Divisorial contractions to cDV points with
discrepancy greater than 1

Yuki Yamamoto

Abstract We study 3-dimensional divisorial contractions to cDV points with discrep-
ancy greater than 1 which are of exceptional type. We show that every 3-dimensional
divisorial contraction is obtained as a weighted blowup.

1. Introduction

Let P € X be a germ of a 3-dimensional terminal singularity defined over C.
A projective birational morphism f: Y — X is called a divisorial contraction if

(i) —Ky is f-ample,
(ii) Y has only terminal singularities, and
(iii) the exceptional locus F of f is an irreducible divisor.

In this situation, we write Ky = f*Kx +a(E, X)E with a(E, X) € Q. The coef-
ficient a(E, X) is called the discrepancy of E over X. When f(E) = P, that is,
v\e: Y\ E— X\ {P} is an isomorphism, we write f: (Y D E) — (X > P).

It is a fundamental problem in 3-dimensional birational geometry to find all
divisorial contractions f: (Y D E) — (X > P). In this article, I finish the clas-
sification of 3-dimensional divisorial contractions which contract an irreducible
divisor to a point. The classification of all divisorial contractions to a point tells
us that they are obtained as weighted blowups.

THEOREM 1.1

Let f: Y — X be a 3-dimensional divisorial contraction whose exceptional divisor
E contracts to a point P. Then f is a weighted blowup of the singularity P € X
embedded into a cyclic quotient 5-fold.

A detailed version of our main results in Theorem 1.1 shall be given in Section 2.
The classification of all divisorial contractions to a non-Gorenstein point P € X
in Theorem 1.1 has already been settled by [2]-[4], [10], [11], and [13]. For a
Gorenstein point P € X, several cases of divisorial contractions to P have already
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Table 1. Divisorial contraction of exceptional type

E3 Non-Gorenstein terminal on Y’
1/r | 1(1,-1,8); r=+3 (mod 8)'
2/r | 1(1,-1,4)

1/r | ¢A/r or ¢D/3 deforming to
2% 1(1,-1,2); ¢D/3 for cFEe 7
el cAz,cD,cE¢ | 3 | 1/4 | cAx/4 deforming to

1(1,1,1), £(1,3,3)

(1,6,6)

(1,2,2) and £(1,4,4)

Type | Terminal P
el cAsxt, ¢D

cD

e2 cD, cEg 7

NN R

eb cEr 2 1/7
9 | cBrs 2 | 1/15

2
1
7
1
3

been classified. Kawakita [7] showed that f is obtained as a suitable weighted
blowup in the case of a nonsingular point P, and Kawakita [8] classified divisorial
contractions to a cA; point. Kawakita [10] also classified all divisorial contractions
to a point into two types: the ordinary type and the exceptional type. We know
that all divisorial contractions of ordinary type are classified by [10, Theorem 1.2].
Hayakawa [5], [6] classified divisorial contractions to points of type ¢D, c¢E with
discrepancy 1. As a result, the remaining cases in Theorem 1.1 are divisorial
contractions of exceptional type with discrepancy greater than 1, which are listed
in Table 1. The main aim in this article is to finish the classification of all divisorial
contractions listed in Table 1.

Chen, Hayakawa, and Kawakita found several examples of exceptional type
listed in Table 1. There are several examples of type el, €2, e3, and €9 which are
weighted blowups by [10]. Chen has examples of type el with P of type ¢D and
discrepancy 4, and there is an example of type €5 in [1].

In this article, we describe divisorial contractions to a Gorenstein point,
and we show that every divisorial contraction listed in Table 1 is obtained as a
weighted blowup if it exists. Our method of classification is to study the structure
of the graded ring @, f:O(—jE)/f.O(=(j + 1)E). We find local coordinates
at P to meet this structure and verify that f should be a certain weighted
blowup. In certain cases, there are some choices of local coordinates unlike in
the non-Gorenstein cases. So we should compute weighted blowups in detail, and
in several cases, there is no suitable local coordinate. There are no divisorial
contractions of type el with P of type cAs and discrepancy 4, type e2 with type
cE7, and type e3 with type cFg.

We shall give the results in Section 2, and their proofs shall be given in
Section 4. We explain terminal singularity, weighted blowup, and the singular
Riemann—Roch theorem in Section 3.

2. Mainresults

We consider the divisorial contractions f: (Y D E) — (X 3 P) listed in Table 1.
Our main results show that such contractions are obtained as weighted blowups

!The new case and the condition given by the erratum [12].
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embedded into C* or C® if they exist. The following is a detailed version of our
main results. Proofs shall be given in Section 4.

THEOREM 2.1

There is no divisorial contraction of type el which contracts to a cAs point with
discrepancy 4.

THEOREM 2.2
Suppose that f is a divisorial contraction of type el which contracts to a cD point

with discrepancy 4. Then f is the weighted blowup with wt(x1,x2, 3,4, x5) =
(T;rl, %,4, 1,7) with r > 7, r =43 (mod 8), after an identification

cC?

T1T2T3T4T5"

PeXmoc ( 22 + A\zoxh + 2475 + p(23,24) =0, )

a3 + 2211 (23, 4) + go (w3, 24) + 25 =0
Moreover, the equations defining X satisfy the following conditions.

(i) XeC, k> %, wtp>r+1, wtqp = T—;?’, wtgo =7 —1, and q1,q92 are
weighted homogeneous for the weights distributed above.

(ii) gq2 is not square if g1 =0.

r+1

(i) Ifr=3 (mod 8) (resp., r=—3 (mod 8)), then x5’

q2)-

1

€p (resp., xz3* €

THEOREM 2.3

Suppose that f is a divisorial contraction of type el which contracts to a cD point
with discrepancy 2. Then f is the weighted blowup with wt(xq,x2, T3, s, x5) =

(Tgl, %, 2,1,r) with r >5 after an identification

cC?

XT1T2T3T4T5 "

PeX~o€e ( a3 4 Awowh + w45 + p(w3,24) = 0, >

23 4 221q1 (23, 74) + q2(73, 1) + 25 =0
Moreover, the equations defining X satisfy the following conditions.
(i) XeC, k> %, wtp>r+1, wtqy = T—g?’, wtge =1 —1, and q1,q2 are

weighted homogeneous for the weights distributed above.
(ii) g9 s not square if ¢1 =0.
r+1

(iii) z3* €p.

THEOREM 2.4
Suppose that f is a divisorial contraction of type e2 which contracts to a cD point
with discrepancy 2. Then one of the following holds.
(i) f is the weighted blowup with wt(x1,x2,x3,24) = (r,7,2,1) after an iden-
tification of P € X with
o€ (w% + 232y + 2m024p (w3, 24) + AN2oxh + q(23,74) = 0) cc?

xr1T2x3T4"

Moreover, the equation defining X satisfies the following conditions.
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(1) XeC, k> g, wtq>2r, and p is weighted homogeneous of weight r — 1
for the weights distributed above.

(2) p#0 or qui=ar 0, and qui=2, s not square if p=0.

(3) z3€q.
The non-Gorenstein singularity of Y is of type cA/r.

(i) f is the weighted blowup with wt(x1,xq,x3,24) = (3,3,1,2) after an iden-
tification of P € X with

o€ (m% + 2324 + 2w074p(23,74) + X273 + q(23,74) = O) - Ci1m2x3x4‘
Moreover, the equation defining X satisfies the following conditions.

(1) wtq>6, and p is weighted homogeneous of weight 2 for the weights
distributed above.
(2) =zi€q

The non-Gorenstein singularity of Y is of type ¢cD/3, and P is of type cDy.

THEOREM 2.5

Suppose that [ is a divisorial contraction of type e2 which contracts to a cEg
point with discrepancy 2. Then f is the weighted blowup with wt(x1,z2,x3,24) =
(3,3,2,1) after an identification of P € X with

oc (l'% + {xQ - p(x3,1'4)}3 + x29(m37x4) + h(x3,$4) = 0) C (Ciwczwaam'
Moreover, the equation defining X satisfies the following conditions.

(i) wtg>3, wth>6, and p is weighted homogeneous of weight 2 for the
weights distributed above.

(ii) degg>3 and degh > 4.

(ili) z3€p and 23 €g.
There is no divisorial contraction of type e2 which contracts to a cE7 point with
discrepancy 2.

THEOREM 2.6

Suppose that f is a divisorial contraction of type e3 which contracts to a cAs
point with discrepancy 3. Then f is the weighted blowup with wt(x1,zo,x3,x4) =
(4,3,2,1) after an identification of P € X with

0 € (z + 23 + 2ca172 + 221p(23, T4)
+ 2cxopwi—s(23,74) + 23 + g(23,74) =0) C (Cilmmm-
Moreover, the equation defining X satisfies the following conditions.

(i) c¢#=x1, wtg>6, and p contains only monomials with weight 2 and 3
for the weights distributed above.
(ii) 23 €p and degg(xs,1) <2.
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THEOREM 2.7
Suppose that f is a divisorial contraction of type e3 which contracts to a c¢Dy

point with discrepancy 3. Then f is the weighted blowup with wt(x1,x2,x3,24) =
(3,4,2,1) after an identification of P € X with

o€ (x% + 222y + 2wox4p(T3, 24) + /\1‘2$§ +q(xs,24) = O) cct

r1T2x3T4"

Moreover, the equation defining X satisfies the following conditions.

(i) AeC, k>2, wtq>6, and p contains only monomials with weight at
most 3 for the weights distributed above.
(i) z4€p and 23 €q.

For any n > 5, there is no divisorial contraction of type e3 which contracts to a
cD,, point with discrepancy 3.

THEOREM 2.8
There is no divisorial contraction of type e3 which contracts to a cEg point with
discrepancy 3.

THEOREM 2.9
Suppose that f is a divisorial contraction of type eb which contracts to a cEr point

with discrepancy 2. Then f is the weighted blowup with wt(x1,x2, 3,4, x5) =
(5,3,2,2,7) after an identification

23+ xows + (w3, 14) = 0,>

cC’
23+ q(x3,74) + 25 =0

T1T2X3T4T5"

PEXNOG(

Moreover, the equations defining X satisfy the following conditions.

(i) wtp>10, wtqg>6 for the weights distributed above.
(i) ged(ps,g3) =1.

THEOREM 2.10
Suppose that f is a divisorial contraction of type €9 which contracts to a cEr g

point with discrepancy 2. Then f is the weighted blowup with wt(x1,xo,x3,24) =
(7,5,3,2) after an identification of P € X with

0 € (23 + 23 + 32} + z29(23, 24) + h(z3,24) =0) C C;

T1T2X3T4"

Moreover, the equation defining X satisfies the following conditions.

(i) AeC and wtg>9, wth > 14 for the weights distributed above.
(ii) If P is of type cEy (resp., cEg), then x3 € g (resp., a3 or xaxy € h).
(iii) 27 € h.

