definition 5.23) with respect to the Darboux frame Li by Remark 5.24. As in

Definition 5.26, the L2-Fock space element here is represented by a total potential

Zi that is an analytic function on the Givental cone associated to Li. Note that,

via the projection to HXi
+ , Zi can be identified with an analytic continuation of

the total descendant potential exp(
∑∞

g=0 �
g−1Fg

Xi,an
) of Xi by Theorem 6.8 (see

Definition 6.7 for Fg
Xi,an

). Choose a path γ from a point in U ext
X1

to a point in

U ext
X2

. Analytic continuation along the path γ defines a symplectic transformation

Uγ : HX1 →HX2 .

The two Darboux frames L1 and L2 are related by L1 = L2Uγ . Then we have

the following result.

COROLLARY 8.2

Let X1, X2 be toric Deligne–Mumford stacks from Crep(Δ), and let Zi be the

total descendant potential for Xi for i = 1,2. Let γ be a path in Mext
B from a

point in U ext
X1

to a point in U ext
X2

, and let Uγ be the symplectic transformation

given by parallel translation along γ. Regarding Zi as an element of the L2-Fock

space as above, we have

Z2 ∝ ÛγZ1

under analytic continuation along the path γ.
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REMARK 8.3

This is close to the version of the higher-genus crepant transformation conjecture

proposed in [38, Section 5] and [40, Section 10].

Considering the case X =X1 =X2, we obtain the following result.

COROLLARY 8.4

Let X be a toric Deligne–Mumford stack from Crep(Δ). The total descendant

potential ZX of X, regarded as an element of the L2-Fock space as above, has

the following modular property with respect to the group π1(Mext
B ): we have

(8.4) (γ−1)�ZX ∝ ÛγZX

for γ ∈ π1(Mext
B ), where on the left-hand side (γ−1)� means the pullback by the

deck transformation γ−1 of the universal covering M̃ext
B →Mext

B .

REMARK 8.5

The symplectic transformations Uγ with γ ∈ π1(Mext
B ) arise from the monodromy

of the extended B-model TEP structure (Fext
B ,∇B,ext, (·, ·)B,ext) along γ, and as

such, they belong to a finite-dimensional group. Here we describe such a group

precisely. For a given TEP structure (F = O(F ),∇, (·, ·)F ) with base M, the

monodromy along a loop based at (t, z) ∈M×C× takes values in the group

Gt,z =
{
U ∈GL(Ft,z) : Mon◦U = U ◦Mon,U preserves [·, ·)

}
,

where Mon denotes the monodromy of ∇ over the punctured z-plane {t} ×C×
z ,

and [·, ·) is a (not necessarily symmetric) bilinear form on Ft,z defined by

[v,w) = (v′,w)F

with v,w ∈ Ft,z and v′ the parallel translate of v along the semicircular path

[0,1] � θ �→ e−iπθz. A transformation U ∈Gt,z can be extended to a flat bundle

automorphism of F over {t}×C× and, thus, defines an element U ∈ Sp(Ht). Here

Ht = L2({t}×S1, F ) is the symplectic vector space appearing in Section 5.3. For

the A-model TEP structure, this group Gt,z can be described more concretely as{
U ∈ Sp(HX

poly) :U is C[z, z−1]-linear,U ◦ (z∂z + μ) = (z∂z + μ) ◦U,

U ◦ c1(X) = c1(X) ◦U
}
,

where HX
poly = HX ⊗Q C[z, z−1] is a Laurent polynomial version of Givental’s

symplectic space and μ is the grading operator in (2.6). This is implied by the

following facts: (i) the Dubrovin connection ∇z∂z in the z-direction is conjugate

to z∂z + μ+ c1(X)/z via the fundamental solution L(t, z) from (2.7) (see, e.g.,

[71, Proposition 2.4]); (ii) HX
poly is the rational structure consisting of sections

of moderate growth (see, e.g., [66, Section 7.2]) at z = 0,∞ with respect to

the connection z∂z + μ + c1(X)/z; and (iii) 2πic1(X) is the logarithm of the

unipotent part of the monodromy. A similar description is discussed also in [72,

Lemma 3.16].
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REMARK 8.6

After shrinking Mext
B if necessary, we have a retraction from Mext

B to a Zariski-

open subset ofM◦
B and, thus, a natural surjective map p : π1(Mext

B )→ π1(M◦
B).

The symplectic transformation Uγ for γ ∈Ker(p) is trivial, and the total potential

ZX is invariant under deck transformations γ ∈Ker(p). Therefore, the modularity

(8.4) reduces to the group π1(M◦
B).

Finally, we remark on an implication of our recent joint work [36] with Jiang

in this context. There we calculated the symplectic transformation Uγ explicitly

using so-called I-functions and the Mellin–Barnes method. For a certain choice

of the path γ, we showed that Uγ is induced by an equivalence FM : Db(X1)∼=
Db(X2) of triangulated categories via the Γ̂-integral structure (see [71], [75]) on

quantum cohomology. In other words, we have a commutative diagram of the

form

Db(X1)
FM

Db(X2)

H̃X1

Uγ

H̃X2

where the vertical maps are roughly speaking given by the Chern character fol-

lowed by the multiplication by the Gamma class, and H̃Xi is a multivalued vari-

ant of Givental’s symplectic vector space (see [36] for more details). The derived

equivalence FM is given as a composition of explicit Fourier–Mukai transfor-

mations. It is likely that the fundamental groupoid31 of M◦
B is generated by

π1(UX ∩M◦
B) for toric stacks X from Crep(Δ) together with the classes of paths

γ connecting the large-radius limit points for Crep(Δ), which we show in [36] to

correspond to derived equivalences. It is easy to see that monodromy about loops

in UX ∩M◦
B corresponds to tensoring line bundles in Db(X) (see [71, Proposi-

tion 2.10(ii)]). Therefore, the result in [36] strongly suggests that the symplectic

transformation Uγ is induced by a derived equivalence for every path γ and

that the total descendant potential ZX should be “modular” with respect to the

group Auteq(Db(X)) of autoequivalences. Let Γ be the group of autoequivalences

of Db(X) generated by

• Fourier–Mukai functors Db(X1)
∼=−→ Db(X2) from [36] and [37] for some

X1,X2 ∈ Crep(Δ);

• autoequivalences of Db(X ′) given by tensoring line bundles for some X ′ ∈
Crep(Δ).

31Here it is convenient to consider the fundamental groupoid instead of the fundamental group,
since we are considering paths connecting the large-radius limit points of different X1,X2 ∈
Crep(Δ).
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An element of Γ is of the form

(Lk⊗) ◦Ψk−1 ◦ (Lk−1⊗) ◦ · · · ◦Ψ1 ◦ (L1⊗) ◦Ψ0 ◦ (L0⊗),

where Ψi : D
b(Xi)→Db(Xi+1), i= 0, . . . , k−1, are Fourier–Mukai functors from

[36] and [37], Li ∈ Pic(Xi), i = 0, . . . , k, are line bundles, and X = X0,X1, . . . ,

Xk−1,Xk =X is a sequence in Crep(Δ). Then we have the following.

COROLLARY 8.7

The total descendant potential ZX of a toric Deligne–Mumford stack X ∈ Crep(Δ)

satisfies the modularity (8.4) with respect to the subgroup Γ of Auteq(Db(X)).

REMARK 8.8

A relationship between Fourier–Mukai transformations and analytic continuation

of solutions to the GKZ system was originally found by Borisov–Horja [15].

REMARK 8.9

The monodromy representation gives a homomorphism U : π1(M◦
B)→ Sp(HX)

and the Γ̂-integral structure gives a homomorphism Auteq(Db(X))→ Sp(HX).

Homological mirror symmetry suggests that the former map factors through the

latter, that is, we expect to have the commutative diagram

π1(M◦
B)

U

Sp(HX)

Auteq
(
Db(X)
)

REMARK 8.10

The B-model TEP structure FB over M◦
B has a natural real structure induced

from the Z-structure R∨
Z . (More precisely, the real structure is obtained by ten-

soring the ∇B-flat local system zD/2R∨
Z with R.) By a result of Sabbah [103,

Theorem 4.10], this real structure endows FB with a pure TRP structure in the

sense of Section 9.1. Since purity is an open property, this extends to a pure real

structure on Fext
B over a small neighborhood ofM◦

B inMext
B . Using the complex-

conjugate opposite module in Definition 9.8, we can present the Givental wave

function CB as single-valued (nonholomorphic) correlation functions.

We end this section with a discussion on singularities of the Givental wave func-

tion. Around each large-radius limit point, the B-model TEP structure is identi-

fied with the A-model TEP structure and, thus, extends across a normal crossing

divisor as a logarithmic TEP structure (see Example 4.94). This extension was

studied in detail by Reichelt–Sevenheck [100]. The Givental wave function CB

extends regularly across these normal crossing divisors as a section of the loga-

rithmic Fock sheaf in Section 4.14 since the Gromov–Witten wave function does
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as well. On the other hand, a result of Milanov [93] must imply that CB extends

regularly across the nonsemisimple locusMext
B \Mext

B,ss. The remaining important

question is then the following.

PROBLEM 8.11

Study the singularities of the Givental wave function CB along the locus MB \
M◦

B of degenerate Laurent polynomials.

This problem is related to the conifold gap condition (see, e.g., [4]) in the physics

literature.

8.2. Calabi–Yau hypersurfaces
Next we consider mirror symmetry for Calabi–Yau manifolds. In this case we can-

not apply Givental’s formula since the quantum cohomology is not semisimple.

We consider Batyrev’s [9] mirror for toric Calabi–Yau hypersurfaces.

