
On the Galois structure of arithmetic
cohomology, III: Selmer groups of critical
motives

David Burns

Abstract We investigate the explicit Galois structures of Bloch–Kato Selmer groups of

p-adic realizations of critical motives.We show in particular that, under natural and rel-

ativelymild hypotheses, theKrull–Schmidt decompositions of the p-adic lattices arising

from such Selmer groups are dominated by very simple indecomposable modules (even

when the ranks are very large).

1. Introduction and statement of main results

1.1
Let M be a motive defined over a number field E. Fix a prime p and a full Galois

stable sublattice T of the p-adic realization of M . For each Galois extension F

of E, set GF/E := Gal(F/E).

If F/E is finite, then the quotient by its torsion subgroup of the Bloch–Kato

Selmer group of T over F is a lattice SelF (T )tf over the group ring Zp[GF/E ],

and obtaining information on the explicit Krull–Schmidt decomposition of this

lattice would be interesting for several reasons. Such structures, for example, play

an essential role in attempts to understand and investigate natural equivariant

refinements of the Tamagawa number conjecture of Bloch and Kato forM over F .

In another direction, an analysis of these structures can, in certain circumstances,

be used to extract useful information concerning changes in rank of the global

points of the Kummer dual of M over the intermediate fields of F/E.

In some rather restricted cases, such applications have already been worked

out by Macias Castillo, Wuthrich, and the present author in the setting of motives

arising from Abelian varieties and various equivariant refinements of the Birch

and Swinnerton-Dyer conjecture that are associated to them (see [2] and the

references contained therein).

Unfortunately, however, obtaining explicit descriptions of these lattices in

any degree of generality is a very difficult problem and, aside from the few cases

that are discussed in [2], essentially nothing is, as far as we are aware, known.
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In fact, even setting aside the considerable difficulties of describing Selmer

groups explicitly (let alone the Galois action on them), the relevant theory of

integral representations is also very complicated. For example, even if GF/E is

a cyclic group of p-power order, the number of isomorphism classes of (finitely

generated) indecomposable Zp[GF/E ]-lattices is infinite unless the order of GF/E

divides p2 (this is the main result of Heller and Reiner in [8]), and even today

there is still no complete classification of these lattices.

Notwithstanding these difficulties, in this note we hope to convince the reader

that in certain cases it is possible to prove fairly general results concerning the

explicit multiplicities of indecomposable modules that occur in the Selmer groups

of motives that are critical in the sense of Deligne [3].

We will do this by combining some rather delicate techniques of integral

representation theory (due, in the main, to Yakovlev) together with observations

of Fukaya and Kato [5] concerning the Selmer complexes that were introduced

by Nekovář in [10].

At this stage these techniques lead directly only to explicit structure results

for the Selmer groups that arise in families of cyclic Galois extensions F/E for

which one has k ⊆E ⊆ F ⊆K for some fixed pro-p p-adic analytic extension K/k

of rank 1.

However, such families arise naturally in several ways (see, e.g., Remark 1.3)

and, in addition, the algebraic results of Heller and Reiner [7], [8] make it clear

that, even in these cases, studying Galois structures can be, a priori, extremely

difficult.

Furthermore, it seems reasonable to hope that, with further effort, the

approach used here can lead to explicit results that are both finer and more

general.

For example, Macias Castillo [9] has already developed our approach to

obtain much finer results in some interesting special cases. In addition, given

any finite Galois extension of number fields F/E, the methods used here can be

applied to all cyclic extensions F ′/E′ with E ⊆ E′ ⊆ F ′ ⊆ F , and this strongly

restricts (albeit, at the moment, inexplicitly) the multiplicities with which inde-

composable Zp[GF/E ]-lattices can occur as direct summands of SelF (T )tf .

1.2
To state our main results, we recall that ifM satisfies the condition of Dabrowski–

Panchishkin at p, as is the case (by Perrin-Riou [11]) if M has good ordinary

reduction at each p-adic place of k, then for each such place v, with absolute

Galois group Gkv , there exists a (unique) largest Gkv -submodule N of the p-

adic realization V of M for which D0
dR(kv,N) vanishes. We write V 0(v) for this

subspace, and we set V 0(v)∗(1) := HomQp(V
0(v),Qp(1)), regarded as endowed

with the standard diagonal action of Gkv .

For each finite cyclic group G of p-power order, we fix a set IMp(G) of

representatives of the isomorphism classes of those indecomposable Zp[G]-lattices

that are not isomorphic to Zp[Q] for any quotient Q of G. For each such G, each
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Zp[G]-lattice X , and each I in IMp(G), we then write mI(X) for the number of

direct summands in the Krull–Schmidt decomposition of X that are isomorphic

to I .

Finally, for each pair of natural numbers n and d, we define an integer

κd
n :=

∑
J1×···×Jn

i=n−1∏
i=1

cJicJi+1 ,

where the sum Ji runs over a set of representatives of the isomorphism classes

of (finite) Abelian groups of exponent dividing pi and p-rank at most d, and

cJi denotes the number of conjugacy classes in Aut(Ji) comprising elements of

order dividing pn. We can now state our main result (which will be proved in

Section 3).

THEOREM 1.1

Let M be a motive over k that is both critical and satisfies the condition of

Dabrowski–Panchishkin at an odd prime p. Let T be a full Galois stable sublat-

tice of the p-adic realization V of M . Let K be a rank 1 pro-p p-adic analytic

extension of k with the following properties:

(i) K/k is ramified at only finitely many places;

(ii) K contains a Zp-extension k∞ of k;

(iii) for any place v of k that divides either p, a rational prime that ram-

ifies in K/Q, or a rational prime at which M has bad reduction, the following

conditions are satisfied:

(a) v has an open decomposition group in GK/k;

(b) if v is not p-adic, then for any place w of K above v the space H0(Kw, V )

vanishes;

(c) if v is p-adic, then for any place w of K above v both of the spaces

H0(Kw, V/V
0(v)) and H0(Kw, V

0(v)∗(1)) vanish.

For each intermediate field E of K/k, we set E∞ := Ek∞, and then for each

nonnegative integer a, we write Ea for the unique extension of E in E∞ with

[Ea :E] = pa. Then there exist rational numbers μ and κ that depend only upon T

and K/k and are such that for every cyclic extension F/E with k ⊆E ⊂ F ⊂K

and F/k finite and all sufficiently large integers a one has

(1)
∑

I∈IMp(GFa/Ea )
mI

(
SelFa(T )tf

)
≤ pn(n−1)d2 · κd

n,

where the degree of F∞/E∞ is pn and we write d for pa[F : k] · μ+ κ.

REMARK 1.2

(i) The field k∞ is unique since GK/k∞ is the subset of GK/k compris-

ing all elements of finite order. The hypothesis concerning open decomposition

subgroups is automatically satisfied if, for example, k∞ is the cyclotomic Zp-

extension kcyc of k.

(ii) The proof of Theorem 1.1 is constructive in that structures of natural

Iwasawa modules can be used to give explicit formulas for μ and κ. In addition,
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while in the generality of Theorem 1.1 the resulting upper bounds on multiplici-

ties can be coarse, Macias Castillo [9] has recently shown that in certain special

cases a closer analysis of the methods introduced here can give much better

bounds.

(iii) Let G be a cyclic group of p-power order. If #G= p, then by a classi-

cal result of Diederichsen [4] one can take IMp(G) to be the singleton {Zp[G]/

(
∑

g∈G g)}. If #G= p2, then results of Heller and Reiner in [7] give an explicit

description of IMp(G) which implies that #IMp(G) = 4p− 2. However, if #G>

p2, then Heller and Reiner show in [8] that IMp(G) is infinite and, even now, no

explicit description of IMp(G) is known.