We can show that every 3-dimensional divisorial contraction to a Gorenstein
point is obtained as a weighted blowup by [4]-[9], and the above theorems. There-
fore, we can prove Theorem 1.1 by [11]. Proofs of these theorems shall be given
in Section 4.
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NOTATION
(i) We denote C" with coordinates x1,...,z, by C},
(ii) We define the action of a cyclic group p, of order m on CZ

(.’I/']_, s ,l’n) = (Calmla s 7Canxn)a
where ( is a primitive mth root of unity. The quotient space is denoted by
(Cglmmn/i(al, ey p), (C"/i(al, .+, Qp), or simply %(a_l, ooy lp).
(iii) For Wt(xg,x4) (a,b) and g(xg,:v4) Sopijaial € C{xs, x4}, we define
wt(g(zs,24)) =inf{ai + bj | p;; # 0}.

For a positive integer n, we define

by

LoZn

Jwt=n 3737374 § sz$3x47
ai+bj=n

gwt>n $37‘T4 Z pljx3x4
ait+bj>n

(iv) Let C{x1,...,2,} be the ring of convergent power series in variables
Z1,...,&,. For f € C{z1,...,2,}, we denote by f,, the homogeneous part of
degree m of f.

(v) We say that a monomial, for example, 2™, appears in a power series f
or f contains z™ if there exists a monomial z™ with nonzero coefficient in the
power series expansion of f, and we denote it by 2" € f.

3. Preliminaries

3.1. Classification of terminal singularities

It is known that a 3-dimensional Gorenstein terminal singularity is an isolated
c¢DV hypersurface singularity, that is, a singularity with local equation of the
form

f(xlax27l.3) +x4g(x1,x2,x3,x4) =0

for some f(x1,z2,23) defining a Du Val (equivalently rational double point)
singularity. If P € X is a 3-dimensional Gorenstein terminal singularity, then
according to the type of f(z1,72,23), we have that P € X ~o0 € (¢ =0) C C* for
some ¢ belongs to one of the following:

(i) type cA: (z122 + g(x3,24) =0) C C* with g(z3,74) € m?,

(ii) type eD: (23 + 2324 + Aozl + g(23,24) = 0) C C* with A€ C, [ > 2,
g(x3,24) € M3,

(iii) type cE: (22 +a3+x2g(w3,24)+h(w3,24) = 0) C C* with g(z3,74) € m3,
h($3,$4) S m4,

where m denotes the maximal ideal of o € C*. In the cE case, it is of type cEg
(vesp., cE7, cEg) if hy #0 (resp., ha =0 and g3 #0, hy = g3 =0 and hs #0).

To prove Theorems 2.1 and 2.6, we need to construct a standard identifica-
tion.
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LEMMA 3.1
Let P € X be a germ of a 3-dimensional Gorenstein terminal singularity. If P is
of type cAs, then there is an identification

PecX~o0€ (x1x2+x§+g(x3,x4):0) cct

T1X2X3T4
2 2 3 4
~o¢€ (xl +a5+ a3+ g(xs,x4) = O) CCLrprgas

where deg g(x3,1) < 2.

Proof
By definition, there is an identification

PeX~oc€ (z%+Q:§+x§+x4F(I1,z2,13,x4):0) cct

T1X2X3T4

for some F(xq,72,23,24) € m?. By using the Weierstrass preparation theorem
and completing a square, we may assume that

PeX~oe€ (2} 423+ a3 + x4 F' (x3,24) = 0)

for F’'(z3,74) € m?%. We may assume that deg F’(z3,1) <2 by the Weierstrass
preparation for x3. Thus, we get the desired forms by the automorphism z; +
ixo — o1 and x1 — ixo — xo if necessary. O

Mori [15] classified that a 3-dimensional terminal singularity P € X with index
r > 1 is isomorphic to a cyclic quotient of an isolated ¢DV singularity, and Kollar
and Shepherd-Barron [14] showed that these isolated ¢DV’s quotients are termi-
nal singularities.

THEOREM 3.2
There exists an identification

PeX~oc(p=0)cCC: /tor

L1T223T4

where p, denotes the cyclic group of order r and x1,x2,T3,24,p are fiy-SEMi-
invariant. Furthermore, ¢ and the action of u, have one of the following forms:

(i) type cA/r: (z1m2 + g(2h,24) = 0) C C*/L(a,—a,1,0) with g(x3,z4) €
m?, ged(a,r) =1;
\ (i) type cAz/2: (z3 + 23 + g(x3,24) =0) CC*/3(0,1,1,1) with g(zs,z4) €
m?;
\ (iii) type cAz/4: (x3 + 23 + g(x3,24) =0) C C*/1(1,3,1,2) with g(zs,z4) €
m?;
(iv) type cD/3: (¢ =0) C C*/1(0,2,1,1), where ¢ has one of the following
forms:
(1) 2} + 23 + a3 + a3,
(2) 23 + 23 + 2374 + 22g(w3,74) + h(w3,74) Wwith g€ m?, h e m",
(3) 23 + 23 + 23 + xag(w3,4) + h(z3,74) With g€ m?*, h € m5;
(v) type cD/2: (p=0) C C*/1(1,0,1,1), where ¢ has one of the following
forms:
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(1) 23 + 23 + zoxszy + g(73, 74) With g € m?,
(2) 22 + 2ow3zy + 28 + g(w3,24) With n <4, g€ m?,
(3) 23 + 2223 + 28 + g(z3,74) withn <3, gem?,
(vi) type cE/2: (2} + a3+ 22g(x3, x4) + h(zs,24) =0) C C*/1(1,0,1,1) with
g, h€m4, h47£0

Conwversely, if ¢ as above defines an isolated singularity and the action of u, on
@ =0 is free outside the origin, then P is a terminal singularity.

3.2. Weighted blowup

We recall the construction of weighted blowups by using the toric language. Let
N =79 be a free Abelian group, called a lattice, of rank d with standard basis
{e1,...,eq}. Let M be the dual lattice of N. Let o be the cone in N ® R generated
by the standard basis eq,...,eq, and let A be the fan which consists of o and all
the faces of . We consider

Tn(A) :=SpecClo¥ N M] =C?.

Let v=(ay,...,aq) be a primitive vector in N, that is, the vector which has no
element in N between 0 and v. We assume that a; € Z>¢ and ged(ag,...,aq) = 1.
For any ¢ with a; > 0, let o; be the cone generated by {e1,...,€;-1,v,€i41,...,€d},
and let A(v) be the fan consisting of all 0;’s and their all faces. A(v) is called
the star-shaped decomposition for v. Then

Tn (A(v)) = | SpecCloy N M].
a; >0
If a; > 0 for all 4, the natural map 7m: T (A(v)) — Tn(A) is called the weighted

blowup over o € Ty(A) with weight v = (a1,...,aq). In each affine chart U, :=
Spec Clo, N M|, the natural map U; — Ty (A) is given by

z; e aay if 5 £,
x> )t
The exceptional divisor £ of 7 is isomorphic to P(aq,...,aq).

Let X :=(o(x1,...,24) =0) C Tn(A) be a hypersurface, and let Y be the
birational transform on T (A(v)) of X. We also call the induced map n’: ¥ — X
the weighted blowup of X with weight v. The affine chart U; :=U; NY can be
expressed as

ai aj—1 a; 41 ag\ . .—wtep
(<p(x133i R TR E P S SRR AR T e b3 —O)CZ/Ii

for each i. The exceptional divisor of 7’ is denoted by F:=&NY. If E is irre-
ducible and reduced and we have dim(Tn(A(v)) NY) <1, then we have the
adjunction formula

Ky:T(/*Kx+ (Zai—wtgo—l)E.

We define weighted blowups of the complete intersection similarly.
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3.3. The singular Riemann-Roch formula
As we shall use the method in [10] and [11], we recall the singular Riemann—Roch
formula.

THEOREM 3.3 ([16, Theorem 10.2])

Let X be a projective 3-fold with canonical singularities, and let D be a divisor
on X such that D ~epKx with ep € Z at each P € X.

(i) There is a formula of the form

X(Ox(D)) = X(Ox) + 75 D(D — Kx)(2D ~ Kx)

+ %D . CQ(X) + zP:Cp(D),

where the summation takes place over the singularities on X, and cp(D) € Q is
a contribution due to the singularity at P, depending only on the local analytic
type of P and Ox (D).

(ii) If P € X is a terminal cyclic quotient singularity of type #(1, —1,bp),
then

1

77’2 -1 lbp(?‘p—m)
D)= —ip-L
cr(D)=—ipg =+ ; p

where 1 =i — L%er_denotes the residue of © modulo rp. (The sum ngl is
zero by convention if ip =0 or 1.)

(iii) For an arbitrary terminal singularity P,
cp(D) =) cq(Dg),
Q

where {(Q,Dgq)} is a flat deformation of (P, D) to the basket of terminal cyclic
quotient singularities Q.

4. Proofs of main results

In this section we prove the main theorem by using the method in [10] and [11].
Our strategy for the classification is to determine the exceptional divisor in the
sense of valuation by applying Lemma 4.1 or Lemma 4.2 (see [9, Lemma 6.1],
[10, Lemma 6.1]).

LEMMA 4.1

Let f: (Y D E)— (X > P) be a germ of a 3-dimensional divisorial contraction
to a cDV point P. We identify P € X with

PeX~oe(p=0)CX:=C}

T1T2X3T4"

Let a denote the discrepancy of f, and let m; denote the multiplicity of x;
along E, that is, the largest integer such that z; € f.Oy(—m;E). Suppose that



538 Yuki Yamamoto

(m1,ma,m3,my) is primitive in Z*. Let d denote the weighted order of ¢ with
respect to weights wt(x1,z2,23,24) = (m1,ma,m3, my), and decompose ¢ as

o =@a(r1,72,73,24) + <P>d(3317$27$3,334)7

where g 1s the weighted homogeneous part of weight d and p~q is the part of
weight greater than d. Set c¢:=my +my +m3z+mg—1—d. Let g: (ZDF) —
(X > 0) be the weighted blowup with weights wt(xy, T2, T3, 74) = (M1, M2, m3,M4)
and with F its exceptional divisor. Let Z denote the birational transform on Z of
X, and let g: Z — X be the induced morphism. If we have the four conditions

(i) FNZ defines an irreducible and reduced 2-cycle F,
(ii) Z is smooth at the generic point of F,

(iii) dim(SingZNZ)<1, and

(iv) c=a,

then we have f~g over X.
We shall apply the following extension of Lemma 4.1 to several cases.