Let X be a weak-Fano toric stack such that the fan polytope Δ is reflexive

(i.e., the integral distance between each facet of Δ and the origin is one). Then

X is Gorenstein, and a generic anticanonical section Y ⊂ X is a quasismooth

Calabi–Yau orbifold (see [9]). Let Wy be the Laurent polynomials mirror to X

from Section 8.1.3. The Batyrev mirror of Y is a Calabi–Yau compactification Y̌y

of the fiber W−1
y (1) inside a toric variety X̌ with fan polytope given by the dual

polytope Δ∗. To remove the ambiguity of overall scaling, we consider Laurent

polynomials Wy as in (8.3) with vanishing constant terms, so that ai = 0 when

bi = 0. The corresponding moduli space M′
B of Laurent polynomials is defined

similarly toMB , but the definition involves deleting the zero vector from the set

{b1, . . . , bn}; it can be identified with (an open subset of) a toric divisor in MB.

Moreover, we require that the affine hypersurface W−1
y (1) is Δ-regular (see [8,

Definition 3.3]), which means that Wy is nondegenerate (see Section 8.1.4) and 1

is not a critical value of Wy . Let Mreg
B ⊂M′

B denote the nonempty Zariski-open

subset parameterizing Δ-regular hypersurfaces W−1
y (1). We useMreg

B as the base

space of the mirror family {Y̌y}. Note that, as in the toric case (Section 8.1), all

anticanonical hypersurfaces Y in toric stacks X from Crep(Δ) have the same

mirror family {Y̌y}. However, they have different large-radius limit points in the

toric compactification M′
B.

We describe the genus-zero mirror isomorphism following [73, Section 6] and

suggest the construction of a global B-model Fock sheaf. Define the ambient

part of the cohomology group of Y to be the image of the pullback along the

inclusion map: H∗
amb(Y ) := Im(H∗

CR(X)→H•
CR(Y )). The Dubrovin connection

of Y preserves the subsheaf Famb
A := H∗

amb(Y ) ⊗ OMA×C with fiber H∗
amb(Y )

(see [73, Corollary 2.5]), whereMA ⊂H•
amb(Y ) denotes the convergence domain

of the quantum product as in (2.4). Hence, by restriction to this subsheaf,

the A-model TEP structure of Y induces a TEP structure called the ambient

A-model TEP structure (Famb
A ,∇A, (·, ·)A) of Y (cf. [73, Definition 6.2]). On

the mirror side, we consider the lowest weight piece WD−1(H
D−1(W−1

y (1))) =
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grWD−1H
D−1(W−1

y (1)) of Deligne’s mixed Hodge structure on the middle coho-

mology of the affine hypersurfaceW−1
y (1). It has a pure Hodge structure of weight

D− 1. As explained in [73, Section 6.3], this can be naturally identified with the

subspace HD−1
res (Y̌y)⊂HD−1(Y̌y) of cohomology classes obtained as the residues

of meromorphic D-forms (with poles along Y̌y) on the ambient toric variety X̌ .

It defines the residual B-model VHS (see [73, Definition 6.5]) (V ,∇GM, F •V ,Q)

over Mreg
B , where

• V is a locally free sheaf over Mreg
B with fiber Vy = HD−1

res (Y̌y) ∼=
grWD−1(H

D−1(W−1
y (1)));

• ∇GM is the Gauss–Manin connection;

• 0⊂ FD−1V ⊂ · · · ⊂ F 1V ⊂ F 0V = V is the Hodge filtration on V of weight

D− 1;

• Q(α,β) = (−1)(D−1)(D−2)/2
∫
Y̌y

α∪ β is the intersection form.

The residual B-model TEP structure (F res
B ,∇B, (·, ·)B) over Mreg

B is defined as

follows:

• F res
B is an algebraic locally free sheaf overMreg

B ×C, given by the subsheaf

of π∗V with the property that

π∗F res
B = zD−1F 0V [z] + zD−2F 1V [z] + · · ·+ FD−1V [z]⊂ V [z] = π∗π

∗V ,

where π : Mreg
B ×C→Mreg

B is the projection;

• ∇B = π∗∇GM − D−1
2

dz
z ;

• (α(−z), β(z))B = (2πiz)−(D−1)Q(α(−z), β(z)).

As before, each toric stack X ∈ Crep(Δ) defines a large-radius limit oX in the

toric compactificationM′
B ofM′

B. For a neighborhood UX of oX inM′
B, we have

a mirror map ς : UX ∩Mreg
B →H2

amb(Y )/i∗H2(X;Z) and a mirror isomorphism32

(see [73, Theorem 6.9])

Mir :
(
F res

B ,∇B, (·, ·)B
)
|(UX∩Mreg

B )×C
∼= (ς × id)∗

((
Famb

A ,∇A, (·, ·)A
)
/i∗H2(X;Z)

)
,

where the right-hand side is the quotient by the Galois action from the ambient

H2(X;Z).

As in the previous section, we use Hertling–Manin’s reconstruction theorem

[68] to unfold F res
B to get a miniversal TEP structure. This is possible when the

following hold.

• There exists a toric stack X ∈ Crep(Δ) whose anticanonical hypersurface

Y is a smooth variety (no orbifold singularities). In this case the ambient coho-

mology H∗
amb(Y ) is generated by H2

amb(Y ), and thus, the ambient quantum coho-

mology is also generated by H2
amb in a neighborhood of the large-radius limit.

32In [73, Theorem 6.9], the mirror isomorphism was stated for the corresponding VHSs, but

the statement here follows easily from it.
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By the mirror isomorphism the generation condition (GC) holds generically over

Mreg
B .

• There exists a toric stack X ∈ Crep(Δ) such that the map H2
CR(X)→

H2
amb(Y ) is an isomorphism. In this case the mirror map ς is locally injective,

and the injectivity condition (IC) holds generically over Mreg
B .

For example, these conditions hold for a hypersurface Y in X = Pn (see [68,

Theorem 8.1]). Under these assumptions, we have a miniversal unfolding of F res
B

and obtain the corresponding B-model Fock sheaf over a complex manifold of

dimension dimH∗
amb(Y ) (which contains a Zariski-open subset of Mreg

B ). We

conjecture the following.

CONJECTURE 8.12

There exists a global section of the above B-model Fock sheaf which restricts to

the Gromov–Witten wave function of each Calabi–Yau hypersurface Y in X ∈
Crep(Δ) over a neighborhood of the large-radius limit oX .

REMARK 8.13

The existence of a global section of the B-model Fock sheaf will be shown in

forthcoming work by Costello–Li [43], where they develop the mathematical B-

model theory at higher genera.

Sometimes we may encounter different types of limit points of the B-model moduli

spaceM′
B which correspond to variants of Gromov–Witten theory. For the mirror

of a quintic 3-fold, Chiodo–Ruan [26] found that the global B-model theory (at

genus zero) around the so-called Landau–Ginzburg point (or Gepner point) can

be identified with a theory of 5-spin curves (Fan–Jarvis–Ruan–Witten (FJRW)

theory; see also [25]). In particular, the genus-zero Gromov–Witten theory and

the genus-zero FJRW theory are analytic continuations of each other. Chiodo–

Ruan [26, Conjecture 3.2.1] also conjecture a relationship between the higher-

genus theories. Their conjecture, rephrased in our language, is that the global

section in Conjecture 8.12 restricts to the FJRW wave function in a neighborhood

of the Landau–Ginzburg point.

9. Complex-conjugate polarization and holomorphic anomaly

In this section we describe how the holomorphic anomaly equation of Bershadsky–

Cecotti–Ooguri–Vafa arises in our global quantization formalism via the so-called

complex-conjugate polarization. The holomorphic anomaly equation originally

arose in the Kodaira–Spencer theory of gravity (see [11], [12]). It can be con-

sidered as a special case of the general anomaly equation (Theorem 4.86), but

strictly speaking we need to extend the holomorphic structure sheaf on the base

M to the real-analytic structure sheaf. At genus zero, the complex-conjugate

polarization gives rise to so-called tt∗-geometry.
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9.1. TRP structure and tt∗-geometry
In this section we work with a TRP structure which is a TP structure (Defini-

tion 4.1) equipped with a certain real structure. As usual M denotes a complex

manifold, (−) : M×C→M×C denotes the map sending (t, z) to (t,−z), and
π : M×C→M is the projection. Let γ : P1→ P1, γ(z) = 1/z, denote the anti-

holomorphic involution which fixes the equator S1 = {|z|= 1} ⊂ P1. The involu-

tion (t, z) �→ (t, γ(z)) on M× P1 is also denoted by γ. For a holomorphic vector

bundle F over M× C, the vector bundle γ∗F over M× (P1 \ {0}) has a holo-

morphic structure in the P1-direction and an antiholomorphic structure in the

M-direction.

DEFINITION 9.1 (TRP structure)

A TRP structure (F = O(F ),∇, (·, ·)F , κ) with base M consists of a holomor-

phic vector bundle F of rank N + 1 over M× C with the sheaf F = O(F ) of

holomorphic sections, a meromorphic flat connection

∇ : F → π∗Ω1
M ⊗F
(
M×{0}

)
,

a nondegenerate pairing

(·, ·)F : (−)∗F ⊗F →OM×C

that fiberwise defines a C-bilinear pairing F(t,−z)⊗F(t,z)→C, and a real-analytic

bundle map

κ : F |M×C× → γ∗F |M×C×

that fiberwise defines a C-antilinear map κt,z : F(t,z)→ F(t,γ(z)) such that

• (F ,∇, (·, ·)F ) is a TP structure in the sense of Definition 4.1;

• κ is an involution: κt,γ(z) ◦ κt,z = id;

• when restricted to {t}×C× with t ∈M, κ yields an isomorphism of holo-

morphic vector bundles; in particular, we have an involution

(9.1) κt : H
0
(
C×,O(Ft)

)
−→H0

(
C×,O(γ∗Ft)

)∼=H0
(
C×,O(Ft)

)
,

where Ft := F |{t}×C;

• the pairing (·, ·)F is real with respect to κ, that is, the following diagram

commutes:

(9.2)

F(t,−z) ⊗ F(t,z)

(·,·)F

κt,−z⊗κt,z

C

complex conjugation

F(t,−γ(z)) ⊗ F(t,γ(z))

(·,·)F
C

• parallel translation by the connection ∇ preserves κ.

