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Abstract We study 3-dimensional divisorial contractions to cDV points with discrep-

ancy greater than 1 which are of exceptional type. We show that every 3-dimensional

divisorial contraction is obtained as a weighted blowup.

1. Introduction

Let P ∈ X be a germ of a 3-dimensional terminal singularity defined over C.

A projective birational morphism f : Y →X is called a divisorial contraction if

(i) −KY is f -ample,

(ii) Y has only terminal singularities, and

(iii) the exceptional locus E of f is an irreducible divisor.

In this situation, we write KY = f∗KX + a(E,X)E with a(E,X) ∈Q. The coef-

ficient a(E,X) is called the discrepancy of E over X . When f(E) = P , that is,

fY \E : Y \E →X \ {P} is an isomorphism, we write f : (Y ⊃E)→ (X � P ).

It is a fundamental problem in 3-dimensional birational geometry to find all

divisorial contractions f : (Y ⊃ E)→ (X � P ). In this article, I finish the clas-

sification of 3-dimensional divisorial contractions which contract an irreducible

divisor to a point. The classification of all divisorial contractions to a point tells

us that they are obtained as weighted blowups.

THEOREM 1.1

Let f : Y →X be a 3-dimensional divisorial contraction whose exceptional divisor

E contracts to a point P . Then f is a weighted blowup of the singularity P ∈X

embedded into a cyclic quotient 5-fold.

A detailed version of our main results in Theorem 1.1 shall be given in Section 2.

The classification of all divisorial contractions to a non-Gorenstein point P ∈X

in Theorem 1.1 has already been settled by [2]–[4], [10], [11], and [13]. For a

Gorenstein point P ∈X , several cases of divisorial contractions to P have already
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Table 1. Divisorial contraction of exceptional type

Type Terminal P a E3 Non-Gorenstein terminal on Y

e1 cA2
1, cD 4 1/r 1

r
(1,−1,8); r ≡±3 (mod 8)1

cD 2 2/r 1
r
(1,−1,4)

e2 cD, cE6,7 2 1/r cA/r or cD/3 deforming to

2× 1
r
(1,−1,2); cD/3 for cE6,7

e3 cA2, cD, cE6 3 1/4 cAx/4 deforming to
1
2
(1,1,1), 1

4
(1,3,3)

e5 cE7 2 1/7 1
7
(1,6,6)

e9 cE7,8 2 1/15 1
3
(1,2,2) and 1

5
(1,4,4)

been classified. Kawakita [7] showed that f is obtained as a suitable weighted

blowup in the case of a nonsingular point P , and Kawakita [8] classified divisorial

contractions to a cA1 point. Kawakita [10] also classified all divisorial contractions

to a point into two types: the ordinary type and the exceptional type. We know

that all divisorial contractions of ordinary type are classified by [10, Theorem 1.2].

Hayakawa [5], [6] classified divisorial contractions to points of type cD, cE with

discrepancy 1. As a result, the remaining cases in Theorem 1.1 are divisorial

contractions of exceptional type with discrepancy greater than 1, which are listed

in Table 1. The main aim in this article is to finish the classification of all divisorial

contractions listed in Table 1.

Chen, Hayakawa, and Kawakita found several examples of exceptional type

listed in Table 1. There are several examples of type e1, e2, e3, and e9 which are

weighted blowups by [10]. Chen has examples of type e1 with P of type cD and

discrepancy 4, and there is an example of type e5 in [1].

In this article, we describe divisorial contractions to a Gorenstein point,

and we show that every divisorial contraction listed in Table 1 is obtained as a

weighted blowup if it exists. Our method of classification is to study the structure

of the graded ring
⊕

j f∗O(−jE)/f∗O(−(j + 1)E). We find local coordinates

at P to meet this structure and verify that f should be a certain weighted

blowup. In certain cases, there are some choices of local coordinates unlike in

the non-Gorenstein cases. So we should compute weighted blowups in detail, and

in several cases, there is no suitable local coordinate. There are no divisorial

contractions of type e1 with P of type cA2 and discrepancy 4, type e2 with type

cE7, and type e3 with type cE6.

We shall give the results in Section 2, and their proofs shall be given in

Section 4. We explain terminal singularity, weighted blowup, and the singular

Riemann–Roch theorem in Section 3.

2. Main results

We consider the divisorial contractions f : (Y ⊃E)→ (X � P ) listed in Table 1.

Our main results show that such contractions are obtained as weighted blowups

1The new case and the condition given by the erratum [12].
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embedded into C4 or C5 if they exist. The following is a detailed version of our

main results. Proofs shall be given in Section 4.

THEOREM 2.1

There is no divisorial contraction of type e1 which contracts to a cA2 point with

discrepancy 4.

THEOREM 2.2

Suppose that f is a divisorial contraction of type e1 which contracts to a cD point

with discrepancy 4. Then f is the weighted blowup with wt(x1, x2, x3, x4, x5) =

( r+1
2 , r−1

2 ,4,1, r) with r ≥ 7, r ≡±3 (mod 8), after an identification

P ∈X � o ∈
(

x2
1 + λx2x

k
3 + x4x5 + p(x3, x4) = 0,

x2
2 + 2x1q1(x3, x4) + q2(x3, x4) + x5 = 0

)
⊂C5

x1x2x3x4x5
.

Moreover, the equations defining X satisfy the following conditions.

(i) λ ∈ C, k > r+3
8 , wtp≥ r+ 1, wt q1 =

r−3
2 , wt q2 = r− 1, and q1, q2 are

weighted homogeneous for the weights distributed above.

(ii) q2 is not square if q1 = 0.

(iii) If r ≡ 3 (mod 8) (resp., r ≡−3 (mod 8)), then x
r+1
4

3 ∈ p (resp., x
r−1
4

3 ∈
q2).

THEOREM 2.3

Suppose that f is a divisorial contraction of type e1 which contracts to a cD point

with discrepancy 2. Then f is the weighted blowup with wt(x1, x2, x3, x4, x5) =

( r+1
2 , r−1

2 ,2,1, r) with r ≥ 5 after an identification

P ∈X � o ∈
(

x2
1 + λx2x

k
3 + x4x5 + p(x3, x4) = 0,

x2
2 + 2x1q1(x3, x4) + q2(x3, x4) + x5 = 0

)
⊂C5

x1x2x3x4x5
.

Moreover, the equations defining X satisfy the following conditions.

(i) λ ∈ C, k > r+1
4 , wtp≥ r+ 1, wt q1 =

r−3
2 , wt q2 = r− 1, and q1, q2 are

weighted homogeneous for the weights distributed above.

(ii) q2 is not square if q1 = 0.

(iii) x
r+1
2

3 ∈ p.

THEOREM 2.4

Suppose that f is a divisorial contraction of type e2 which contracts to a cD point

with discrepancy 2. Then one of the following holds.

(i) f is the weighted blowup with wt(x1, x2, x3, x4) = (r, r,2,1) after an iden-

tification of P ∈X with

o ∈
(
x2
1 + x2

2x4 + 2x2x4p(x3, x4) + λx2x
k
3 + q(x3, x4) = 0

)
⊂C4

x1x2x3x4
.

Moreover, the equation defining X satisfies the following conditions.
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(1) λ ∈C, k > r
2 , wt q ≥ 2r, and p is weighted homogeneous of weight r− 1

for the weights distributed above.

(2) p 
= 0 or qwt=2r 
= 0, and qwt=2r is not square if p= 0.

(3) xr
3 ∈ q.

The non-Gorenstein singularity of Y is of type cA/r.

(ii) f is the weighted blowup with wt(x1, x2, x3, x4) = (3,3,1,2) after an iden-

tification of P ∈X with

o ∈
(
x2
1 + x2

2x4 + 2x2x4p(x3, x4) + x2x
3
3 + q(x3, x4) = 0

)
⊂C4

x1x2x3x4
.

Moreover, the equation defining X satisfies the following conditions.

(1) wt q ≥ 6, and p is weighted homogeneous of weight 2 for the weights

distributed above.

(2) x3
4 ∈ q.

The non-Gorenstein singularity of Y is of type cD/3, and P is of type cD4.

THEOREM 2.5

Suppose that f is a divisorial contraction of type e2 which contracts to a cE6

point with discrepancy 2. Then f is the weighted blowup with wt(x1, x2, x3, x4) =

(3,3,2,1) after an identification of P ∈X with

o ∈
(
x2
1 + {x2 − p(x3, x4)}3 + x2g(x3, x4) + h(x3, x4) = 0

)
⊂C4

x1x2x3x4
.

Moreover, the equation defining X satisfies the following conditions.

(i) wtg ≥ 3, wth≥ 6, and p is weighted homogeneous of weight 2 for the

weights distributed above.

(ii) deg g ≥ 3 and degh≥ 4.

(iii) x3 ∈ p and x3
4 ∈ g.

There is no divisorial contraction of type e2 which contracts to a cE7 point with

discrepancy 2.

THEOREM 2.6

Suppose that f is a divisorial contraction of type e3 which contracts to a cA2

point with discrepancy 3. Then f is the weighted blowup with wt(x1, x2, x3, x4) =

(4,3,2,1) after an identification of P ∈X with

o ∈
(
x2
1 + x2

2 + 2cx1x2 + 2x1p(x3, x4)

+ 2cx2pwt=3(x3, x4) + x3
3 + g(x3, x4) = 0

)
⊂C4

x1x2x3x4
.

Moreover, the equation defining X satisfies the following conditions.

(i) c 
=±1, wtg ≥ 6, and p contains only monomials with weight 2 and 3

for the weights distributed above.

(ii) x2
4 ∈ p and deg g(x3,1)≤ 2.
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THEOREM 2.7

Suppose that f is a divisorial contraction of type e3 which contracts to a cD4

point with discrepancy 3. Then f is the weighted blowup with wt(x1, x2, x3, x4) =

(3,4,2,1) after an identification of P ∈X with

o ∈
(
x2
1 + x2

2x4 + 2x2x4p(x3, x4) + λx2x
k
3 + q(x3, x4) = 0

)
⊂C4

x1x2x3x4
.

Moreover, the equation defining X satisfies the following conditions.

(i) λ ∈ C, k > 2, wt q ≥ 6, and p contains only monomials with weight at

most 3 for the weights distributed above.

(ii) x4 ∈ p and x3
3 ∈ q.

For any n > 5, there is no divisorial contraction of type e3 which contracts to a

cDn point with discrepancy 3.

THEOREM 2.8

There is no divisorial contraction of type e3 which contracts to a cE6 point with

discrepancy 3.

THEOREM 2.9

Suppose that f is a divisorial contraction of type e5 which contracts to a cE7 point

with discrepancy 2. Then f is the weighted blowup with wt(x1, x2, x3, x4, x5) =

(5,3,2,2,7) after an identification

P ∈X � o ∈
(
x2
1 + x2x5 + p(x3, x4) = 0,

x2
2 + q(x3, x4) + x5 = 0

)
⊂C5

x1x2x3x4x5
.

Moreover, the equations defining X satisfy the following conditions.

(i) wtp≥ 10, wt q ≥ 6 for the weights distributed above.

(ii) gcd(p5, q3) = 1.

THEOREM 2.10

Suppose that f is a divisorial contraction of type e9 which contracts to a cE7,8

point with discrepancy 2. Then f is the weighted blowup with wt(x1, x2, x3, x4) =

(7,5,3,2) after an identification of P ∈X with

o ∈
(
x2
1 + x3

2 + λx2
2x

2
4 + x2g(x3, x4) + h(x3, x4) = 0

)
⊂C4

x1x2x3x4
.

Moreover, the equation defining X satisfies the following conditions.

(i) λ ∈C and wtg ≥ 9, wth≥ 14 for the weights distributed above.

(ii) If P is of type cE7 (resp., cE8), then x3
3 ∈ g (resp., x5

3 or x4
3x4 ∈ h).

(iii) x7
4 ∈ h.

We can show that every 3-dimensional divisorial contraction to a Gorenstein

point is obtained as a weighted blowup by [4]–[9], and the above theorems. There-

fore, we can prove Theorem 1.1 by [11]. Proofs of these theorems shall be given

in Section 4.
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NOTATION

(i) We denote Cn with coordinates x1, . . . , xn by Cn
x1...xn

.

(ii) We define the action of a cyclic group μm of order m on Cn
x1...xn

by

(x1, . . . , xn) �→ (ζa1x1, . . . , ζ
anxn),

where ζ is a primitive mth root of unity. The quotient space is denoted by

Cn
x1...xn

/ 1
m (a1, . . . , an), C

n/ 1
m (a1, . . . , an), or simply 1

m (a1, . . . , an).

(iii) For wt(x3, x4) = (a, b) and g(x3, x4) =
∑

pijx
i
3x

j
4 ∈C{x3, x4}, we define

wt
(
g(x3, x4)

)
= inf{ai+ bj | pij 
= 0}.

For a positive integer n, we define

gwt=n(x3, x4) =
∑

ai+bj=n

pijx
i
3x

j
4,

gwt≥n(x3, x4) =
∑

ai+bj≥n

pijx
i
3x

j
4.