LEMMA 4.2
Let f: (Y D E)— (X 3 P) be a germ of a 3-dimensional divisorial contraction
to a cDV point P. We identify P € X with
p= 0, _

PeX~o€ <¢0> CX:=C) . 0smams-
Let a denote the discrepancy of f, and let m; denote the multiplicity of x; along
E. Suppose that (m1,ma, m3, mq,ms) is primitive in Z°. Let d (resp., e) denote
the weighted order of ¢ (resp., 1) with respect to weights wt(x1, o, x3,Tq4,25) =
(my,ma, m3, my,ms), and decompose ¢ and ¥ as

Y = Spd(xlva,x3ax47x5) + Q0>d($1,$271'3,$4,$5),
/(/) = we($1»$2,$37$4,$5) + 'l/]>e($1,x271}3,$4,$5),

where pq (resp., V.) is the weighted homogeneous part of weight d (resp., e)
and osq (resp., Ws.) is the part of weight greater than d (resp., e). Set ¢ :=
my+ma+mz+my+ms—1—d—e. Let g: (ZDF)— (X 30) be the weighted
blowup with weights wt(x1,29, 23,74, 75) = (M1, ma,m3,my,ms) and with F its
exceptional divisor. Let Z denote the birational transform on Z of X, and let
g: Z — X be the induced morphism. If we have the four conditions

(i) FNZ defines an irreducible and reduced 2-cycle F,
(il) Z is smooth at the generic point of F,

(iii) dim(SingZNZ)<1, and

(iv) c=a,

then we have f ~g over X.
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Table 2
Type J Type J
el (r,2) eb (7,3)

e2 (r,1), (r,1) €9 (5,2), (3,1)
ed (2,1), (4,1)

Now we study 3-dimensional divisorial contractions to ¢cDV points. We let
frYDE)—=(X3P)

be a germ of a 3-dimensional divisorial contraction whose exceptional divisor E
contracts to a singular point P of index 1, and we let a denote its discrepancy. Let
Ip:={Q of type (1/rg)(1,—1,bg)} denote the basket of fictitious singularities on
Y, and let eq for @ € Iy be the smallest positive integer such that £ ~eqgKy at
Q. By replacing bg with 7g — bg if necessary, we may assume that vg := egbg <
ro/2, where = denotes the residue modulo rg. We set I:={Q € Iy | vg # 0} and
J:={(rg,vq)}ger- We can compute J for each case in Table 1, and we give the
results in Table 2.
We shall prove the main results as follows.

Step 1. For an integer j, we compute the dimension of the vector space
Vi = [0y (=jE)/ Oy (=(j + 1) E).

This space is regarded as the space of functions on X vanishing with multiplicity
j along E. For a function h on X, we let multg i denote the multiplicity of A
along E.

Step 2. We find the basis of V; by starting with an arbitrary identification
(1) PeX~oc(p=0)cCCh

T1T2x3T4?

and we compute the favorite weights wt(z1, 2, x3,24).

Step 3. In order to apply Lemma 4.1 or Lemma 4.2, we follow these procedures.

(i) Determine wt(xy, 22, x3,24), and rewrite .

(ii) Let f': Z— X be the weighted blowup with wtz; = multz;. Find the
condition that the exceptional locus of f’ is irreducible and reduced.

(iii) Verify the assumption of Lemma 4.1, and find the condition that every
singular point in Z is terminal.

Step 4. Then we can apply Lemma 4.1 or Lemma 4.2 and show that f coincides
with f’.

We note that dim V; and the basis of V; are dependent only on the type of f
but not on the type of P. So we shall show the main theorems according to the

type of f.
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We compute dim V; by using the singular Riemann—-Roch formula. For each
7, there is a natural exact sequence

0= Oy (—(j+1)E) = Oy (—jE) = Op(—jE|g) — 0.
So we have a long exact sequence
0= Oy (=i +1)E) = f.Oy(—jE) = f.Op(—jE|E)
— R'f.Oy(=(j +1)E) = R' f,Oy (—jE) = R' f.Op(—jE|g)
...

Since P is terminal, we have R'f.Oy(—(j + 1)E) =0 and R'f.Oy(—jE)=0
for any i > 1, j by the Kawamata—Viehweg theorem, and R'f,Op(—jE|g) =
HY(E,Op(—jFE|g)) for any 4, j. Then

dimc V; = dime f+Op(—jE|E)
=dim¢c H°(E,0p(—jE|r)) = x(Op(—jE|E))
=x(0y(=3E)) = x(Oy (-(i +1)E)).
Applying the singular Riemann—Roch formula, we have

1
dim V; = (6j(j +a+1)+ (a+1)(a+2) B

) X
+ EE . CQ(Y) + Aj — Aj+1.

Here the contribution term A; is given by A;:=3"5 ; Aq(—jeq), where

13 —1 g (rg — 1bg)
A _ Qlrq —lbo)
(x4) Q(k):=—k 12rg 2o

For j <0, we have V; =0. Now we compute dim Vj explicitly and show that f
is a weighted blowup in each case. Since we shall use similar procedures in each
case, we start with easy cases and proceed to complicated cases.

4.1. Case e9 with discrepancy 2

In this section, we suppose that f: (Y D E) = (X 3 P) is of type €9, and its
discrepancy a is 2. In this case, Y has two non-Gorenstein singular points. One
point @ is of type £(1,2,2), and another point Qs is of type £(1,4,4). Set
Nj = {(ll,lg,lg,h;) S Zéo ‘ Tl 4+ 5ls +3ls + 20, =5,1; < 1}.

LEMMA 4.3
We have that dim V; = #Nj.

Proof
By Tables 1 and 2, we see that (rg,,b0,,v0,) = (3,2,1), (1Q,,b0,,vq,) = (5,4,2),
and E3 =1/15. We also have eg, =2, eg, = 3. So
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. 1 1
dlmVj:—O (]+3)+1—5+ E ca(Y)

j-1 j+1i-1

-(-J+ 1 (
=1 =1

@ -G+ (zf y )reA

Here - denotes the residue modulo 3, and © denotes the residue modulo 5. Since
dim Vy =1, we have

)32l

11 17
4 Eee(Y)=—
5Tl el)=§5

Now we consider

1 2
dimV; —dimVj_5 = 2 (j — 1) - §(]*2j+1+j+2)

for any j > 5. We have
Ji/3 if k=0 (mod 3),
dimV; —dimV;_5=4¢(j—1)/3 ifk=1 (mod 3),
(1—2)/3 ifk=2 (mod 3).
On the other hand, we have a decomposition
Nj = {(11,0,13,1s) € N;} U {T'+(0,1,0,0) | I'e Nj_s5}.
Hence, for any j > 5,
#N; — #N;_5 = #{(11,0,13,14) € N; }.
So we have
J/3 if k=0 (mod 3),
#N; —#N;_5=41(j—1)/3 ifk=1 (mod 3),
(j—2)/3 ifk=2 (mod 3).

Therefore, we have dimV; — dimV;_5 = #N; — #N;_5 for any 7 > 5. We can
compute dim V; = #N; for j <4. Then we have dimV; = #N; for any j. O

LEMMA 4.4

(i)  There exist some 1 <k, I <4 with multgz; =2 and multgx; = 3. By
permutation, we may assume that x, = x4, x; = x3. Moreover, multg x; >4 for
k=1, 2.

(i) If j <5, the monomials x¢zli for (0,0,13,14) € N; form a basis of V;.
In particular, for k=1, 2, multg Z > 5 for Ty :=x) + chl3l4$é,3$£f with some

cizt, € C and summation over (0,0,13,11) € U; 5 N;.
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(iii) There exists some k=1,2 with multy T, =5 such that the monomials
Ty and xé‘”’xff for (0,0,13,14) € N5 form a basis of V5. By permutation, we may
assume that Ty = Ta.

(iv) The monomials xl;xlg?’mif for (0,12,13,14) € Ng form a basis of Vs, and

we have multz; > 7 for 1 =71 + chglsl4zl22xé3zi4 with some ¢4, € C and
summation over (0,13,13,14) € Ng.

(v)  We have multg @) =7, and for j < 14, the monomials #' T2zt for
(l1,12,13,14) € N; form a basis of V;.

(vi) Set Nj={(l1,lz,13,ls) € Z4 S0l Tl +5l2 +3l3 + 21y = j}. The monomials
ilfxl;mgd% for (l1,l2,13,14) € N14 have one nontrivial relation, say, ¥, in Vig4.

The natural exact sequence

0= Cy— D Ciyzg o alt — Via— 0
(I1,l2,13,l4)EN14

s exact.

Proof

We have dimV; =0, dimV, =dim V3 =1 by Lemma 4.3. This implies (i). By
permutation, we may assume that multE x4 =2, multg x3 = 3. To prove (ii), we
shall show that the monomials 2§ 2} for (0,0,13,14) € N are linearly independent
in V; for any j. Suppose 0 = Z(o 0,l,l1)EN, el € Vi, e, € C. We shall
show that ¢;,;, =0 for any (0,0,l3,14) € N;. We set j =6k + o, where 0 < k € Z
and 0 < a <5. We study the case j =6k for 0 <k € Z. So, we can write

21 3(k—1)
cl314x3 a:4 = Ty x4

(0,0,13,l4)EN;

for ¢; € C. Since C is an algebraically closed field, we factorize

Zc x?)fxik D — = (dy22 + doa3) (Zc’ 2(-1) B(k l))

for ¢},d1,ds € C. Hence, we have ¢; =0 for all 0 <! <k by induction on k. We
can show that ¢;,;, =0 for any other case similarly. We set W (j) := <x3 x4 |
(0,0,13,l4) € N;) C V; for each j. Then dim W (j) = #N; for j <5, and thus we
obtain (ii) by Lemma 4.3. Since dim V5 = dim W (5) 4+ 1 by Lemma 4.3, we obtain
(iii). By permutation, we may assume that Zy forms a basis of V5/W(5) ~ C.
Since the monomials z#z’ for (0,0,13,14) € N; are linearly independent in Vj
for any j, and dim V7 = W (7) 42 by Lemma 4.3, we obtain (iv) and multg Z; = 7.
For any j < 14, we have dimV; = #Nj by Lemma 4.3. This implies (v). Since
dimViy =#Nyy = #NM — 1, we have a nontrivial relation, say, ¢ in V14, and we
obtain the natural exact sequence in (vi). O

COROLLARY 4.5

We distribute weights wt(&1,Zo,x3,24) = (7,5,3,2) to the coordinates &1, T, x3,
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x4 obtained in Lemma 4./. Then @ is of form
Y= cr¢ + ()0>14(Q/}1,.f27l'3, x4)

with ¢ € C and a function ¢s14 of weighted order greater than 14, where ¥ in (1)
is the one in Lemma 4./ (vi).

Proof

Decompose ¢ = p<14 + ¢>14 into the part p<i14 of weighted order at most
14 and the part ¢s14 of weighted order greater than 14. Then multg p<14 =
multg ¢s14 > 14, so p<14 is mapped to zero by the natural homomorphism

@ (Cilllflfxéfxﬁf %OX/f*OY(_]-E)E)v
(I1,l2,03,la) €U <14 N,

whose kernel is Ct) by Lemmas 4.4(v) and 4.4(vi). O

Proof of Theorem 2.10
The cE7 g point P € X has an identification such that

¢ =] + 75 + 2g(x3,74) + h(T3,74) =0,

where g € m3 and h € m*. If P is of type cE; (resp., cEg), then g3 # 0 (resp.,
g3 =0, hs #0).