Note that κ defines a real involution of the bundle F |M×S1 , where S1 = {|z|= 1}.
The corresponding real subbundle FR =Ker(κ− id) of F |M×S1 is equipped with
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a real-valued pairing FR,(t,−z) ⊗R FR,(t,z) → R (with z ∈ S1) and is flat in the

M-direction.

REMARK 9.2

A TRP structure is a TERP33 structure in the sense of Hertling [66] without

“E,” that is, without an extension of the connection in the z-direction. It is easy

to see that a TERP(0) structure gives rise to a TRP structure by forgetting the

connection in the z-direction. A major portion of this section (Section 9.1) is an

adaptation of the framework of [66] to our setting.

EXAMPLE 9.3

Cecotti–Vafa [20], [21] discovered tt∗-geometry in their study of N = 2 super-

symmetric quantum field theory. There are natural TRP (or TERP) structures

coming from geometry: the A-model and B-model. A TERP structure in sin-

gularity theory (the B-model) was introduced by Hertling [66] using a natural

real structure on the Gauss–Manin system. A TERP structure in quantum coho-

mology (the A-model) was introduced by Iritani [74] using the Γ̂-class and the

K-group of vector bundles. The real structure on quantum cohomology is differ-

ent from the usual one coming from H•(X,R)⊂H•(X,C).

REMARK 9.4

A TRP structure is determined by the holomorphic vector bundle F restricted

to M×{|z| ≤ 1}, the connection ∇, the pairing (·, ·)F , and the real subbundle

FR of F |M×S1 . It is given by gluing F |{|z|≤1} and γ∗(F |{|z|≤1}) along the circle

via the real involution with respect to FR.

DEFINITION 9.5 (Glued bundle F̂ )

From a TRP structure (F =O(F ),∇, (·, ·)F , κ), one can construct a real-analytic

complex vector bundle F̂ over M× P1 by gluing F with γ∗F via κ. The bundle

F̂ has a fiberwise holomorphic structure with respect to π : M× P1 →M. Let

Avh(F̂ ) denote the sheaf of real-analytic sections of F̂ which are holomorphic

along each fiber {t} × P1. (Here “vh” stands for vertically holomorphic.) Let

Ap
M denote the sheaf of real-analytic p-forms on M, and let Ap

M =
⊕

i+j=pA
i,j
M

denote the type decomposition. The connection ∇ on F =O(F ) can be extended

to a connection ∇ on Avh(F̂ )

(9.3) ∇ : Avh(F̂ )→ π∗A1,0
M ⊗Avh(F̂ )

(
M×{0}

)
⊕π∗A0,1

M ⊗Avh(F̂ )
(
M×{∞}

)
such that the (0,1)-part coincides with the ∂-operator for the holomorphic bun-

dle F . The (1,0)-part defines the antiholomorphic structure of γ∗F in the M-

direction. Since the gluing map κ matches the pairing (·, ·)F on F with γ∗(·, ·)F

33TERP stands for twistor, extension, real, pairing.
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on γ∗F , there is a nondegenerate pairing

(9.4) (·, ·)F̂ : (−)∗Avh(F̂ )⊗AM×P1,vh
Avh(F̂ )→AM×P1,vh

extending the pairing (·, ·)F on F , where AM×P1,vh denotes the sheaf of real-

analytic functions on M× P1 which are holomorphic in the P1-direction. The

pairing (·, ·)F̂ is ∇-flat, as in Definition 4.1.

DEFINITION 9.6 (Pure TRP structure)

A TRP structure is said to be pure if the bundle F̂ |{t}×P1 is trivial as a holo-

morphic vector bundle for every t ∈M. (A pure TRP structure corresponds to

a trTERP34 structure of Hertling [66] without “E.”)

The involution κt (see (9.1)) acting on the space H0(C×,O(Ft)) is invariant

under parallel translation and satisfies

κt(fv) = γ∗f · κt(v),
(
κt(v), κt(w)

)
F = γ∗
(
(v,w)F

)
,(9.5)

for f ∈O(C×) and v, w ∈H0(C×,O(Ft)). Conversely, a TRP structure is given

by a TP structure and a translation-invariant family of involutions κt of

H0(C×,O(Ft)) with these properties. Set F̂t := F̂ |{t}×P1 . The subspace

H0(C,O(Ft)) ⊂H0(C×,O(Ft)) consists of holomorphic sections of F̂t over C×

which extend to z = 0. Likewise, the subspace κt(H
0(C,O(Ft)))⊂H0(C×,O(Ft))

consists of holomorphic sections of F̂t over C
× which extend to z =∞. Hence, a

TRP structure is pure if and only if

(9.6) H0
(
C×,O(Ft)

)
=H0
(
C,O(Ft)

)
⊕ z−1κt

(
H0
(
C,O(Ft)

))
for each t ∈ M. One can therefore view z−1κt(H

0(C,O(Ft))) as defining an

opposite module for a pure TRP structure. It is, however, not parallel in the

antiholomorphic direction.

REMARK 9.7

By identifying H0(C×,O(Ft)) with a fixed H0(C×,O(Ft0)) by parallel trans-

lation, locally on M, a pure TRP structure is given by a real structure on a

single infinite-dimensional symplectic vector space H0(C×,O(Ft0)) such that

H0(C,O(Ft)) and its complex conjugate multiplied by z−1 are opposite (see

(9.6), [74], and Section 9.3 below).

DEFINITION 9.8 (Complex-conjugate opposite module)

Let (F,∇, (·, ·)F) denote the cTP structure associated to a pure TRP structure

(F ,∇, (·, ·)F , κ), that is, (F,∇, (·, ·)F) is the restriction of (F ,∇, (·, ·)F ) to the

formal neighborhood of M×{0} in M× C. Let AM denote the sheaf of real-

analytic functions on M, and set

AF := F⊗OM[[z]] AM[[z]].

34trTERP stands for trivial, twistor, extension, real, pairing.
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We write Avh(F̂ )(∗(M×{0})) for the sheaf of real-analytic sections of F̂ which

are meromorphic along each fiber with poles only along z = 0. The AM[z−1]-

module AF is defined to be the pushforward of this sheaf along π : M×P1→M,

AF := π∗
(
Avh(F̂ )

(
∗
(
M×{0}

)))
.

The purity of the TRP structure implies that (cf. (9.6))

(9.7) AF[z−1] =AF⊕ z−1AF.

We call z−1AF the complex-conjugate opposite module or complex-conjugate

polarization.

REMARK 9.9

Note that the involution κt on H0(C×,O(Ft)) is ill defined on the formal version

AF[z−1]; nonetheless, AF can be regarded as the complex conjugate of AF.

Restricting the connection (9.3) to the formal neighborhood of z = 0, we obtain

∇ : AF[z−1]→A1
M ⊗AF[z−1],

∇ : AF→A1,0
M ⊗ (z−1AF)⊕A0,1

M ⊗AF,

∇ : AF→A1,0
M ⊗AF⊕A0,1

M ⊗ (zAF).

(9.8)

The third equation means that the complex-conjugate opposite module is parallel

in the holomorphic direction, but not in the antiholomorphic direction. Let

Ω: AF[z−1]⊗AM AF[z−1]→AM

denote the symplectic pairing, defined as in (4.2). Suppose that the TRP struc-

ture is pure. Because the pairing (9.4) is necessarily constant with respect to a

holomorphic frame of H0(P1,O(F̂t)) over P1, the pairing of two elements from

z−1AFt has vanishing residue at z = 0. Thus,

(9.9) Ω(z−1AF, z−1AF) = 0.

To summarize, we have the following result (cf. Definition 4.15).

PROPOSITION 9.10

The complex-conjugate opposite module z−1AF associated to a pure TRP struc-

ture is z−1-linear, opposite to AF from (9.7), and isotropic for Ω from (9.9). It is

parallel in the holomorphic direction but not necessarily in the antiholomorphic

direction.

DEFINITION 9.11 (tt∗-bundle)

A pure TRP structure over M defines a real-analytic complex vector bundle K

of rank N+1= rankF overM such that the sheaf A(K) of real-analytic sections

is given by

A(K) := π∗Avh(F̂ )∼=AF∩AF.
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This bundle is equipped with

• a complex antilinear involution κ : K→K induced by κ (cf. (9.1));

• a Hermitian metric h(u, v) := ((−)∗κ(u), v)F̂ , which may not be positive

definite, induced from the pairing (9.4) and κ (the Hermitian metric here is

complex antilinear in the first variable);

• a one-parameter family of flat connections

∇(z) =D− 1

z
C − zC̃

induced by the connection ∇ from (9.3) on Avh(F̂ ), where D : A(K)→A1
M ⊗

A(K) is a connection on K, C ∈ End(K)⊗A1,0
M , and C̃ ∈ End(K)⊗A0,1

M

such that35

• the Hermitian metric h is real with respect to κ: h(κ(u), κ(v)) = h(u, v);

• D is real with respect to κ: D = κ ◦D ◦ κ;
• C̃ = κ ◦ C ◦ κ;
• D respects the Hermitian metric h;

• h(C̃u, v) = h(u,Cv).

The (0,1)-part of ∇(z) defines a holomorphic structure on K depending on z

which corresponds to the holomorphic structure on F |M×{z}; in particular, the

holomorphic structure for z = 0 is defined by D′′ = D(0,1) and coincides with

that of F0 = F |M×{0}. Therefore, D can be identified with the Chern connection

for the holomorphic Hermitian bundle (F0, h) under the natural identification

F0
∼=K. The flatness of ∇(z) implies, in terms of holomorphic local coordinates

{ti} on M,

DıCj = 0, DiC̃j = 0, [Ci,Cj ] = 0, [C̃ı, C̃j] = 0,

[Di,Dj ] = 0, [Dı,Dj] = 0, DiCj −DjCi = 0,

DıC̃j − C̃jDı = 0, [Di,Dj] + [Ci, C̃j] = 0.