REMARK 1.3

Several natural families of extensions arise in the context of Theorem 1.1. For

example, if Mp
k,Σ is the maximal pro-p extension of k unramified outside Σ, then

GMp
k,Σ/k is topologically finitely generated and so for any natural number e the

maximal Galois extension M
p,(e)
k,Σ of kcyc in Mp

k,Σ of exponent dividing pe is finite.

In particular, for any fixed integer d, all cyclic extensions F/E of degree pn with

F ⊂Mp
k,Σ, E/k finite, and [E : E ∩ kcyc]≤ pd are contained in the rank 1 pro-p

p-adic analytic extension M
p,(n+d)
k,Σ of k. In a similar way, if K is any pro-p p-

adic analytic extension of k ramified at only finitely many places and containing

kcyc, then all cyclic extensions F/E of degree pn with F ⊂K, E/k finite, and

[E :E ∩ kcyc]≤ pd are contained in a fixed rank 1 pro-p p-adic analytic extension

of k that contains kcyc.

Under certain additional hypotheses on T and K/k, the rational number μ in

Theorem 1.1 can be taken to be zero. In such cases the integer d = κ in Theo-

rem 1.1 is independent of F , and this observation leads to results such as the

following (which will be proved in Section 4). In the rest of this article, for any

Zp-module M , we write Qp ·M in place of Qp ⊗Zp M .

COROLLARY 1.4

Let the representation T and field extension K/k be as in Theorem 1.1, and

assume that for each intermediate field E of K/k∞ the (Bloch–Kato) Tate–

Shafarevich group of T over E is a finitely generated Zp-module. Then for any

cyclic extension F/E with both k ⊆ E ⊂ F ⊂ K and F/k finite and any suffi-

ciently large integer a there is an isomorphism of Zp[GFa/Ea
]-lattices

(2) SelFa(T )tf
∼=
( ⊕
H≤GFa/Ea

Zp[GFa/Ea
/H]sFa,H

)
⊕RFa

for suitable nonnegative integers sFa,H and a lattice RFa with dimQp(Qp ·RFa)≤
δ[F :E] for an integer δ[F :E] that depends only on T , K/k and [F :E]. In particular,

for any such extension Fa/Ea, one has

(3) dimQp

(
Qp · SelFa(T )

)
≤ [F :E] · dimQp

(
Qp · SelEa(T )

)
+ δ[F :E].
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REMARK 1.5

(i) For each natural number m, we write Cm for the cyclic group Z/pmZ

of order pm. Fix F/E as in Corollary 1.4, and write the degree of F∞/E∞ as

pn. Then GFa/Ea
is isomorphic to Cn for all sufficiently large a and thus, since

there are only finitely many isomorphism classes of Zp[Cn]-lattices of any given

Zp-rank, the upper bound on dimQp(Qp ·RFa) in Corollary 1.4 implies that there

are only finitely many isomorphism classes of indecomposable Zp[Cn]-lattices

that arise as direct summands of SelFa(T )tf as a varies. This observation is

itself nontrivial (since, even under the stated hypotheses, dimQp(Qp · SelFa(T ))

is usually unbounded as a varies) and raises natural questions. For instance,

are there any natural conditions on M and K/k under which one can explicitly

describe the indecomposable lattices that can arise in this way, or are there

examples of M and K/k for which the conclusion of Corollary 1.4 is valid without

any hypotheses on Tate–Shafarevich groups?

(ii) Despite the observation in Remark 1.2(ii), our methods do not give

explicit information on the integers δ[F :E] in Corollary 1.4. The reason is that, for

any Zp[Cn]-lattice N , knowledge of the p-rank of Ĥ−1(H,N) for each subgroup

H of Cn does not imply an upper bound on dimQp(Qp · N). However, in this

direction it can be shown that

dimQp(Qp ·N)≤ pn · dimQp

(
Qp ·H0(Cn,N)

)
+ (pn − 1) · d

with d equal to the maximum of the p-ranks of Ĥ−1(H,N) as H runs over

subgroups of Cn.

REMARK 1.6

The arguments used to prove Theorem 1.1 and Corollary 1.4 will also show

that these results remain true if one replaces all occurrences of Bloch–Kato

Selmer groups by Selmer groups in the sense of Greenberg. (For more details, see

Remark 4.3.)

2. Selmer groups and complexes for critical motives

In this section we review various definitions of Selmer groups and Selmer com-

plexes in the context of Theorem 1.1.

In the rest of this article, for any Zp-module X we will write X[p] for the

submodule of X comprising elements annihilated by p, Xtor for the torsion sub-

module of X , and Xtf for the quotient of X by Xtor. We also write X∨ for the

Pontryagin dual HomZp(X,Qp/Zp) and, if X is finitely generated (resp., has an

action of Qp), we write X∗ for the linear dual HomZp(X,Zp) = HomZp(Xtf ,Zp)

(resp., HomQp(X,Qp)), each dual being endowed with the natural contragredient

action of any group that acts on X .

If X is finitely generated, we also set rk(X) := dimQp(Qp ·X) and, with Fp

denoting the finite field of order p, we write rkp(X) for the p-rank dimFp(X/p).

We note that
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rkp(X) = dimFp

(
X[p]

)
+ rk(X)

and often use, without explicit comment, the fact that for any exact sequence

of finitely generated Zp-modules X1
θ1−→X2

θ2−→X3 one has, for both i = 1 and

i= 2, inequalities

rkp
(
im(θi)

)
≤ rkp(X2)≤ rkp(X1) + rkp(X3).

For a Noetherian ring R, we write D(R) for the derived category of (left) R-

modules and Dperf(R) for the full triangulated subcategory of D(R) comprising

complexes that are “perfect” (i.e., isomorphic in D(R) to a bounded complex of

finitely generated projective R-modules).

2.1
At the outset, we fix a Galois extension of fields K/k as in Theorem 1.1. We

also fix an algebraic closure Kc of K and for each finite extension F of k in K

and each place w of F an algebraic closure F c
w of Fw and an embedding of fields

ιw :Kc → F c
w. We set GF := GKc/F and GFw := GF c

w/Fw
, and we identify GFw

as a subgroup of GF by means of the embedding induced by ιw. For each such

field F and each set of places Σ′ of k, we write Σ′
F for the set of places of F that

lie above those in Σ′.

For any Zp-module X that is endowed with a continuous action of either GF

or GFw for some w, and any integer a, we endow the tensor product X(a) :=

X ⊗Zp Zp(a) with the natural diagonal action of either GF or GFw . Here, and in

the rest of this article, we write Zp(a) for the module Zp upon which GF and

GFw act via the ath power of the respective cyclotomic characters.

We fix a motive M that is defined over k, is critical in the sense of Deligne

[3], and satisfies the condition of Dabrowski–Panchishkin at p, and we write V

for its p-adic realization. Under the hypotheses of Theorem 1.1, we can fix a finite

set of places Σ of k that satisfies all of the following hypotheses:

• Σ contains the set Σ∞ of Archimedean places, the set Σp of p-adic places,

all places at which M has bad reduction, and all places that divide rational

primes which ramify in K/Q;

• every v in Σ has an open decomposition group in GK/k;

• for every v in Σ \Σp and any place w of K above v, the space H0(Kw, V )

vanishes.

As in Theorem 1.1, we also continue to assume that, for every p-adic place w of

K, the spaces H0(Kw, V/V
0(v)) and H0(Kw, V

0(v)∗(1)) both vanish.

We fix a full Gk-stable sublattice T of V . For each v in Σp, we set T 0
v :=

T ∩V 0(v) and then for each finite extension F of k in K and each w in Σp
F above

v, we write V 0(w) and T 0
w for the GFw -modules obtained by restricting V 0(v)

and T 0
v , respectively.
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2.2
We now review some relevant aspects of Nekovář’s theory of Selmer complexes

(see [10]), as used by Fukaya and Kato in [5].