(i) We shall show that we distribute weight wt(z1,2z2,23,24) = (7,5,3,2),
and that ¢ can write

Y= 1’% + x% + Ax%.’l]i + x29($37 33'4) + h(.’L'g, 1’4)7

with A€ C, g € m3, and h € m*. By Corollary 4.5, we have wt = 14. So we can
show that we distribute weight wt(x1,x2,23,24) = (7,5,3,2) easily. We obtain a
quartuple (&1, %o, x3,24) by &1 =21 + cTo + p(x3,T4), T2 = 22 + q(x3,74), Wwhere
c€C, p, and ¢ are as in Lemma 4.4; that is, p (resp., ¢) contains only monomials
with weight at most 6 (resp., at most 4).

Then we rewrite ¢ as

0= (1 — Ty —p)?+ (Ta—q)° + (T2 —q)g + h
=22 — 2piy — 2¢31Tg + T3 + (¢ — 3¢) 73
+ (2ep+ 3¢° + g)Ta + (102 — ¢ —qg+ h).

Since wt¢ = 14, we can show that ¢ =p =0, wtq =4, wt(3¢®> +g) > 9, and
wt(—q> — qg + h) > 14. We also have ¢ = Az% with A € C. Moreover, if P is of
type cEr (resp., cEg), then we have z3 € g (resp., 3 or zizy € h). Replacing
3¢%2 + g with g and —¢® — gg + h with h and replacing variables, we have the
desired expression in (i).

(ii) Let f': Z — X be the weighted blowup with wtz; = multgz;. If P is
of type cE7, it is obvious that the exceptional locus F of f’ is irreducible and
reduced. If P is of type cEs, we need the condition that x3z3 € g or a7 € h if
A =0 and wiz, ¢ h, which is equivalent to F being irreducible and reduced.
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(iii) We shall show that ¢ has the condition z] € h if and only if every
singular point in Z is terminal. The xz4-chart Uy of the weighted blowup f’ can
be expressed as

2 13,1 /2
U, = (ml + x5 Ty + Az

1 1 1
+ oy g(ahal o) + —mphlahal,at) =0) /5 (11,1,1).
4 4

If the origin o is contained in Uy, then this point is not terminal, since this
equation has only even degree terms. So we need the condition o ¢ Uy, which is
equivalent to the condition 27 € h. Hence, Z is covered by Uy, Us, and Us. We
study Us and Us:

1
_ 12 ! 2 13,0 12,0
Us = (xl + x5 + Azl + J8,99(5102 T3, Lo Ty)
2

1 1
+ —rphlafiah, o) = 0) /2(4,3,1,4),
T5 )

1
Us = (o +af'al + A + 2 —sg(af, afal)
3
1 13 12, 1
+ Wh(xlS » L3 £L‘4) = 0)/3(1727272)
3
The origin of Us is of type %(174,4)7 and the origin of Us is of type %(1,2,2).
We shall check that Us has only isolated singularities. Every singular point in Us
lies only on the hyperplane (x4 = 0) since F' is contracted to P by f’. So, it is
enough to study terms of degree at most 1 with respect to a%:

terms of degree 0: 22 + 2hgwi—o(1,24) + hwi=14(1,2});
terms of degree 1: x5 + 2hgwi—10(1,2}) + hwi=15(1, ).

Therefore, we can check that Us has only isolated singularities. Similarly, we can
check that U; and U, have only isolated singularities. Thus, the proof of (iii) is
finished.

Therefore, we can apply Lemma 4.1, and f should coincide with f’. The
proof of Theorem 2.10 is completed. O

4.2. Case e2 with discrepancy 2

In this section, we suppose that f: (Y D E) — (X 5 P) is of type €2, and its
discrepancy a is 2. In this case, Y has one non-Gorenstein singular point. This
point deforms to two points Q1 and Q2 which are of type 1(1,—1,2). Set N, :=
{(l1,12,137l4) S Zéo ‘ rly +rle + 203+ 1y =75,l1l = 0}

LEMMA 4.6
We have that dim V; = #Nj.
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Proof
By Tables 1 and 2, we see that (rq,,bg,,vg,) = (,2,1) fori=1, 2 and E3=1/r.
We also have eq, = (1 + 1)/2. So

1
dimVj:— (j—|—3)+ +12E c2(Y)

_(jrgl_(jﬂ)r;l) 12r (; g )M

Here = denotes the residue modulo r. Since dim V; = 1, we have

r—1 __
1 r—1 7" —1 3 21r—2l
- Eocy(Y)=1—
+12 (V)= 2 12r > T

=1

Now we can compute

JHI =5+ —j(r—3)
2r
for any j > 2. We can show dim V; —dim V;_g = #N; —#N,_> as Lemma 4.3. [

1
dimV; —dimV;_o = —(2j + 1) +
T

LEMMA 4.7

(i)  There exist some 1 < k,l <4 with multgzy =1 and multgx; =2. By
permutation, we may assume that x, = x4, x; = x3. Moreover, multg x; > 3 for
k=1, 2.

(i) If j <7, then the monomials x¥z't for (0,0,13,14) € N; form a basis
of Vj. In particular, for k=1,2, multg x, > r for T :=xp + chl3l4xé xf with
some cx1, € C and summation over (0,0,13,14) € U; ., N;.

(iii) We have multg Ty =r for k=1,2, and if j < 2r, then the monomials
rzbalals for (l1,12,13,14) € Nj form a basis of V;.

(iv) Set Nj = {(l1,la,13,14) € Z4 Solrli+rle+ 203+ 1y =j}. The monomials
xlllmlfxé?’mi‘l for (l1,12,13,14) € Na,. have one nontrivial relation, say, 1, in Va,.
The natural exact sequence

0—-Cy— @ Czlrzl a:ffxff — Vo, =0
(I1,12,l3,l4) ENay

18 exact.

Proof

We follow the proof of Lemma 4.4 using the computation of Lemma 4.6. State-
ment (i) follows from dim V; =1 and dim V5 = 2. By permutation, we may assume
that mult pTs =1, multg x3 = 2. To prove (ii), we shall show that the monomi-
als 33 ﬁf for (0,0 l3,l4) € N are linearly independent in V; for any j. Suppose
0= 2(0,0,13,l4)eNj cl3l4x3 x4 € Vj, cg, € C. We shall show that c,;, =0 for any
(0,0,13,14) € N;. We study the case j =2k for 0 <k € Z. So we can write
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k
I3 1 1 _2(k=1)
E Clsl41‘335”44:§ QT3Ty
(0,07l3,l4)€Nj =0

for ¢; € C. We factorize

k k
S etk = (dyag + dgo?) (3 ek 1020
=0 =1

for ¢},dy,ds € C. Hence, we have ¢; =0 for all 0 <! <k by induction on k. We
can show that ¢y, =0 for the case j is odd similarly. We set W (j) := (x5 2} |
(0,0,13,14) € N;) C V; for each j. Then dim W (j) = #N; for j <r, and thus we
obtain (ii). Since dimV,. = dim W (r) 4 2, by permutation, we may assume that
Zo and 7 form a basis of V,./W (r) ~ C?, and we have multg z; = multg Zo =r.
The monomials a:g"’xff for (0,0,13,l4) € N; are linearly independent in V; for any
J, and we have dim V; = dim W (j) +2#N,_, = #Nj for any j < 2r. This implies
(iii). Since dim Vo, = # Ny, = #1\72,, — 1, we have a nontrivial relation, say, v, in
Var, and we obtain the natural exact sequence in (iv). O

COROLLARY 4.8
We distribute weights wt(Z1,Z2,x3,24) = (1,7,2,1) to the coordinates T1, T2, T3,
x4 obtained in Lemma 4.7. Then ¢ is of the form

o =cth+ Qsor(T1,T2, 3, 74)

with ¢ € C and a function @, of weighted order greater than 2r, where ¢ in (1)
is the one in Lemma 4.7(iv).

Proof of Theorem 2.
The ¢D point P € X has an identification such that

©=a? + xiry 4+ Mvoak + g(xs,4) =0,
where gem?, A€ C, and k > 2.

(i) By Corollary 4.8, we have wt¢ = 2r. So we have wtxzy, wtzg =r. We
obtain a quartuple (Z1,72,73,24) by 1 = 21 + p(r3,74), T2 = 2 + q(23,74),
where p and ¢ are as in Lemma 4.7. Then we rewrite ¢ as

o= (21 —p)* + (B2 — q)*za + ATz — @)a5 + g
= (21 —p)? + Tirg — 2Tox4q + )\fgx'g + (q%xy — Aqxlg +9).
Since wt ¢ = 27, we can show that p = 0, wt(¢2x4 — A\gz} +g) > 2r, and ¢ contains
only monomials with weight » — 2 and r — 1. So, by replacing variables, we can
rewrite ¢ as
@ =} + 2334 + 2w0w4p(a3, 04) + Av22s + (23, 24),

with Ae C, k> 2, wtq > 2r, and p contains only monomials with weight r — 2
and r — 1.
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e Suppose that wt(z1,xs,x3,24) = (r,7,2,1).

In this case, we have k > r/2, and p is weighted homogeneous of weight r — 1
for the weights distributed above. Let f’': Z — X be the weighted blowup with
wt(x1, 2, x3,24) = (r,7,2,1).

(ii) We have the two conditions below if and only if the exceptional locus F
of f’ is irreducible and reduced.

(1) p#0 or gui=2r #0.

(2) QGwt=2r is not square if p=0.
If 2% € g, then either (1) or (2) holds.

(iii) We shall show that ¢ has the condition zj € ¢ if and only if every
singular point in Z is terminal. The x3-chart Uz of the weighted blowup f’ can
be expressed as

1
(acl + wahal 4+ 2xhalp + Arhr 2T 4 T q(z, x5}) )/2 (1,1,1,1).
3

If the origin o is contained in Ujs, then this point is not terminal, since this
equation has only even degree terms. So we need the condition o ¢ Us, which is
equivalent to the condition =% € ¢. Hence, Z is covered by U;, Uz, and Uy. The
origin of Us is of type cA/r. We can check that Z has only isolated singularities
as in the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1, and f
should coincide with f.

e Suppose that wt(z1,x2,x3,24) = (,7,1,2).

In this case, we have k >r. Let f': Z — X be the weighted blowup with
wt(z1, 22, x3,24) = (r,7,1,2). We shall show that r =3, A#0, and k= 3. The
xo-chart Us of weighted blowup f’ can be expressed as

(w2 + ot + 20, ﬁpu;w&, a))
2

1 -1 -1
+ )\x’k A /2r q(zhal, oPa)) = 0)/;(0, TT, —TT,l).

It is impossible that the origin of Us is of type cA/r. So it is necessary that the
origin be of type ¢D/3, and we need r =3, A #0, and k = 3. Moreover, we have
wtp = 2. Replacing variables, we can rewrite ¢ as

© =% + x3xy + 2x0x4p(w3, 24) + 17233§ +q(x3,24),

where wt ¢ > 6 and p is weighted homogeneous of weight 2.

(ii") The exceptional locus F' of f’ is irreducible and reduced if and only if
Qwt—6 1S not square.