These are the tt∗-equations. In particular, C gives a holomorphic section of

End(F0)⊗Ω1
M (via the identification K ∼= F0).

DEFINITION 9.12 (Pure and polarized TRP structure)

A pure TRP structure is said to be polarized if the Hermitian metric h on K

above is positive definite.

EXAMPLE 9.13

Many TERP structures coming from geometry (see Example 9.3) are pure and

polarized. For the B-model, Sabbah [103, Theorem 4.10] showed that the TERP

35Here κ acts on forms by ordinary complex conjugation, and h is extended to K-valued

one-forms sesquilinearly. In holomorphic coordinates {ti} on M, we have Dı = κ ◦ Di ◦ κ,

C̃ı = κ ◦ Ci ◦ κ, and h(C̃ıu, v) = h(u,Civ).
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structure associated to a tame function on an affine variety is pure and polar-

ized. For the A-model, under the identification between H0(C×,O(Ft)) and the

Givental space H given by the fundamental solution L (see Section 3.3), we

have

z−1κt

(
H0
(
C,O(Ft)

))
converges to H−

when t approaches the large-radius limit. This implies that the A-model TERP

structure is pure in a neighborhood of the large-radius limit point (see [74]).

When we restrict ourselves to the algebraic part
⊕dimX

p=0 Hp,p(X) of the quan-

tum cohomology, it is also polarized in a neighborhood of the large-radius limit

point (see [74]).

9.2. The connection ∇cc on the total space
In this section we fix a pure TRP structure (F ,∇, (·, ·)F , κ) over M. The total

space L of the TRP structure is defined to be the total space of the underlying

cTP structure (F,∇, (·, ·)F), that is, the total space of the infinite-dimensional

vector bundle associated to zF (see Section 4.3). We assume that (F,∇, (·, ·)F) is
miniversal (Assumption 4.9) and denote by pr : L→M the natural projection.

We need to extend the structure sheaf O on L by adding real-analytic func-

tions on M. Set

AO := (pr−1AM)⊗pr−1 OM O.

The sheaf Ω1 of one-forms on L is also extended as

AΩ1 :=AΩ1,0 ⊕ pr∗A0,1
M ,

where AΩ1,0 and pr∗A0,1
M are given in terms of local coordinates {ti, xi

n} (see

Section 4.3) as

AΩ1,0 =

N⊕
i=0

AOdti ⊕
∞⊕

n=1

N⊕
i=0

AOdxi
n, pr∗A0,1

M =

N⊕
i=0

AOdt
i
.

We also write AΘ = AΘ1,0 ⊕ pr∗ T 0,1
M for the dual sheaf H omAO(AΩ1,AO),

where T 0,1
M denotes the sheaf of real-analytic vector fields of type (0,1) on M.

The gradings and (increasing) filtrations on O, Ω1 considered in Section 4.3 can

be naturally extended to AO and AΩ1,0. We set

AO
(
pr−1(U)

)n
=A(U)⊗O(U) O

(
pr−1(U)

)n
,

AO
(
pr−1(U)

)
l
=A(U)⊗O(U) O

(
pr−1(U)

)
l
,

and for AΩ1,0 we set, as in (4.11),

deg(dti) = 0, deg(dxi
n) = 1, filt(dti) =−1, filt(dxi

n) = n− 1,

where filt(y) is the least number m such that y belongs to the mth filter.

The framework in Section 4 generalizes easily to this setting. The dual mod-

ules (znAF)∨, AF[z−1]∨ are defined as in (4.3), but their definitions involve

replacing OM with AM; the pullbacks of znAF, AF[z−1], (znAF)∨, and AF[z−1]∨
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under pr : L→M are defined as in (4.12). The pullback of the connection ∇
defined in (9.8) gives a connection

∇̃ : pr∗AF→AΩ1,0 ⊗̂ pr∗(z−1AF)⊕ pr∗A0,1
M ⊗ pr∗AF

on pr∗AF (cf. (4.13)). Note that the (0,1)-part of ∇̃ is nothing but the ∂-operator

defining the holomorphic structure pr∗ F.

DEFINITION 9.14 (cf. Definition 4.11)

The Kodaira–Spencer map KS: AΘ1,0→ pr∗AF and the dual Kodaira–Spencer

map KS∗ : pr∗AF∨→AΩ1,0 are defined by

KS(v) = ∇̃vx, KS∗(ϕ) = ϕ(∇̃(1,0)x),

where x is the tautological section of pr∗(zAF). They are simply the base changes

of the Kodaira–Spencer maps defined previously and are isomorphisms over the

open subset L◦ ⊂ L.

The complex-conjugate opposite module z−1AF (Definition 9.8) determines con-

nections ∇cc as follows.

DEFINITION 9.15 (cf. Definition 4.23)

Let Πcc : AF[z−1] =AF⊕ z−1AF→AF denote the projection along z−1AF. Set
AΩ1

◦ := AΩ1|L◦ , AΩ1,0
◦ := AΩ1,0|L◦ , AΘ1

◦ := AΘ1|L◦ , and AΘ1,0
◦ := AΘ1,0|L◦ .

Consider the maps

pr∗AF
∇̃

AΩ1 ⊗̂ pr∗(z−1AF)
Πcc

AΩ1 ⊗̂ pr∗(AF),

pr∗AF∨
Π∗

cc

pr∗(z−1AF)∨
∇̃∨

AΩ1 ⊗ pr∗AF∨.

Via the (dual) Kodaira–Spencer isomorphisms KS: AΘ1,0
◦
∼= pr∗AF and

KS∗ : pr∗AF∨ ∼=AΩ1,0
◦ , these maps induce connections

∇cc : AΘ1,0
◦ →AΩ1

◦ ⊗̂ AΘ1,0
◦ ,

∇cc : AΩ1,0
◦ →AΩ1

◦ ⊗AΩ1,0
◦

on the tangent and the cotangent sheaves of type (1,0). Here the connection ∇̃∨

dual to ∇̃ is defined as in (4.18) and (4.20).

We shall see in the next section (Section 9.3) that the connection ∇cc can be

viewed as the Chern connection on L◦ associated to a certain Kähler metric.

PROPOSITION 9.16

The connection ∇cc on AΘ◦ is a torsion-free connection whose (0,1)-part is the

∂-operator defining the holomorphic structure Θ◦.
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Proof

It is obvious from the definition that the (0,1)-part of ∇cc is the ∂-operator.

Torsion-freeness follows from the same argument as Proposition 4.24. �

We next introduce the propagator ΔP,cc and the background torsion Λcc associ-

ated to the complex-conjugate opposite module.

DEFINITION 9.17 (cf. Definition 4.43)

Let P be a pseudo-opposite module for (F,∇, (·, ·)F) in the sense of Defini-

tion 4.15. Write AP :=AM⊗OM P, and let ΠP : AF[z−1] =AF⊕AP→AF denote

the projection along AP. The propagator ΔP,cc = Δ(P, z−1AF) between P and

the complex-conjugate opposite module z−1AF is a homomorphism AΩ1,0
◦ ⊗

AΩ1,0
◦ →AO defined by

ΔP,cc(ω1, ω2) = Ω∨(Π∗
Pϕ1,Π

∗
ccϕ2),

where ϕi := (KS∗)−1ωi, i ∈ {1,2}.

The propagator is symmetric ΔP,cc(ω1, ω2) = ΔP,cc(ω2, ω1) (see the proof of

Proposition 4.44) and satisfies ΔP,cc −ΔQ,cc =Δ(P,Q) (see the proof of Propo-

sition 4.46).

DEFINITION 9.18 (cf. Definition 4.83)

The (background) torsion associated to the complex-conjugate opposite module

z−1AF is an operator Λcc : AΩ1,0
◦ ×AΩ1,0

◦ → pr∗A0,1
M defined by

Λcc(ω1, ω2) = Ω∨(∇̃∨Π∗
ccϕ1,Π

∗
ccϕ2),

where ϕi := (KS∗)−1ωi, i ∈ {1,2}.

The background torsion takes values in pr∗A0,1
M , because z−1AF is parallel in the

holomorphic direction. It is AO-bilinear and symmetric: Λcc(ω1, ω2) =

Λcc(ω2, ω1) (see the proof of Lemma 4.84).

We use tensor notation as in Propositions 4.45 and 4.85. Let {xμ}= {ti, xi
n}

denote an algebraic local coordinate system on L (see Section 4.3). We use Roman

letters i, j, k, . . . for the indices of coordinates {ti} onM, and we use Greek letters

μ, ν, ρ, . . . for the indices of coordinates {xμ}. We also use the Einstein summation

convention as before. The following proposition is an analogue of Propositions

4.45(1) and 4.85(2). We remark that the connection ∇P associated to a pseudo-

opposite module P (Definition 4.23) can be naturally extended to a connection

on AΩ1
◦ (or on AΘ1

◦) such that the (0,1)-part coincides with the ∂-operator.

PROPOSITION 9.19

Let P be a pseudo-opposite module for (F,∇, (·, ·)F).
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(1) The difference ∇cc−∇P defines a map AΩ1,0→ pr∗(A1,0
M ⊗A1,0

M ) given

by

(∇cc −∇P)dxν =Δνσ
P,ccC

(0)
σijdt

i ⊗ dtj .

(2) The covariant derivative of the propagator gives

∇P
μΔ

νρ
P,cc(:= ∂μΔ

νρ +Γν
μσΔ

σρ +Γρ
μσΔ

νσ) = ΛP
νρ
μ +Δνσ

P,ccC
(0)
σμτΔ

τρ
P,cc,

∇P
ı Δ

νρ
P,cc = ∂iΔ

νρ
P,cc =−Λcc

νρ
ı ,

where ΛP is the torsion of P and the Γν
μρ’s are the Christoffel coefficients of ∇P

as in (4.36). (In the first line, only the case μ= i yields nonvanishing results.)