For each profinite group G and topological Abelian group T that is endowed

with a continuous action of G, we write C(G,T ) for the standard complex of

continuous cochains of G with values in T . If G is the Galois group of the max-

imal algebraic extension of F unramified outside ΣF (resp., is GFw ), then we

abbreviate C(G,T ) to C(ΣF ,T ) (resp., to C(Fw,T )).

With Σ and T as in Section 2.1, we define SCF (Σ, T ) to be the mapping

fiber of the natural diagonal localization morphism

(4) C(ΣF , T )→
⊕

w∈Σp
F

C(Fw, T/T
0
w)⊕

⊕
w∈ΣF \Σp

F

C(Fw, T ).

For each place w of F that is not p-adic, we write Cf (Fw, T ) for the subcom-

plex of C(Fw, T ) that agrees with C(Fw, T ) in degree 0, is equal to the kernel of

Z1(Fw, T )→H1(F un
w , T ) in degree 1, and is zero in all degrees greater than 1.

Then, defining SCF (T ) to be the mapping fiber of the localization morphism

C(ΣF , T )→
⊕

w∈Σp
F

C(Fw, T/T
0
w)⊕

⊕
v∈ΣF \Σp

F

C(Fw, T )/Cf (Fw, T )

one obtains a natural exact triangle

(5) SCF (Σ, T )→ SCF (T )→
⊕

w∈ΣF \Σp
F

Cf (Fw, T )→ SCF (Σ, T )[1].

In the following result, we record the basic properties of these complexes that

will be used in the rest of this article.

LEMMA 2.1

Let K/k, T and Σ be as in Section 2.1. Let F/E be a finite Galois extension

with k ⊆E ⊆ F ⊂K and E/k finite. Set G :=GF/E .

(i) SCF (Σ, T ) is an object of Dperf(Zp[G]) that is acyclic outside degrees

1, 2, and 3.

(ii) For every subgroup J of G there exists a canonical isomorphism in

D(Zp[G/J ]) of the form Zp[G/J ]⊗L
Zp[G] SCF (Σ, T )∼= SCFJ (Σ, T ).

(iii) We have that rkp(H
3(SCF (Σ, T )))≤ rk(T ).

(iv) For every place w in ΣF \ Σp
F , the group H1(Cf (Fw, T )) is finite and

one has rkp(H
1(Cf (Fw, T )))≤ rk(T ).

Proof

The complex SCF (Σ, T ) belongs to Dperf(Zp[G]) because it is defined as the

mapping fiber of (4) and, since p is odd, the complexes C(ΣF , T ), C(Fw, T/T
0
w)

and C(Fw, T ) each belong to Dperf(Zp[G]) (as a consequence, for example, of [5,

Proposition 1.6.5(2)]).
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The acyclicity of SCF (Σ, T ) outside degrees 1, 2, and 3 follows directly from

the long exact cohomology sequence of the triangle (5) and the fact that SCF (T )

is acyclic outside the same degrees (as is shown in [5, Proposition 4.2.35(1)]).

The isomorphism in claim (ii) follows from [5, Proposition 1.6.5(3)] (as is

explicitly noted in [5, Section 4.1.4(2)]).

To prove claim (iii), we note that the long exact cohomology sequence of

(5) induces an isomorphism H3(SCF (Σ, T ))∼=H3(SCF (T )). Then one need only

recall that the argument of [5, Proposition 4.2.35(2)] implies that H3(SCF (T )) is

isomorphic to a quotient of T (−1) and hence that rkp(H
3(SCF (T ))) ≤

rkp(T (−1)) = rk(T ).

To prove claim (iv), we recall that for each such w the complex Cf (Fw, T )

is naturally isomorphic to H0(Iw, T )
1−ϕw−−−−→ H0(Iw, T ), where the first term is

placed in degree 0, Iw denotes the inertia subgroup of GFw , and ϕw denotes the

Frobenius automorphism in GFw/Iw (cf. the discussion in [5, Section 4.2.11]).

In particular, since the (assumed) vanishing of H0(Kw′ , V ) for any place w′

of K above w implies that H0(Fw, T ) = H0(Cf (Fw, T )) vanishes, the group

H1(Cf (Fw, T )) is finite. Since H1(Cf (Fw, T )) is isomorphic to a quotient of

H0(Iw, T ), it is then also clear that rkp(H
1(Cf (Fw, T ))) ≤ rkp(H

0(Iw, T )) ≤
rkp(T ) = rk(T ), as claimed. �

2.3
We now recall definitions of Greenberg’s Selmer groups and Bloch–Kato Selmer

groups. For each non-Archimedean place w of F , we write H1
f,(1)(Fw, T

∨(1)) for

the kernel of the natural projection map H1(Fw, T
∨(1))→H1(Fw, (T

0
w)

∨(1)) if

w is p-adic and of the restriction map H1(Fw, T
∨(1))→H1(F un

w , T∨(1)) in all

other cases, where F un
w denotes the maximal unramified extension of Fw in F c

w.

For each such w, we also write H1
f,(2)(Fw, T

∨(1)) for the image of the nat-

ural composite map H1
f (Fw, V

∗(1))→H1(Fw, V
∗(1))→H1(Fw, V

∗(1)/T ∗(1)) =

H1(Fw, T
∨(1)).

For i= 1,2, we then define the Selmer group SelF,(i)(T
∨(1)) to be the kernel

of the diagonal localization map

H1
(
F,T∨(1)

)
→

⊕
w∈Σ∞

F

H1
(
Fw, T

∨(1)
)

⊕
⊕

w/∈Σ∞
F

H1
(
Fw, T

∨(1)
)
/H1

f,(i)

(
Fw, T

∨(1)
)
,

where in the second sum w runs over all non-Archimedean places of F .

We finally set

SelF (T ) := SelF,(2)

(
T∨(1)

)∨
and Sel′F (T ) := SelF,(1)

(
T∨(1)

)∨
,

and we define the (Bloch–Kato) Tate–Shafarevich group of T by setting

XF (T ) := SelF (T )tor.
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REMARK 2.2

The above definitions of the groups SelF,(1)(T
∨(1)) and SelF,(2)(T

∨(1)) are due,

respectively, to Greenberg [6] and to Bloch and Kato [1]. In particular, if T is

the p-adic Tate module of an Abelian variety A over k that has good ordinary

reduction at all p-adic places, then SelF,(2)(T
∨(1)) coincides with the classical

Selmer group of A over F and hence, if the Tate–Shafarevich group of A over F

is finite, then its p-primary part is canonically isomorphic to the group XF (T )

defined above.

3. Proof of Theorem 1.1

3.1
A key role in this argument is played by a delicate representation-theoretic result

of Yakovlev [12]. To explain this result, we fix a cyclic group G of order pn and

for each integer i with 0≤ i≤ n, we write Gi for the subgroup of G of order pi.

Then, in terms of this notation, the results of [12, Theorem 2.4, Lemma 5.2]

combine to imply that if M and N are any Zp[G]-lattices for which, for each

integer i with 1 ≤ i < n, there exists an isomorphism of Zp[G]-modules θi :

Ĥ−1(Gi,M) → Ĥ−1(Gi,N) that lies in commutative diagrams (of Zp[G]-

modules)

Ĥ−1(Gi,M)
κi
M

θi

Ĥ−1(Gi+1,M)

θi+1

Ĥ−1(Gi,N) Ĥ−1(Gi+1,N)

Ĥ−1(Gi,M)

θi

Ĥ−1(Gi+1,M)
ρi
M

θi+1

Ĥ−1(Gi,N) Ĥ−1(Gi+1,N)

(6)

where the horizontal arrows are the natural corestriction and restriction homo-

morphisms, then there are isomorphisms of Zp[G]-modules of the form

(7) M ∼=R⊕
i=n⊕
i=0

Zp[G/Gi]
ai and N ∼=R⊕

i=n⊕
i=0

Zp[G/Gi]
bi

for a suitable Zp[G]-lattice R and nonnegative integers ai and bi.