(iv) Let C{x1, . . . , xn} be the ring of convergent power series in variables

x1, . . . , xn. For f ∈ C{x1, . . . , xn}, we denote by fm the homogeneous part of

degree m of f .

(v) We say that a monomial, for example, xn, appears in a power series f

or f contains xn if there exists a monomial xn with nonzero coefficient in the

power series expansion of f , and we denote it by xn ∈ f .

3. Preliminaries

3.1. Classification of terminal singularities
It is known that a 3-dimensional Gorenstein terminal singularity is an isolated

cDV hypersurface singularity, that is, a singularity with local equation of the

form

f(x1, x2, x3) + x4g(x1, x2, x3, x4) = 0

for some f(x1, x2, x3) defining a Du Val (equivalently rational double point)

singularity. If P ∈ X is a 3-dimensional Gorenstein terminal singularity, then

according to the type of f(x1, x2, x3), we have that P ∈X � o ∈ (ϕ= 0)⊂C4 for

some ϕ belongs to one of the following:

(i) type cA: (x1x2 + g(x3, x4) = 0)⊂C4 with g(x3, x4) ∈m2,

(ii) type cD: (x2
1 + x2

2x4 + λx2x
l
3 + g(x3, x4) = 0) ⊂ C4 with λ ∈ C, l ≥ 2,

g(x3, x4) ∈m3,

(iii) type cE: (x2
1+x3

2+x2g(x3, x4)+h(x3, x4) = 0)⊂C4 with g(x3, x4) ∈m3,

h(x3, x4) ∈m4,

where m denotes the maximal ideal of o ∈ C4. In the cE case, it is of type cE6

(resp., cE7, cE8) if h4 
= 0 (resp., h4 = 0 and g3 
= 0, h4 = g3 = 0 and h5 
= 0).

To prove Theorems 2.1 and 2.6, we need to construct a standard identifica-

tion.
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LEMMA 3.1

Let P ∈X be a germ of a 3-dimensional Gorenstein terminal singularity. If P is

of type cA2, then there is an identification

P ∈X � o ∈
(
x1x2 + x3

3 + g(x3, x4) = 0
)
⊂C4

x1x2x3x4

� o ∈
(
x2
1 + x2

2 + x3
3 + g(x3, x4) = 0

)
⊂C4

x1x2x3x4
,

where deg g(x3,1)≤ 2.

Proof

By definition, there is an identification

P ∈X � o ∈
(
x2
1 + x2

2 + x3
3 + x4F (x1, x2, x3, x4) = 0

)
⊂C4

x1x2x3x4

for some F (x1, x2, x3, x4) ∈ m2. By using the Weierstrass preparation theorem

and completing a square, we may assume that

P ∈X � o ∈
(
x2
1 + x2

2 + x3
3 + x4F

′(x3, x4) = 0
)

for F ′(x3, x4) ∈ m2. We may assume that degF ′(x3,1) ≤ 2 by the Weierstrass

preparation for x3. Thus, we get the desired forms by the automorphism x1 +

ix2 �→ x1 and x1 − ix2 �→ x2 if necessary. �

Mori [15] classified that a 3-dimensional terminal singularity P ∈X with index

r > 1 is isomorphic to a cyclic quotient of an isolated cDV singularity, and Kollár

and Shepherd-Barron [14] showed that these isolated cDV ’s quotients are termi-

nal singularities.

THEOREM 3.2

There exists an identification

P ∈X � o ∈ (ϕ= 0)⊂C4
x1x2x3x4

/μr,

where μr denotes the cyclic group of order r and x1, x2, x3, x4, ϕ are μr-semi-

invariant. Furthermore, ϕ and the action of μr have one of the following forms:

(i) type cA/r : (x1x2 + g(xr
3, x4) = 0) ⊂ C4/ 1

r (a,−a,1,0) with g(x3, x4) ∈
m2, gcd(a, r) = 1;

(ii) type cAx/2: (x2
1 + x2

2 + g(x3, x4) = 0)⊂C4/ 1
2 (0,1,1,1) with g(x3, x4) ∈

m3;

(iii) type cAx/4: (x2
1 + x2

2 + g(x3, x4) = 0)⊂C4/ 1
4 (1,3,1,2) with g(x3, x4) ∈

m3;

(iv) type cD/3: (ϕ= 0)⊂ C4/ 1
3 (0,2,1,1), where ϕ has one of the following

forms:

(1) x2
1 + x3

2 + x3
3 + x3

4,

(2) x2
1 + x3

2 + x2
3x4 + x2g(x3, x4) + h(x3, x4) with g ∈m4, h ∈m6,

(3) x2
1 + x3

2 + x3
3 + x2g(x3, x4) + h(x3, x4) with g ∈m4, h ∈m6;

(v) type cD/2: (ϕ= 0)⊂ C4/ 1
2 (1,0,1,1), where ϕ has one of the following

forms:
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(1) x2
1 + x3

2 + x2x3x4 + g(x3, x4) with g ∈m4,

(2) x2
1 + x2x3x4 + xn

2 + g(x3, x4) with n≤ 4, g ∈m4,

(3) x2
1 + x2x

2
3 + xn

2 + g(x3, x4) with n≤ 3, g ∈m4,

(vi) type cE/2: (x2
1+x3

2+x2g(x3, x4)+h(x3, x4) = 0)⊂C4/ 1
2 (1,0,1,1) with

g, h ∈m4, h4 
= 0.

Conversely, if ϕ as above defines an isolated singularity and the action of μr on

ϕ= 0 is free outside the origin, then P is a terminal singularity.

3.2. Weighted blowup
We recall the construction of weighted blowups by using the toric language. Let

N = Zd be a free Abelian group, called a lattice, of rank d with standard basis

{e1, . . . , ed}. Let M be the dual lattice of N . Let σ be the cone in N⊗R generated

by the standard basis e1, . . . , ed, and let Δ be the fan which consists of σ and all

the faces of σ. We consider

TN (Δ) := SpecC[σ∨ ∩M ] =Cd.

Let v = (a1, . . . , ad) be a primitive vector in N , that is, the vector which has no

element in N between 0 and v. We assume that ai ∈ Z≥0 and gcd(a1, . . . , ad) = 1.

For any i with ai > 0, let σi be the cone generated by {e1, . . . , ei−1, v, ei+1, . . . , ed},
and let Δ(v) be the fan consisting of all σi’s and their all faces. Δ(v) is called

the star-shaped decomposition for v. Then

TN

(
Δ(v)

)
=

⋃
ai>0

SpecC[σ∨
i ∩M ].

If ai > 0 for all i, the natural map π : TN (Δ(v))→ TN (Δ) is called the weighted

blowup over o ∈ TN (Δ) with weight v = (a1, . . . , ad). In each affine chart Ui :=

SpecC[σ∨
i ∩M ], the natural map Ui → TN (Δ) is given by{

xj �→ xjx
aj

i if j 
= i,

xi �→ xai
i .

The exceptional divisor E of π is isomorphic to P(a1, . . . , ad).

Let X := (ϕ(x1, . . . , xd) = 0) ⊂ TN (Δ) be a hypersurface, and let Y be the

birational transform on TN (Δ(v)) of X . We also call the induced map π′ : Y →X

the weighted blowup of X with weight v. The affine chart Ui := Ui ∩ Y can be

expressed as(
ϕ(x1x

a1
i , . . . , xi−1x

ai−1

i , xai
i , xi+1x

ai+1

i , . . . , xdx
ad
i )x−wtϕ

i = 0
)
⊂Ui

for each i. The exceptional divisor of π′ is denoted by E := E ∩ Y . If E is irre-

ducible and reduced and we have dim(TN (Δ(v)) ∩ Y ) ≤ 1, then we have the

adjunction formula

KY = π′∗KX +
(∑

i

ai −wtϕ− 1
)
E.

We define weighted blowups of the complete intersection similarly.
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3.3. The singular Riemann–Roch formula
As we shall use the method in [10] and [11], we recall the singular Riemann–Roch

formula.

THEOREM 3.3 ([16, Theorem 10.2])

Let X be a projective 3-fold with canonical singularities, and let D be a divisor

on X such that D ∼ ePKX with eP ∈ Z at each P ∈X.

(i) There is a formula of the form

χ
(
OX(D)

)
= χ(OX) +

1

12
D(D−KX)(2D−KX)

+
1

12
D · c2(X) +

∑
P

cP (D),

where the summation takes place over the singularities on X, and cP (D) ∈Q is

a contribution due to the singularity at P , depending only on the local analytic

type of P and OX(D).

(ii) If P ∈X is a terminal cyclic quotient singularity of type 1
rP

(1,−1, bP ),

then

cP (D) =−iP
r2P − 1

12rP
+

iP−1∑
l=1

lbP (rP − lbP )

2rP
,

where i = i − � i
rP

�rP denotes the residue of i modulo rP . (The sum
∑iP−1

l=1 is

zero by convention if iP = 0 or 1.)

(iii) For an arbitrary terminal singularity P ,

cP (D) =
∑
Q

cQ(DQ),

where {(Q,DQ)} is a flat deformation of (P,D) to the basket of terminal cyclic

quotient singularities Q.

4. Proofs of main results

In this section we prove the main theorem by using the method in [10] and [11].

Our strategy for the classification is to determine the exceptional divisor in the

sense of valuation by applying Lemma 4.1 or Lemma 4.2 (see [9, Lemma 6.1],

[10, Lemma 6.1]).

LEMMA 4.1

Let f : (Y ⊃ E)→ (X � P ) be a germ of a 3-dimensional divisorial contraction

to a cDV point P . We identify P ∈X with

P ∈X � o ∈ (ϕ= 0)⊂ X̄ :=C4
x1x2x3x4

.

Let a denote the discrepancy of f , and let mi denote the multiplicity of xi

along E, that is, the largest integer such that xi ∈ f∗OY (−miE). Suppose that
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(m1,m2,m3,m4) is primitive in Z4. Let d denote the weighted order of ϕ with

respect to weights wt(x1, x2, x3, x4) = (m1,m2,m3,m4), and decompose ϕ as

ϕ= ϕd(x1, x2, x3, x4) +ϕ>d(x1, x2, x3, x4),

where ϕd is the weighted homogeneous part of weight d and ϕ>d is the part of

weight greater than d. Set c :=m1 +m2 +m3 +m4 − 1− d. Let ḡ : (Z̄ ⊃ F̄ )→
(X̄ � o) be the weighted blowup with weights wt(x1, x2, x3, x4) = (m1,m2,m3,m4)

and with F̄ its exceptional divisor. Let Z denote the birational transform on Z̄ of

X, and let g : Z →X be the induced morphism. If we have the four conditions

(i) F̄ ∩Z defines an irreducible and reduced 2-cycle F ,

(ii) Z is smooth at the generic point of F ,

(iii) dim(Sing Z̄ ∩Z)≤ 1, and

(iv) c= a,

then we have f � g over X.

We shall apply the following extension of Lemma 4.1 to several cases.

LEMMA 4.2

Let f : (Y ⊃ E)→ (X � P ) be a germ of a 3-dimensional divisorial contraction

to a cDV point P . We identify P ∈X with

P ∈X � o ∈
(
ϕ= 0,

ψ = 0

)
⊂ X̄ :=C5

x1x2x3x4x5
.

Let a denote the discrepancy of f , and let mi denote the multiplicity of xi along

E. Suppose that (m1,m2,m3,m4,m5) is primitive in Z5. Let d (resp., e) denote

the weighted order of ϕ (resp., ψ) with respect to weights wt(x1, x2, x3, x4, x5) =

(m1,m2,m3,m4,m5), and decompose ϕ and ψ as

ϕ= ϕd(x1, x2, x3, x4, x5) +ϕ>d(x1, x2, x3, x4, x5),

ψ = ψe(x1, x2, x3, x4, x5) +ψ>e(x1, x2, x3, x4, x5),

where ϕd (resp., ψe) is the weighted homogeneous part of weight d (resp., e)

and ϕ>d (resp., ψ>e) is the part of weight greater than d (resp., e). Set c :=

m1 +m2 +m3 +m4 +m5 − 1− d− e. Let ḡ : (Z̄ ⊃ F̄ )→ (X̄ � o) be the weighted

blowup with weights wt(x1, x2, x3, x4, x5) = (m1,m2,m3,m4,m5) and with F̄ its

exceptional divisor. Let Z denote the birational transform on Z̄ of X, and let

g : Z →X be the induced morphism. If we have the four conditions

(i) F̄ ∩Z defines an irreducible and reduced 2-cycle F ,

(ii) Z is smooth at the generic point of F ,

(iii) dim(Sing Z̄ ∩Z)≤ 1, and

(iv) c= a,

then we have f � g over X.
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Table 2

Type J Type J

e1 (r,2) e5 (7,3)

e2 (r,1), (r,1) e9 (5,2), (3,1)

e3 (2,1), (4,1)

Now we study 3-dimensional divisorial contractions to cDV points. We let

f : (Y ⊃E)→ (X � P )

be a germ of a 3-dimensional divisorial contraction whose exceptional divisor E

contracts to a singular point P of index 1, and we let a denote its discrepancy. Let

I0 := {Q of type (1/rQ)(1,−1, bQ)} denote the basket of fictitious singularities on

Y , and let eQ for Q ∈ I0 be the smallest positive integer such that E ∼ eQKY at

Q. By replacing bQ with rQ− bQ if necessary, we may assume that vQ := eQbQ ≤
rQ/2, where ·̄ denotes the residue modulo rQ. We set I := {Q ∈ I0 | vQ 
= 0} and

J := {(rQ, vQ)}Q∈I . We can compute J for each case in Table 1, and we give the

results in Table 2.