Proof

The proof is almost the same as Propositions 4.45 and 4.85 and is omitted. �

DEFINITION 9.20 (cf. (4.41) and (4.56))

Let P be a pseudo-opposite module for (F,∇, (·, ·)F). The difference one-form

ωP,cc ∈ pr∗A1,0
M associated to P and the complex-conjugate opposite module

z−1AF is defined to be

ωP,cc =
1

2

N∑
i=0

N∑
j=0

N∑
h=0

C
(0)
ijhΔ

jh
P,ccdt

i =
1

2

N∑
i=0

TrAF0

(
(ΠP −Πcc)∇i

)
dti,

where AF0 = AF/zAF. (The proof of the second equality here is the same as

that of Lemma 4.52.) We have ωP,cc − ωQ,cc = ωPQ. If P is parallel, then the

two-form ϑcc := dωP,cc ∈ pr∗A2
M does not depend on the choice of a parallel P.

(This follows from the same argument as Lemma 4.76 (see Proposition 9.21 or

(9.10) below for an explicit formula).) We call ϑcc the curvature two-form of the

complex-conjugate opposite module. Both the difference one-form ωP,cc and the

curvature two-form ϑcc are pulled back from M.

Finally we give formulas for the curvature of ∇cc and its trace. The proofs of

these are again parallel to the argument in Proposition 4.89 and are omitted.

PROPOSITION 9.21 (Curvature)

Let (∇cc)2 denote the curvature of ∇cc on the cotangent sheaf AΩ1
◦, which is an

End(AΩ1,0
◦ )-valued (1,1)-form on L◦.

(1) The curvature (∇cc)2 defines a map AΩ1,0
◦ → pr∗(A1,1

M )⊗pr∗(A1,0
M ) given

by

(∇cc)2dxν =C
(0)
ijhΛcc

hν
l
(dti ∧ dt

l
)⊗ dtj .
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(2) The curvature two-form ϑcc equals36 half of the trace of (∇cc)2:

ϑcc =
1

2
Tr
(
(∇cc)2
)
=

1

2
C

(0)
ijhΛcc

jh

l
dti ∧ dt

l

=−1

2

N∑
i=0

N∑
j=0

TrAF0(Πcc∇iΠcc∂j −Πcc∂jΠcc∇i)dt
i ∧ dt

j
.

In particular, ϑcc is of type (1,1).

EXAMPLE 9.22

We give explicit formulae for the quantities ∇cc, ΔP,cc, Λcc, and ϑcc in terms of

local coordinates. Let P be a reference opposite module. By Proposition 4.18, P

defines (locally) a flat trivialization of AF by choosing a flat frame of zP/P. We

denote it by

Φ: CN+1 ⊗AM[[z]]∼=AF.

The trivialization Φ induces a trivialization Φ0 of the holomorphic bundle F0 =

F |z=0; by purity, Φ0 extends to a trivialization of F̂ which is holomorphic along

each fiber {t} × P1. Restricted to the formal neighborhood of z = 0, this gives

rise to a different trivialization Φcc of AF:

Φcc : CN+1 ⊗AM[[z]]∼=AF.

The trivialization Φcc is only real-analytic and coincides with Φ along z = 0. The

trivialization Φ induces a Frobenius-type structure on the trivial bundle of rank

N + 1 as in Proposition 4.18, that is, we have a flat connection

Φ∗∇= d− 1

z
C, C = C(t) ∈ End(CN+1)⊗Ω1

M,

and a constant symmetric pairing gij = g(ei, ej) = (Φ(ei),Φ(ej))zP/P on the triv-

ial bundle. On the other hand, the trivialization Φcc induces a tt∗-bundle struc-

ture on the trivial bundle as in Definition 9.11, that is, we have a flat connection

(C is the same as above)

Φcc∗∇=D− 1

z
C − zC̃, C ∈ End(CN+1)⊗Ω1

M, C̃ ∈ End(CN+1)⊗A0,1
M ,

and a complex antilinear involution κ ∈ EndR(CN+1)⊗AM such that D = d+

h−1∂h is the Chern connection associated to the Hermitian metric h(u, v) =

g(κ(u), v) and C̃ = κ ◦ C ◦ κ. We write

R=R(t, t, z) = id+R1z +R2z
2 +R3z

3 + · · · := (Φcc)−1 ◦Φ

for the gauge transformation which intertwines the connections R ◦ Φ∗∇ =

Φcc∗∇◦R and satisfies g(R(t, t,−z)u,R(t, t, z)v) = g(u, v) for u, v ∈CN+1.

36The factor 1/2 instead of 1/4 in the second line here is not a typo; it reflects the asymmetry

between i and j (cf. (4.56)).
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Let {ti, xi
n} denote the local coordinate system on L associated to37 the

trivialization Φ. Then we have (see also Example 4.26)

(∇cc −∇)dth =
[
K(x1)

−1R1CiCj
]h
dti ⊗ dtj ,

(∇cc −∇)dxh
n =
(
[R−1CiCjx1]

h
n+1 +
[
K(xn+1)K(x1)

−1R1CiCjx1

]h)
dti ⊗ dtj ,

where K(xn) ∈ End(CN+1)⊗O is defined by K(xn)ei = Cixn (see Notation 4.12

for [· · · ]hn). The curvature of ∇cc on AΩ1,0
◦ is given by

[∇cc
i ,∇cc

j ]dth =−
[
K(x1)

−1C̃jCiCx1

]h
,

[∇cc
i ,∇cc

j ]dxh
n = [R−1C̃jCiCx1]

h
n −
[
K(xn+1)K(x1)

−1C̃jCiCx1

]h
,

with all the other components being zero. In particular, we have

(9.10) ϑcc =
1

2
Tr
(
(∇cc)2
)
=−1

2

N∑
i=0

N∑
j=0

Tr(C̃jCi)dti ∧ dt
j
.

Let {ϕi
n} denote the frame of pr∗AF[z−1]∨ given by the trivialization Φ (see

(4.14)). As in Section 4.8.1, we set

V (n,j),(m,i)
cc := Ω∨(ϕj

n,Π
∗
cc(ϕ

i
m|AF)
)
= (−1)ngju

[
R−1[Reuz

−n−1]+
]i
m
,

where (gij) is the matrix inverse to (gij). The V
(n,j),(m,i)
cc ’s depend real-

analytically on t. Explicit formulae for the propagators ΔP,cc(dt
a ⊗ dtb),

ΔP,cc(dt
a ⊗ dxb

n), and ΔP,cc(dx
a
m ⊗ dxb

n) are given by the same formulae as in

Remark 4.50 with V (n,i),(m,j) there replaced by V
(n,i),(m,j)
cc . Using

Ω∨(∇̃Π∗
cc(ϕ

i
n|AF),Π

∗
cc(ϕ

u
m|AF)
)
= (−1)n+m+1g(C̃Rmeu,Rne

i),

where ei =
∑N

j=0 g
ijej , we obtain the following explicit formula for Λcc:

Λcc(dt
a ⊗ dtb) =−g

(
C̃K(x1)

†−1ea,K(x1)
†−1eb
)
,

Λcc(dt
a ⊗ dxb

n) = (−1)ng
(
C̃K(x1)

†−1ea,Rne
b
)

− g
(
C̃K(x1)

†−1ea,K(x1)
†−1K(xn+1)

†eb
)
,

Λcc(dx
a
n ⊗ dxb

m) = (−1)n+m+1g(C̃Rne
a,Rmeb)

+ (−1)mg
(
C̃K(x1)

†−1K(xn+1)
†ea,Rmeb

)
+ (−1)ng

(
C̃Rne

a,K(x1)
†−1K(xm+1)

†eb
)

− g
(
C̃K(x1)

†−1K(xn+1)
†ea,K(x1)

†−1K(xm+1)
†eb
)
,

where K(x1)
† is the adjoint of K(x1) with respect to the complex bilinear pair-

ing g.

37On the other hand, the coordinate system associated to Φcc is not holomorphic.
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9.3. Kähler geometry of the total space
We now introduce a (pseudo-)Kähler metric on the L2-subspace L2(L◦) and iden-

tify ∇cc with the Chern connection. The propagator and the Yukawa coupling

also have descriptions in terms of the Kähler metric. Recently David and Stra-

chan [44] have considered an extension of tt∗-geometry to the big phase space;

their construction seems to be closely related to ours.

Let (F = O(F ),∇, (·, ·)F , κ) be a pure TRP structure over M, and let

(F,∇, (·, ·)F) denote the corresponding cTP structure. Since F =O(F ) is defined

overM×C, the total space L of the TRP structure has a canonical L2-subspace

L2(L) as follows (cf. Remark 4.39). Let Ft ⊂ Ft denote the subspace consist-

ing of elements in Ft which extend to holomorphic sections of F over the unit

disk {t} ×D (where D= {z ∈C : |z|< 1}) and have L2-boundary values over S1

(vector-valued Hardy space). In other words, x ∈ Ft lies in Ft if and only if it has

a square summable expansion x=
∑∞

n=0 xnz
n for some (and hence any) trivial-

ization of F |{t}×C. Then L2(L) consists of (t,x) ∈ L such that x ∈ zFt. This has

the structure of a complex Hilbert manifold (the total space of a Hilbert vector

bundle over M). We let

Ht := L2
(
{t} × S1, F

)
denote the space of L2-sections of F |{t}×S1 . We define the symplectic form on

Ht as (cf. (4.2))

Ωt(v,w) =
1

2πi

∫
S1

(
v(−z),w(z)

)
F dz.

The pair (Ht,Ωt) is an analogue of the Givental space (Section 3.1) for the TRP

structure. The involution κ of the TRP structure induces an involution κHt on

Ht (cf. (9.1)). We have (cf. (9.5))

κHt(fv) = γ∗f · κHt(v)

for f ∈ L∞(S1;C). Note that parallel translation using the flat connection ∇
identifies all the triples (Ht,Ωt, κHt) for t in a simply connected open subset

U of M. We work locally on M and write (H,Ω, κH) for nearby (Ht,Ωt, κHt),

t ∈ U , identified with each other. The reality of the pairing (·, ·)F (see (9.2))

implies that the symplectic form is purely imaginary with respect to the shifted

involution κ̃H := z−1κH (note that we still have κ̃H ◦ κ̃H = id):

Ω
(
κ̃H(v), κ̃H(w)

)
=−Ω(v,w).