Taken in conjunction with the Krull–Schmidt theorem (for Zp[G]-lattices),

these isomorphisms imply that for any modules M and N as above one must

have mI(M) =mI(R) =mI(N) for all lattices I in IMp(G).

In addition, for each such M and each subgroup Gi of G the isomorphism

Ĥ−1(Gi,M)∼=
⊕

I∈IMp(G)

Ĥ−1(Gi, I)
nI

implies that

(8) rkp
(
Ĥ−1(Gi,M)

)
=

∑
I∈IMp(G)

nI · rkp
(
Ĥ−1(Gi, I)

)
.
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3.2
Before proceeding to the proof of Theorem 1.1, it is convenient to make some

general observations about diagrams of the form (6). To do so we continue to

assume that G is cyclic of order pn, and we refer to finite “double chains” of

homomorphisms of Zp[G]-modules

X1
θ1−→X2

θ2−→ · · · θt−2−−−→Xt−1
θt−1−−−→Xt, X1

φ1←−X2
φ2←− · · · φt−2←−−−Xt−1

φt−1←−−−Xt

and

X ′
1

θ′
1−→X2

θ′
2−→ · · ·

θ′
t−2−−−→X ′

t−1

θ′
t−1−−−→X ′

t, X ′
1

φ′
1←−X ′

2

φ′
2←− · · ·

φ′
t−2←−−−X ′

t−1

φ′
t−1←−−−X ′

t

as equivalent if there exist isomorphisms of Zp[G]-modules ιi :Xi →X ′
i for each

index i which together give commutative diagrams

X1
θ1−−−−→ X2

θ2−−−−→ · · · θt−2−−−−→ Xt−1
θt−1−−−−→ Xt

ι1

⏐⏐� ι2

⏐⏐� ιt−1

⏐⏐� ιt

⏐⏐�
X ′

1

θ′
1−−−−→ X ′

2

θ′
2−−−−→ · · ·

θ′
t−2−−−−→ X ′

t−1

θ′
t−1−−−−→ X ′

t

and

X1
φ1←−−−− X2

φ2←−−−− · · · φt−2←−−−− Xt−1
φt−1←−−−− Xt

ι1

⏐⏐� ι2

⏐⏐� ιt−1

⏐⏐� ιt

⏐⏐�
X ′

1

φ′
1←−−−− X ′

2

φ′
2←−−−− · · ·

φ′
t−2←−−−− X ′

t−1

φ′
t−1←−−−− X ′

t

We write e(X) for the exponent of a finite Abelian p-group X . For natural

numbers d and m, we fix a set of representatives Abmd of the isomorphism classes

of (finite) Abelian p-groups X with both rkp(X)≤ d and e(X)≤m. For natural

numbers d,m1,m2, . . . ,mt, we write Δm1,...,mt

d for the number of nonequivalent

double chains of homomorphisms of finite Zp[G]-modules

X1 −→X2 −→ · · · −→Xt−1 −→Xt, X1 ←−X2 ←− · · · ←−Xt−1 ←−Xt

in which for each index i one has both rkp(Xi)≤ d and e(Xi)≤mi.

LEMMA 3.1

For each set of natural numbers d,m1,m2, . . . ,mt, one has

Δm1,...,mt

d ≤
(i=t−1∏

i=1

min{mi,mi+1}
)2d2

·
∑

J1×···×Jt

i=t−1∏
i=1

cJicJi+1 ,

where each Ji runs over Abmi

d , and cJi denotes the number of conjugacy classes

of AutZp(Ji) comprising elements of order dividing pn.

Proof

The category of (finite) Zp[G]-modules X satisfying both rkp(X)≤ d and e(X)≤
m is equivalent to the category of pairs (X̃,α), where X̃ is a finite Abelian p-
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group satisfying rkp(X̃)≤ d and e(X̃)≤m, and α is an element of AutZp(X̃) of

order dividing pn.

If one fixes a generator g of G, then this equivalence is induced by the assign-

ment X �→ ([X], gX), where [X] is the Abelian group underlying X , gX corre-

sponds to the action of g on X , and Zp[G]-homomorphisms θ :X → Y correspond

to group homomorphisms [θ] : [X]→ [Y ] which satisfy [θ] ◦ gX ◦ [θ]−1 = gY .

This implies, in particular, that the isomorphism classes of Zp[G]-modules

X satisfying both rkp(X)≤ d and e(X)≤m are represented by pairs (J,β) as J

runs over Abmd and β over the set CJ of conjugacy classes of AutZp(J) comprising

elements of order dividing pn.

Now if, for each index i with 1 ≤ i ≤ t, one is given a pair of isomorphic

Zp[G]-modules Xi and X ′
i , then any double chain of homomorphisms of Zp[G]-

modules

X ′
1 −→X ′

2 −→ · · · −→X ′
t−1 −→X ′

t, X ′
1 ←−X ′

2 ←− · · · ←−X ′
t−1 ←−X ′

t

is equivalent to a double chain of homomorphisms of Zp[G]-modules of the form

(9) X1 −→X2 −→ · · · −→Xt−1 −→Xt, X1 ←−X2 ←− · · · ←−Xt−1 ←−Xt.

Taken in conjunction with the observations above, this implies that a set of

representatives of the inequivalent chains of the form (9), in which each Xi is

finite and satisfies both rkp(Xi) ≤ d and e(Xi) ≤ mi, is contained in the set

Υm1,...,mt

d of double chains (9) in which each Xi is the Zp[G]-module [Ji, βi] that

corresponds to some Ji in Abmi

d and βi in CJi . This fact implies that Δm1,...,mt

d

is at most

#Υm1,...,mt

d

=
∑

(J1,β1)×···×(Jt,βt)

i=t−1∏
i=1

#HomZp[G]

(
[Ji, βi], [Ji+1, βi+1]

)

×#HomZp[G]

(
[Ji+1, βi+1], [Ji, βi]

)

≤
∑

(J1,β1)×···×(Jt,βt)

i=t−1∏
i=1

#HomZp(Ji, Ji+1)#HomZp(Ji+1, Ji)

=
∑

J1×···×Jt

i=t−1∏
i=1

cJicJi+1#HomZp(Ji, Ji+1)#HomZp(Ji+1, Ji)

=
∑

J1×···×Jt

i=t−1∏
i=1

cJicJi+1#
(
Ji+1

[
e(Ji)

])rkp(Ji)
#
(
Ji
[
e(Ji+1)

])rkp(Ji+1)

≤
∑

J1×···×Jt

i=t−1∏
i=1

cJicJi+1

(
min

{
e(Ji), e(Ji+1)

})2 rkp(Ji) rkp(Ji+1)
,

where in each sum Ji runs over Abmi

d and βi over CJi .
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Note that the first inequality above is true because HomZp[G]([Ja, βa], [Jb, βb])

is a subgroup of HomZp(Ja, Jb) and the second because both e(Ja[e(Jb)]) =

min{e(Ja), e(Jb)} and rkp(Ja[e(Jb)]) = rkp(Ja) and hence #(Ja[e(Jb)]) ≤
(min{e(Ja), e(Jb)})rkp(Ja). In addition, the first equality above is clear, the sec-

ond is true because cJi =#CJi and cJi+1 =#CJi+1 , and the third because, after

choosing a minimal set of generators {xaj}1≤j≤rkp(Ja) of the Abelian group Ja,

any element θ of HomZp(Ja, Jb) is uniquely specified by the elements θ(xaj), each

of which must belong to Jb[e(Ja)].