We shall prove the main results as follows.

Step 1. For an integer j, we compute the dimension of the vector space

Vj := f∗OY (−jE)/f∗OY

(
−(j + 1)E

)
.

This space is regarded as the space of functions on X vanishing with multiplicity

j along E. For a function h on X , we let multE h denote the multiplicity of h

along E.

Step 2. We find the basis of Vj by starting with an arbitrary identification

P ∈X � o ∈ (ϕ= 0)⊂C4
x1x2x3x4

,(1)

and we compute the favorite weights wt(x1, x2, x3, x4).

Step 3. In order to apply Lemma 4.1 or Lemma 4.2, we follow these procedures.

(i) Determine wt(x1, x2, x3, x4), and rewrite ϕ.

(ii) Let f ′ : Z →X be the weighted blowup with wtxi =multxi. Find the

condition that the exceptional locus of f ′ is irreducible and reduced.

(iii) Verify the assumption of Lemma 4.1, and find the condition that every

singular point in Z is terminal.

Step 4. Then we can apply Lemma 4.1 or Lemma 4.2 and show that f coincides

with f ′.

We note that dimVj and the basis of Vj are dependent only on the type of f

but not on the type of P . So we shall show the main theorems according to the

type of f .
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We compute dimVj by using the singular Riemann–Roch formula. For each

j, there is a natural exact sequence

0→OY

(
−(j + 1)E

)
→OY (−jE)→OE(−jE|E)→ 0.

So we have a long exact sequence

0→ f∗OY

(
−(j + 1)E

)
→ f∗OY (−jE)→ f∗OE(−jE|E)

→R1f∗OY

(
−(j + 1)E

)
→R1f∗OY (−jE)→R1f∗OE(−jE|E)

→ · · · .

Since P is terminal, we have Rif∗OY (−(j + 1)E) = 0 and Rif∗OY (−jE) = 0

for any i ≥ 1, j by the Kawamata–Viehweg theorem, and Rif∗OE(−jE|E) =
Hi(E,OE(−jE|E)) for any i, j. Then

dimC Vj = dimC f∗OE(−jE|E)

= dimCH
0
(
E,OE(−jE|E)

)
= χ

(
OE(−jE|E)

)
= χ

(
OY (−jE)

)
− χ

(
OY

(
−(j + 1)E

))
.

Applying the singular Riemann–Roch formula, we have

(∗)
dimVj =

1

12

(
6j(j + a+ 1) + (a+ 1)(a+ 2)

)
E3

+
1

12
E · c2(Y ) +Aj −Aj+1.

Here the contribution term Aj is given by Aj :=
∑

Q∈I AQ(−jeQ), where

AQ(k) :=−k
r2Q − 1

12rQ
+

k−1∑
l=1

lbQ(rQ − lbQ)

2rQ
.(∗∗)

For j < 0, we have Vj = 0. Now we compute dimVj explicitly and show that f

is a weighted blowup in each case. Since we shall use similar procedures in each

case, we start with easy cases and proceed to complicated cases.

4.1. Case e9 with discrepancy 2

In this section, we suppose that f : (Y ⊃ E) → (X � P ) is of type e9, and its

discrepancy a is 2. In this case, Y has two non-Gorenstein singular points. One

point Q1 is of type 1
3 (1,2,2), and another point Q2 is of type 1

5 (1,4,4). Set

Nj := {(l1, l2, l3, l4) ∈ Z4
≥0 | 7l1 + 5l2 + 3l3 + 2l4 = j, l1 ≤ 1}.

LEMMA 4.3

We have that dimVj =#Nj .

Proof

By Tables 1 and 2, we see that (rQ1 , bQ1 , vQ1) = (3,2,1), (rQ2 , bQ2 , vQ2) = (5,4,2),

and E3 = 1/15. We also have eQ1 = 2, eQ2 = 3. So
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dimVj =
1

30
j(j + 3) +

1

15
+

1

12
E · c2(Y )

− (j − j + 1)
2

9
+
(j−1∑
l=1

−
j+1−1∑
l=1

)2l(3− 2l)

6

−
(
2j

′ − 2(j + 1)
′)2
5
+
(2j

′−1∑
l=1

−
2(j+1)

′−1∑
l=1

)4l′(5− 4l
′
)

10
.

Here ·̄ denotes the residue modulo 3, and ·̄′ denotes the residue modulo 5. Since

dimV0 = 1, we have

1

15
+

1

12
E · c2(Y ) =

17

45
.

Now we consider

dimVj − dimVj−5 =
1

3
(j − 1)− 2

9
(j − 2j + 1+ j + 2)

+
(j−1∑
l=1

−2

j+1−1∑
l=1

+

j+2−1∑
l=1

)2l(3− 2l)

6

for any j ≥ 5. We have

dimVj − dimVj−5 =

⎧⎪⎪⎨
⎪⎪⎩
j/3 if k ≡ 0 (mod 3),

(j − 1)/3 if k ≡ 1 (mod 3),

(j − 2)/3 if k ≡ 2 (mod 3).

On the other hand, we have a decomposition

Nj =
{
(l1,0, l3, l4) ∈Nj

}
�
{
	l+ (0,1,0,0)

∣∣	l ∈Nj−5

}
.

Hence, for any j ≥ 5,

#Nj −#Nj−5 =#
{
(l1,0, l3, l4) ∈Nj

}
.

So we have

#Nj −#Nj−5 =

⎧⎪⎪⎨
⎪⎪⎩
j/3 if k ≡ 0 (mod 3),

(j − 1)/3 if k ≡ 1 (mod 3),

(j − 2)/3 if k ≡ 2 (mod 3).

Therefore, we have dimVj − dimVj−5 = #Nj −#Nj−5 for any j ≥ 5. We can

compute dimVj =#Nj for j ≤ 4. Then we have dimVj =#Nj for any j. �

LEMMA 4.4

(i) There exist some 1≤ k, l ≤ 4 with multE xk = 2 and multE xl = 3. By

permutation, we may assume that xk = x4, xl = x3. Moreover, multE xk ≥ 4 for

k = 1, 2.

(ii) If j < 5, the monomials xl3
3 x

l4
4 for (0,0, l3, l4) ∈Nj form a basis of Vj .

In particular, for k = 1, 2, multE x̄k ≥ 5 for x̄k := xk +
∑

ckl3l4x
l3
3 x

l4
4 with some

ckl3l4 ∈C and summation over (0,0, l3, l4) ∈
⋃

j<5Nj .
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(iii) There exists some k = 1,2 with multE x̄k = 5 such that the monomials

x̄k and xl3
3 x

l4
4 for (0,0, l3, l4) ∈N5 form a basis of V5. By permutation, we may

assume that x̄k = x̄2.

(iv) The monomials x̄l2
2 x

l3
3 x

l4
4 for (0, l2, l3, l4) ∈N6 form a basis of V6, and

we have mult x̂1 ≥ 7 for x̂1 := x̄1 +
∑

cl2l3l4 x̄
l2
2 x

l3
3 x

l4
4 with some cl2l3l4 ∈ C and

summation over (0, l2, l3, l4) ∈N6.

(v) We have multE x̂1 = 7, and for j < 14, the monomials x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for

(l1, l2, l3, l4) ∈Nj form a basis of Vj .

(vi) Set Ñj = {(l1, l2, l3, l4) ∈ Z4
≥0 | 7l1+5l2+3l3+2l4 = j}. The monomials

x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈N14 have one nontrivial relation, say, ψ, in V14.

The natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4)∈Ñ14

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 → V14 → 0

is exact.

Proof

We have dimV1 = 0, dimV2 = dimV3 = 1 by Lemma 4.3. This implies (i). By

permutation, we may assume that multE x4 = 2, multE x3 = 3. To prove (ii), we

shall show that the monomials xl3
3 x

l4
4 for (0,0, l3, l4) ∈Nj are linearly independent

in Vj for any j. Suppose 0 =
∑

(0,0,l3,l4)∈Nj
cl3l4x

l3
3 x

l4
4 ∈ Vj , cl3l4 ∈ C. We shall

show that cl3l4 = 0 for any (0,0, l3, l4) ∈Nj . We set j = 6k + α, where 0≤ k ∈ Z

and 0≤ α≤ 5. We study the case j = 6k for 0≤ k ∈ Z. So, we can write

∑
(0,0,l3,l4)∈Nj

cl3l4x
l3
3 x

l4
4 =

k∑
l=0

clx
2l
3 x

3(k−l)
4

for cl ∈C. Since C is an algebraically closed field, we factorize

k∑
l=0

clx
2l
3 x

3(k−l)
4 = (d1x

2
3 + d2x

3
4)
( k∑
l=1

c′lx
2(l−1)
3 x

3(k−l)
4

)

for c′l, d1, d2 ∈ C. Hence, we have cl = 0 for all 0≤ l ≤ k by induction on k. We

can show that cl3l4 = 0 for any other case similarly. We set W (j) := 〈xl3
3 x

l4
4 |

(0,0, l3, l4) ∈Nj〉 ⊂ Vj for each j. Then dimW (j) = #Nj for j < 5, and thus we

obtain (ii) by Lemma 4.3. Since dimV5 = dimW (5)+1 by Lemma 4.3, we obtain

(iii). By permutation, we may assume that x̄2 forms a basis of V5/W (5) � C.

Since the monomials xl3
3 x

l4
4 for (0,0, l3, l4) ∈ Nj are linearly independent in Vj

for any j, and dimV7 =W (7)+2 by Lemma 4.3, we obtain (iv) and multE x̂1 = 7.

For any j < 14, we have dimVj = #Ñj by Lemma 4.3. This implies (v). Since

dimV14 =#N14 =#Ñ14 − 1, we have a nontrivial relation, say, ψ in V14, and we

obtain the natural exact sequence in (vi). �

COROLLARY 4.5

We distribute weights wt(x̂1, x̄2, x3, x4) = (7,5,3,2) to the coordinates x̂1, x̄2, x3,
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x4 obtained in Lemma 4.4. Then ϕ is of form

ϕ= cψ+ϕ>14(x̂1, x̄2, x3, x4)

with c ∈C and a function ϕ>14 of weighted order greater than 14, where ψ in (1)

is the one in Lemma 4.4(vi).

Proof

Decompose ϕ = ϕ≤14 + ϕ>14 into the part ϕ≤14 of weighted order at most

14 and the part ϕ>14 of weighted order greater than 14. Then multE ϕ≤14 =

multE ϕ>14 > 14, so ϕ≤14 is mapped to zero by the natural homomorphism⊕
(l1,l2,l3,l4)∈

⋃
j≤14 Ñj

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 →OX/f∗OY (−15E),

whose kernel is Cψ by Lemmas 4.4(v) and 4.4(vi). �

Proof of Theorem 2.10

The cE7,8 point P ∈X has an identification such that

ϕ= x2
1 + x3

2 + x2g(x3, x4) + h(x3, x4) = 0,

where g ∈ m3 and h ∈ m4. If P is of type cE7 (resp., cE8), then g3 
= 0 (resp.,

g3 = 0, h5 
= 0).

(i) We shall show that we distribute weight wt(x1, x2, x3, x4) = (7,5,3,2),

and that ϕ can write

ϕ= x2
1 + x3

2 + λx2
2x

2
4 + x2g(x3, x4) + h(x3, x4),

with λ ∈C, g ∈m3, and h ∈m4. By Corollary 4.5, we have wtϕ= 14. So we can

show that we distribute weight wt(x1, x2, x3, x4) = (7,5,3,2) easily. We obtain a

quartuple (x̂1, x̄2, x3, x4) by x̂1 = x1 + cx̄2 + p(x3, x4), x̄2 = x2 + q(x3, x4), where

c ∈C, p, and q are as in Lemma 4.4; that is, p (resp., q) contains only monomials

with weight at most 6 (resp., at most 4).

Then we rewrite ϕ as

ϕ= (x̂1 − cx̄2 − p)2 + (x̄2 − q)3 + (x̄2 − q)g+ h

= x̂2
1 − 2px̂1 − 2cx̂1x̄2 + x̄3

2 + (c2 − 3q)x̄2
2

+ (2cp+ 3q2 + g)x̄2 + (p2 − q3 − qg+ h).