The subspace Ft ⊂Ht
∼=H is Lagrangian with respect to Ω. The family t �→ Ft of

subspaces of H should be viewed as a semi-infinite period map (see Section 3.3,

where the semi-infinite subspace is denoted by Tt ⊂H) which takes values in the

semi-infinite Grassmannian Gr∞
2
(H). Locally one can immerse the total space

L2(L◦) into H via the semi-infinite period map

ι : L2(L◦)|U =
⋃
t∈U

(zFt)
◦ �H,
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where (zFt)
◦ = L2(L◦

t ) = zFt∩L◦
t is a “Zariski-open” subset of zFt = L2(Lt). The

derivative of ι defines an isomorphism

(9.11) dι : T(t,x)L
2(L◦)|U ∼= Ft ⊂H

which corresponds to the Kodaira–Spencer map (Definitions 4.11, 9.14). Note

that Ft is identified with the tangent space of L2(L◦) at (t,x).

DEFINITION 9.23

We define a nondegenerate sesquilinear pairing h on H by

h(v,w) =−Ω
(
κ̃H(v),w

)
=−Ω
(
z−1κH(v),w

)
.

This is Hermitian and purely imaginary; one can easily check that

h(v,w) = h(w,v), h(αv,w) = αh(v,w) (α ∈C),

h
(
κ̃H(v), κ̃H(w)

)
=−h(v,w), h(zv, zw) =−h(v,w).

Pulling back h along the local immersion ι : L2(L◦)|U � H gives a Hermitian

metric h on L2(L◦). Thus, L2(L◦) has the structure of a (pseudo)-Kähler Hilbert

manifold.

REMARK 9.24

The pairing h on H is indefinite of signature (∞,∞). The metric h restricted

to L2(L◦) is nondegenerate under purity—this follows from the h-orthogonal

decomposition (9.12) below—and is also of signature (∞,∞).

The purity of the TRP structure implies (cf. (9.6)) that

(9.12) H= Ft ⊕ κ̃H(Ft).

The family t �→ κ̃H(Ft) defines an L2-version of the complex-conjugate opposite

module z−1AF from (9.7). Note that Ft and κ̃H(Ft) are orthogonal to each other

with respect to h. In particular, the projection Πcc : H→ Ft along κ̃H(Ft) (which

is an L2-version of Πcc in Definition 9.15) is the orthogonal projection to Ft.

Therefore, ∇cc on L2(L◦) can be identified with the induced connection on the

immersed submanifold L2(L◦)|U �H via the orthogonal projection. This implies

the following proposition.

PROPOSITION 9.25

The connection ∇cc on L2(L◦) (Definition 9.15) is the Chern connection asso-

ciated to the Hermitian metric h.

COROLLARY 9.26

The curvature two-form ϑcc is a purely imaginary (1,1)-form.

Proof

Recall from Proposition 9.21 and (9.10) that ϑcc is half of the trace of the cur-

vature of ∇cc. �
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Let P be a parallel pseudo-opposite module for the underlying cTP structure

(F,∇, (·, ·)) over U . We assume here that P is compatible with the given L2-

structure on F, namely,

• every element of Pt ⊂ Ft[z
−1] extends to a holomorphic section of F |{t}×D∗

over the unit punctured disk D∗ = {z : 0< |z|< 1} and has an L2-boundary value

along S1; thus, Pt is a subspace of Ht;

• the L2-closure Pt of Pt in Ht is complementary to Ft, that is, Ht = Ft⊕Pt

(as an algebraic direct sum, not necessarily orthogonal).

The same notion already appeared in Example 5.18. Since P is parallel, it gives

rise to a constant Lagrangian subspace P in H∼=Ht.

DEFINITION 9.27

Let ΠP : H→ Ft denote the projection along P. We define the complex-antilinear

endomorphism κP : TL
2(L◦)|U → TL2(L◦)|U by κP(v) = (dι)−1ΠPκ̃H(dι(v)):

κP : T(t,x)L
2(L◦)∼= Ft

κ̃H
κ̃H(Ft)⊂H

ΠP

Ft
∼= T(t,x)L

2(L◦),

where dι : T(t,x)L
2(L◦)∼= Ft is the Kodaira–Spencer map (9.11).

REMARK 9.28

In general, κP is neither an isomorphism nor an involution. It is easy to see that

• κP is an isomorphism if and only if P⊕ κ̃H(Ft) =H;

• κP is an involution if and only if P is real, that is, κ̃H(P) = P.

Let us prove the second statement. Note that v = κP(w) if and only if

v− κ̃H(w) ∈ P. The “if” part of the statement is obvious. Every p ∈ P can be writ-

ten as p= v− κ̃H(w) for some v,w ∈ Ft by purity (9.12). Then we have v = κP(w).

If κP is an involution, then we have w = κP(v), and thus, κ̃H(p) = κ̃H(v) − w

lies in P. The “only if” part follows. It would be interesting to study parallel

pseudo-opposite modules P such that κP is an involution.

REMARK 9.29

If P is an opposite module (i.e., is closed under z−1), then κP cannot be an

isomorphism. Moreover, if the flat trivialization (Proposition 4.18) of Ft given

by P extends to a smooth trivialization of the bundle F over the closed disk

{t} × {|z| ≤ 1}, then κP is Hilbert–Schmidt and hence compact. To prove this,

let v ∈H be a vector of unit length. The L2-distance dist(z−nv,P) = dist(v, znP)

goes to zero as n→∞, because
⋃

n≥0 z
nP is dense in H (see Lemma A.1). Simi-

larly, dist(z−nv, κ̃H(Ft))→ 0 as n→∞. These together imply that the distance

between the unit spheres in P and in κ̃H(Ft) is zero (because ‖z−nv‖ = 1 for

all n). Therefore, we cannot have P⊕ κ̃H(Ft) =H. To see the latter statement,

note that κP can be viewed as a Hankel operator associated to the gauge trans-

formation from the trivialization given by z−1AFt to the trivialization given
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by Pt. Consequently, κP is Hilbert–Schmidt if the gauge transformation extends

smoothly to the circle S1.

REMARK 9.30

In the Calabi–Yau B-model (see [112], [2]), the middle cohomology H3(X,C)

of a Calabi–Yau 3-fold X (equipped with the intersection form) is a symplectic

vector space to be quantized. The so-called “real polarization” in this context

is a Lagrangian subspace P of H3(X,C) with P = P . The above two remarks

say that a real polarization in the infinite-dimensional setting would be a rather

exotic object: at least it is not given by an opposite module.

The following proposition gives an interpretation of the propagator ΔP,cc and

the Yukawa coupling Y in terms of Kähler geometry.

PROPOSITION 9.31

Let h∨ denote the dual Hermitian metric on the cotangent bundle of L2(L◦).

Then we have

ΔP,cc(ω1, ω2) =−h∨(κ∗
Pω1, ω2),

Y (u,κPv,w) = (∇P
uh)(v,w)

for cotangent vectors ω1, ω2 ∈ T ∗L2(L◦) and tangent vectors u, v,w ∈ TL2(L◦).

Proof

We identify the tangent space T(t,x)L
2(L◦) with Ft ⊂ H in the proof. Let H′,

F′
t denote the topological duals of H, Ft. The dual symplectic form Ω∨ and

the dual Hermitian form h∨ are defined on H′ and are related by h∨(ω1, ω2) =

−Ω∨(κ̃∗
Hω1, ω2) for ωi ∈H′. Thus, we have

ΔP,cc(ω1, ω2) = Ω∨(Π∗
Pω1,Π

∗
ccω2) =−h∨(κ̃∗

HΠ∗
Pω1,Π

∗
ccω2)

for ω1, ω2 ∈ F′
t. The right-hand side equals −h∨((κ̃∗

HΠ∗
Fω1)|F, ω2) =

−h∨(κPω1, ω2) by the h-orthogonal decomposition (9.12). �

9.4. Holomorphic anomaly equation
We now consider correlation functions under the complex-conjugate opposite

module z−1AF from Definition 9.8. We show that they satisfy the Bershadsky–

Cecotti–Ooguri–Vafa holomorphic anomaly equation, and we use this to define

the Fock space for z−1AF. Throughout the section we fix a pure TRP structure

(F ,∇, (·, ·)F , κ) overM. The associated cTP structure is denoted by (F,∇, (·, ·)F).
We denote an algebraic local coordinate system on the total space L by {xμ}=
{ti, xi

n}, as usual.

DEFINITION 9.32 (cf. Definition 4.74)

Let P be a parallel pseudo-opposite module for the cTP structure (F,∇, (·, ·)F),
and let C = {C(g)

μ1,...,μn} ∈ Fock(U ;P) be a Fock space element. We define a set of
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completely symmetric tensors

Ccc =
{
C(g)

cc;μ1,...,μn
dxμ1 ⊗ · · · ⊗ dxμn ∈ (AΩ1,0

◦ )⊗n
(
pr−1(U)

)
:

n≥ 0, g ≥ 0,2g− 2 + n > 0
}

via the Feynman rule in Definition 4.64

C(g)
cc;μ1,...,μn

=
∑
Γ

1

Aut(Γ)
ContΓ(C ,ΔP,cc)μ1,...,μn

and the propagator ΔP,cc in Definition 9.17. We call Ccc = {C(g)
cc;μ1,...,μn} the

correlation functions under the complex-conjugate opposite module z−1AF corre-

sponding to C and write

Ccc = T (P, z−1AF)C .