The claimed upper bound on Δm1,...,mt

d now follows from the above dis-

played inequality by taking into account the fact that min{e(Ji), e(Ji+1)} ≤
min{mi,mi+1} (since, by assumption, both e(Ji)≤mi and e(Ji+1)≤mi+1) and

that rkp(Ji) and rkp(Ji+1) are both, by assumption, at most d. �

For any natural number d, we write LatdG for the set of Zp[G]-lattices N for which

one has rkp(Ĥ
−1(Gi,N))≤ d for all i with 1≤ i≤ n.

In the next result, we show that for each indecomposable lattice I in IMp(G)

the maximal multiplicity md
I with which I occurs (up to isomorphism) as a direct

summand of any lattice in LatdG is both well defined and bounded by a quantity

that depends only on n and d.

LEMMA 3.2

For each natural number d, one has∑
I∈IMp(G)

md
I ≤ pn(n−1)d2 · κd

n

with κd
n the integer defined just prior to the statement of Theorem 1.1.

Proof

For each N in LatdG and each index i, one has e(Ĥ−1(Gi,N)) ≤#Gi = pi and

so, as N ranges over LatdG, the number of inequivalent double chains of homo-

morphisms of Zp[G]-modules

(10)

{
Ĥ−1(G1,N)→ Ĥ−1(G2,N)→ · · · → Ĥ−1(Gn−1,N)→ Ĥ−1(G,N),

Ĥ−1(G1,N)← Ĥ−1(G2,N)← · · · ← Ĥ−1(Gn−1,N)← Ĥ−1(G,N)

that arise is at most Δp,p2,...,pn

d . By applying Lemma 3.1 in this context (and

recalling the explicit definition of κd
n), one also finds that

Δp,p2,...,pn

d ≤
(i=n−1∏

i=1

min{pi, pi+1}
)2d2

· κd
n = pn(n−1)d2 · κd

n.

Now, for each I in IMp(G) and each integer a with 1≤ a≤md
I , the equality

(8) implies that Ia belongs to LatdG. In addition, for each I and J in IMp(G) and

each pair of natural numbers a and b, the observation made just after (7) implies

that the homomorphism chains (10) corresponding to the modules N = Ia and
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N = Jb (with the arrows representing the relevant restriction and corestriction

maps) are equivalent if and only if both I = J and a= b.

These observations imply that the modules N = Ia for I in IMp(G) and 1≤
a≤md

I account for at least
∑

I∈IMp(G)m
d
I of the at most pn(n−1)d2 ·κd

n nonequiv-

alent double chains of homomorphisms (10), and so one has
∑

I∈IMp(G)m
d
I ≤

pn(n−1)d2 · κd
n, as claimed. �

3.3
In this section we fix data K/k, Σ, and T as in Section 2.1, and we prove the

following reduction result regarding Theorem 1.1.

PROPOSITION 3.3

To prove Theorem 1.1 it suffices to show the existence of rational numbers μ

and κ′ that depend only upon K/k, Σ, and T , and are such that for all finite

extensions F of k in K one has rkp(H
2(SCFa(Σ, T ))tor) ≤ pa[F : k] · μ+ κ′ for

all sufficiently large integers a.

Proof

The precise inequality in Theorem 1.1 will follow directly from Lemma 3.2 if we

can show that, under the hypotheses of Theorem 1.1, there exist rational numbers

μ and κ that depend only upon T and K/k and are such that

(11) rkp
(
Ĥ−1

(
J,SelFa(T )tf

))
≤ pa[F : k] · μ+ κ

for all cyclic extensions F/E with k ⊆E ⊆ F ⊂K and F/k finite, all sufficiently

large integers a, and all subgroups J of GFa/Ea
.

To relate this condition to that given in the claimed result, we note first that

the result of Lemma 3.4 below (with F/E replaced by Fa/Ea) implies that for

each such extension Fa/Ea and subgroup J there exists a Zp[GFa/Ea
]-module

QFa which satisfies rkp(QFa)≤#Σp
Fa

· rk(T ) and lies in an exact sequence of the

form

Ĥ−2(J,QFa)→ Ĥ−1
(
J,SelFa(T )tf

)
→ Ĥ−1

(
J,H2

(
SCFa(Σ, T )

)
tf

)
.

This sequence implies an inequality

rkp
(
Ĥ−1

(
J,SelFa(T )tf

))
≤ rkp

(
Ĥ−1

(
J,H2

(
SCFa(Σ, T )

)
tf

))
+ rkp

(
Ĥ−2(J,QFa)

)
≤ rkp

(
Ĥ−1

(
J,H2

(
SCFa(Σ, T )

)
tf

))
+#Σp

Fa
· rk(T )(12)

≤ rkp
(
H2

(
SCFJ

a
(Σ, T )

)
tor

)
+ (1+#Σp

Fa
) · rk(T ),

where the second inequality is valid because Ĥ−2(J,QFa) is isomorphic to a

subquotient of QFa (as J is cyclic), and the third follows from Lemma 3.5 below

(with F/E replaced by Fa/Ea).

Now, by explicit assumption in Theorem 1.1, the decomposition subgroup

of each p-adic place is open in GK/k and so the cardinality of Σp
Fa

is bounded

independently of F and a. The required inequality (11) will therefore follow
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directly from (12), provided that there exist rational numbers μ and κ′ that

depend only upon T , K/k, and Σ, and are such that rkp(H
2(SCFa(Σ, T ))tor)≤

pa[F : k] · μ+ κ′ for all F and all sufficiently large a.

Note also that, while the rationals μ and κ′ obtained in this way ostensibly

depend on Σ (contrary to the assertion of Theorem 1.1), one can remove this

dependence by simply choosing Σ to be equal to the union of Σ∞, Σp, the set of

places at which M has bad reduction, and the set of places that divide rational

primes ramifying in K/Q. This completes the proof of Proposition 3.3. �

LEMMA 3.4

For each cyclic extension F/E with k ⊆ E ⊆ F ⊂K and F/k finite there exists

a natural exact sequence of Zp[GF/E ]-modules

0→ SelF (T )tf →H2
(
SCF (Σ, T )

)
tf
→QF → 0,

where QF is such that rkp(QF )≤#Σp
F · rk(T ).

Proof

We note first that for each place w of F the group H1
f,(2)(Fw, T

∨(1)) is equal to

the maximal divisible subgroup of H1
f,(1)(Fw, T

∨(1)). In fact, this follows directly

from [5, Lemma 4.2.32(1)] if w is not p-adic and from [5, Lemma 4.2.32(2)] if

w is p-adic since our assumption that the spaces H0(Kw, V/V
0(v)) and H0(Kw,

V 0(v)∗(1)) vanish implies that both of the spaces H0(Fw, V/V
0(w)) and H0(Fw,

V 0(w)∗(1)) also vanish.

This fact induces a natural inclusion SelF,(2)(T
∨(1))→ SelF,(1)(T

∨(1)) with

Zp-torsion cokernel. By taking Pontryagin duals, this inclusion induces a surjec-

tive homomorphism with Zp-torsion kernel

Sel′F (T ) := SelF,(1)

(
T∨(1)

)∨ → SelF,(2)

(
T∨(1)

)∨
=: SelF (T )

and hence also an identification of lattices Sel′F (T )tf = SelF (T )tf . In addition,

the long exact cohomology sequence of (5) gives an exact sequence

(13)
⊕

w∈ΣF \Σp
F

H1
(
Cf (Fw, T )

)
→H2

(
SCF (Σ, T )

)
→H2

(
SCF (T )

)
→ 0

and hence also, since each module H1(Cf (Fw, T )) is finite by Lemma 2.1(iv), an

identification of lattices H2(SCF (Σ, T ))tf =H2(SCF (T ))tf .