Since wtϕ = 14, we can show that c = p = 0, wt q = 4, wt(3q2 + g) ≥ 9, and

wt(−q3 − qg + h) ≥ 14. We also have q = λx2
4 with λ ∈ C. Moreover, if P is of

type cE7 (resp., cE8), then we have x3
3 ∈ g (resp., x5

3 or x4
3x4 ∈ h). Replacing

3q2 + g with g and −q3 − qg + h with h and replacing variables, we have the

desired expression in (i).

(ii) Let f ′ : Z → X be the weighted blowup with wtxi = multE xi. If P is

of type cE7, it is obvious that the exceptional locus F of f ′ is irreducible and

reduced. If P is of type cE8, we need the condition that x3x
3
4 ∈ g or x7

4 ∈ h if

λ= 0 and x4
3x4 /∈ h, which is equivalent to F being irreducible and reduced.
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(iii) We shall show that ϕ has the condition x7
4 ∈ h if and only if every

singular point in Z is terminal. The x4-chart U4 of the weighted blowup f ′ can

be expressed as

U4 =
(
x′2
1 + x′3

2 x
′
4 + λx′2

2

+ x′
2

1

x′9
4

g(x′
3x

′3
4 , x

′2
4 ) +

1

x′14
4

h(x′
3x

′3
4 , x

′2
4 ) = 0

)/1

2
(1,1,1,1).

If the origin o is contained in U4, then this point is not terminal, since this

equation has only even degree terms. So we need the condition o /∈ U4, which is

equivalent to the condition x7
4 ∈ h. Hence, Z is covered by U1, U2, and U3. We

study U2 and U3:

U2 =
(
x′2
1 + x′

2 + λx′2
4 +

1

x′9
2

g(x′3
2 x

′
3, x

′2
2 x

′
4)

+
1

x′14
2

h(x′3
2 x

′
3, x

′2
2 x

′
4) = 0

)/1

5
(4,3,1,4),

U3 =
(
x′2
1 + x′3

2 x
′
3 + λx′2

2 x
′2
4 + x′

2

1

x′9
3

g(x′3
3 , x

′2
3 x

′
4)

+
1

x′14
3

h(x′3
3 , x

′2
3 x

′
4) = 0

)/1

3
(1,2,2,2).

The origin of U2 is of type 1
5 (1,4,4), and the origin of U3 is of type 1

3 (1,2,2).

We shall check that U3 has only isolated singularities. Every singular point in U3

lies only on the hyperplane (x′
3 = 0) since F is contracted to P by f ′. So, it is

enough to study terms of degree at most 1 with respect to x′
3:

terms of degree 0: x′2
1 + x′

2gwt=9(1, x
′
4) + hwt=14(1, x

′
4);

terms of degree 1: x′3
2 + x′

2gwt=10(1, x
′
4) + hwt=15(1, x

′
4).

Therefore, we can check that U3 has only isolated singularities. Similarly, we can

check that U1 and U2 have only isolated singularities. Thus, the proof of (iii) is

finished.

Therefore, we can apply Lemma 4.1, and f should coincide with f ′. The

proof of Theorem 2.10 is completed. �

4.2. Case e2 with discrepancy 2

In this section, we suppose that f : (Y ⊃ E) → (X � P ) is of type e2, and its

discrepancy a is 2. In this case, Y has one non-Gorenstein singular point. This

point deforms to two points Q1 and Q2 which are of type 1
r (1,−1,2). Set Nj :=

{(l1, l2, l3, l4) ∈ Z4
≥0 | rl1 + rl2 + 2l3 + l4 = j, l1l2 = 0}.

LEMMA 4.6

We have that dimVj =#Nj .
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Proof

By Tables 1 and 2, we see that (rQi , bQi , vQi) = (r,2,1) for i= 1, 2 and E3 = 1/r.

We also have eQi = (r+ 1)/2. So

dimVj =
1

2r
j(j + 3) +

1

r
+

1

12
E · c2(Y )

−
(
j
r− 1

2
− (j + 1)

r− 1

2

)r2 − 1

12r
+
(j r−1

2 −1∑
l=1

−
(j+1) r−1

2 −1∑
l=1

)2l(r− 2l)

2r
.

Here ·̄ denotes the residue modulo r. Since dimV0 = 1, we have

1

r
+

1

12
E · c2(Y ) = 1− r− 1

2
· r

2 − 1

12r
+

r−1
2 −1∑
l=1

2l(r− 2l)

2r
.

Now we can compute

dimVj − dimVj−2 =
1

r
(2j + 1) +

j + 1(r− j + 1)− j(r− j)

2r

for any j ≥ 2. We can show dimVj−dimVj−2 =#Nj−#Nj−2 as Lemma 4.3. �

LEMMA 4.7

(i) There exist some 1 ≤ k, l ≤ 4 with multE xk = 1 and multE xl = 2. By

permutation, we may assume that xk = x4, xl = x3. Moreover, multE xk ≥ 3 for

k = 1, 2.

(ii) If j < r, then the monomials xl3
3 x

l4
4 for (0,0, l3, l4) ∈ Nj form a basis

of Vj . In particular, for k = 1,2, multE x̄k ≥ r for x̄k := xk +
∑

ckl3l4x
l3
3 x

l4
4 with

some ckl3l4 ∈C and summation over (0,0, l3, l4) ∈
⋃

j<rNj .

(iii) We have multE x̄k = r for k = 1,2, and if j < 2r, then the monomials

x̄l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈Nj form a basis of Vj .

(iv) Set Ñj = {(l1, l2, l3, l4) ∈ Z4
≥0 | rl1 + rl2 + 2l3 + l4 = j}. The monomials

x̄l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈N2r have one nontrivial relation, say, ψ, in V2r.

The natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4)∈Ñ2r

Cx̄l1
1 x̄

l2
2 x

l3
3 x

l4
4 → V2r → 0

is exact.

Proof

We follow the proof of Lemma 4.4 using the computation of Lemma 4.6. State-

ment (i) follows from dimV1 = 1 and dimV2 = 2. By permutation, we may assume

that multE x4 = 1, multE x3 = 2. To prove (ii), we shall show that the monomi-

als xl3
3 x

l4
4 for (0,0, l3, l4) ∈Nj are linearly independent in Vj for any j. Suppose

0 =
∑

(0,0,l3,l4)∈Nj
cl3l4x

l3
3 x

l4
4 ∈ Vj , cl3l4 ∈ C. We shall show that cl3l4 = 0 for any

(0,0, l3, l4) ∈Nj . We study the case j = 2k for 0≤ k ∈ Z. So we can write
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∑
(0,0,l3,l4)∈Nj

cl3l4x
l3
3 x

l4
4 =

k∑
l=0

clx
l
3x

2(k−l)
4

for cl ∈C. We factorize

k∑
l=0

clx
l
3x

2(k−l)
4 = (d1x3 + d2x

2
4)
( k∑
l=1

c′lx
l−1
3 x

2(k−l)
4

)

for c′l, d1, d2 ∈ C. Hence, we have cl = 0 for all 0≤ l ≤ k by induction on k. We

can show that cl3l4 = 0 for the case j is odd similarly. We set W (j) := 〈xl3
3 x

l4
4 |

(0,0, l3, l4) ∈Nj〉 ⊂ Vj for each j. Then dimW (j) = #Nj for j < r, and thus we

obtain (ii). Since dimVr = dimW (r) + 2, by permutation, we may assume that

x̄2 and x̄1 form a basis of Vr/W (r)�C2, and we have multE x̄1 =multE x̄2 = r.

The monomials xl3
3 x

l4
4 for (0,0, l3, l4) ∈Nj are linearly independent in Vj for any

j, and we have dimVj = dimW (j)+2#Nj−r =#Ñj for any j < 2r. This implies

(iii). Since dimV2r =#N2r =#Ñ2r − 1, we have a nontrivial relation, say, ψ, in

V2r, and we obtain the natural exact sequence in (iv). �

COROLLARY 4.8

We distribute weights wt(x̄1, x̄2, x3, x4) = (r, r,2,1) to the coordinates x̄1, x̄2, x3,

x4 obtained in Lemma 4.7. Then ϕ is of the form

ϕ= cψ+ ϕ>2r(x̄1, x̄2, x3, x4)

with c ∈C and a function ϕ>2r of weighted order greater than 2r, where ψ in (1)

is the one in Lemma 4.7(iv).

Proof of Theorem 2.4

The cD point P ∈X has an identification such that

ϕ= x2
1 + x2

2x4 + λx2x
k
3 + g(x3, x4) = 0,

where g ∈m3, λ ∈C, and k ≥ 2.

(i) By Corollary 4.8, we have wtϕ = 2r. So we have wtx1, wtx2 = r. We

obtain a quartuple (x̄1, x̄2, x3, x4) by x̄1 = x1 + p(x3, x4), x̄2 = x2 + q(x3, x4),

where p and q are as in Lemma 4.7. Then we rewrite ϕ as

ϕ= (x̄1 − p)2 + (x̄2 − q)2x4 + λ(x̄2 − q)xk
3 + g

= (x̄1 − p)2 + x̄2
2x4 − 2x̄2x4q+ λx̄2x

k
3 + (q2x4 − λqxk

3 + g).

Since wtϕ= 2r, we can show that p= 0, wt(q2x4−λqxk
3+g)≥ 2r, and q contains

only monomials with weight r − 2 and r − 1. So, by replacing variables, we can

rewrite ϕ as

ϕ= x2
1 + x2

2x4 + 2x2x4p(x3, x4) + λx2x
k
3 + q(x3, x4),

with λ ∈ C, k ≥ 2, wt q ≥ 2r, and p contains only monomials with weight r − 2

and r− 1.
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• Suppose that wt(x1, x2, x3, x4) = (r, r,2,1).

In this case, we have k > r/2, and p is weighted homogeneous of weight r−1

for the weights distributed above. Let f ′ : Z →X be the weighted blowup with

wt(x1, x2, x3, x4) = (r, r,2,1).

(ii) We have the two conditions below if and only if the exceptional locus F

of f ′ is irreducible and reduced.

(1) p 
= 0 or qwt=2r 
= 0.

(2) qwt=2r is not square if p= 0.

If xr
3 ∈ q, then either (1) or (2) holds.

(iii) We shall show that ϕ has the condition xr
3 ∈ q if and only if every

singular point in Z is terminal. The x3-chart U3 of the weighted blowup f ′ can

be expressed as(
x′2
1 + x′2

2 x
′
3x

′
4 + 2x′

2x
′
4p+ λx′

2x
′2k−r
3 +

1

x′2r
3

q(x′2
3 , x

′
3x

′
4) = 0

)/1

2
(1,1,1,1).

If the origin o is contained in U3, then this point is not terminal, since this

equation has only even degree terms. So we need the condition o /∈ U3, which is

equivalent to the condition xr
3 ∈ q. Hence, Z is covered by U1, U2, and U4. The

origin of U2 is of type cA/r. We can check that Z has only isolated singularities

as in the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1, and f

should coincide with f ′.

• Suppose that wt(x1, x2, x3, x4) = (r, r,1,2).

In this case, we have k ≥ r. Let f ′ : Z → X be the weighted blowup with

wt(x1, x2, x3, x4) = (r, r,1,2). We shall show that r = 3, λ 
= 0, and k = 3. The

x2-chart U2 of weighted blowup f ′ can be expressed as(
x′2
1 + x′2

2 x
′
4 + 2x′

4

1

x′r−2
2

p(x′
2x

′
3, x

′2
2 x

′
4)

+ λx′k−r
2 x′k

3 +
1

x′2r
2

q(x′
2x

′
3, x

′2
2 x

′
4) = 0

)/1

r

(
0,

r− 1

2
,−r− 1

2
,1
)
.

It is impossible that the origin of U2 is of type cA/r. So it is necessary that the

origin be of type cD/3, and we need r = 3, λ 
= 0, and k = 3. Moreover, we have

wtp= 2. Replacing variables, we can rewrite ϕ as

ϕ= x2
1 + x2

2x4 + 2x2x4p(x3, x4) + x2x
3
3 + q(x3, x4),

where wt q ≥ 6 and p is weighted homogeneous of weight 2.

(ii′) The exceptional locus F of f ′ is irreducible and reduced if and only if

qwt=6 is not square.

(iii′) We shall show that ϕ has the condition x3
4 ∈ q if and only if every

singular point in Z is terminal. The x4-chart U4 of the weighted blowup f ′ can

be expressed as



548 Yuki Yamamoto

(
x′2
1 + x′2

2 x
′2
4 + 2x′

2

1

x′
4

p(x′
3x

′
4, x

′2
4 )

+ x′
2x

′3
3 +

1

x′6
4

q(x′
3x

′
4, x

′2
4 ) = 0

)/1

2
(1,1,1,1).

If the origin o is contained in U4, then this point is not terminal, since this

equation has only even degree terms. So we have the condition o /∈ U4, which is

equivalent to the condition x3
4 ∈ q. Hence, Z is covered by U1, U2, and U3. The

origin of U2 is of type cD/3. We can check that Z has only isolated singularities

as in the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1, and f

should coincide with f ′. The proof of Theorem 2.4 is completed. �

Proof of Theorem 2.5

The cE6,7 point P ∈X has an identification such that

ϕ= x2
1 + x3

2 + x2g(x3, x4) + h(x3, x4) = 0,

where g ∈ m3 and h ∈ m4. If P is of type cE6 (resp., cE7), then h4 
= 0 (resp.,

h4 = 0, g3 
= 0).