The corresponding jet potential is defined by

Wcc(x, y) =
∞∑
g=0

∞∑
n=max(3−2g,0)

�g−1

n!
C(g)

cc;μ1,...,μn
(x)yμ1 · · · yμn ,

and we have

exp
(
Wcc(x, y)

)
= exp
(�
2
Δμν(P, z−1AF)∂yμ∂yν

)
exp
(
W(x, y)

)
,

where W(x, y) is the jet potential associated to C .

REMARK 9.33

The correlation functions C
(g)
cc;μ1,...,μn are holomorphic in {xi

n : n≥ 1,0≤ i≤N}
and are real-analytic in t0, . . . , tN . Note that μ1, . . . , μn are holomorphic indices.

PROPOSITION 9.34 (cf. Definition 4.56)

Let P be a parallel pseudo-opposite module for the cTP structure (F,∇, (·, ·)),
and let C = {C(g)

μ1,...,μn} be an element of Fock(U ;P). The correlation functions

{C(g)
cc;μ1,...,μn} under z−1AF corresponding to C satisfy the following properties:

(Yukawa) C
(0)
cc;μνρdxμ ⊗ dxν ⊗ dxρ is the Yukawa coupling Y ;

(Jetness) ∇cc
μ1
C

(g)
cc;μ2,...,μn =C

(g)
cc;μ1,...,μn , where we use notation as in (4.42);

(Holomorphic anomaly)

(9.13)

0 = ∂μ1
C(g)

cc;μ2,...,μn
+

1

2

∑
{2,...,n}=I�J

k+l=g

C(k)
cc;μI ,αΛcc

αβ
μ1

C
(l)
cc;μJ ,β

+
1

2
C

(g−1)
cc;μ2,...,μn,α,β

Λcc
αβ
μ1

;

(Grading and filtration)

Ccc;μ1,...,μndx
μ1 ⊗ · · · ⊗ dxμn ∈

(
(AΩ1,0)⊗n

(
pr−1(U)◦

))2−2g

3g−3
;
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(Pole) P (Ccc;μdx
μ) extends to a regular (1,0)-form on pr−1(U), and for g ≥ 2,

we have

C(g)
cc ∈ P−(5g−5)A(U)[x1, x2, Px3, P

2x4, . . . , P
3g−4x3g−2],

where P = P (t, x1) is the discriminant (4.10).

Proof

The proof is similar to that of Lemmas 4.67–4.69 and Theorem 4.86. The con-

dition (Yukawa) is obvious from the Feynman rule C
(0)
cc;μνρ = C

(0)
μνρ. The condi-

tion (Jetness) follows from the argument of Lemma 4.67, using Proposition 9.19

instead of Proposition 4.45. To establish (Holomorphic anomaly), we differentiate

with respect to t
i
the Feynman rule expressing C

(g)
cc;μ1,...,μn in terms of {C(h)

ν1,...,νm}
and Δ=Δ(P, z−1AF). The only nonholomorphic objects in the Feynman rule are

propagators, and we have that ∂iΔ
μν =−Λcc

μν
ı by Proposition 9.19(2). There-

fore, ∂iC
(g)
cc;μ1,...,μn can be written as the sum over graphs with one distinguished

internal edge, on which the propagator is replaced with −Λcc
μν
ı . The second and

the third terms in (9.13) correspond, respectively, to the cases where the distin-

guished edge separates and does not separate the graph. The condition (Grading

and filtration) follows from the argument of Lemma 4.68. Here we need to estab-

lish an analogue of Proposition 4.55 for Δ = Δ(P, z−1AF), but this is straight-

forward. The condition (Pole) follows from the argument of Lemma 4.69. �

REMARK 9.35

Since ∇cc is flat in the holomorphic direction, the condition (Jetness) is compat-

ible with the symmetry of the correlation functions (see also Remark 4.57). Note

that the holomorphic anomaly equation (9.13) is nontrivial only when the index

μ1 corresponds to one of the coordinates {t0, . . . , tN} on M.

We deduce an important consequence of the holomorphic anomaly equation for

the genus-one one-point correlation function, which is similar to Proposition 4.78.

PROPOSITION 9.36 (Curvature condition)

The genus-one one-point function under the complex-conjugate opposite module

z−1AF satisfies

d(C(1)
cc;μdx

μ) = ϑcc.

Proof

The condition (Jetness) implies that ∇cc
μ C

(1)
ν is symmetric in μ and ν. Thus,

C
(1)
cc;μdxμ is ∂-closed. The holomorphic anomaly equation gives ∂ıC

(1)
cc,μ1 =

−1
2C

(0)
μ1αβ

Λcc
αβ
ı , and this implies that ∂(C

(1)
cc;μdxμ) = ϑcc in view of Proposi-

tion 9.21(2). �
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DEFINITION 9.37 (Fock space for the complex-conjugate opposite module)

The local Fock space Fock(U ; z−1AF) for the TRP structure (F ,∇, (·, ·)F , κ) con-
sists of collections{

C(g)
cc;μ1,...,μn

dxμ1 ⊗ · · · ⊗ dxμn ∈ (AΩ1,0)⊗n
(
pr−1(U)◦

)
:

g ≥ 0, n≥ 0,2g− 2 + n > 0
}

of completely symmetric tensors satisfying the conditions (Yukawa), (Jetness),

(Holomorphic anomaly), (Grading and filtration), and (Pole) listed in Proposi-

tion 9.34.

Note that Definition 9.32 defines a transformation rule

T (P, z−1AF) : Fock(U ;P)→ Fock(U ; z−1AF)

for a parallel pseudo-opposite module P over U .

PROPOSITION 9.38

Let P be a parallel pseudo-opposite module. The transformation rule T (P, z−1AF)
defines a bijection between Fock(U ;P) and Fock(U ; z−1AF). The inverse map is

given by a transformation rule T (z−1AF,P) defined in terms of the propagator

Δcc,P =−ΔP,cc and the Feynman rule similarly to Definition 9.32.

Proof

Let Ccc be an element of Fock(U ; z−1AF). It suffices to show that C :=

T (z−1AF,P)Ccc satisfies the conditions for elements in Fock(U ;P) in Defini-

tion 4.56. (It is clear from the definition that the transformation rules

T (P, z−1AF) and T (z−1AF,P) are inverse to each other.) The conditions

(Yukawa), (Jetness), (Grading and filtration), and (Pole) can be checked using

the arguments in Lemmas 4.67–4.69. It suffices to show that each correlation

function in C is holomorphic. Writing Ccc = {C(g)
cc;μ1,...,μn} and C = {C(g)

μ1,...,μn},
we have the following Feynman rule:

C(1)
cc;μ =C(1)

μ + (ωP,cc)μ,

C(g)
cc =C(g) +

∑
Γ

1

|Aut(Γ)| ContΓ(C ,ΔP,cc), for g ≥ 2,
(9.14)

where the trivial graph (with one genus-g vertex) is removed from the summa-

tion in the second line. The curvature condition in Proposition 9.36 together

with (9.14) shows that ∂(C
(1)
μ dxμ) = 0. Hence, C

(1)
μ is holomorphic. Suppose by

induction that C(h) is holomorphic for all h < g for some g ≥ 2. We differentiate

the above Feynman rule (9.14) for C
(g)
cc with respect to t

i
. Using the argument in

the proof of Proposition 9.34 and the induction hypothesis, we find that the dif-

ferentiation of the second term (on the right-hand side) gives the negative of the

second and the third terms of the holomorphic anomaly equation (9.13). By the

assumed holomorphic anomaly equation, we obtain ∂iC
(g) = 0. This completes

the induction steps and the proof. �
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REMARK 9.39

We have, as in Proposition 4.70,

T (P1, z
−1AF) = T (P2, z

−1AF) ◦ T (P1,P2),

T (z−1AF,P1) = T (P2,P1) ◦ T (z−1AF,P2),

for parallel pseudo-opposite modules P1,P2.

LEMMA 9.40

Let P be a parallel pseudo-opposite module. Consider the difference one-form

ω = ωP,cc ∈ A1,0
M from Definition 9.20. Locally on M there exists a real-valued

function u= uP such that ∂u= ω. The function u is unique up to a real constant.

Proof

Recall from Corollary 9.26 that the curvature two-form ϑcc = dω is a purely

imaginary (1,1)-form. Therefore, ∂ω = 0 and ∂ω = ϑcc. Hence, we can locally

find a complex-valued function u with ∂u= ω. Also we have

∂∂(�u) =�(∂∂u) =�(∂ω) =�(ϑcc) = 0,

since ∂∂ is a purely imaginary operator. Therefore, �u is a pluriharmonic func-

tion. We can locally find an antiholomorphic function f such that �f = �u.
Replacing u with u − f , we obtain a real-valued function u satisfying ∂u = ω.

The ambiguity in u is a real-valued antiholomorphic function and, hence, is a

real constant. �

DEFINITION 9.41

Let u = uP be the real-valued function in Lemma 9.40 associated to a parallel

pseudo-opposite module P. We call hP = exp(u) the half-density metric associated

to P. This is a locally defined function, unique up to multiplication by a real

positive constant.

The curvature two-form ϑcc can be viewed as the curvature of the half-density

line bundle “det(Ω1
◦)

1/2” by Proposition 9.21. From the equation

∂∂ loghP = ϑcc

we may view hP as the Hermitian metric on “det(Ω1
◦)

1/2.” Let C
(1)
μ be a genus-

one one-point function under a parallel pseudo-opposite module P. Locally we

can integrate this to obtain a multivalued genus-one potential C(1) (see

Remark 4.57(2)). Let C
(1)
cc;μ be the corresponding genus-one one-point function

under the complex-conjugate opposite module z−1AF. We can regard exp(C(1))

as a section of the line bundle “det(Ω1
◦)

1/2” and define exp(C
(1)
cc ) to be the norm∥∥exp(C(1))

∥∥2 := ∣∣exp(C(1))
∣∣2hP.

In fact, we have

∂ log
∥∥exp(C(1))

∥∥2 = ωP,cc +C(1)
μ dxμ =C(1)

cc;μdx
μ
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and

(9.15) ∂∂ log
∥∥exp(C(1))

∥∥2 = ϑcc.