The key point now is that, as shown in the proof of [5, Proposition 4.2.35(2)],

the local and global duality theorems combine to give an exact sequence

(14) 0→ Sel′F (T )→H2
(
SCF (T )

)
→

⊕
w∈Σp

F

H2(Fw, T
0
w)

and hence also an induced exact sequence

0→ Sel′F (T )tf →H2
(
SCF (T )

)
tf
→QF → 0

for a suitable subquotient QF of
⊕

w∈Σp
F
H2(Fw, T

0
w). By local duality, each mod-

ule H2(Fw, T
0
w) is isomorphic to H0(Fw, (T

0
w)

∨(1))∨ and hence to a quotient of

((T 0
w)

∨(1))∨ ∼= T 0
w(−1). This in turn implies that
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rkp(QF )≤ rkp

( ⊕
w∈Σp

F

H2(Fw, T
0
w)

)
≤

⊕
w∈Σp

F

rkp
(
T 0
w(−1)

)
=

⊕
w∈Σp

F

rkp(T
0
w)

≤#Σp
F · rk(T ),

as required to prove the claimed inequality. �

LEMMA 3.5

Fix F/E as in Lemma 3.4, and set G :=GF/E . Then for each subgroup J of G

one has rkp(Ĥ
−1(J,H2(SCF (Σ, T ))tf))≤ rkp(H

2(SCFJ (Σ, T ))tor) + rk(T ).

Proof

Set M :=H2(SCF (Σ, T )). Then, as Ĥ
−1(J,Mtf) is finite and Mtf is torsion-free,

the group Ĥ−1(J,Mtf) can be computed as the torsion subgroup of H0(J,Mtf).

In particular, by taking J -coinvariants of the tautological exact sequence

0→Mtor →M →Mtf → 0

and passing to torsion subgroups in the resulting sequence, one obtains a surjec-

tive homomorphism H0(J,M)tor → Ĥ−1(J,Mtf) and hence an inequality

rkp
(
Ĥ−1(J,Mtf)

)
≤ rkp

(
H0(J,M)tor

)
.

To compute the right-hand term here, we note that SCF (Σ, T ) is acyclic

in degrees greater than three and hence that the hypertor spectral sequence

combines with the isomorphism in Lemma 2.1(ii) to give an exact sequence

Tor2Zp[J]

(
Zp,H

3
(
SCF (Σ, T )

))
→H0(J,M)tor →H2

(
SCFJ (Σ, T )

)
tor

and hence an inequality

rkp
(
H0(J,M)tor

)
≤ rkp

(
H2

(
SCFJ (Σ, T )

)
tor

)
+ rkp

(
Tor2Zp[J]

(
Zp,H

3
(
SCF (Σ, T )

)))
.

Now, since J is cyclic, the group Tor2Zp[J](Zp,H
3(SCF (Σ, T ))) can be identified

with the subquotient Ĥ−1(J,H3(SCF (Σ, T ))) of H
3(SCF (Σ, T )). To deduce the

claimed result from the above two displayed inequalities, it is thus enough to use

the bound on rkp(H
3(SCF (Σ, T ))) given by Lemma 2.1(iii). �

3.4
We now deduce Theorem 1.1 from Proposition 3.3. For any finite extension L of

k in K, we set ΓL :=GL∞/L and we write ΛL for the associated Iwasawa algebra

Zp[[ΓL]]. We write SCL∞(Σ, T ) for the complex of ΛL-modules constructed by

taking the inverse limit over m of the complexes SCLm(Σ, T ) with respect to the

transition morphisms

SCLm(Σ, T )→ Zp[GLm−1/L]⊗L
Zp[GLm/L] SCLm(Σ, T )∼= SCLm−1(Σ, T )
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that are induced by Lemma 2.1(ii). Then SCL∞(Σ, T ) belongs to Dperf(ΛL) (as a

consequence of Lemma 2.1(i)), and for each nonnegative integer n there is a natu-

ral isomorphism Zp[GLn/L]⊗L
ΛL

SCL∞(Σ, T )∼= SCLn(Σ, T ) in Dperf(Zp[GLn/L]).

In particular, we may apply the result of Lemma 3.6 below to deduce that

for each such n one has

(15) rkp
(
H2

(
SCLn(Σ, T )

)
tor

)
≤ pn · μL(Σ, T ) + κL∞/L(Σ, T ),

where μL(Σ, T ) is the μ-invariant of the (finitely generated) ΛL-module

H2(SCL∞(Σ, T )), and the nonnegative integer κL∞/L(Σ, T ) depends only on the

structures of the ΛL-modules H2(SCL∞(Σ, T )) and H3(SCL∞(Σ, T )).

Now if L′ is any other finite extension of k in K for which one has L∞ = L′
∞,

then Γ := ΓL ∩ ΓL′ is an open subgroup of GL∞/k and

[ΓL : Γ] · μL(Σ, T ) = μ(L∞)Γ(Σ, T ) = [ΓL′ : Γ] · μL′(Σ, T ),

and so the rational number

μL∞(Σ, T ) :=
μL(Σ, T )

[L : k]
=

[ΓL : Γ] · μL(Σ, T )

[ΓL : Γ] · [GL∞/k : ΓL]

=
[ΓL′ : Γ] · μL′(Σ, T )

[GL∞/k : Γ]
=

μL′(Σ, T )

[GL∞/k : ΓL′ ]
=

μL′(Σ, T )

[L′ : k]

depends only on the field L∞ rather than L. In addition, if we write [ΓL : Γ] = pn

and [ΓL′ : Γ] = pn
′
, then for any nonnegative integer b one has Ln+b = L′

n′+b.

For each of the finitely many intermediate fields E of K/k∞, we now fix a

finite extension E′ of k in K with E = E′
∞, and we write μ∗ and κ∗ for the

maximum values of μE(Σ, T ) and κE/E′(Σ, T ) as E ranges over this finite set.

For any finite extension F of k in K, we write E′
F for the unique field E′ as

above, for which EF :=E′
F,∞ is equal to F∞. Then for any large enough integer

a, one has Fa = E′
F,m(a) for some nonnegative integer m(a) and so (15), with

L∞/L replaced by EF /F , implies that

rkp
(
H2

(
SCFa(Σ, T )

)
tor

)
= rkp

(
H2

(
SCE′

F,m(a)
(Σ, T )

)
tor

)
≤ pm(a) · μE′

F
(Σ, T ) + κEF /E′

F
(Σ, T )

= [E′
F,m(a) : k] · μEF

(Σ, T ) + κEF /E′
F
(Σ, T )

≤ [Fa : k] · μ∗ + κ∗,

as required. This gives an inequality as in Proposition 3.3 (with μ = μ∗ and

κ′ = κ∗) and hence completes the proof of Theorem 1.1.

LEMMA 3.6

Let Γ be a group that is topologically isomorphic to Zp, and set Λ := Zp[[Γ]]. Let

C• be an object of Dperf(Λ), and in each degree i write μi(C•) for the μ-invariant

of the (finitely generated) Λ-module Hi(C•). Then in each degree i there exists a

nonnegative integer κi(C•) that depends only on the Λ-module Hi(C•) and the
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Λ-torsion submodule of Hi+1(C•) and is such that for each nonnegative integer

n one has rkp(H
i(Zp[Γ/Γ

pn

]⊗L
Λ C•)tor)≤ pn · μi(C•) + κi(C•).

Proof

For any Λ-module N , we write NTor for its Λ-torsion submodule and NTF for

the quotient N/NTor. We recall that a finitely generated Λ-torsion module E is

said to be elementary if E = Etor ⊕ Etf , where Etor is a direct sum of modules

Λ/(pe) for suitable natural numbers e and Etf is a direct sum of modules Λ/(f)

for suitable distinguished polynomials f .