(i) We shall show that we distribute weight wt(x1, x2, x3, x4) = (3,3,2,1) and

that ϕ can be written as

ϕ= x2
1 +

{
x2 − p(x3, x4)

}3
+ x2g(x3, x4) + h(x3, x4),

where g ∈m3, h ∈m4, and p is weighted homogeneous of weight 2 for the weights

distributed above. By Table 1, Y has cD/3 at which E is not Cartier, so we

have r = 3. By Corollary 4.8, we have wtϕ = 6. So we can distribute weight

wt(x1, x2, x3, x4) = (3,3,2,1). We obtain a quartuple (x̄1, x̄2, x3, x4) by x̄1 = x1+

p(x3, x4), x̄2 = x2+q(x3, x4), where p and q are as in Lemma 4.7. Then we rewrite

ϕ as

ϕ= (x̄1 − p)2 + (x̄2 − q)3 + (x̄2 − q)g(x3, x4) + h(x3, x4)

= (x̄1 − p)2 + (x̄2 − q)3 + x̄2g+ (−qg+ h).

Since wtϕ = 6, we can show that p = 0, wtg ≥ 3, wt(−qg + h) ≥ 6, and q is

weighted homogeneous of weight 2. Replacing x̄1, x̄2, q, and h, we have the

desired expression in (i).

(ii) Let f ′ : Z →X be the weighted blowup with wtxi =multE xi. We can

show that the exceptional locus F of f ′ is irreducible and reduced in (iii).

(iii) We shall show that ϕ has the condition x3
4 ∈ g and x3 ∈ p if and only if

every singular point in Z is terminal. The x2-chart U2 of the weighted blowup

f ′ can be expressed as(
x′2
1 +

{
x′
2 − p(x′

3, x
′
4)
}3

+
1

x′3
2

g(x′2
2 x

′
3, x

′
2x

′
4) +

1

x′6
2

h(x′2
2 x

′
3, x

′
2x

′
4) = 0

)/1

3
(0,1,1,2).
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It is necessary that the origin be of type cD/3. So we need x3
4 ∈ g. Moreover, we

show that the exceptional locus F of f ′ is irreducible and reduced. The x3-chart

U3 of the weighted blowup f ′ can be expressed as(
x′2
1 +

{
x′
2x

′
3 − p(1, x′

4)
}3

+
x′
2

x′3
3

g(x′2
3 , x

′
3x

′
4) +

1

x′6
3

h(x′2
3 , x

′
3x

′
4) = 0

)/1

2
(1,1,1,1).

If the origin o is contained in U3, then this point is not terminal, since this

equation has only even degree terms. So we have the condition o /∈ U3, which

is equivalent to the condition x3 ∈ p. We can check that Z has only isolated

singularities as in the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1,

and f should coincide with f ′.

Let x̄2 = x2 − p. Then we have

ϕ= x2
1 + x̄3

2 + x̄2g(x3, x4) +
(
p(x3, x4)g(x3, x4) + h(x3, x4)

)
.

If P is of type cE7, then h should contain x3x
3
4, since x3 ∈ p and x3

4 ∈ g. This is a

contradiction to wth≥ 6. So P is of type cE6. Therefore, the proof of Theorem 2.5

is completed. �

4.3. Case e5 with discrepancy 2

In this section, we suppose that f : (Y ⊃ E) → (X � P ) is of type e5, and its

discrepancy a is 2. In this case, Y has one non-Gorenstein singular point. This

point Q is of type 1
7 (1,6,6). Set Nj := {(l1, l2, l3, l4, l5) ∈ Z5

≥0 | 5l1 + 3l2 + 2l3 +

2l4 + 7l5 = j, l1, l2 ≤ 1}.

LEMMA 4.9

We have that dimVj =#Nj .

Proof

By Tables 1 and 2, we see that (rQ, bQ, vQ) = (7,3,6) and E3 = 1/7. We also have

eQ = 4. So

dimVj =
1

14
j(j + 3) +

1

7
+

1

12
E · c2(Y )

−
(
3j − 3(j + 1)

)4
7
+
(3j−1∑

l=1

−
3(j+1)−1∑

l=1

)6l(7− 6l)

14
.

Here ·̄ denotes the residue modulo 7. Since dimV0 = 1, we have

1

7
+

1

12
E · c2(Y ) =

3

7
.

Now we consider

dimVj − dimVj−7 = j − 2

for any j ≥ 7. We can show dimVj−dimVj−7 =#Nj−#Nj−7 as Lemma 4.3. �
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LEMMA 4.10

(i) There exist some 1≤ k, l≤ 4 with multE xk =multE xl = 2. By permu-

tation, we may assume that xk = x4, xl = x3. Moreover, there exists some k = 1,2

with multE xk = 3. By permutation, we may assume that xk = x2.

(ii) If j < 5, then the monomials xl2
2 x

l3
3 x

l4
4 for (0, l2, l3, l4,0) ∈ Nj form a

basis of Vj . In particular, multE x̄1 ≥ 5 for x̄1 := x1 +
∑

cl2l3l4x
l2
2 x

l3
3 x

l4
4 with

some cl2l3l4 ∈C and summation over (0, l2, l3, l4,0) ∈
⋃

j<5Nj .

(iii) multE x̄1 = 5, and the monomials x̄l1
1 x

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4,0) ∈ N5

form a basis of V5.

(iv) Set Ñj = {(l1, l2, l3, l4, l5) ∈ Z5
≥0 | 5l1 + 3l2 + 2l3 + 2l4 + 7l5 = j}. The

monomials x̄l1
1 x

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4,0) ∈N6 have one nontrivial relation, say,

ψ, in V6. The natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4,0)∈Ñ6

Cx̄l1
1 x

l2
2 x

l3
3 x

l4
4 → V6 → 0

is exact.

(v) We have multE ψ = 7. The natural exact sequences

0→Cx3ψ⊕Cx4ψ→
⊕

(l1,l2,l3,l4,l5)∈Ñ8

Cx̄l1
1 x

l2
2 x

l3
3 x

l4
4 ψ

l5 → V8 → 0,

0→Cx2ψ→
⊕

(l1,l2,l3,l4,l5)∈Ñ9

Cx̄l1
1 x

l2
2 x

l3
3 x

l4
4 ψ

l5 → V9 → 0

are exact.

Proof

We follow the proof of Lemma 4.4 using the computation of Lemma 4.9. State-

ment (i) follows from dimV1 = 0 and dimV2 = 2. Now (ii)–(iv) follow from the

same argument as in Lemma 4.4. Since ψ = 0 in V6 = f∗OY (−6E)/f∗OY (−7E),

we have multE ψ = 7. We also obtain the sequences in (v), which are exact pos-

sibly except for the middle. Their exactness is verified by comparing dimen-

sions. �

COROLLARY 4.11

We distribute weights wt(x̄1, x2, x3, x4) = (5,3,2,2) to the coordinates x̄1, x2, x3,

x4 obtained in Lemma 4.10. Then ϕ is of the form

ϕ= cx2ψ+ ϕ>9(x̄1, x2, x3, x4)

with c ∈ C and a function ϕ>9 of weighted order greater than 9, where ψ in (1)

is the one in Lemma 4.10(iv).

Proof of Theorem 2.9

The cE7 point P ∈X has an identification such that
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ϕ= x2
1 + x3

2 + x2g(x3, x4) + h(x3, x4) = 0,

where g ∈m3, h ∈m5, and g3 
= 0.

(i) We shall show that we distribute weight wt(x1, x2, x3, x4) = (5,3,2,2) and

that ϕ and ψ can be rewritten as

ϕ= x2
1 + x3

2 + x2g(x3, x4) + h(x3, x4),

ψ = x2
2 + gwt=6(x3, x4),

where wtg ≥ 6 and wth≥ 10.

By Corollary 4.11, we have wtϕ= 9. So we show that we distribute weight

wt(x1, x2, x3, x4) = (5,3,2,2). We obtain a quartuple (x̄1, x2, x3, x4) by x̄1 = x1+

cx2 + p(x3, x4), where c ∈C and p are as in Lemma 4.10. Then we rewrite ϕ as

ϕ= (x̄1 − cx2 − p)2 + x3
2 + x2g+ h.

Since wtϕ= 9, we can show that c= p= 0, wtg ≥ 6, and wth≥ 10. By Corol-

lary 4.11, we have ψ = x2
2 + gwt=6(x3, x4). Replacing x̄1 with x1, we have the

desired expression in (i). By setting x5 :=−(ψ+ gwt≥7) and replacing x2 �→ −x2,

we rewrite ϕ as {
ϕ= x2

1 + x2x5 + p(x3, x4) = 0,

x2
2 + q(x3, x4) + x5 = 0,

with wtp≥ 10 and wt q ≥ 6.

(ii) Let f ′ : Z → X be the weighted blowup with wt(x1, x2, x3, x4, x5) =

(5,3,2,2,7). It is obvious that the exceptional locus F of f ′ is irreducible and

reduced.

(iii) We shall show that we have the condition that gcd(p5, q3) = 1 if and only

if every singular point in Z is terminal. The x3-chart U3 of the weighted blowup

f ′ can be expressed as

U3 =

(
x′2
1 + x′

2x
′
5 +

1
x′10
3

p(x′2
3 , x

′2
3 x

′
4) = 0,

x′2
2 + 1

x′6
3
q(x′2

3 , x
′2
3 x

′
4) + x′

3x
′
5 = 0

)/1

2
(1,1,1,0,1).(A)

If the origin o is contained in U3, then this point is not terminal since U3 is

not embedded in 4-dimensional quotient space. So we need the condition o /∈ U3,

which is equivalent to the condition x5
3 ∈ p or x3

3 ∈ q. Moreover, the action on

equations (A) is free outside the points (0,0,0, x′
4,0), which satisfy the equations{

pwt=10(1, x
′
4) = 0,

qwt=6(1, x
′
4) = 0.

(B)

Since such points are of type 1
2 (1,1,1,1), there is no solution on (B). Similarly,

we have the condition x5
4 ∈ p or x3

4 ∈ q, and there is no solution on{
pwt=10(x

′
3,1) = 0,

qwt=6(x
′
3,1) = 0.

(C)

It is easy to show that the following four conditions,
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• x5
3 ∈ p or x3

3 ∈ q,

• there is no solution on (B),

• x5
4 ∈ p or x3

4 ∈ q, and

• there is no solution on (C),

are equivalent to the condition gcd(p5, q3) = 1. We can check that Z has only

isolated singularities by using the Jacobian criterion. Thus, the proof of (iii) is

finished. Therefore, we can apply Lemma 4.2, and f should coincide with f ′. The

proof of Theorem 2.9 is completed. �

4.4. Case e1 with discrepancy 2

In this section, we suppose that f : (Y ⊃ E) → (X � P ) is of type e1, and its

discrepancy a is 2. In this case, Y has one non-Gorenstein singular point. This

point Q is of type 1
r (1,−1,4). Set Nj := {(l1, l2, l3, l4, l5) ∈ Z5

≥0 | r+1
2 l1 +

r−1
2 l2 +

2l3 + l4 + rl5 = j, l1, l2 ≤ 1} and Mj := {(l1, l2, l3, l4) ∈ Z4
≥0 | 3l1 + 2l2 + l3 + l4 =

j, l2 ≤ 1}.

LEMMA 4.12

We have that dimVj =

{
#Nj if r ≥ 5,

#Mj if r = 3.

Proof

By Tables 1 and 2, we see that (rQ, bQ, vQ) = (r,4,2) and E3 = 2/r. We also have

eQ = (r+ 1)/2. So

dimVj =
1

r
j(j + 3) +

2

r
+

1

12
E · c2(Y )

−
(
j
r− 1

2
− (j + 1)

r− 1

2

)r2 − 1

12r
+
(j r−1

2 −1∑
l=1

−
(j+1) r−1

2 −1∑
l=1

)4l(r− 4l)

2r
.

Here ·̄ denotes the residue modulo r. Since dimV0 = 1, we have

2

r
+

1

12
E · c2(Y ) = 1− r− 1

2
· r

2 − 1

12r
−

r−1
2 −1∑
l=1

4l(r− 4l)

2r
.

If r ≥ 5, we consider

dimVj − dimVj−2 =
2

r
(2j + 1) +

2(j + 1)(r− 2(j + 1))− 2j(r− 2j)

2r

for any j ≥ 2. We can show dimVj − dimVj−2 =#Nj −#Nj−2 as Lemma 4.3. If

r = 3, we consider

dimVj − dimVj−3 = 2j

for any j ≥ 3. We can show dimVj − dimVj−3 =#Mj −#Mj−3 as Lemma 4.3.

�
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LEMMA 4.13

If r ≥ 5, then we have the following conditions.