The latter equation is similar to the holomorphic anomaly equation at genus one

considered in [11].

REMARK 9.42

We defined the half-density metric for a TRP structure equipped with a parallel

pseudo-opposite module. In particular, this defines a CDV38 structure (see [66,

Definition 1.2]), which is a mixture of a Frobenius manifold structure and a tt∗-

structure. It would be interesting to study the singularities and monodromy of

the half-density metric for CDV structures which arise from singularity theory

and quantum cohomology. For example, for quantum cohomology equipped with

the Γ̂-real structure (see [71], [74]), is the half-density metric a single-valued

function around the large-radius limit point?

Appendix. Opposite subspaces in the L2-picture

In this appendix we collect some facts about opposite subspaces in the L2-picture.

Let H = L2(S1,CN+1) be the Hilbert space of CN+1-valued square-integrable

functions on S1. (This corresponds to the Givental space in the main body of

the text.) Let H+ ⊂ H denote the subspace consisting of boundary values of

holomorphic functions D→CN+1 on the unit disk D= {z : |z|< 1} (cf. (3.1)).

LEMMA A.1

Let P⊂H be a closed subspace such that z−1P⊂ P and P⊕H+ =H. (The direct

sum here is not necessarily orthogonal.) Then
⋃

n≥0 z
nP is dense in H.

Proof

Let V be the closure of
⋃

n≥0 z
nP. Then V is a z±1-invariant subspace: zV = V .

By a vector-valued version of Wiener’s theorem [108, Theorem 3], V is of the

form

V =
{
Q(z)f(z) : f ∈H

}
for a measurable function Q : S1 → End(CN+1) such that Q(z) is an orthog-

onal projector for each z ∈ S1, that is, Q(z)2 = Q(z), Q(z)∗ = Q(z). On the

other hand, V ∩H+ is a z-invariant subspace of H+: z(V ∩H+)⊂ V ∩H+. The

Beurling–Lax theorem (see, e.g., [65]) tells us that it is of the form

V ∩H+ =
{
T (z)f(z) : f ∈H+

}
,

where T : S1→ End(CN+1) is a measurable function with the following proper-

ties: (1) T is a boundary value of a holomorphic function T : D→ End(CN+1);

(2) there exists a subspace U of CN+1 such that, for each z ∈ S1, T (z)|U is an

38CDV structures are named after Cecotti, Dubrovin, and Vafa (see [20], [21], [48], [49]).
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isometry on U and T (z)|U⊥ = 0. Arguing as in the proof of Proposition 4.18(i),

we see that V ∩ H+ ⊃ zP ∩ H+
∼= H+/zH+

∼= CN+1. Therefore, U = CN+1.

Because V ∩ H+ ⊂ V and every element g ∈ V satisfies Q(z)g(z) = g(z), we

have Q(z)T (z)f(z) = T (z)f(z) for all f ∈ H+. This implies that Q(z) = id and

V =H. �

LEMMA A.2

Let P⊂H be as in the previous lemma. Then
⋂

n≥0 z
−nP= {0}.

Proof

Suppose that there is a nonzero vector x ∈
⋂

n≥0 z
−nP. Write znx = an + bn,

where an ∈H+ and bn ∈H− := (H+)
⊥ (cf. (3.1)). We have bn→ 0 in the norm

topology as n → ∞. The projection H → H− along H+ induces an isomor-

phism P→H−. Let f : H− → P be the inverse isomorphism. We have znx =

(an + bn − f(bn)) + f(bn) with an + bn − f(bn) ∈ H+, f(bn) ∈ P, and znx ∈ P.

Therefore, f(bn) = znx and so ‖f(bn)‖= ‖znx‖= ‖x‖. This contradicts the fact

that limn→∞ bn = 0. �

Lemmas A.1 and A.2 together imply that the pair (H+,P) satisfies⋃
n≥0 z

−nH+ =
⋃

n≥0 z
nP = H and

⋂
n≥0 z

nH+ =
⋂

n≥0 z
−nP = {0}. A pair of

complementary subspaces with these properties is studied in [5] under the name

“dual shift-invariant pair.”
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Études Sci. Publ. Math. 61 (1985), 5–65. MR 0783348.

[108] T. P. Srinivasan, Doubly invariant subspaces, Pacific J. Math. 14 (1964),

701–707. MR 0164229.

[109] C. Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188

(2012), 525–588. MR 2917177. DOI 10.1007/s00222-011-0352-5.

[110] H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom.

Topol. 14 (2010), 1–81. MR 2578300. DOI 10.2140/gt.2010.14.1.

[111] E. Witten, “Two-dimensional gravity and intersection theory on moduli

space” in Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh

Univ., Bethlehem, Penn., 1991, 243–310. MR 1144529.

[112] , Quantum background independence in string theory, preprint,

arXiv:hep-th/9306122v1.

http://www.ams.org/mathscinet-getitem?mr=1685628
http://www.ams.org/mathscinet-getitem?mr=3264769
https://doi.org/10.1090/S0894-0347-2014-00808-0
https://doi.org/10.1090/S0894-0347-2014-00808-0
http://www.ams.org/mathscinet-getitem?mr=2486676
https://doi.org/10.1007/s00220-008-0699-7
https://doi.org/10.1007/s00220-008-0699-7
http://www.ams.org/mathscinet-getitem?mr=3311584
https://doi.org/10.1090/S1056-3911-2014-00625-1
https://doi.org/10.1090/S1056-3911-2014-00625-1
http://www.ams.org/mathscinet-getitem?mr=1679978
https://doi.org/10.1016/S0764-4442(99)80254-7
https://doi.org/10.1016/S0764-4442(99)80254-7
http://www.ams.org/mathscinet-getitem?mr=2368364
http://www.ams.org/mathscinet-getitem?mr=2431252
https://doi.org/10.1515/CRELLE.2008.060
https://doi.org/10.1515/CRELLE.2008.060
http://www.ams.org/mathscinet-getitem?mr=0723468
https://doi.org/10.2977/prims/1195182028
https://doi.org/10.2977/prims/1195182028
http://www.ams.org/mathscinet-getitem?mr=1011977
http://www.ams.org/mathscinet-getitem?mr=0730247
http://www.ams.org/mathscinet-getitem?mr=0783348
http://www.ams.org/mathscinet-getitem?mr=0164229
http://www.ams.org/mathscinet-getitem?mr=2917177
https://doi.org/10.1007/s00222-011-0352-5
https://doi.org/10.1007/s00222-011-0352-5
http://www.ams.org/mathscinet-getitem?mr=2578300
https://doi.org/10.2140/gt.2010.14.1
https://doi.org/10.2140/gt.2010.14.1
http://www.ams.org/mathscinet-getitem?mr=1144529
http://arxiv.org/abs/arXiv:hep-th/9306122v1


864 Tom Coates and Hiroshi Iritani

[113] N. M. J. Woodhouse, Geometric Quantization, 2nd ed., Oxford Math.

Monogr., Clarendon Press, Oxford Univ. Press, New York, 1992. MR 1183739.

Coates: Department of Mathematics, Imperial College London, London, United

Kingdom; t.coates@imperial.ac.uk

Iritani: Department of Mathematics, Graduate School of Science, Kyoto University,

Kyoto, Japan; iritani@math.kyoto-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=1183739
mailto:t.coates@imperial.ac.uk
mailto:iritani@math.kyoto-u.ac.jp

	Introduction
	Relation to other work
	Plan of the article
	Notation in Gromov-Witten theory
	Gromov-Witten invariants
	Bases for cohomology and Novikov rings
	Quantum cohomology
	The Dubrovin connection
	Gromov-Witten potentials
	The orbifold case

	Global quantization: Motivation
	Givental's symplectic vector space
	Dilaton shift
	Lagrangian submanifold and TP structure
	Geometric quantization
	Ancestor-descendant relation
	Transformation rule and the Fock sheaf

	Global quantization: General theory
	TP and TEP structure
	cTP and cTEP structure
	Total space of a cTP structure
	Yukawa coupling and Kodaira-Spencer map
	Opposite modules and Frobenius manifolds
	Connection on the total space L°
	Flat coordinates and genus-zero potential
	Propagator
	Givental's propagator
	Difference one-form

	Grading and ﬁltration
	Local Fock space
	Pole order along the discriminant
	Transformation rule and Fock sheaf
	Anomaly equation for curved polarizations
	Logarithmic case
	log-cTP and log-cTEP structures
	The total space of a log-cTP structure
	Miniversality
	Logarithmic one-forms and vector ﬁelds on L
	The Yukawa coupling and the Kodaira-Spencer map
	Opposite modules and logarithmic Frobenius manifolds
	Flat connection on the total space
	Propagators
	Local Fock space
	Transformation rule
	Fock sheaf
	Correlation functions under curved opposite modules
	Anomaly equation


	Global quantization and Givental quantization
	Ancestor Fock space
	Global quantization is compatible with Givental quantization
	Global quantization in the L2-setting

	The Gromov-Witten wave function
	The jet-descendant relation

	The semisimple case
	Semisimple opposite module
	A section of the Fock sheaf via Givental's formula
	Givental's abstract potential
	A global section of the Fock sheaf associated to a semisimple cTEP structure


	The Fock sheaf and mirror symmetry
	The crepant transformation conjecture in the toric case
	Toric orbifolds as geometric invariant theory (GIT) quotients
	Birational toric orbifolds arising from the variation of GIT
	Mirror Landau-Ginzburg models
	The B-model TEP structure
	The mirror map and an isomorphism of TEP structures
	The extended B-model TEP structure
	Conclusion

	Calabi-Yau hypersurfaces

	Complex-conjugate polarization and holomorphic anomaly
	TRP structure and tt*-geometry
	The connection cc on the total space
	Kähler geometry of the total space
	Holomorphic anomaly equation

	Appendix. Opposite subspaces in the L2-picture
	Acknowledgments
	References
	Author's Addresses