(iii’) We shall show that ¢ has the condition z3 € ¢ if and only if every
singular point in Z is terminal. The x4-chart Uy of the weighted blowup f’ can
be expressed as
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1
12,12 / / 12
(xl + a5 xy + 22 x—,P(%%,% )
4

1
—|—m2x§°’—|— Gq(x3a:4,x4 )/ (1,1,1,1).
xl 2

If the origin o is contained in Uy, then this point is not terminal, since this
equation has only even degree terms. So we have the condition o ¢ Uy, which is
equivalent to the condition z3 € ¢. Hence, Z is covered by Uy, Us, and Usz. The
origin of Us is of type ¢D/3. We can check that Z has only isolated singularities
as in the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1, and f
should coincide with f’. The proof of Theorem 2.4 is completed. (|

Proof of Theorem 2.5
The cEg,7 point P € X has an identification such that

¢ =% + a5 + 2g(x3,24) + h(23,24) =0,

where g € m® and h € m*. If P is of type cEs (resp., cE7), then hy # 0 (resp.,
h4 = 07 gs 7é 0)

(i) We shall show that we distribute weight wt(z1,z2, 23, 24) = (3,3,2,1) and
that ¢ can be written as

3
o=af + {x2 — p(zs,24)}" + 2g(23,24) + h(23,24),

where g € m3, h € m*, and p is weighted homogeneous of weight 2 for the weights
distributed above. By Table 1, Y has ¢D/3 at which E is not Cartier, so we
have r = 3. By Corollary 4.8, we have wtp = 6. So we can distribute weight
wt(z1, 2, z3,24) = (3,3,2,1). We obtain a quartuple (Z1, T2, 3,24) by T1 =21+
p(x3,24), To = o2+ q(x3,24), where p and ¢ are as in Lemma 4.7. Then we rewrite
@ as
¢ = (21— p)* + (22 — 0)° + (22 — )9 (3, 24) + h(w3,24)
= (@1 -p)* + (T2 — 0)° + T2g + (—qg + ).

Since wt¢ = 6, we can show that p=0, wtg > 3, wt(—qgg + h) > 6, and ¢ is
weighted homogeneous of weight 2. Replacing Z;, Z2, ¢, and h, we have the
desired expression in (i).

(ii) Let f': Z — X be the weighted blowup with wtz; = multg ;. We can
show that the exceptional locus F of f’ is irreducible and reduced in (iii).

(iii) We shall show that ¢ has the condition x3 € g and z3 € p if and only if

every singular point in Z is terminal. The zs-chart Us of the weighted blowup
f' can be expressed as

(2 + {ah - plah,ah) )’

1 1
+ —,Sg(x'fxg,ac’zxﬁl) + 6h($’22$§),x’2x4 )/ (0,1,1,2).
x5 xh 3
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It is necessary that the origin be of type ¢D/3. So we need z3 € g. Moreover, we
show that the exceptional locus F of f’ is irreducible and reduced. The z3-chart
Us of the weighted blowup f’ can be expressed as

(331 + {2hal — p(LfEQ)}g
!

T4 1 1
+ 29 i) + —sh(@f ahat) = 0)/5(1,1,1,1).
T3 Ty

If the origin o is contained in Ujs, then this point is not terminal, since this
equation has only even degree terms. So we have the condition o ¢ Us, which
is equivalent to the condition x3 € p. We can check that Z has only isolated
singularities as in the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1,
and f should coincide with f.

Let Zo = x5 — p. Then we have

=13+ T3 + Tog(w3, 24) + (p(x3,24)g (w3, 24) + (w3, 24)).

If P is of type cE7, then h should contain z3z3, since o3 € p and x5 € g. This is a
contradiction to wt h > 6. So P is of type cEg. Therefore, the proof of Theorem 2.5
is completed. O

4.3. Case eb with discrepancy 2

In this section, we suppose that f: (Y D E) — (X 3 P) is of type €5, and its
discrepancy a is 2. In this case, Y has one non-Gorenstein singular point. This
point @ is of type %(1,6,6). Set Nj = {(ll,lg,l3,l4,l5) S Z5>0 | 501 + 3y + 2I3 +
244 Tls =g, l1,1o < 1}.

LEMMA 4.9
We have that dim V; = #Nj.

Proof
By Tables 1 and 2, we see that (rg,bg,vq) = (7,3,6) and E? =1/7. We also have
€Q = 4. So
dimV = LG +3)+ 2+ LB en(Y)
AR VERY 7120

3j-1 3(+1)-1 —

~ @35 ) (Z > =

Here ~ denotes the residue modulo 7. Since dim Vy = 1, we have

1 1 3
?+EE'CQ(Y)—?.
Now we consider

dimV; —dimV;_7=j -2

for any j > 7. We can show dim V; —dim V;_7 = #N; —#N,;_7 as Lemma 4.3. 0O
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LEMMA 4.10

(i)  There exist some 1 < k,l <4 with multg 2 = multg x; = 2. By permu-
tation, we may assume that xp = x4, x; = x3. Moreover, there exists some k=1,2
with multg xp = 3. By permutation, we may assume that xi = x2.

(ii) If j <5, then the monomials xl;xéf‘xﬁf for (0,12,13,14,0) € N; form a
basis of V. In particular, multg 71 > 5 for T := a1 + . i, v2aP el with
some cpy141, € C and summation over (0,l2,13,14,0) € Uj<5 N;.

(iil) multpZ; =5, and the monomials flllxézz?’xff for (l1,12,13,14,0) € N5
form a basis of V5.

(IV) Set Nj = {(11,12713,14,15) € Z5>0 | 5l1 + 3[2 + 2[3 + 214 + 7l5 = j} The
monomials zflllxl;x?xﬁf for (l1,12,15,14,0) € Ng have one nontrivial relation, say,
1, in Vg. The natural exact sequence

0—Cy— &b Calrababalt - Vs —0
(11,l2,13,14,0)€Ng
is exact.
(v) We have multgy =7. The natural ezact sequences

0— Cx39p @ Cxyyp — @ Cabralzalpaligl — Vg —0,
(I1,l2,13,la,l5 ) €Ng
0— Cxayp — @ Calralalalipl - Vo —0
(I1,12,l3,14,l5)ENg

are exact.

Proof

We follow the proof of Lemma 4.4 using the computation of Lemma 4.9. State-
ment (i) follows from dimV; =0 and dimV, = 2. Now (ii)—(iv) follow from the
same argument as in Lemma 4.4. Since ¢ =0 in V5 = f.Oy (—6E)/ f.Oy (=TE),
we have multg ) = 7. We also obtain the sequences in (v), which are exact pos-
sibly except for the middle. Their exactness is verified by comparing dimen-
sions. ]

COROLLARY 4.11
We distribute weights wt(Z1,x2,x3,24) = (5,3,2,2) to the coordinates T1, xa, T3,
x4 obtained in Lemma 4.10. Then ¢ is of the form

o =cra) + >9(ZT1, 72,73, 74)

with ¢ € C and a function =g of weighted order greater than 9, where v in (1)
is the one in Lemma /.10(wv).

Proof of Theorem 2.9
The cE7 point P € X has an identification such that
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¢ =27 + 25 + 2g(3,74) + h(23,24) =0,

where g € m?, h € m%, and g3 # 0.
(i) We shall show that we distribute weight wt(z1,z2,z3,24) = (5,3,2,2) and
that ¢ and ¥ can be rewritten as

Y= ‘r% +x§ + I2g(l‘3,$4) + h($3,$4)7

Y= x% + gwt=6(x3,T4),

where wt g > 6 and wth > 10.

By Corollary 4.11, we have wt ¢ =9. So we show that we distribute weight
wt(z1,x2, 23, 24) = (5,3,2,2). We obtain a quartuple (Z1,x2,23,24) by T1 =21+
cxo + p(xs,x4), where ¢ € C and p are as in Lemma 4.10. Then we rewrite ¢ as

¢ =(Z1 — cxa —p)* + 25 + 229+ h.

Since wt ¢ =9, we can show that c=p=0, wtg > 6, and wth > 10. By Corol-
lary 4.11, we have 1) = 23 + gwi—6(73,74). Replacing z; with z1, we have the
desired expression in (i). By setting x5 := —(¢ 4+ gwt>7) and replacing o — —x9,
we rewrite ¢ as

o =%+ zows + p(x3,74) =0,
23+ q(xs, 4) + 25 =0,

with wtp > 10 and wt ¢ > 6.

(ii) Let f': Z — X be the weighted blowup with wt(z1,x9, 3,24, 25) =
(5,3,2,2,7). It is obvious that the exceptional locus F' of f’ is irreducible and
reduced.

(iii) We shall show that we have the condition that ged(ps, ¢3) = 1 if and only
if every singular point in Z is terminal. The x3-chart Us of the weighted blowup
f' can be expressed as

. o b+ hoplafafe) =0\ 1
(A) Us = o2+ Leq(x, a2 x)) + xhal =0 /5(1’1’1’0’1)'
2 T s d\T3, T30y 3T =

If the origin o is contained in Us, then this point is not terminal since Us is
not embedded in 4-dimensional quotient space. So we need the condition o ¢ Us,
which is equivalent to the condition z3 € p or z3 € q. Moreover, the action on
equations (A) is free outside the points (0,0, 0,2/, 0), which satisfy the equations

pwt=10(17 1':1) = 07
QWt:6(17 ZL’Q) =0.

(B)

Since such points are of type %(1, 1,1,1), there is no solution on (B). Similarly,

we have the condition x§ € p or 23 € ¢, and there is no solution on

pwtzl()(xéu 1) = 07
Gwi=6(73,1) =0.

(©)

It is easy to show that the following four conditions,
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z3 Epor i €q,

there is no solution on (B),
x5 €p or a3 € ¢, and

there is no solution on (C),

are equivalent to the condition ged(ps,qs) = 1. We can check that Z has only
isolated singularities by using the Jacobian criterion. Thus, the proof of (iii) is
finished. Therefore, we can apply Lemma 4.2, and f should coincide with f’. The
proof of Theorem 2.9 is completed. |

4.4. Case el with discrepancy 2

In this section, we suppose that f: (Y D E) — (X 3 P) is of type el, and its
discrepancy a is 2. In this case, Y has one non-Gorenstein singular point. This
point @ is of type (1, —1,4). Set N; :={(I1,l2,l3,ls,15) € 224 | ZEL1, + 5Ll +

203 + g+ 7rls = j,11,10 < 1} and Mj = {(ll,l2713,14) S Z;O |§ll 4+ 2l +1l3+ 1y =
j712 S 1}

LEMMA 4.12
N; ifr>5,
We have that dimV; = #N; ifr=
#M; ifr=3.
Proof
By Tables 1 and 2, we see that (rg,bg,vq) = (1,4,2) and E* =2/r. We also have
eg=(r+1)/2. So

1 2 1
S 2,1
dim V; Tj(]—i—?))—l—r—l— 1 c2(Y)

-7‘7171 (j+1)r7171 o _

r—1 r—1\r2—1 72 3 4 (r —4l)
(8T
(J 5 Ut D) l; l; o

Here = denotes the residue modulo 7. Since dim V; = 1, we have

r—1

1 _
2 1 r—1 r2—1 = 4l(r—4l)
SN E-e(Y)=1— : _ 20T
s T lel) 2 T12r > o

If » > 5, we consider

2 20+ 1) (r—2(j +1)) —2j(r — 27
dim V; — dim Vj_p = = G+ D =20 +1) = 2j(r —2j)
r 2r
for any j > 2. We can show dimVj —dim Vj_» = #N; — #N;_» as Lemma 4.3. If
r =3, we consider

(27 +1)+

dimV; —dim V;_3 =2j

for any j > 3. We can show dimV; — dim V;_3 = #M; — #M,_3 as Lemma 4.3.
|
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LEMMA 4.13
If r > 5, then we have the following conditions.