(i) There exist some 1≤ k, l ≤ 4 with multE xk = 1, multE xl = 2. By per-

mutation, we may assume that xk = x4, xl = x3.

(ii) If j < r−1
2 , then the monomials xl3

3 x
l4
4 for (0,0, l3, l4,0) ∈ Nj form a

basis of Vj . In particular, for k = 1,2, multE x̄k ≥ r−1
2 for x̄k := xk +∑

ckl3l4x
l3
3 x

l4
4 with some ckl3l4 ∈ C and summation over (0,0, l3, l4,0) ∈⋃

j< r−1
2

Nj .

(iii) There exists some k = 1,2 with multE x̄k =
r−1
2 such that the monomials

x̄k and xl3
3 x

l4
4 for (0,0, l3, l4) ∈N r−1

2
form a basis of V r−1

2
. By permutation, we

may assume that x̄k = x̄2; then mult x̂1 ≥ r+1
2 for x̂1 := x̄1 +

∑
cl2l3l4 x̄

l2
2 x

l3
3 x

l4
4

with some cl2l3l4 ∈C and summation over (0, l2, l3, l4) ∈N r−1
2
.

(iv) We have multE x̂1 = r+1
2 , and if j < r − 1, then the monomials

x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈Nj form a basis of Vj .

(v) Set Ñj = {(l1, l2, l3, l4, l5) ∈ Z5
≥0 | r+1

2 l1+
r−1
2 l2+2l3+ l4+rl5 = j}. The

monomials x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4,0) ∈ Nr−1 have one nontrivial relation,

say, ψ, in Vr−1. The natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4,0)∈Ñr−1

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 → Vr−1 → 0

is exact.

(vi) multE ψ = r. The natural exact sequence

0→Cx4ψ→
⊕

(l1,l2,l3,l4,l5)∈Ñr

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 ψ

l5 → Vr → 0

is exact.

Proof

We follow the proof of Lemma 4.10 using the computation of Lemma 4.12. State-

ment (i) follows from dimV1 = 1 and dimV2 = 2. Now (ii)–(vi) follow from the

same argument as in Lemma 4.10. �

COROLLARY 4.14

We distribute weights wt(x̂1, x̄2, x3, x4) = ( r+1
2 , r−1

2 ,2,1) to the coordinates x̂1,

x̄2, x3, x4 obtained in Lemma 4.13. Then ϕ is of the form

ϕ= cx4ψ+ϕ>r(x̂1, x̄2, x3, x4)

with c ∈ C and a function ϕ>r of weighted order greater than r, where ψ in (1)

is the one in Lemma 4.13(v).

LEMMA 4.15

If r = 3, then we have the following conditions.
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(i) There exist some 1≤ k, l≤ 4 with multE xk =multE xl = 1. By permu-

tation, we may assume that xk = x4, xl = x3. Moreover, there exists some k = 1,2

with multE xk = 2. By permutation, we may assume that xk = x2.

(ii) The monomials xl2
2 x

l3
3 x

l4
4 for (0, l2, l3, l4,0) ∈N2 form a basis of V2. In

particular, multE x̄1 ≥ 3 for x̄1 := x1 +
∑

cl2l3l4x
l2
2 x

l3
3 x

l4
4 with some cl2l3l4 ∈ C

and summation over (0, l2, l3, l4,0) ∈
⋃

j<2Nj .

(iii) multE x̄1 = 3, and the monomials x̄l1
1 x

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4,0) ∈ N3

form a basis of V3.

(iv) Set Ñj = {(l1, l2, l3, l4) ∈ Z4
≥0 | 3l1 + 2l2 + l3 + l4 = j}. The monomials

x̄l1
1 x

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈N4 have one nontrivial relation, say, ψ, in V4. The

natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4)∈Ñ4

Cx̄l1
1 x

l2
2 x

l3
3 x

l4
4 → V4 → 0

is exact.

COROLLARY 4.16

We distribute weights wt(x̄1, x2, x3, x4) = (4,3,2,1) to the coordinates x̄1, x2, x3,

x4 obtained in Lemma 4.15. Then ϕ is of the form

ϕ= cψ+ϕ>4(x̄1, x2, x3, x4)

with c ∈ C and a function ϕ>4 of weighted order greater than 4, where ψ in (1)

is the one in Lemma 4.15(iv).

Proof of Theorem 2.3

The cD point P ∈X has an identification such that

ϕ= x2
1 + x2

2x4 + λx2x
k
3 + g(x3, x4) = 0,

where g ∈ m3, λ ∈ C, and k ≥ 2. We shall show that r ≥ 5. Suppose r = 3. By

Corollary 4.16, we have wtϕ= 4. So it is possible to distribute weight wt(x1, x2,

x3, x4) = (3,2,1,1), (3,1,1,2), (2,3,1,1), or (2,1,1,3).

We suppose wt(x1, x2, x3, x4) = (3,2,1,1). Then we obtain a quartuple (x̄1,

x2, x3, x4) by x̄1 = x1 + cx2 + p(x3, x4), where c ∈C and p are as in Lemma 4.15.

Thus, we rewrite ϕ as

ϕ= (x̄1 − cx2 − p)2 + x2
2x4 + λx2x

k
3 + g.

We replace x̄1 with x1. Let f ′ : Z →X be the weighted blowup with wt(x1, x2,

x3, x4) = (3,2,1,1). The x1-chart U1 of the weighted blowup f ′ can be expressed

as ((
x′
1 − cx′

2 −
1

x′2
1

p(x′
1x

′
3, x

′
1x

′
4)
)2

+ x′
1x

′2
2 x

′
4

+ λx′k−2
1 x′

2x
′k
3 +

1

x′2
1

g(x′
1x

′
3, x

′
1x

′
4) = 0

)/1

3
(1,1,2,2).
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It is necessary that o ∈ U1 be of type
1
3 (1,1,−1), but this is impossible. So we have

a contradiction. Similarly, we have a contraction in any other case. Therefore, we

have r ≥ 5.

(i) We shall show that we distribute wt(x1, x2, x3, x4) = ( r+1
2 , r−1

2 ,2,1) and

that ϕ can be rewritten as

ϕ= x2
1 + λx2x

k
3 + x4ψ+ p(x3, x4),

ψ = x2
2 + 2x1q1(x3, x4) + q2(x3, x4),

where λ ∈ C, k > r+1
4 , wtp ≥ r + 1, wt q1 = r−3

2 , wt q2 = r − 1, and q1, q2 are

weighted homogeneous for the weights distributed above.

By Corollary 4.14, we have wtϕ= r. So we can distribute weight wt(x1, x2,

x3, x4) = ( r+1
2 , r−1

2 ,2,1). We obtain a quartuple (x̂1, x̄2, x3, x4) by x̂1 = x1+cx̄2+

p(x3, x4), x̄2 = x2 + q(x3, x4), where c ∈C, p, and q are as in Lemma 4.13. Then

we rewrite ϕ as

ϕ= (x̂1 − cx̄2 − p)2 + (x̄2 − q)2x4 + λ(x̄2 − q)xk
3 + g.

Since wtϕ= r, we can show that c= 0, k > r+1
4 , q = 0, wt(p2 + g)≥ r, and p is

weighted homogeneous of weight r−1
2 . So by replacing variables, we can rewrite

ϕ as

ϕ= x2
1 + 2x1p(x3, x4) + x2

2x4 + λx2x
k
3 + g(x3, x4),

where λ ∈ C, k > r+1
4 , wtg ≥ r, and p is weighted homogeneous of weight r−1

2 .

We can write ψ as

ψ = x2
2 + 2x1

1

x4
p(x3, x4) +

1

x4
gwt=r(x3, x4).

Therefore, we have the desired expression in (i).

(ii) Set x5 = ψ. Let f ′ : Z →X be the weighted blowup with wtxi =multxi.

We have the condition that q2 is not square if q1 = 0, which is equivalent to the

condition that the exceptional locus F of f ′ be irreducible and reduced.

(iii) We shall show that ϕ has the condition x
r+1
2

3 ∈ p if and only if every

singular point in Z is terminal. The x3-chart U3 of the weighted blowup f ′ can

be expressed as(
x′2
1 + λx′

2x
′2k− r+3

2
3 + x′

4x
′
5 +

1
x′r+1
3

p(x′2
3 , x

′
3x

′
4) = 0,

x′2
2 + 2x′

1q1(1, x
′
4) + q2(1, x

′
4) + x′

3x
′
5 = 0

)/1

2

(
−r− 3

2
,
r− 5

2
,1,1,1

)
.

If the origin o is contained in U3, then this point is not terminal since U3 is

not embedded in 4-dimensional quotient space. So we need the condition o /∈ U3,

which is equivalent to the condition x
r+1
2

3 ∈ p. Hence, Z is covered by U1, U2,

U4, and U5. The origin of U5 is of type 1
r (1,−1,4). We can check that Z has

only isolated singularities as in the proof of Theorem 2.9. Therefore, we can

apply Lemma 4.2, and f should coincide with f ′. The proof of Theorem 2.3 is

completed. �
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4.5. Case e1 with discrepancy 4

In this section, we suppose that f : (Y ⊃ E) → (X � P ) is of type e1, and its

discrepancy a is 4. In this case, Y has one non-Gorenstein singular point. This

point Q is of type 1
r (1,−1,8). Set Nj := {(l1, l2, l3, l4, l5) ∈ Z5

≥0 | r+1
2 l1 +

r−1
2 l2 +

4l3+ l4+rl5 = j, l1, l2 ≤ 1},Mj := {(l1, l2, l3, l4) ∈ Z4
≥0 | 5l1+3l2+2l3+ l4 = j, l2 ≤

1}, and Lj := {(l1, l2, l3) ∈ Z3
≥0 | 3l1 + l2 + l3 = j}.

LEMMA 4.17

We have that

dimVj =

⎧⎪⎪⎨
⎪⎪⎩
#Nj if r > 5,

#Mj if r = 5,

#Lj if r = 3.

Proof

By Tables 1 and 2, we see that (rQ, bQ, vQ) = (r,8,2) and E3 = 1/r. We also have

eQ = (r+1)/4 (resp., eQ = (3r+1)/4) if r ≡ 3 (mod 8) (resp., r ≡−3 (mod 8)).

So

dimVj =
1

2r
j(j + 5) +

5

2r
+

1

12
E · c2(Y )

−
(
−jeQ −−(j + 1)eQ

)r2 − 1

12r
+
(−jeQ−1∑

l=1

−
−(j+1)eQ−1∑

l=1

)8l(r− 8l)

2r
.

Here ·̄ denotes the residue modulo r. Since dimV0 = 1, we have

5

2r
+

1

12
E · c2(Y ) = 1−−eQ · r

2 − 1

12r
+

−eQ−1∑
l=1

8l(r− 8l)

2r
.

If r > 5, we consider

dimVj − dimVj−4 =
2

r
(2j + 1)

−
(
−jeQ −−(j + 1)eQ −−(j − 4)eQ + (j − 3)eQ

)
+
∑ 8l(r− 8l)

2r

for any j ≥ 4. We can show dimVj − dimVj−4 =#Nj −#Nj−4 as Lemma 4.3. If

r = 5 (resp., r = 3), we consider

dimVj − dimVj−5 = j(resp., dimVj − dimVj−3 = j + 1)

for any j ≥ 5 (resp., j ≥ 3). We can show dimVj =#Mj (resp., dimVj =#Lj)

as Lemma 4.3. �

LEMMA 4.18

If r > 5, then we have the following conditions.
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(i) There exist some 1≤ k, l ≤ 4 with multE xk = 1, multE xl = 4. By per-

mutation, we may assume that xk = x4, xl = x3.

(ii) If j < r−1
2 , then the monomials xl3

3 x
l4
4 for (0,0, l3, l4,0) ∈ Nj form a

basis of Vj . In particular, for k = 1,2, multE x̄k ≥ r−1
2 for x̄k := xk +∑

ckl3l4x
l3
3 x

l4
4 with some ckl3l4 ∈ C and summation over (0,0, l3, l4,0) ∈⋃

j< r−1
2

Nj .

(iii) There exists some k = 1,2 with multE x̄k =
r−1
2 such that the monomials

x̄k and xl3
3 x

l4
4 for (0,0, l3, l4) ∈N r−1

2
form a basis of V r−1

2
. By permutation, we

may assume that x̄k = x̄2; then mult x̂1 ≥ r+1
2 for x̂1 := x̄1 +

∑
cl2l3l4 x̄

l2
2 x

l3
3 x

l4
4

with some cl2l3l4 ∈C and summation over (0, l2, l3, l4) ∈N r−1
2
.

(iv) We have multE x̂1 = r+1
2 , and if j < r − 1, then the monomials

x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈Nj form a basis of V5.

(v) Set Ñj = {(l1, l2, l3, l4, l5) ∈ Z5
≥0 | r+1

2 l1+
r−1
2 l2+4l3+ l4+rl5 = j}. The

monomials x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4,0) ∈ Nr−1 have one nontrivial relation,

say, ψ, in Vr−1. The natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4,0)∈Ñr−1

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 → Vr−1 → 0

is exact.