In each degree i, we set M i := Hi(C•). For each natural number n, we

set Γn := Γpn

, write Λn for the Iwasawa algebra Zp[[Γ
n]], and fix a topological

generator γn of Γn. We note that the natural exact triangle C• 1−γn−−−→ C• →
Zp ⊗L

Λn
C• →C•[1] in Dp(Λ) induces an exact sequence of Zp-modules

0→H0(Γ
n,M i)tor →Hi(Zp ⊗L

Λn
C•)tor →H0(Γn,M i+1)tor

and hence an inequality

(16) rkp
(
Hi(Zp ⊗L

Λn
C•)tor

)
≤ rkp

(
H0(Γ

n,M i)tor
)
+ rkp

(
H0(Γn,M i+1)tor

)
.

We now study the two terms on the right-hand side of this inequality separately.

To study the first term, we note that Tor1Λn
(Zp,M

i
TF) is isomorphic to

H0(Γn,M i
TF) and hence that the tautological exact sequence 0→M i

Tor →M i →
M i

TF → 0 induces an exact sequence of Zp-modules

(17) H0(Γn,M i
TF)→H0(Γ

n,M i
Tor)→H0(Γ

n,M i)→H0(Γ
n,M i

TF)→ 0.

There is also an exact sequence of Λ-modules 0→M i
TF → Y i →N i

1 → 0 in which

Y i is free and N i
1 is finite, and by taking Γn-coinvariants of this sequence one finds

that H0(Γn,M i
TF) vanishes and that there is an exact sequence of Zp-modules

0→H0(Γn,N i
1)→H0(Γ

n,M i
TF)→H0(Γ

n, Y i).

In particular, since H0(Γ
n, Y i) is Zp-free, these facts combine with (17) to give an

exact sequence of finite Zp-modules H0(Γ
n,M i

Tor)tor →H0(Γ
n,M i)tor →H0(Γn,

N i
1), and hence to inequalities

rkp
(
H0(Γ

n,M i)tor
)
≤ rkp

(
H0(Γ

n,M i
Tor)tor

)
+ rkp

(
H0(Γn,N i

1)
)

≤ rkp
(
H0(Γ

n,M i
Tor)

)
+ rkp

(
H0(Γn,N i

1)
)

(18)

≤ rkp
(
H0(Γ

n,N i
2)
)
+ rkp

(
H0(Γ

n, M̃ i
Tor)

)
+ rkp

(
H0(Γn,N i

1)
)
.

Here N i
2 denotes the maximal finite Λ-submodule of M i and M̃ i

Tor denotes

the quotient of M i
Tor by N i

2, the second inequality is obvious, and the third

is a consequence of the obvious exact sequence H0(Γ
n,N i

2)→ H0(Γ
n,M i

Tor)→
H0(Γ

n, M̃ i
Tor).

To compute an upper bound on rkp(H0(Γ
n, M̃ i

Tor)), we choose an exact

sequence of Λ-modules 0 → M̃ i
Tor → E i → N i

3 → 0 in which N i
3 is finite and

E i elementary. Then the induced exact sequence H0(Γn,N i
3)→H0(Γ

n, M̃ i
Tor)→

H0(Γ
n,E i) implies that
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rkp
(
H0(Γ

n, M̃ i
Tor)

)
≤ rkp

(
H0(Γn,N i

3)
)
+ rkp

(
H0(Γ

n,E i)
)

≤ rkp
(
H0(Γn,N i

3)
)
+ pn · μi(C•) + rkp

(
H0(Γ

n,E i
tf)

)
,

where the second inequality is true because the number of direct summands of

E i
tor is at most the μ-invariant of E i (which is equal to μi(C•)) and for each such

summand Λ/(pe) one has rkp(H0(Γ
n,Λ/(pe))) = rkp((Zp/p

e)[Γ/Γn]) = pn.

After substituting this bound on rkp(H0(Γ
n, M̃ i

Tor)) into (18), and recalling

that the Zp-module E i
tf is finitely generated and that the modules N i

1, N
i
2, and

N i
3 are all finite, one finds that an upper bound on rkp(H

i(Zp ⊗L
Λn

C•)tor) of the

stated form will follow from (16), provided that the p-rank of H0(Γn,M i+1)tor is

bounded independently of n. To show this, we use the equalityH0(Γn,M i+1)tor =

H0(Γn,M i+1
Tor )tor and the existence of an exact sequence of torsion Λ-modules 0→

N i+1
4 →M i+1

Tor → E i+1, where N i+1
4 is finite and E i+1 is an elementary module.

This sequence gives rise to an exact sequence of Zp-modules 0→H0(Γn,N i+1
4 )→

H0(Γn,M i+1
Tor )→H0(Γn,E i+1) and hence to an inequality

rkp
(
H0(Γn,M i+1)tor

)
= rkp

(
H0(Γn,M i+1

Tor )tor
)
≤ rkp

(
H0(Γn,M i+1

Tor )
)

≤ rkp
(
H0(Γn,N i+1

4 )
)
+ rkp

(
H0(Γn,E i+1)

)
= rkp

(
H0(Γn,N i+1

4 )
)
+ rkp

(
H0(Γn,E i+1

tf )
)
,

where the equality is valid because H0(Γn,E i+1
tor ) vanishes.

Since N i+1
4 is finite and E i+1

tf is a finitely generated Zp-module, this inequality

gives an upper bound on rkp(H
0(Γn,M i+1

Tor )tor) that is independent of n and hence

completes the proof of the claimed result. �

4. Proof of Corollary 1.4

4.1
We start with a general observation.

For each finite extension L of k inK, we writeXL∞(T ), SelL∞(T ), Sel′L∞(T ),

andH2(SCL∞(T )) for the respective inverse limits lim←−m
XLm(T ), lim←−m

SelLm(T ),

lim←−m
Sel′Lm

(T ), and lim←−m
H2(SCLm(T )) with the transition morphisms in each

case taken to be the natural corestriction maps. We also fix a finite set of places

Σ of k as in Section 2.1.

LEMMA 4.1

For each finite extension L of k in K, the conditions of Theorem 1.1 imply that

the μ-invariants of the ΛL-modules H2(SCL∞(Σ, T )) and XL∞(T ) coincide.

Proof

Since XLn(T ) is defined to be the Zp-torsion subgroup of SelLn(T ), it suffices

to show that H2(SCL∞(Σ, T )) has the same μ-invariant as does the ΛL-module

SelL∞(T ). To do this, we adapt the argument of Lemma 3.4.
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We note first that, by taking the inverse limit over F = Ln of the sequences

(13) and (14), one obtains exact sequences of ΛL-modules⎧⎨
⎩
lim←−n

⊕
w∈ΣLn\Σp

Ln
H1(Cf (Ln,w, T ))→H2(SCL∞(Σ, T ))→H2(SCL∞(T ))→ 0,

0→ Sel′L∞(T )→H2(SCL∞(T ))→ lim←−n

⊕
w∈Σp

Ln
H2(Ln,w, T

0
w)

in which, since each place of K above Σ has an open decomposition group

in GK/k, each of the direct sums
⊕

w∈ΣLn\Σp
Ln

H1(Cf (Ln,w, T )) and⊕
w∈Σp

Ln
H2(Ln,w, T

0
w) has bounded p-rank as n varies (the first as a conse-

quence of Lemma 2.1(iv) and the second as a consequence of the argument

in Lemma 3.4). By applying Lemma 4.2 below to these exact sequences, we

can therefore deduce that the μ-invariants of the ΛL-modules H2(SCL∞(Σ, T )),

H2(SCL∞(T )) and Sel′L∞(T ) coincide.

To compare the μ-invariants of Sel′L∞(T ) and SelL∞(T ), we first recall (from

the proof of Lemma 3.4) that for each n and each place w of Ln the group

H1
f,(2)(Ln,w, T

∨(1)) is equal to the maximal divisible subgroup of H1
f,(1)(Ln,w,

T∨(1)) and hence that there is a natural exact sequence

(19)
⊕

w/∈Σ∞
Ln

(
H1

f,(1)

(
Ln,w, T

∨(1)
)
cotor

)∨ → SelLn(T )→ Sel′Ln
(T )→ 0,

where in the direct sum w runs over all non-Archimedean places of Ln, and we

write Xcotor for the quotient of a Zp-module X by its maximal divisible subgroup.