(i)  There exist some 1 <k,l <4 with multgx, =1, multg x; =2. By per-
mutation, we may assume that x = x4, ¥ = 3.

(i) Ifj< %, then the monomials m?mﬁf for (0,0,13,14,0) € N; form a
basis of V;. In particular, for k = 1,2, multgz, > % for Ty = xp +
chlsl4mé3wi4 with some cgiz, € C and summation over (0,0,13,14,0) €
Ujcrgt Ny

(iii) There exists some k = 1,2 with multg T, = % such that the monomials
Ty and xéfxff for (0,0,13,14) € N% form a basis of V%. By permutation, we
may assume that Ty = To; then multz, > % for z1 =21 + 26121314i:l22xé3xi4
with some cyi41, € C and summation over (0,la,13,14) € Noi.

(iv) We have multpdy = "5, and if j <r — 1, then the monomials
i zbalpaly for (1h,1z,13,14) € Nj form a basis of V;.

(v) Set Nj={(l1,l2,13,1a,l5) € Z2o | 511 + 5 a4+ 25+ la+rls = j}. The
monomials i:lfflfa:é“”xi“ for (l1,12,13,14,0) € N._1 have one nontrivial relation,
say, ¥, in V._1. The natural exact sequence

0-Cv— @ Cababalal V=0
(I1,l2,03,14,0)ENy_y
18 exact.
(vi) multg ¢ =r. The natural exact sequence
0— Caap — @ Cilrzlalalipl -V, =0
(I1,02,l3,04,l5)EN,

1S exact.

Proof

We follow the proof of Lemma 4.10 using the computation of Lemma 4.12. State-
ment (i) follows from dimV; =1 and dimV, =2. Now (ii)—(vi) follow from the
same argument as in Lemma 4.10. ([l

COROLLARY 4.14
We distribute weights wt(&1,Za,23,24) = (“2'1, %1,2, 1) to the coordinates i1,
To, x3, T4 obtained in Lemma 4.13. Then @ is of the form

© = cxg + P>y (81, T2, 73, 24)

with ¢ € C and a function ps, of weighted order greater than r, where v in (1)
is the one in Lemma 4.13(v).

LEMMA 4.15
If r =3, then we have the following conditions.
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(i)  There exist some 1 <k,l <4 with multg xx = multgx; =1. By permu-
tation, we may assume that xyp, = x4, x; = x3. Moreover, there exists some k=1,2
with multg xp = 2. By permutation, we may assume that xi = xo.

(i) The monomials xézx?xff for (0,12,15,14,0) € Ny form a basis of V. In
particular, multg 1 > 3 for T, :=x1 + chzlsl4x122xl33:ci4 with some ¢y, € C
and summation over (0,lz,13,14,0) € ;o N;.

(iil) multpZ; = 3, and the monomials ;Elllml;xg“"mi“ for (l1,l2,13,14,0) € N3
form a basis of V3.

(iv) Set Nj = {(l1,l2,l3,1s) € Z4, | 31y + 2l + I3 + 1y = 5}. The monomials
fllla:ljx?arﬁf for (I1,12,13,14) € Ny have one nontrivial relation, say, 1, in Vy. The

natural exact sequence
0Cy— @ Calafalal -Vvi—0
(I1,02,13,l4)EN

18 exact.

COROLLARY 4.16
We distribute weights wt(Z1, 22, 23,24) = (4,3,2,1) to the coordinates Ty, 2, T3,
x4 obtained in Lemma 4.15. Then ¢ is of the form

0 =cth+ 0>4(T1,72,23,24)

with ¢ € C and a function ps4 of weighted order greater than 4, where ¢ in (1)
is the one in Lemma /.15(iv).

Proof of Theorem 2.5
The ¢D point P € X has an identification such that

© =22 + x3xq + Avoxh + g(23,24) =0,

where g € m3, A € C, and k > 2. We shall show that r > 5. Suppose r = 3. By
Corollary 4.16, we have wt ¢ =4. So it is possible to distribute weight wt(x,x2,
ws,24) = (3,2,1,1), (3,1,1,2), (2,3,1,1), or (2,1,1,3).

We suppose wt(x1,z2,23,24) = (3,2,1,1). Then we obtain a quartuple (Z1,
X9, x3,24) by T1 =21 + cxo+ p(x3,24), where ¢ € C and p are as in Lemma 4.15.
Thus, we rewrite ¢ as

o= (Z1 — cxo —p)2 + :E%m + )\xgx’?f +g.

We replace 1 with x;1. Let f': Z — X be the weighted blowup with wt(zy,xo,
x3,24) = (3,2,1,1). The zy-chart U; of the weighted blowup f’ can be expressed
as

1 2

/ / 1 o 102 0

((ml —cxh — —xl2p(x1m3,xlx4)> + zixsay
1

1 1
1
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It is necessary that o € Uy be of type 3 1(1,1,—1), but this is impossible. So we have
a contradiction. Similarly, we have a contraction in any other case. Therefore, we
have r > 5.

(i) We shall show that we distribute wt(zq, 22, 23,24) = (=, 552, 2,1) and
that ¢ can be rewritten as

©p= ZL’% + )\xgxlgf + 1’411) +p($37 1’4),

¥ =3+ 2w1q1 (3, 24) + Q2($3,w4),

where A € C, k > T+1, wtp>r 41, wtqr = 552, wtge =7 — 1, and ¢1,¢e are
weighted homogeneous for the weights distributed above.

By Corollary 4.14, we have wt =r. So we can distribute weight wt(z1, z2,
X3,T4) = (%, Tgl ,2,1). We obtain a quartuple (21, T2, z3,24) by &1 = 1 +¢cTo+
p(x3,24), To =22+ q(x3,74), where ¢ € C, p, and ¢ are as in Lemma 4.13. Then
we rewrite ¢ as

¢ = (&1 — cTy —p)? + (T2 — ¢)°x4 + \(T2 — @)k + g.

Slnce wt =17, we can show that C—O k> rf, q=0, wt(p?> +g) >r, and p is

2 . So by replacing variables, we can rewrite

© as
¢ = a7 + 221p(w3, T4) + T334 + AT225 + g(23,24),

where A € C, k > Tzl,
We can write ¢ as

1 1
V=135 + 211 —p(23,74) + — Gwir (T3, Ta).
XTq XTq

Therefore, we have the desired expression in (i).

(ii) Set x5 =. Let f': Z — X be the weighted blowup with wta; = mult z;.
We have the condition that ¢o is not square if ¢; =0, which is equivalent to the
condition that the exceptional locus F of f’ be irreducible and reduced.

(iii) We shall show that ¢ has the condition x3 € p if and only if every
singular point in Z is terminal. The x3-chart Us of the weighted blowup f’ can
be expressed as

o At R =0) Jro8 res )
T3 o T ' o o0
2+ 2xiqi(1,2)) + q2(1, 7)) + 2hal =0 2 2 2

If the origin o is contained in Us, then this point is not terminal since Us is

not embedded in 4-dimensional quotient space. So we need the condition o ¢ Us,
which is equivalent to the condition :v;T+1 € p. Hence, Z is covered by Uy, Us,
Uy, and Us. The origin of Us is of type %(1,71,4). We can check that Z has
only isolated singularities as in the proof of Theorem 2.9. Therefore, we can
apply Lemma 4.2, and f should coincide with f’. The proof of Theorem 2.3 is

completed. O
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4.5. Case el with discrepancy 4

In this section, we suppose that f: (Y D E) — (X 3 P) is of type el, and its
discrepancy a is 4. In thib case, Y has one non-Gorenstein singular point. This
point @ is oftype ;(1 ) Set N] —{(ll,lz,lg,l4,l5)€Z 0| T+111+ lz+
4l3+l4+7’l5 —],ll,lg < ].} MJ = {(ll,lg,lg,l4) € Z >0 | 5ll+312+213+l4 —j,lg
1}, and Lj :={(l1,l2,13) € Z3 Sol3h+l+ls=3}

LEMMA 4.17
We have that

#N; ifr>5,
dimV; = #M; ifr=5,
#Lj Zf r=23.

Proof

By Tables 1 and 2, we see that (rg,bg,vg) = (1,8,2) and E® =1/r. We also have
eg = (r+1)/4 (resp., eg = (3r+1)/4) if r =3 (mod 8) (resp., r =—3 (mod 8)).
So

. 1 5 1
dlm‘/j:?r](]+5)+*+ﬁE‘Cz(Y)

2r
PR o B SR T
(=jeq ——( +Deq) ot ; > —5

Here - denotes the residue modulo r. Since dim V = 1, we have

5 1 r2 —1 Tees 7‘—81
LN T Eoeo(Y)=1-=
o TP eeY) QT Z

If » > 5, we consider

2
dimV; —dimV;_4 = ;(2j +1)

—(—jeq——(+Deq ——( —4)eq + (j —3)eq)

8I(r — 8l)
T
for any j > 4. We can show dimV; —dimV;_4 = #N; — #N;_4 as Lemma 4.3. If
r =5 (resp., 7 = 3), we consider
dimV; —dimV;_5 = j(resp., dimV; —dimV;_s = j + 1)
for any j > 5 (resp., j >3). We can show dimV; = #M, (resp., dimV; = #L;)

as Lemma 4.3. O

LEMMA 4.18
If r > 5, then we have the following conditions.
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(i)  There exist some 1 <k,l <4 with multgxx =1, multg x; = 4. By per-
mutation, we may assume that xp = x4, T] = T3.

(i) If j<*5 1, then the monomials :L'fr,fxif for (0,0,13,14,0) € N; form a
basis of V;. In particular, for k=12, multgx, > % for Zp = xp +
chlshz?mff with some ciiy, € C and summation over (0,0,13,14,0) €
U]<T—1 N

(iii) There ezists some k = 1,2 with multg T, = % such that the monomials
T and :Eéaxff for (0,0,13,14) € N%l form a basis of Vr—l. By permutation, we

may assume that Ty = To; then multz; > for T1:=T1 + chzl3l4xl2 xéfxff
with some c,1,1, € C and summation over (0,127 lI3,0l4) E Nr—s .
2
(iv) We have multg & = ";1, and if j <r — 1, then the monomials

xi:lllml%g x for (l1,12,13,14) € N; form a basis of V5.