(vi) We have multE ψ = r. The natural exact sequence

0→Cx4ψ→
⊕

(l1,l2,l3,l4,l5)∈Ñr

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 ψ

l5 → Vr → 0

is exact.

COROLLARY 4.19

We distribute weights wt(x̂1, x̄2, x3, x4) = ( r+1
2 , r−1

2 ,4,1) to the coordinates x̂1,

x̄2, x3, x4 obtained in Lemma 4.18. Then ϕ is of the form

ϕ= cx4ψ+ϕ>r(x̂1, x̄2, x3, x4)

with c ∈ C and a function ϕ>r of weighted order greater than r, where ψ in (1)

is the one in Lemma 4.18(v).

LEMMA 4.20

If r = 5, then we have the following conditions.

(i) There exist some 1 ≤ k, l ≤ 4 with multE xk = 1 and multE xl = 2. By

permutation, we may assume that xk = x4, xl = x3. The monomials xl3
3 x

l4
4 for

(0,0, l3, l4) ∈M2 form a basis of V2. In particular, for k = 1,2, multE x̄k ≥ 3 for

x̄k := xk +
∑

ckl3l4x
l3
3 x

l4
4 with some ckl3l4 ∈C and summation over (0,0, l3, l4) ∈⋃

j<3Mj .

(ii) There exists some k = 1,2 with multE x̄k = 3 such that the monomials

x̄l2
k x

l3
3 x

l4
4 for (0, l2, l3, l4) ∈Mj form a basis of Vj if j < 5. By permutation, we

assume that x̄k = x̄2. Then mult x̂1 ≥ 5 for x̂1 := x̄1+
∑

cl2l3l4 x̄
l2
2 x

l3
3 x

l4
4 with some

cl2l3l4 ∈C and summation over (0, l2, l3, l4) ∈
⋃

j<5Mj .
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(iii) multE x̂1 = 5, and the monomials x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈ M5

form a basis of V5.

(iv) Set M̃j = {(l1, l2, l3, l4) ∈ Z4
≥0 | 5l1 +3l2 +2l3 + l4 = j}. The monomials

x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈M6 have one nontrivial relation, say, ψ, in V6. The

natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4)∈M̃6

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 → V6 → 0

is exact.

COROLLARY 4.21

We distribute weights wt(x̂1, x̄2, x3, x4) = (5,3,2,1) to the coordinates x̂1, x̄2, x3,

x4 obtained in Lemma 4.20. Then ϕ is of the form

ϕ= cψ+ϕ>6(x̂1, x̄2, x3, x4)

with c ∈ C and a function ϕ>6 of weighted order greater than 6, where ψ in (1)

is the one in Lemma 4.20(iv).

If r = 3, then we have the following conditions.

(i) There exist some 1 ≤ k, l ≤ 4 with multE xk = multE xl = 1. By per-

mutation, we may assume that xk = x2, xl = x3. The monomials xl2
2 x

l3
3 for

(0, l2, l3) ∈ L2 form a basis of V2. In particular, for k = 1,4, multE x̄k ≥ 3 for

x̄k := xk +
∑

ckl2l3x
l2
2 x

l3
3 with some ckl2l3 ∈ C and summation over (0, l2, l3) ∈⋃

j<3Lj .

(ii) There exists some k = 1,4 with multE x̄k = 3 such that the monomials

x̄l1
k x

l2
2 x

l3
3 for (l1, l2, l3) ∈ Lj form a basis of Vj for any j. By permutation, we

assume that x̄k = x̄1.

So we have
⊕

(l1,l2,l3)∈Lj
Cx̄l1

1 x
l2
2 x

l3
3 � Vj for any j. This means that ϕ ∈C{x1, x2,

x3}. This is a contradiction that P is cDV . Therefore, we have r ≥ 5.

Proof of Theorem 2.1

The cA2 point P ∈X has an identification such that

ϕ= x2
1 + x2

2 + x3
3 + g(x3, x4) = 0 or(2)

ϕ= x1x2 + x3
3 + g(x3, x4) = 0,(3)

where g ∈m2 and deg g(x3,1)≤ 2. We shall show that there is no suitable weight

wt(x1, x2, x3, x4) in each case.

Case (2). If r = 5, we can show that wt(x1, x2, x3, x4) = (5,3,2,1) by Corol-

lary 4.21. We obtain a quartuple (x̂1, x̄2, x3, x4) by x̂1 = x1 + cx̄2 + p(x3, x4),

x̄2 = x2 + q(x3, x4), where c ∈C, p, and q as in Lemma 4.20. Then we rewrite ϕ

as

ϕ= (x̂1 − cx̄2 − p)2 + (x̄2 − q)2 + x3
3 + g(x3, x4).
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By replacing variables, we rewrite ϕ as

ϕ= x2
1 + 2cx1x2 + (c2 + 1)x2

2

+ 2x1p(x3, x4) + 2cx2p(x3, x4) + x3
3 + q(x3, x4),

where c ∈C, wt q ≥ 6, and p contains only monomials with weight 3 and 4.

Let f ′ : Z → X be the weighted blowup with wtxi = multE xi. Then the

x1-chart U1 of the weighted blowup f ′ can be expressed as(
x′4
1 + 2cx′2

1 x
′
2 + (c2 + 1)x′2

2 + 2
1

x′
1

p(x′2
1 x

′
3, x

′
1x

′
4)

+ 2c
x′
2

x′3
1

p(x′2
1 x

′
3, x

′
1x

′
4) + x′3

3 +
1

x′6
1

q(x′2
1 x

′
3, x

′
1x

′
4) = 0

)/1

5
(1,−3,3,−1).

The origin is a nonhidden singularity which is not of type 1
5 (1,−1,3). It is a

contradiction by Table 1.

If r > 5, there is no suitable weight wt(x1, x2, x3, x4) by Corollary 4.19.

Case (3). If r = 5, we can distribute weights wt(x1, x2, x3, x4) = (5,2,3,1), (5,3,

2,1). Let f ′ : Z →X be the weighted blowup with wtxi = multE xi. As in the

proof of case (2), the origin of the x1-chart U1 of the weighted blowup f ′ is not

a nonhidden singularity which is not of type 1
5 (1,−1,3). It is a contradiction.

If r > 5, by Lemma 4.18, we show that r = 11 and wt(x1, x2, x3, x4) = (6,5,

4,1). However, since wt(x1x2) = 11, it is impossible that ϕ forms as in Corol-

lary 4.19.

Therefore, there is no divisorial contraction of type e1 which contracts to a

cA2 point with discrepancy 4. The proof of Theorem 2.1 is completed. �

Proof of Theorem 2.2

The cD point P ∈X has an identification such that

ϕ= x2
1 + x2

2x4 + λx2x
k
3 + g(x3, x4) = 0,

where g ∈ m3, λ ∈ C, and k ≥ 2. We can show that r 
= 5 as in the proof of

Theorem 2.3.

(i) As in the proof of Theorem 2.3, we can show that wt(x1, x2, x3, x4) =

( r+1
2 , r−1

2 ,4,1) and that ϕ can be written as

ϕ= x2
1 + λx2x

k
3 + x4ψ+ p(x3, x4),

ψ = x2
2 + 2x1q1(x3, x4) + q2(x3, x4),

where λ ∈ C, k > r+3
4 , wtp ≥ r + 1, wt q1 = r−3

2 , wt q2 = r − 1, and q1, q2 are

weighted homogeneous for the weights distributed above.

(ii) Set x5 =−ψ, and replace x4 with −x4. Let f
′ : Z →X be the weighted

blowup with wtxi = multxi. We have the condition that q2 is not square if

q1 = 0, which is equivalent to the condition that the exceptional locus F of f ′ is

irreducible and reduced.
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(iii) We shall show the condition below if and only if every singular point in

Z is terminal:

• x
r+1
4

3 ∈ p if r ≡ 3 (mod 8),

• x
r−1
4

3 ∈ q2 if r ≡−3 (mod 8).

The x3-chart U3 of the weighted blowup f ′ can be expressed as(
x′2
1 + λx′

2x
′4k− r+3

2
3 + x′

4x
′
5 +

1
x′r+1
3

p(x′4
3 , x

′
3x

′
4) = 0,

x′2
2 + 2x′

1q1(1, x
′
4) + q2(1, x

′
4) + x′

3x
′
5 = 0

)

/1

4

(7− r

2
,
9− r

2
,1,3,4−r

)
.

If o ∈ U3, then the origin is not terminal since U3 is not embedded in 4-dimensional

quotient space. So we have the condition o /∈ U3, which is equivalent to the con-

dition x
r+1
4

3 ∈ p (resp., x
r−1
4

3 ∈ q2) if r ≡ 3 (mod 8) (resp., r ≡ 5 (mod 8)). Hence,

Z is covered by U1, U2, U4, and U5. The origin of U5 is of type 1
r (1,−1,8).

We can check that Z has only isolated singularities as in the proof of Theo-

rem 2.9.

Therefore, we can apply Lemma 4.2, and f should coincide with f ′. The

proof of Theorem 2.2 is completed. �

4.6. Case e3 with discrepancy 3

In this section, we suppose that f : (Y ⊃ E) → (X � P ) is of type e3, and its

discrepancy a is 3. In this case, Y has one non-Gorenstein singular point. This

point deforms to two points: Q1 of type 1
2 (1,1,1) and Q2 of type 1

4 (1,3,3). Set

Nj := {(l1, l2, l3, l4) ∈ Z4
≥0 | 4l1 + 3l2 + 2l3 + l4 = j, l1l3 = 0}.

LEMMA 4.22

We have that dimVj =#Nj .

Proof

By Tables 1 and 2, we can see that (rQ1 , bQ1 , vQ1) = (2,1,1), (rQ2 , bQ2 , vQ2) =

(4,3,1), and E3 = 1/4. We also have eQ1 = 1, eQ2 = 3. So

dimVj =
1

8
j(j + 4) +

5

12
+

1

12
E · c2(Y )

− (j − j + 1)
1

8
− (j

′ − j + 1
′
)
5

16
+
(j

′−1∑
l=1

−
j+1

′−1∑
l=1

)3l′(4− 3l
′
)

8
.

Here ·̄ denotes the residue modulo 2, and ·̄′ denotes the residue modulo 4. Since

dimV0 = 1, we have

5

12
+

1

12
E · c2(Y ) =

9

16
.

Now we consider
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dimVj − dimVj−3 =
3

8
(2j + 1)− 1

4
(j − j + 1)

− 5

16
(j

′ − 2j + 1
′
+ j + 2

′
) +

∑ 3l
′
(4− 3l

′
)

8

for any j ≥ 3. We can show dimVj−dimVj−3 =#Nj−#Nj−3 as Lemma 4.3. �

LEMMA 4.23

(i) There exist some 1 ≤ k, l ≤ 4 with multE xk = 1 and multE xl = 2. By

permutation, we may assume that xk = x4, xl = x3. The monomials xl3
3 x

l4
4 for

(0,0, l3, l4) ∈N2 form a basis of V2. In particular, for k = 1,2, multE x̄k ≥ 3 for

x̄k := xk +
∑

ckl3l4x
l3
3 x

l4
4 with some ckl3l4 ∈C and summation over (0,0, l3, l4) ∈⋃

j<3Nj .

(ii) There exists some k = 1,2 with multE x̄k = 3 such that the monomials

x̄k and xl3
3 x

l4
4 for (0,0, l3, l4) ∈ N3 form a basis of V3. By permutation, x̄k =

x̄2. Then mult x̂1 ≥ 4 for x̂1 := x̄1 +
∑

cl2l3l4 x̄
l2
2 x

l3
3 x

l4
4 with some cl2l3l4 ∈ C and

summation over (0, l2, l3, l4) ∈N4.

(iii) We have multE x̂1 = 4. If j < 6, then the monomials x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for

(l1, l2, l3, l4) ∈Nj form a basis of Vj .

(iv) Set Ñj = {(l1, l2, l3, l4) ∈ Z4
≥0 | 4l1 + 3l2 + 2l3 + l4 = j}. The monomials

x̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 for (l1, l2, l3, l4) ∈N6 have one nontrivial relation, say, ψ, in V6. The

natural exact sequence

0→Cψ→
⊕

(l1,l2,l3,l4)∈Ñ6

Cx̂l1
1 x̄

l2
2 x

l3
3 x

l4
4 → V6 → 0

is exact.

COROLLARY 4.24

We distribute weights wt(x̂1, x̄2, x3, x4) = (4,3,2,1) to the coordinates x̂1, x̄2, x3,

x4 obtained in Lemma 4.23. Then ϕ is of the form

ϕ= cψ+ϕ>6(x̂1, x̄2, x3, x4)

with c ∈ C and a function ϕ>6 of weighted order greater than 6, where ψ in (1)

is the one in Lemma 4.23(iv).

Proof of Theorem 2.6

The cA2 point P ∈X has an identification such that

ϕ= x2
1 + x2

2 + x3
3 + g(x3, x4) = 0,

where g ∈m2 and deg g(x3,1)≤ 2.