Now, for each w outside Σ∞
Ln

∪ Σp
Ln

, the group (H1
f,(1)(Ln,w, T

∨(1))cotor)
∨

is isomorphic to a subgroup of (H0(Iw, T
∨(1))∨)tor and so vanishes unless w

belongs to ΣLn , in which case

rkp
((
H1

f,(1)

(
Ln,w, T

∨(1)
)
cotor

)∨)≤ rkp
(
H0

(
Iw, T

∨(1)
)∨)≤ rkp

((
T∨(1)

)∨)
= rkp

(
T (−1)

)
= rk(T ).

Also, for w in Σp
Ln

local duality implies H1
f,(1)(Ln,w, T

∨(1))cotor is isomorphic

to a quotient of (H1(Ln,w, T/T
0
w)tor)

∨ ∼= (H0(Ln,w,Qp/Zp ⊗Zp T/T
0
w)cotor)

∨ and

hence to a subquotient of (Qp/Zp⊗Zp T/T
0
w)

∨ ∼= ker(T ∗ 
−→ (T 0
w)

∗), where 
 is the

natural restriction map, so that

rkp
((
H1

f,(1)

(
Ln,w, T

∨(1)
)
cotor

)∨)
= rkp

(
H1

f,(1)

(
Ln,w, T

∨(1)
)
cotor

)
≤ rkp(T

∗) = rk(T ).

In particular, since our assumption on the decomposition subgroups of places in

Σ implies that there exists an upper bound on the cardinality of ΣLn that is

independent of n, the above observations combine to imply that the p-rank of

the first module in (19) is also bounded independently of n.

Thus, by taking the inverse limit over n of these sequences (and again apply-

ing Lemma 4.2 below), we can deduce that Sel′L∞(T ) and SelL∞(T ) have the

same μ-invariant, as required. �
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The following result is certainly well known, but for lack of a convenient reference

we include a proof.

LEMMA 4.2

Let {φm}m≥0 be an inverse system of Zp[GLm/L]-module homomorphisms φm :

Xm → Ym with the following properties.

(i) The ΛL-module lim←−m
Xm is finitely generated.

(ii) The p-ranks of both ker(φm) and cok(φm) are bounded independently

of m.

Then the ΛL-module lim←−m
Ym is finitely generated and has the same μ-invariant

as lim←−m
Xm.

Proof

Set X∞ := lim←−m
Xm, Y∞ := lim←−m

Ym, Z1 := lim←−m
ker(φm), and Z2 :=

lim←−m
cok(φm), and write MTor for the ΛL-torsion submodule of any finitely gen-

erated ΛL-module M . We will show that (ii) implies that Z1 and Z2 are finitely

generated over Zp. Assuming for the moment that this is true, then the natural

exact sequence

0→ Z1 →X∞ → Y∞ → Z2

combines with (i) to imply that Y∞ is a finitely generated ΛL-module and also

induces an exact sequence of torsion ΛL-modules

0→ Z1 → (X∞)Tor → (Y∞)Tor → Z2,

which shows that the μ-invariants of X∞ and Y∞ coincide (since μ-invariants are

multiplicative on exact sequences of finitely generated torsion ΛL-modules and

the μ-invariants of Z1 and Z2 vanish).

To complete the proof, it therefore suffices to show that if Un is any inverse

system of Zp-modules for which there exists an integer d with rkp(Un) ≤ d for

all n, then the Zp-module U∞ := lim←−n
Un is such that U∞/p is isomorphic to

a subgroup of Um/p for some m. To do this, write the transition morphisms

Un/p → Un−1/p as πn, and note that U∞/p can be computed as lim←−n
(Un/p)

′

with (Un/p)
′ :=

⋂
i≥1 im(πn+i) ⊆ Un/p. Since each induced transition map π′

n :

(Un/p)
′ → (Un−1/p)

′ is surjective, the p-ranks rkp((Un/p)
′) increase monotoni-

cally with n and hence (since they are each at most d) stabilize.

This in turn implies the existence of a natural number n0 such that π′
n is

bijective for each n≥ n0 and so the natural projection map U∞/p→ (Un0/p)
′ is

bijective, as required. �

4.2
We now turn to the proof of Corollary 1.4. We note first that the given assump-

tions combine with Lemma 4.1 and the argument of Section 3.4 to imply that

the rational number μ in Theorem 1.1 can be taken to be zero and hence that

the natural number d in Theorem 1.1 is independent of F .
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In addition, in this case the proof of Theorem 1.1 combines with the argument

of Section 3.2 to prove a stronger version of the inequality (1). To state this, we

write Cn for the cyclic group of order pn and mI(K/k,T ) for each I in IMp(Cn)

for the maximum multiplicity with which I occurs (up to isomorphism) as a

direct summand in any lattice SelFa(T )tf as F/E ranges over cyclic extensions

with k ⊆ E ⊆ F ⊂K, E/k finite, and F∞/E∞ of degree pn, and a ranges over

all sufficiently large integers, and in each case SelFa(T ) is regarded as a Zp[Cn]-

module via some choice of isomorphism of GFa/Ea
∼=GF∞/E∞ with Cn. Then the

argument of Section 3.2 combines with the fact that d is independent of n to

prove an inequality

(20)
∑

I∈IMp(Cn)

mI(K/k,T )≤ pn(n−1)d2 · κd
n.

Now for each extension Fa/Ea as above, the Krull–Schmidt theorem gives an

isomorphism of Zp[Cn]-modules of the form

(21) SelFa(T )tf
∼=
( ⊕
0≤m≤n

Zp[Cm]sFa,m

)
⊕

⊕
I∈IMp(Cn)

ImFa,I ,

where each integer sFa,m is nonnegative and each multiplicity mFa,I :=

mI(SelFa(T )) is at most mI(K/k,T ).

In particular, since the inequality (20) implies that each mI(K/k,T ) is at

most pn(n−1)d2 ·κd
n and that there are only finitely many I ’s for whichmI(K/k,T )

can be nonzero, there exists a bound δpn on the Zp-ranks of the modules

RFa :=
⊕

I∈IMp(Cn)

ImFa,I

that depends only upon K/k, T and n. The isomorphism (21) is therefore a

decomposition of the required form (2), at least if one defines δ[F :E] to be the

maximum of δpm for nonnegative integers m with pm ≤ [F :E].

To deduce the inequality (3), we now set G :=GFa/Ea
and simply note that

Qp ·SelEa(T ) identifies withH0(G,Qp ·SelFa(T )) and hence that the isomorphism

(2) implies that

[F :E] · dimQp

(
Qp · SelEa(T )

)
= [F :E] · dimQp

(
H0

(
G,Qp · SelFa(T )

))
≥#G ·

∑
H≤G

dimQp

(
H0

(
G,Qp[G/H]sFa,H

))

=#G ·
∑
H≤G

sFa,H

≥
∑
H≤G

dimQp

(
Qp[G/H]sFa,H

)

= dimQp

(
Qp · SelFa(T )

)
− dimQp(Qp ·RFa)

≥ dimQp

(
Qp · SelFa(T )

)
− δ[F :E],

as required. This completes the proof of Corollary 1.4.
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REMARK 4.3

A closer inspection of the arguments used (in Sections 3 and 4) to prove Theo-

rem 1.1 and Corollary 1.4 shows that these results remain true if one replaces all

occurrences of SelF (T ) by either H2(SCF (Σ, T )) or H2(SCF (T )) or by Green-

berg’s Selmer group Sel′F (T ).
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