(V) SBtN {(ll,lg,l37l4,l5)€Z | TJ5111+T21Z2—|—4Z3—|—14+7"Z5 Z_]} The
monomials xlfxl;ng% for (l,12,13,14,0) € N,._1 have one nontrivial relation,

say, ¥, in V._1. The natural exact sequence

vaces @ cibelsud v 0
(I1,l2,l3,l4,0)EN,._1

18 exact.
(vi) We have multg ¢ =r. The natural exact sequence

rCuvo @ Cadbebai v
(I1,l2,l3,l4,l5)EN,.

15 exact.

COROLLARY 4.19
We distribute weights wt(Z1,To,x3,24) = (T; ,7=51.4,1) to the coordinates i1,
To, T3, T4 obtained in Lemma 4.18. Then ¢ is of the form

(p = Cm4¢ + @>r,«(j:1,.i'2,$3,$4)

with ¢ € C and a function ¢~, of weighted order greater than r, where ¢ in (1)
is the one in Lemma /.18(v).

LEMMA 4.20
If r =5, then we have the following conditions.

(i) There exist some 1 < k,l <4 with multgzy =1 and multgx; =2. By
permutation, we may assume that xrp = x4, x; = x3. The monomials xéaxff for
(0,0,13,l4) € My form a basis of Va. In particular, for k=1,2, multg zy >3 for
Ty i=x + chl3l4xé3xf1“ with some cii,1, € C and summation over (0,0,l3,14) €
Uj<3 M;.

(ii) There exists some k=1,2 with multy Ty = 3 such that the monomials
x%’x?wll for (0,12,13,14) € M; form a basis of V; if j <5. By permutation, we
assume that T, = To. Then mult £, > 5 for &1 := 71 +ch,zlsl4x12 zé3x4 with some

Cloisl, € C and summation over (0,lz,13,14) € U]<5 M;.
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(iil) multgZ; =5, and the monomials iili'l;xl;mﬁf for (I1,12,13,14) € M;
form a basis of V.

(iv) Set Mj = {(l1,la,13,14) € Z% | 51y + 3la + 213 + 1y = j}. The monomials
ilfi‘lzle;’xff for (I1,12,13,14) € Mg have one nontrivial relation, say, v, in Vi. The
natural exact sequence

0=Cy— P Carapafal >V —0
(11,l2,l3,14) € Mg

s exact.

COROLLARY 4.21
We distribute weights wt(Z1,Ta,x3,24) = (5,3,2,1) to the coordinates &1, Ta, 3,
x4 obtained in Lemma 4.20. Then ¢ is of the form

p=ctp+ ps6(L1,T2,73,24)

with ¢ € C and a function psg of weighted order greater than 6, where ¢ in (1)
is the one in Lemma /.20(iv).

If r =3, then we have the following conditions.

(i) There exist some 1 < k,l <4 with multg z; = multgx; = 1. By per-
mutation, we may assume that zp = x2, x; = x3. The monomials :cézz%“ for
(0,12,13) € Ly form a basis of V. In particular, for k = 1,4, multg Zx > 3 for
Ty 1= T + chZQZle;xéa with some cg,1, € C and summation over (0,l3,l3) €
Uj<3 Lj.

(ii) There exists some k = 1,4 with multg Z = 3 such that the monomials
igxl;xff for (l1,l2,l3) € L; form a basis of V; for any j. By permutation, we
assume that Tp = 7.

So we have @y, 1, 1,)er, Czltalal ~ V; for any j. This means that ¢ € C{x1,z2,

x3}. This is a contradiction that P is ¢DV. Therefore, we have r > 5.

Proof of Theorem 2.1
The cAs point P € X has an identification such that

(2) p=ai+a;+as+g(ws,2a)=0 or
(3) =173 + 25 + g(x3,24) =0,
where g € m? and deg g(x3,1) < 2. We shall show that there is no suitable weight

wt(x1,x2,T3,24) in each case.

Case (2). If r =5, we can show that wt(zq, 22, x3,24) = (5,3,2,1) by Corol-
lary 4.21. We obtain a quartuple (&1,Z2,x3,24) by &1 = x1 + cTo + p(x3,24),
ZTo = + q(x3,24), where c € C, p, and ¢ as in Lemma 4.20. Then we rewrite ¢
as

= (21 —cTr —p)* + (T2 — q)° ‘va +g(w3,24).
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By replacing variables, we rewrite ¢ as
© =27+ 2cxywo + (2 + 1)z
+221p(x3,4) + 2cm0p(T3, 24) + 25 + ¢(73,24),

where ¢ € C, wt g > 6, and p contains only monomials with weight 3 and 4.
Let f': Z — X be the weighted blowup with wtz; = multg z;. Then the
x1-chart Uy of the weighted blowup f’ can be expressed as

1
(x'f + 2cxPaly + (¢ + 1) + 233—,]9(96’129637 xzh)
1

X 1 1
+ 2cZp(xPal, 2ha)) + 2 + —5q(aPaly, 2l2)) = O)/—(l, —-3,3,—1).
i) ] 5
The origin is a nonhidden singularity which is not of type i(1,—1,3). It is a

5
contradiction by Table 1.
If r > 5, there is no suitable weight wt(xz1,z2,x3,24) by Corollary 4.19.

Case (3). If r =5, we can distribute weights wt(x1,x2,z3,24) = (5,2,3,1), (5,3,
2,1). Let f': Z — X be the weighted blowup with wtz; = multg ;. As in the
proof of case (2), the origin of the x1-chart U; of the weighted blowup f’ is not
a nonhidden singularity which is not of type %(1, —1,3). It is a contradiction.

If r > 5, by Lemma 4.18, we show that » = 11 and wt(z1,z2,23,24) = (6,5,
4,1). However, since wt(z1z2) = 11, it is impossible that ¢ forms as in Corol-
lary 4.19.

Therefore, there is no divisorial contraction of type el which contracts to a
cAs point with discrepancy 4. The proof of Theorem 2.1 is completed. O

Proof of Theorem 2.2
The ¢D point P € X has an identification such that
¢ =] + x5x4 + Awaw + g(ws, x4) =0,

where g € m3, A € C, and k> 2. We can show that r # 5 as in the proof of
Theorem 2.3.
(i) As in the proof of Theorem 2.3, we can show that wt(xy, 29, z5,24) =

(r+1

> %,4, 1) and that ¢ can be written as

¢ =] + Az2xh + z47) + p(23,24),

¥ =13+ 221q1 (3, 24) + g2(23, 24),

where A € C, k > %, wtp>r+1, wtqy = %7 wtge =7 — 1, and ¢;,q2 are
weighted homogeneous for the weights distributed above.

(ii) Set x5 = —, and replace x4 with —x4. Let f': Z — X be the weighted
blowup with wtz; = multz;. We have the condition that ¢s is not square if
g1 = 0, which is equivalent to the condition that the exceptional locus F of f’ is

irreducible and reduced.
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(iii) We shall show the condition below if and only if every singular point in

Z is terminal:

r+1
e ;¢ €pif r=3 (mod 8),
r—1

e 1,% €qif r=-3 (mod 8).

The z3-chart Us of the weighted blowup f’ can be expressed as

+ )\Z‘QI'E;UC 2 + $4x5 + /r+1p(l'3 ,333334) O
5 4 224 q1 (1, 24) + (1, 334) +ahry =0

/3(7;’792 L)

If 0 € Us, then the origin is not terminal since Us is not embedded in 4-dimensional

quotient space. So we have the condition o ¢ Us, which is equivalent to the con-
r+1

dition z4* € p (resp., :v3 € q2) if r=3 (mod 8) (resp., 7 =5 (mod 8)). Hence,
Z is covered by Uy, Uy, Uy, and Us. The origin of Uy is of type %(1,71,8).
We can check that Z has only isolated singularities as in the proof of Theo-
rem 2.9.

Therefore, we can apply Lemma 4.2, and f should coincide with f’. The
proof of Theorem 2.2 is completed. O

4.6. Case e3 with discrepancy 3

In this section, we suppose that f: (Y D E) — (X 3 P) is of type e3, and its

discrepancy a is 3. In this case, Y has one non-Gorenstein singular point. This

point deforms to two points: @ of type 1(1, 1,1) and Q2 of type i(1,3,3). Set
] —{(ll,lg,lg,l4) EZ >0 ‘ 411 +312+213+l4—],l lg —0}

LEMMA 4.22
We have that dim V; = #Nj.

Proof
By Tables 1 and 2, we can see that (rg,,bg,,vg,) = (2,1,1), (rQ,,bQ,,vq,) =
(4,3,1), and E3 =1/4. We also have eg, =1, eg, = 3. So

1 )
dimVj =3 J +4)+E+ 12E ca(Y)

—1 ]+1

(J—J+1)§_(J—J+ (Z Z) - 3l
=1

Here ~ denotes the residue modulo 2, and ¥ denotes the residue modulo 4. Since
dim Vy =1, we have

) 9

Now we consider



Divisorial contraction to ¢cDV points 561

. . 3 . 1 — I
dimV; —dimV;_g = §(2j+1) — Z(] —Jj+1)

—
S~ — 3l
=G -2 F1 +j+2

e — 2+l +j+ )+

for any j > 3. We can show dim V; —dim V;_3 = #N; —#N,;_3 as Lemma 4.3. 0O

(4-30)
8

LEMMA 4.23

(i) There exist some 1 < k,l <4 with multgzy =1 and multgx; =2. By
permutation, we may assume that xry = x4, x; = x3. The monomials xffxff for
(0,0,13,14) € Ny form a basis of Va. In particular, for k=1,2, multg zy >3 for
Ty i=xp + ch1314xé3:ri4 with some ¢k, € C and summation over (0,0,13,14) €
Uj<3 Nj.

(ii) There exists some k=1,2 with multy Ty = 3 such that the monomials
T and xéf;vﬁf for (0,0,13,l4) € N3 form a basis of V3. By permutation, Ty =
To. Then multzy >4 for &1 : =71 + chzl3l4jl22xé3xi4 with some c,1,1, € C and
summation over (0,la,13,1l4) € Ny.

(iii) We have multg &) = 4. If j <6, then the monomials &} TR a5zl for
(I1,12,13,14) € Nj form a basis of V.

(iv) Set Nj={(l1,l2,13,1s) € Z4 | 411 + 3la + 2l3 4+ 14 = j}. The monomials

iﬁljézx?mi‘l for (l1,12,13,14) € Ng have one nontrivial relation, say, v, in Vs. The

natural exact sequence
0-Cy— @  Citapafal »Ve—0
(I1,l2,13,l4)ENg

18 exact.

COROLLARY 4.24
We distribute weights wt(&1, Za,x3,24) = (4,3,2,1) to the coordinates &1, T, x3,
x4 obtained in Lemma /.25. Then ¢ is of the form

¢ =)+ ps6(21,T2,73,74)

with ¢ € C and a function psg of weighted order greater than 6, where ¢ in (1)
is the one in Lemma 4.25(iv).