(i) We shall show that we distribute weight wt(x1, x2, x3, x4) = (4,3,2,1) and

that ϕ can be written as
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ϕ= x2
1 + x2

2 + 2cx1x2 + 2x1p(x3, x4)

+ 2cx2pwt=3(x3, x4) + x3
3 + g(x3, x4)

= 0,

where c 
= ±1, 2 ≤ wtp ≤ 3, wtg ≥ 6, and deg g(x3,1) ≤ 2. By Corollary 4.24,

we can distribute weight wt(x1, x2, x3, x4) = (4,3,2,1). We obtain a quartuple

(x̂1, x̄2, x3, x4) by x̂1 = x1 + cx̄2 + p(x3, x4), x̄2 = x2 + q(x3, x4), where c ∈ C, p,

and q are as in Lemma 4.23. Then we rewrite ϕ as

ϕ= (x̂1 − cx̄2 − p)2 + (x̄2 − q)2 + x3
3 + g.

Since wtϕ= 6, we have cpwt≤2 =−q, and p contains only monomials with weight

2 and 3. Moreover, since P ∈X is of type cA2, we have c
2+1 
= 0. So by replacing

variables, we have the desired expression in (i).

(ii) Let f ′ : Z →X be the weighted blowup with wtxi =multE xi. We have

the condition that g is not square if pwt=2 = 0, which is equivalent to the condition

that the exceptional locus F of f ′ is irreducible and reduced.

(iii) We shall show that ϕ needs the condition x2
4 ∈ p and that every singu-

lar point in Z is terminal. The x1-chart U1 of the weighted blowup f ′ can be

expressed as(
x′2
1 + x′2

2 + 2cx′
1x

′
2 + 2

1

x′2
1

p(x′2
1 x

′
3, x

′
1x

′
4)

+ 2cx′
2pwt=3(x

′
3, x

′
4) + x′3

3 +
1

x′6
1

g(x′2
1 x

′
3, x

′
1x

′
4) = 0

)/1

4
(1,1,2,3).

It is necessary that the origin be of type cAx/4. So we have the condition x2
4 ∈ p.

We can check that Z has only isolated singularities as in the proof of Theo-

rem 2.10.

Therefore, we can apply Lemma 4.1, and f should coincide with f ′. The

proof of Theorem 2.6 is completed. �

Proof of Theorem 2.7

The cD point P ∈X has an identification such that

ϕ= x2
1 + x2

2x4 + λx2x
k
3 + g(x3, x4) = 0,

where g ∈m3, λ ∈C, and k ≥ 2. Since wtϕ= 6, we can distribute weight wt(x1,

x2, x3, x4) = (4,3,2,1), (4,3,1,2), (4,2,1,3), (3,4,2,1), (3,4,1,2), (3,2,1,4), or

(3,1,2,4).

• At first, we suppose wt(x1, x2, x3, x4) = (3,4,2,1).

(i) We shall show that ϕ can be written as

ϕ= x2
1 + x2

2x4 + 2x2x4p(x3, x4) + c2x2
1x4 + λx2x

k
3

+ c
(
2x1x2x4 + 2x1x4p(x3, x4) + λx1x

k
3

)
+ g(x3, x4)

= 0,
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where c, λ ∈ C, k > 2, wtg ≥ 6, and p contains only monomials with weight at

most 3.

We obtain the quartuple (x̄1, x̂2, x3, x4) by x̄1 = x1 + p(x3, x4), x̂2 = x2 +

cx̄1 + q(x3, x4), where c ∈C, p, and q are as in Lemma 4.23. Then we rewrite ϕ

as

ϕ= (x̄1 − q)2 + (x̂2 − x̄1 − p)2x4 + λ(x̂2 − cx̄1 − p)xk
3 + g(x3, x4).

Since wtϕ= 6, we can assume q = 0. Moreover, we have wt(p2x4−λpxk
3 +g)≥ 6,

and p contains only monomials with weight at most 3. So replacing variables, we

have the desired expression in (i).

(ii) Let f ′ : Z →X be the weighted blowup with wtxi =multE xi. We have

the condition that g is not square if pwt=1 = 0, which is equivalent to the condition

that the exceptional locus F of f ′ is irreducible and reduced. If x4 ∈ p, then F

is irreducible and reduced.

(iii) We shall show that ϕ has the conditions c= 0, x4 ∈ p, and x3
3 ∈ g if and

only if every singular point in Z is terminal and Z has a nonhidden terminal

of type cAx/4. The x2-chart U2 of the weighted blowup f ′ can be expressed

as (
x′2
1 + x′3

2 x
′
4 + 2

x′
4

x′
2

p(x′2
2 x

′
3, x

′
2x

′
4) + c2x′2

1 x
′
2x

′
4

+ c
(
2x′

1x
′2
2 x

′
4 + 2x′

1x
′
4

1

x′2
2

p(x′2
2 x3, x

′
2x4) + λx′

1x
′2k−3
2 x′k

3

)

+ λx′2k−2
2 x′k

3 +
1

x′6
2

g(x′2
2 x

′
3, x

′
2x

′
4) = 0

)/1

4
(1,1,2,3).

The origin of U2 is of type cAx/4. So we have the conditions x4 ∈ p and c= 0.

Moreover, since the equation is free outside the origin, we have gwt=6(x3,0) 
= 0,

which is equivalent to the condition x3
3 ∈ g. Thus, ϕ can be written as

ϕ= x2
1 + x2

2x4 + 2x2x4p(x3, x4) + λx2x
k
3 + g(x3, x4),

and P is of type cD4. We can check that Z has only isolated singularities as in

the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1, and f should

coincide with f ′ if P ∈X is cD4.

• Next, we shall show that there is no weighted blowup of type e3 which

contracts to a cD point with wtx1 = 4.

We select wt(x1, x2, x3, x4) = (4,3,2,1). We obtain the quartuple (x̂1, x̄2,

x3, x4) by x̂1 = x1 + cx̄2 + p(x3, x4), x̄2 = x2 + q(x3, x4), where c ∈ C, p, and

q are as in Lemma 4.23. Then we rewrite ϕ as

ϕ= (x̂1 − cx̄2 − p)2 + (x̄2 − q)2x4 + λ(x̄2 − q)xk
3 + g(x3, x4).

We replace x̂1 �→ x1 and x̄2 �→ x2. Let f ′ : Z → X be the weighted blowup

with wtxi = multE xi. Then the x1-chart U1 of the weighted blowup f ′ can

be expressed as
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((
x′
1 − cx′

2 −
1

x′3
1

p(x′2
1 x

′
3, x

′
1x

′
4)
)2

+
(
x′
2 −

1

x′3
1

q(x′2
1 x

′
3, x

′
1x

′
4)
)2

x′
1x

′
4

+ λ
(
x′
2 −

1

x′3
1

q(x′2
1 x

′
3, x

′
1x

′
4)
)
x′2k−3
1 x′k

3

+
1

x′6
1

g(x′2
1 x

′
3, x

′
1x

′
4) = 0

)/1

4
(1,1,2,3).

It is necessary that the origin be of type cAx/4. So we have x2
4 ∈ p, and more-

over c = 0. Now the x2-chart U2 of the weighted blowup f ′ can be expressed

as ((
x′
1x

′
2 −

1

x′3
2

p(x′2
2 x

′
3, x

′
2x

′
4)
)2

+
(
1− 1

x′3
2

q(x′2
2 x

′
3, x

′
2x

′
4)
)2

x′
2x

′
4

+ λ
(
1− 1

x′3
2

q(x′2
2 x

′
3, x

′
2x

′
4)
)
x′2k−3
2 x′k

3

+
1

x′6
2

g(x′2
2 x

′
3, x

′
2x

′
4) = 0

)/1

3
(2,1,1,2).

The origin is a nonhidden singularity. It is a contradiction by Table 1. Similarly,

we have a contradiction in any other case. Therefore, there is no weighted blowup

of type e2 which contracts to a cD point with wtx1 = 4.

• Finally, we shall show that there is no weighted blowup of type e3 which

contracts to a cDn point with wtx1 = 3 for any n≥ 5. We can show that P is of

type cD4 with the weight wt(x1, x2, x3, x4) = (3,4,1,2) as in the proof with the

weight wt(x1, x2, x3, x4) = (3,4,2,1). We select wt(x1, x2, x3, x4) = (3,2,1,4) or

(3,1,2,4). We obtain the quartuple (x̄1, x2, x3, x̂4) by x̂4 = x4 + cx̄1 + p(x2, x3),

x̄1 = x1+ q(x2, x3), where c ∈C, p, and q are as in Lemma 4.23. Then we rewrite

ϕ as

ϕ= (x̄1 − q)2 + x2
2(x̂4 − cx̄1 − p) + λx2x

k
3 + g(x3, x̂4 − cx̄1 − p).

Replacing variables, we can rewrite ϕ as

ϕ= x2
1 + x2

2

(
x4 + cx1 + p(x2, x3)

)
+ λx2x

k
3 + g(x1, x2, x3, x4),

where c ∈ C, k ≥ 2 wtg ≥ 6, and p contains only monomials with weight at

most 3. Let f ′ : Z →X be the weighted blowup with wtxi =multE xi. If wt(x1,

x2, x3, x4) = (3,2,1,4), then the x4-chart U4 of the weighted blowup f ′ can be

expressed as(
x′2
1 + x′2

2

(
x′2
4 + cx′

1x
′
4 +

1

x′2
4

p(x′
2x

′2
4 , x

′
3x

′
4)
)

+ λx′
2x

′k
3 x′k−4

4 +
1

x′6
4

g(x′
1x

′3
4 , x

′
2x

′2
4 , x

′
3x

′
4, x

′4
4 ) = 0

)/1

4
(1,2,3,1).
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It is necessary that the origin be of type cAx/4. So we have the condition x2
3x4 ∈ g.

This means that P is of type cD4.

If wt(x1, x2, x3, x4) = (3,1,2,4), we have c = 0, and we can assume p = 0

by replacing g if necessary. The x3-chart U3 of the weighted blowup f ′ can be

expressed as(
x′2
1 + x′2

2 x
′
4 + λx′

2x
′2k−5
3 +

1

x′6
3

g(x′
1x

′3
3 , x

′
2x

′
3, x

′2
3 , x

′4
3 x

′
4) = 0

)/1

2
(1,1,1,0).

We need the condition o /∈ U3, which is equivalent to the condition x3
3 ∈ g. Then P

is of type cD4. Therefore, there is no divisorial contraction of type e3 which con-

tracts to a cDn point with discrepancy 3 for any n≥ 5. The proof of Theorem 2.7

is completed. �

Proof of Theorem 2.8

The cE6 point P ∈X has an identification such that

ϕ= x2
1 + x3

2 + x2g(x3, x4) + h(x3, x4) = 0,

where g ∈ m3, h ∈ m4, and h4 
= 0. By Corollary 4.24, we have wtϕ = 6. So

we can distribute weights wt(x1, x2, x3, x4) = (4,3,2,1), (4,2,3,1), (3,4,2,1), or

(3,2,4,1). Suppose wt(x1, x2, x3, x4) = (4,3,2,1). Then we obtain a quartuple

(x̂1, x̄2, x3, x4) by x̂1 = x1 + cx̄2 + p(x3, x4), x̄2 = x2 + q(x3, x4), where c ∈ C, p,

and q are as in Lemma 4.23. We rewrite ϕ as

ϕ= (x̂1 − cx̄2 − p)2 + (x̄2 − q)3 + (x̄2 − q)g+ h.

We replace x̂1 with x1 and x̄2 with x2. Since wtϕ= 6, we can rewrite ϕ as

ϕ= x2
1 + x3

2 + p(x3, x4)x
2
2 + 2cx1x2

+ 2q(x3, x4)x1 + x2g(x3, x4) + h(x3, x4)

= 0,

where g ∈ m3, h ∈ m4, h4 
= 0, c ∈ C, and p (resp., q) contains only monomials

with weight 1 and 2 (resp., 2 and 3).

Let f ′ : Z →X be the weighted blowup with wtxi =multE xi. The x1-chart

U1 of the weighted blowup f ′ can be expressed as(
x′2
1 + x′3

1 x
′3
2 + p(x′2

1 x
′
3, x

′
1x

′
4)x

′2
2

+ 2cx′
1x

′
2 + 2

1

x′2
1

q(x′2
1 x

′
3, x

′
1x

′
4)

+ x′
2

1

x′3
1

g(x′2
1 x

′
3, x

′
1x

′
4) +

1

x′6
1

h(x′2
1 x

′
3, x

′
1x

′
4) = 0

)/1

4
(1,1,2,3).

It is necessary that the origin be of type cAx/4. So we need x2
4 ∈ q and x3 /∈ q.

Moreover, we need that the action is free outside the origin, which is equivalent

to the condition that x3
3 ∈ h. This is a contradiction. Similarly, we have a con-

tradiction in any other case. Therefore, there is no divisorial contraction of type
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e3 which contracts to a cE6 point with discrepancy 3. The proof of Theorem 2.8

is completed. �
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