Proof of Theorem 2.0
The cAs point P € X has an identification such that
p=ai+a}+a3 +g(ws,24) =0,

where g € m? and deg g(x3,1) < 2.
(i) We shall show that we distribute weight wt(z1, x2,z3,24) = (4,3,2,1) and
that ¢ can be written as
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0 =124 25 + 2cx1 w9 + 221 p(23, 24)
+ 2czapwi=s(r3,24) + 23 + g(x3, 24)
=0,

where ¢ # +1, 2 <wtp <3, wtg > 6, and degg(xs,1) <2. By Corollary 4.24,
we can distribute weight wt(x1,z2,23,24) = (4,3,2,1). We obtain a quartuple
(Z1,%2,T3,24) by &1 =1 + cTo + p(x3,74), To = 22 + q(x3,24), where c € C, p,
and ¢ are as in Lemma 4.23. Then we rewrite ¢ as
p= (11— cr—p)* + (T2 = q)* + 25 +g.

Since wt ¢ = 6, we have cpyi<2 = —¢, and p contains only monomials with weight
2 and 3. Moreover, since P € X is of type cAs, we have ¢? 41 # 0. So by replacing
variables, we have the desired expression in (i).

(ii) Let f': Z — X be the weighted blowup with wtz; = multg ;. We have
the condition that g is not square if pyy—2 = 0, which is equivalent to the condition
that the exceptional locus F' of f’ is irreducible and reduced.

(iii) We shall show that ¢ needs the condition 3 € p and that every singu-
lar point in Z is terminal. The xz;-chart U; of the weighted blowup f’ can be

expressed as

2 12 ) /W) 2 1 12 1 !0
Ty + Xy + 2w 2y + ?p(xl T3, T17y)
1

. 1 1
+ 2eahpuims (w5, 2f) + 2 + —sg(aliah, atal) = 0) /2(1,1,2,3).
1

It is necessary that the origin be of type cAwz/4. So we have the condition 2% € p.
We can check that Z has only isolated singularities as in the proof of Theo-
rem 2.10.

Therefore, we can apply Lemma 4.1, and f should coincide with f’. The
proof of Theorem 2.6 is completed. O

Proof of Theorem 2.7
The ¢D point P € X has an identification such that
©=a? +xiry + Mvoah + g(xs,24) =0,

where g € m®, A € C, and k > 2. Since wtp = 6, we can distribute weight wt(z,
x9,x3,24) = (4,3,2,1), (4,3,1,2), (4,2,1,3), (3,4,2,1), (3,4,1,2), (3,2,1,4), or
(3,1,2,4).
o At first, we suppose wt(z1, 29,23, 24) = (3,4,2,1).
(i) We shall show that ¢ can be written as
p= :c% + x%u + 2woxap(xs,x4) + 0233%394 + )\:rgx’g

+ c(2z1 @04 + 22124 p(03, 24) + )\96193]§) +9g(z3,24)
= 0’
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where ¢, A€ C, k> 2, wtg > 6, and p contains only monomials with weight at
most 3.

We obtain the quartuple (Z1,Z2,z3,24) by 1 = 21 + p(x3,24), To =29 +
cZ1 + q(zs,x4), where c € C, p, and ¢ are as in Lemma 4.23. Then we rewrite ¢
as

0= (T1 — q)* + (#2 — T1 — p)?xs + A(#2 — cT1 — p)75 + g(x3,24).

Since wt ¢ = 6, we can assume q = 0. Moreover, we have wt(p%zy — Apzh +g) > 6,
and p contains only monomials with weight at most 3. So replacing variables, we
have the desired expression in (i).

(ii) Let f': Z — X be the weighted blowup with wtz; = multg x;. We have
the condition that g is not square if pyt—1 = 0, which is equivalent to the condition
that the exceptional locus F' of f’ is irreducible and reduced. If x4 € p, then F
is irreducible and reduced.

(iii) We shall show that ¢ has the conditions ¢ =0, 74 € p, and z3 € g if and
only if every singular point in Z is terminal and Z has a nonhidden terminal
of type cAxz/4. The xo-chart Us of the weighted blowup f’ can be expressed
as

/
13 .1 12 1 2 12 ./
(xl + a4+ 2 i p(x2 xh, whah) + cCaahal

Lo

1
+ 0(295'190’22952 + 27 7)) ,2p(9c2 T3, THT4) + )\xlxlzk 3 ’k)

1
ot 2%@_/69(1:2 oy, b)) = )/4 1,1,2,3).

The origin of Us is of type cAxz/4. So we have the conditions x4 € p and ¢=0.
Moreover, since the equation is free outside the origin, we have gyi—¢(x3,0) # 0,
which is equivalent to the condition a3 € g. Thus, ¢ can be written as

o= x% + x§x4 + 2z0w4p(x3,4) + )\chmlgf + g(x3,4),

and P is of type cDy. We can check that Z has only isolated singularities as in
the proof of Theorem 2.10. Therefore, we can apply Lemma 4.1, and f should
coincide with f' if P € X is c¢Dy.

e Next, we shall show that there is no weighted blowup of type e3 which
contracts to a cD point with wtz; = 4.

We select wt(xy,xe,23,24) = (4,3,2,1). We obtain the quartuple (&1, Zo,
x3,%4) by &1 = 1 + Ty + p(xs3,24), To = x2 + q(x3,24), where ¢ € C, p, and
q are as in Lemma 4.23. Then we rewrite ¢ as

= (21— cZs — p)* + (T2 — ¢)°24 + N(@2 — q)§ + g(x3,24).

We replace &1 — x1 and T — z2. Let f': Z — X be the weighted blowup
with wtz; = multg z;. Then the z-chart U; of the weighted blowup f’ can
be expressed as
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1 2
/ ! 12 /1
((351 —CTy — ,3p(a:1 5“37951554))

1 2
12 .1 /)
+ (332 - Pz q(zf 1733951154)) 1Ty

1
! 12,0 0 12k—3 /k
+ )\(Jc2 - Eq(xl x3,x1x4))x1
1

1 1
+ s g(aal,ahay) =0) /7(1,1,2,3),
] 4

It is necessary that the origin be of type cAx/4. So we have x3 € p, and more-
over ¢ = 0. Now the xy-chart Us of the weighted blowup f’ can be expressed
as

1 2
! 12 .1 /i
((xlmQ - _xlgp(xz x3,x2x4))
2

1 2
+ (1 b, 3q(x’22xg,x2x4)) xha!)
2

1 2 2k—3
+>\(]— 1'23 Q(‘rIQ xé,x2x4)>z/2 I3

1 1
+ —,Gg(x’Qng,x'QxﬁL) = 0)/ (2,1,1,2).
T4 3

The origin is a nonhidden singularity. It is a contradiction by Table 1. Similarly,
we have a contradiction in any other case. Therefore, there is no weighted blowup
of type €2 which contracts to a ¢D point with wtz; =4.

e Finally, we shall show that there is no weighted blowup of type e3 which
contracts to a cD,, point with wtz; =3 for any n > 5. We can show that P is of
type ¢D4 with the weight wt(x1,x2,z3,24) = (3,4,1,2) as in the proof with the
weight wt(z1, 29, x3,24) = (3,4,2,1). We select wt(x1,xz2,23,24) = (3,2,1,4) or
(3,1,2,4). We obtain the quartuple (Z1,z2,x3,%4) by T4 = 24 + cT1 + p(2,23),
Z1 =1+ q(z2,23), where ¢ € C, p, and ¢ are as in Lemma 4.23. Then we rewrite
© as

o= (Z1— q)* + 25 (&4 — Ty — p) + Azaah + g(3,24 — Ty — p).
Replacing variables, we can rewrite ¢ as
¢ =7 + 23 (24 + cx1 + p(22,23)) + Az2zh + g(21, 22, 73, 24),

where c€ C, k> 2 wtg > 6, and p contains only monomials with weight at
most 3. Let f': Z — X be the weighted blowup with wtz; = multg x;. If wt(xq,
Zo,x3,24) = (3,2,1,4), then the z4-chart Uy of the weighted blowup f’ can be
expressed as

1
12 12 12 W} 12
(xl + x5 (x4 +exixly + CE,2p(:v2x4 ,x3x4))
4

1
+)\a?’2:vgkxﬁf 44 /Gg(xle’,xzx4 a2} )/4 1,2,3,1).
Ty
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It is necessary that the origin be of type cAz/4. So we have the condition 23z, € g.
This means that P is of type cDj.

If wt(xy,ze,23,24) = (3,1,2,4), we have ¢ =0, and we can assume p =0
by replacing ¢ if necessary. The xz3-chart Us of the weighted blowup f’ can be
expressed as

1
(m’f—i—xQ xly + Arha2F P 4 /6g(x1xg37x2x3,xg2,xg4 h) = )/2 1,1,1,0).
Z3

We need the condition o ¢ Us, which is equivalent to the condition 23 € g. Then P
is of type c¢Dy. Therefore, there is no divisorial contraction of type e3 which con-
tracts to a c¢D,, point with discrepancy 3 for any n > 5. The proof of Theorem 2.7
is completed. O

Proof of Theorem 2.8
The cFEg point P € X has an identification such that

=1} + x5 + 229(x3,24) + h(x3,24) =0,
where g € m®, h € m*, and hy # 0. By Corollary 4.24, we have wtp = 6. So
we can distribute weights wt(z1,z2,23,24) = (4,3,2,1), (4,2,3,1), (3,4,2,1), or
(3,2,4,1). Suppose wt(z1,22,x3,24) = (4,3,2,1). Then we obtain a quartuple
(21, T2, 73,74) by &1 =21 + T + p(w3,24), T2 = 2 + q(23,24), where c€ C, p,
and ¢ are as in Lemma 4.23. We rewrite ¢ as

p= (21— ct2—p)*+ (T2 —q)° + (T2 — q)g + .
We replace 1 with z; and Zs with x5. Since wt ¢ = 6, we can rewrite ¢ as
o =a2+ x5+ p(xs3,24)T3 + 2c 70
+2q(z3, xa) 21 + 29(23, 4) + h(23, 24)

=0,
where g € m?, hem?*, hy #0, c€C, and p (resp., ¢) contains only monomials
with weight 1 and 2 (resp., 2 and 3).

Let f': Z — X be the weighted blowup with wtz; = multg z;. The z;-chart
U, of the weighted blowup f’ can be expressed as

12
(xl + 22l + p(aPaly, o) ) af

1
Wi 2 ./ W
+20x1$2+2ﬁQ(951 Ty, 1 T))
1

+ x’gi,gg(x'fxg,x’lxﬁl) + iﬁh(x?a:g,%% )/ (1,1,2,3).

Ly 1‘1 4
It is necessary that the origin be of type cAz/4. So we need 22 € ¢ and x3 ¢ q.
Moreover, we need that the action is free outside the origin, which is equivalent
to the condition that 23 € h. This is a contradiction. Similarly, we have a con-
tradiction in any other case. Therefore, there is no divisorial contraction of type
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e3 which contracts to a cEg point with discrepancy 3. The proof of Theorem 2.8
is completed. O
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